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Abstract: Open quantum systems weakly coupled to the environment are mod-
eled by completely positive, trace preserving semigroups of linear maps. The
generators of such evolutions are called Lindbladians. In the setting of quantum
many-body systems on a lattice it is natural to consider Lindbladians that de-
compose into a sum of local interactions with decreasing strength with respect to
the size of their support. For both practical and theoretical reasons, it is crucial
to estimate the impact that perturbations in the generating Lindbladian, arising
as noise or errors, can have on the evolution. These local perturbations are po-
tentially unbounded, but constrained to respect the underlying lattice structure.
We show that even for polynomially decaying errors in the Lindbladian, local
observables and correlation functions are stable if the unperturbed Lindbladian
has a unique fixed point and a mixing time which scales logarithmically with
the system size. The proof relies on Lieb-Robinson bounds, which describe a
finite group velocity for propagation of information in local systems. As a main
example, we prove that classical Glauber dynamics is stable under local pertur-
bations, including perturbations in the transition rates which may not preserve
detailed balance.
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1. Background and previous work

The physical properties of a closed many-body quantum system are encoded
in its Hamiltonian. Theoretical models of such systems typically assume some
form of local structure, whereby the Hamiltonian decomposes into a sum over
interactions between subsets of nearby particles. Similarly, the behavior of an
open many-body quantum system is encoded in its Liouvillian. Again, this is
typically assumed to have a local structure, decomposing into a sum over local
Liouvillians acting on subsets of nearby particles.

Crucial to justifying such theoretical models is the question of whether their
physical properties are stable under small perturbations to the local interactions.
If the physical properties of a many-body Hamiltonian or Liouvillian depend
sensitively on the precise mathematical form of those local terms, then it is
difficult to conclude anything about physical systems, whose interactions will
always deviate somewhat from theory.

Quantum information theory has motivated another perspective on many-
body Hamiltonians. Rather than studying models of naturally occurring sys-
tems, it studies how many-body systems can be engineered to produce desirable
behavior, such as long-term storage of information in quantum memories [12,19,
20,48], processing of quantum information for quantum computing [34,51,13,
11,14], or simulation of other quantum systems which are computationally in-
tractable by classical means [8,7,3,28,30]. Again, stability of these systems under
local perturbations is crucial, otherwise even tiny imperfections may destroy the
desired properties. Stability in this context has been studied for self-correcting
topological quantum memories, where one in addition requires robustness against
local sources of dissipative noise, and the relevant quantity is the minimum time
needed to introduce logical errors in the system. It has been known since [12,
1] that a self-correcting quantum memory with local interactions is possible in
four spatial dimensions. With the breakthrough of the Haah code [19], it seems
it may be possible to engineer such self-correcting quantum memories in three
dimensions.

Recently, and partially motivated by the dissipative nature of noise, this “engi-
neering” approach has been extended to open quantum systems and many-body
Liouvillians. First theoretical [38,61], and then experimental [39,5] work has
shown that creating many-body quantum states as fixed points of engineered,
dissipative Markovian evolutions can be more robust against undesirable errors
and maintain coherence of quantum information for longer times. Intuitively,
there is an inherent robustness in such models: the target state is independent
of the initial state. If the dissipation is engineered perfectly, the system will al-
ways be driven back towards the desired state. This idea can be used to engineer
dissipative systems both for carrying out computation via dissipative dynamics
[61] and for storing quantum information [53]. However, it does not guarantee
stability against errors in the engineered Liouvillian itself. Once again, stability
against local perturbations – this time for many-body Liouvillians rather than
Hamiltonians – is of crucial importance. Indeed, in [53] the authors consider
depolarizing noise acting on top of a dissipative interaction enginereed for pro-
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tecting a logical qubit encoded in the system, and provide positive numerical
evidence for stability of a specific 4D model.

In the case of closed systems governed by Hamiltonians, recent breakthroughs
have given rigorous mathematical justification to our intuition that the physical
properties of many-body Hamiltonians are stable. Starting with [35,10], it cul-
minated in the work of [49] which showed that, under a set of mathematically
well-defined and physically reasonable conditions, gapped many-body Hamilto-
nians are stable under perturbations to the local interactions.1 More precisely,
in the presence of frustration-freeness, local topological quantum order, and local
gap, the spectral gap of a Hamiltonian with local (or quasi-local) interactions is
stable against small (quasi-) local perturbations (see [49] for a formal definition
of these conditions). The bound on the amount of imperfection tolerated by the
system depends on the decay of the local gaps, the decay of the local topological
order, and the strength (and decay rate) of the interactions. Furthermore, except
for frustration freeness which is a technical condition required in the proof, these
conditions are in a sense tight. There exist simple counterexamples to stability
if any one of the conditions is lifted.

2. Stability of open quantum systems

In this work, we study stability of many-body Liouvillians. We consider dynamics
generated by rapidly decaying interactions, where the notion of rapid decay is
made precise in section 3. Moreover, in order to have a well-defined notion of
scaling with system size, we restrict to Liouvillians whose local terms depend
only on the subsystem on which they act, and thus are not redefined as we
consider larger systems. We call such families of Liouvillians uniform.

Our main result shows that, under the above assumptions on the structure
of the Liouvillian, logarithmic mixing time implies the desired stability in the
dissipative setting.

However, although the result is analogous to [49], the proof and even the
definition of stability in the case of Liouvillians necessarily differ substantially
from the Hamiltonian case. For Hamiltonians, the relevant issue is stability of
the spectral gap. Via the quasi-adiabatic technique [21,25], this in turn implies a
smooth transition between the initial and perturbed ground states, showing that
both are within the same phase. Note that the existence of a smooth transition
(no closing of the spectral gap in the thermodynamic limit) does not imply that
both ground states are close in norm, as the simple example H =

∑N
i=1 |0〉〈0|i

vs. H(ε) =
∑N
i=1(|0〉+ ε |1〉)(〈0|+ ε 〈1|)i/(1 + ε2) shows.2 It does however imply

a well-behaved perturbation in the expectation value of local observables – such
as order parameters – and correlation functions, which in most experimental
situations are the only measurable quantities.

1 Note that, in stark contrast to traditional perturbation theory, the perturbations consid-
ered here simultaneously change all the local interactions by a small amount. The strength of
the total perturbation therefore scales with system size and standard perturbation theory does
not apply. It is the structure of local ground states of the Hamiltonian that ensures stability.

2 Note that each Hamiltonian is the sum of non-interacting projections for any ε ∈ R.
In particular, for each ε, there is a unitary U(ε) acting on a single site, such that H(ε) =
U(ε)⊗NHU†(ε)⊗N .
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For Liouvillians, we are interested in a definition of stability more related to
the evolution itself, which accounts at the same time for both the speed of con-
vergence and the properties of the fixed point. Here, we consider the strongest
definition of stability: we want our systems (initial and perturbed) to evolve sim-
ilarly for all times and all possible initial states. Thus, not only should the speed
of convergence to the fixed points be similar, the fixed points themselves should
be close and so should the approach to the fixed points. Such “dynamical” defi-
nition of stability is radically different from other notions of stability previously
considered in the literature, such as Local Thermodynamical Stability [2,56].
While there are cases in which both concepts are of interest, they are generally
independent concepts.

Requiring stability of the evolution is significantly stronger than stability of
the spectral gap alone,3 and is more directly relevant to the applications dis-
cussed above. As in the Hamiltonian case, the analogous simple example shows
that one cannot expect to attain such stability if we consider global measure-
ments on the system. Therefore, in analogy with the Hamiltonian case, restrict
our attention to local observables and few-body correlation functions. Since there
are technical subtleties involved in extending this stronger definition of stability
to dynamics with multiple fixed points, we defer consideration of multiple fixed
points to a future paper, and restrict our attention here to dissipative dynamics
with unique fixed points. It is important to note, however, that we do not make
any assumption on the form of the unique fixed point. In particular, we do not
assume that it is full-rank (primitivity); our results apply equally well to Liou-
villians with pure fixed points. (Pure-state fixed points are particularly relevant
to quantum information applications, such as dissipative state engineering and
computation.)

A key technical ingredient in the stability proof for Hamiltonians is the quasi-
adiabatic evolution technique [21,25], which directly uses the fact that Hamilto-
nian evolution is reversible. This is of course no longer true for Liouvillians, so
we must use a different proof approach. We make use of the fact that evolution
under a Liouvillian converges to a steady-state, together with dissipative gener-
alizations [50] of the Lieb-Robinson bounds that are the other crucial ingredient
in [49].

Among systems which satisfy our assumptions, one finds classical Glauber
dynamics [46]. This immediately shows that Glauber dynamics is stable against
errors. To the best of our knowledge, this is new even to the classical literature
(related results, but with different assumptions, were given in [27]). Given the
importance of Glauber dynamics to sampling from the thermal distributions of
classical spin systems [41,46], we expect our results to have applications also to
classical statistical mechanics.

The paper is structured as follows: After setting up notation and basic def-
initions in the next section, we state our main stability result in section 4 and
discuss the assumptions it requires. In section 5 we prove various technical re-
sults used in the main proof, which is given in section 6. We apply these results
in section 7 to the important example of classical Glauber dynamics, before con-
cluding with a discussion of the results and related open questions in section 8.

3 Due to the recent work in [57], it is not clear whether the spectral gap in Liouvillians is
the relevant quantity for convergence questions.
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3. Setup and notation

We will consider a cubic lattice4 Γ = ZD. The ball centered at x ∈ Λ of radius
r will be denoted by bx(r). At each site x of the lattice we will associate one
elementary quantum system with a finite dimensional Hilbert space Hx. We will
use the Dirac notation for vectors: |φ〉 will denote a vector in Hx, 〈φ| its adjoint,
and {|n〉}dimHx

n=0 the canonical basis for Hx. Scalar product in Hx will be denoted
by 〈φ|ψ〉, and rank-one linear maps by |φ〉〈ψ|. For each finite subset Λ ⊆ Γ , the
associated Hilbert space is given by

HΛ =
⊗
x∈Λ
Hx, (1)

and the algebra of observables supported on Λ is defined by

AΛ =
⊗
x∈Λ
B(Hx).

If Λ1 ⊂ Λ2, there is a natural inclusion of AΛ1 in AΛ2 by identifying it with
AΛ1 ⊗ 1. The support of an observable O ∈ AΛ is the minimal set Λ′ such that
O = O′ ⊗ 1, for some O′ ∈ AΛ′ , and will be denoted by suppO. We will denote
by ‖·‖p the Schatten p-norm over AΛ. Where there is no risk of ambiguity, ‖·‖
will denote the usual operator norm (i.e. the Schatten ∞-norm).

A linear map T : AΛ → AΛ will be called a superoperator to distinguish it
from operators acting on states. The support of a superoperator T is the minimal
set Λ′ ⊆ Λ such that T = T ′⊗1, where T ′ ∈ B(AΛ′). A superoperator is said to
be Hermiticity preserving if it maps Hermitian operators to Hermitian operators.
It is said to be positive if it maps positive operators (i.e. operators of the form
O∗O) to positive operators. T is called completely positive if T ⊗1 : AΛ⊗Mn →
AΛ ⊗Mn is positive for all n > 1. Finally, we say that T is trace preserving if
tr T (ρ) = tr ρ for all ρ ∈ AΛ. For a general review on superoperators, see [62].

The dynamics of the system is generated by a superoperator L, which plays
a similar role to the Hamiltonian in the non-dissipative case. The evolution will
be given by the one parameter semigroup Tt = etL. The natural assumptions
to make about Tt are that it is a continuous semigroup of completely positive
and trace preserving maps (CPTP, sometimes also called quantum channels).
Such maps are always contractive, meaning that ‖Tt‖1→1,cb 6 1, where the
completely-bounded norm is defined as:

‖T‖1→1,cb = sup
n
‖T ⊗ 1n‖1→1 = sup

n
sup

X∈AΛ⊗Mn
X 6=0

‖T ⊗ 1n(X)‖1
‖X‖1

. (2)

We will also be interested in the ‖·‖∞→∞,cb completely-bounded norm of super-
operators, which is defined as follows:

‖T‖∞→∞,cb = sup
n
‖T ⊗ 1n‖∞→∞ = sup

n
sup

X∈AΛ⊗Mn
X 6=0

‖T ⊗ 1n(X)‖∞
‖X‖∞

.

4 We restrict to cubic lattices for the sake of exposition. The results can be extended to
more general settings, replacing the lattice ZD with a graph with polynomial growth.
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The relationship between ‖·‖1→1,cb and ‖·‖∞→∞,cb is the following:

‖T‖1→1,cb = ‖T ∗‖∞→∞,cb ,

where T ∗ is the dual of T , satisfying trAT (B) = trT ∗(A)B. We will denote
‖·‖∞→∞,cb simply by ‖·‖cb when there is no risk of confusing different completely-
bounded norms.

Remark 1. As shown in [29], the supremum in equation (2) is reached when n
is equal to the dimension of the space on which T is acting: if T :Mn →Mn,
then ‖T ⊗ 1n‖1→1 = ‖T‖1→1,cb.

The generator L of the semigroup Tt = etL, is called a Liouvillian. All such
generators can be written in the following general form, often called the Lindblad
form [15,42] (see [62]):

Proposition 1. L generates a continuous semigroup of CPTP maps if and only
if it can be written in the form:

L(ρ) = i[ρ,H] +
∑
j

LjρL
∗
j −

1
2
∑
j

{L∗jLj , ρ}, (3)

where H is a Hermitian matrix, {Lj}j a set of matrices called the Lindblad
operators, [·, ·] denotes the commutator and {·, ·} the anticommutator.

We will use the term Lindbladian and Liouvillian interchangeably. Since we
consider Lindbladians L corresponding to local dissipative dynamics, we assume
that L is a local Lindbladian of the form:

L =
∑
u∈Λ

∑
r>0
Lu,r, suppLu,r = bu(r), (4)

where each term in the sum above can be written in the form given by equa-
tion (3).

Such a decomposition is obviously always trivially possible. We are interested
in the cases in which the norms of Lu,r decay with r. Concretely, let us define
the strength of interaction for a Lindbladian as the pair (J, f) given by:

J = sup
u,r
‖Lu,r‖1→1,cb , f(r) = sup

u

‖Lu,r‖1→1,cb

J
. (5)

The behavior of f(r) as r goes to infinity corresponds to various interaction
regimes, listed in order of decreasing decay rate:

– finite range interaction: f(r) is compactly supported;
– exponentially decaying: f(r) 6 e−µr, for some µ > 0;
– quasi-local interaction: f(r) decays faster than any polynomial;
– power-law decay: f(r) 6 (1 + r)−α, for some positive α > 0.
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As we will see later, our result will apply whenever L has finite range, ex-
ponentially decaying, or quasi-local interactions. It will also hold in the power-
law decay regime, but we will require a lower bound on the decay exponent
α, depending on the dimension of the underlying lattice. Not to overload the
exposition, we will assume that L has finite range or exponentially decaying
interactions, unless otherwise specified. The modifications needed to work with
quasi-local interactions and power-law decay are presented in section 6.4. Also,
we will say that functions we construct along the way are fast-decaying, if their
decay rate is within the same decay class of f(r) we are considering (or faster).

As shown in [63], from the spectral decomposition of L (and Tt) one can define
two new CPTP maps which represent the infinite-time limit of the semigroup
Tt. We will denote by T∞ the projector onto the subspace of stationary states
(fixed points), and by Tφ the projector onto the subspace of periodic states.
They correspond, respectively, to the kernel of L and to the eigenspace of purely
imaginary eigenvalues of L, which we denote FL and XL, respectively. Both sub-
spaces are invariant under Tt: in particular, Tt acts as the identity over FL, while
it is a unitary operator over XL. Note, also, that both subspaces are spanned
by positive operators (i.e. density matrices) [62, Prop. 6.8, Prop. 6.12]. We will
denote by Tφ,t the composition Tt ◦ Tφ.

Since we plan to exploit the local structure of L, we will often make use of the
restriction of L to a subset of the lattice. Given A ⊂ Λ, we define the truncated,
or localized, generator:

LA =
∑

bu(r)⊆A

Lu,r. (6)

3.1. Uniform families. We are interested in how properties of dissipative dynam-
ics scale with the size of the system. Hence, we are concerned with sequences of
Lindbladians defined on lattices of increasing size, where all the Lindbladians in
the sequence are from the same “family”. To make this precise, we need to pin
down how Lindbladians from the same family, but on different size lattices, are
related to one-another. Our results will apply to very general sequences of Lind-
bladians, which we call uniform families. Before giving the precise definition, it
is helpful to consider some special cases.

For local Hamiltonians on a lattice, one often considers translationally-invariant
systems with various types of boundary conditions (e.g. open or periodic bound-
aries). There is then a natural definition of what it means to consider the same
translationally-invariant Hamiltonian on different lattice sizes. Translationally-
invariant Lindbladians are an important special case of a uniform family. In this
special case, all the local terms in the Lindbladian that act in the “bulk” of
the lattice are the same. Another way of thinking about this is to formally con-
sider the translationally-invariant Lindbladian M defined on the infinite lattice
Γ = Zd, and then consider each member of the family to be a restriction of this
infinite Lindbladian to a finite sub-lattice Λ ⊂ Γ of some particular size:

L =MΛ.

This gives us translationally-invariant Lindbladians with open boundary con-
dition. But of course, this is only one particular choice of boundary terms (in
this case, no boundary terms at all). We are also interested in more general
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d

Λ

∂dΛ

Nd

Fig. 1. Partition of the lattice Λ into the bulk and the boundary of thickness d, ∂dΛ (see
Def. 2). The dark red regions on the boundary correspond to the interaction term Nd coupling
distant regions in Λ.

boundary conditions, such as periodic boundaries. So, in addition to the “bulk”
interactions coming from M, we allow additional terms that play the role of
boundary conditions:

L =MΛ + L∂Λ.

We allow greater freedom in the boundary terms L∂Λ. For one thing, they
are allowed to depend on the size of the lattice Λ. But more importantly, we
allow strong interactions that cross the boundary of Λ, coupling sites that would
otherwise be far apart. For example, the case of periodic boundary conditions
corresponds to adding interaction terms that connect opposite boundaries of Λ,
as if on a torus (see Fig. 1).

Now that we have given an intuition of what a uniform family is, it is time to
present the formal definition. This includes all the special cases discussed so far,
but also captures much more general families of Lindbladians that are not nec-
essarily translationally-invariant, and many other types of boundary conditions
(e.g. cylindrical boundaries, or boundary terms that give the sphere topology,
or terms that force fixed states on the boundary5).

Definition 2. Given Λ ⊂ Γ , a boundary condition with strength (J, f) for Λ is
a Lindbladian L∂Λ =

∑
d>1 Nd, where

‖Nd‖1→1,c.b. 6 J |∂dΛ| f(d)

with

∂dΛ := {x ∈ Λ | dist(x,Λc) 6 d},
suppNd ⊂ ∂dΛ.

Definition 3. A uniform family of Lindbladians L with strength (J, f) is given
by the following:

(i) infinite Lindbladian: a Lindbladian M on all of ZD with strength (J, f);
(ii) boundary conditions: a set of boundary conditions L∂Λ, with strength (J, f)

and Λ = bu(L), for each u ∈ ZD and L > 0.

5 Or even Möbius strips, Klein bottles, and other exotic topologies.
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We say that the family is translationally invariant if M is translationally
invariant and L∂bu(L) is independent of u.

Given a uniform family L, we fix the following notation for evolutions defined
on a subset Λ:

LΛ =MΛ “open boundary” evolution; (7)

LΛ =MΛ + L∂Λ “closed boundary” evolution, (8)

with the respective evolutions TΛt = exp(tLΛ) and TΛt = exp(tLΛ).
Remark 2. In the rest of the paper, we will make use of the following notation:

A(s) = {x ∈ Λ | dist(x,A) 6 s}.

Since we are interested in observables whose support is not connected, we want
to consider more general regions than balls: in particular, we are interested in
disjoint unions of convex regions (for example, to calculate two-point correlation
functions). Consider what happens to such a region A = A0tA1 when we grow it
by taking A(s). When s becomes sufficiently large, A0(s) will merge with A1(s).
At this point, A(s) will not be a disjoint union of balls anymore. To avoid such
complications, for s large enough that disjoint balls merge, we will replace A(s)
by the smallest ball containing it. This will not hurt us, as |A(s)| will still grow
asymptotically at the same rate, which will be sufficient for our purposes.

A0A1
ss

A(s)

Fig. 2. The convention on how to grow a region A = A0 tA1.

Definition 4. We say that L has a unique fixed point if, for all Λ = bu(L),
XLΛ = FLΛ = {ρΛ∞}. In other words, TΛφ (ρ) = TΛ∞(ρ) = ρΛ∞, for all density
matrices ρ.

Note that if for all pure states ρ, we have TΛt (ρ) > 0 (positive definite), for
t > 0, then the evolution has a unique fixed point ρ∞ > 0 (see [62, Thm. 6.7]).

We will drop the superscript from TΛt , and simply write Tt, when we consider
some fixed Λ ⊂ Γ . In that case, we will refer to the number of lattice sites in Λ
as the system size.
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4. Main result

4.1. Assumptions for stability. In Hamiltonian systems, the spectral gap (the
difference between the two lowest energy levels) plays a crucial role in a number
of settings, from defining quantum phases and phase transitions [55] to under-
standing the entanglement and correlations present in the system [24,22,23] and
analyzing its stability to perturbations [10,49]. On the other hand, it is known
that for Lindbladians, the spectral gap (in this setting, the least negative real
part of the non-zero eigenvalues) alone is not sufficient to fully characterize the
convergence properties of the dissipative evolution [31,57]. Therefore, we will
instead impose a more general requirement on the convergence of the dynamics.
(The dependence of this requirement on spectral properties of L, i.e. proper-
ties depending on the eigenvalues – like the gap – and eigenvectors – like the
condition number, is an active area of research.)

Definition 5 (rapid mixing). Given a one-parameter semigroup of CPTP
maps Tt, define the contraction of Tt as the following quantity:

η(Tt) = 1
2 sup

ρ>0
tr ρ=1

‖Tt(ρ)− Tφ,t(ρ)‖1 . (9)

Given a family of such semigroups {Tαt }α, each of which is acting on B(Hα)
for some Hilbert space Hα of finite dimension dα, we say that it satisfies rapid
mixing if there exist constants c, γ, δ > 0, such that for each α:

η(Tαt ) 6 c logδ(dα) e−tγ . (10)

We will write RM(γ, δ) for short.

If each Hα has a tensor product structure of the type defined in equation (1),
then the rapid mixing assumption can be restated as a logarithmic scaling with
system size of the mixing time. Since the dimension of HΛ is (dimHx)|Λ|, for
uniform families condition (10) is equivalent to:

η(TΛt ) 6 c |Λ|δ e−tγ ∀Λ. (11)

Let us recall a result from [31].

Theorem 6 (Contraction for commuting Lindbladians). Let {Lj}nj=0 be
a set of commuting Lindbladians. Define L =

∑
j Lj and the corresponding

evolutions T jt = etLj and Tt = etL. Then:

η(Tt) 6
∑
j

η(T jt ). (12)

In particular, consider the definition of TΛt given in remark 2 for Λ ⊂ Γ
being a disjoint union of balls. Then the previous theorem implies that, if L is
translationally-invariant and it satisfies equation (10) for each of the connected
components of Λ, then it also satisfies the same equation (up to constants) for Λ.

Finally, for translationally-invariant uniform families of Lindbladians, it is
sufficient to satisfy equation (10) for lattices centered at the origin: Λ = b0(L),
L > 1.
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4.2. Stability. With the required assumptions laid out, we can now state our
main result.
Theorem 7. Let L be a uniform family of local Lindbladians with a unique fixed
point, satisfying rapid mixing (equation (11)), and consider a perturbation of the
form:

EΛ =
∑
u∈Λ

∑
r>0

Eu,r +
∑
d>1

Ed,

where Eu,r is supported on bu(r) and each Ed is supported on ∂dΛ (see defini-
tion 2) and

‖Eu,r‖1→1,cb 6 ε e(r), ‖Ed‖1→1,cb 6 ε |∂dΛ| e(d),

where ε > 0 is a constant (the strength of the perturbation) and e(r) is a fast-
decaying function. Consider the perturbed evolution

St = exp t(LΛ + EΛ)

and suppose that the following assumptions hold:
(i) E∗u,r(1) = E∗d(1) = 0 (or, equivalently: trEu,r(OA) = trEd(OA) = 0, for

all operators OA).
(ii) St is a contraction for each t > 0.

For an observable OA supported on A ⊂ Λ, we have for all t > 0:

‖T ∗t (OA)− S∗t (OA)‖ 6 c(|A|) ‖OA‖
(
ε+ |Λ| ν−1

η (dA)
)
, (13)

where dA = dist(A,Λc); η is positive and independent of Λ; ν−1
η (d) 6 (1 +

d)−D−1; c(|A|) is independent of Λ and t, and is bounded by a polynomial in
|A|.
Remark 3. Note that, for a fixed A, if we let Λ grow then dA will increase with
the linear size of Λ and consequently |Λ| ν−1

η (dA) will vanish in the limit.

Remark 4. The assumptions (i)-(ii) on the perturbation E are satisfied whenever
Mu,r +Eu,r and Nd +Ed (as in definition 3) are Lindbladians, but the theorem
also covers more general perturbations.
Remark 5. Since we are free to choose an OA with support on two non connected
regions, we can apply theorem 20 to two-point correlation functions (or more
generally k-point correlation functions, for fixed k) and still obtain that the
error introduced by the perturbation depends linearly on the strength of the
perturbation (and not on its global norm).

A set of tools already applied in the setting of classical Markov chains [18,17,
16,46], and recently generalized to quantum dissipative systems [52,9,32], are
the so-called Logarithmic Sobolev inequalities (in short, log-Sobolev inequalities).
Introduced in a different setting to study hypercontractivity of semigroups [33],
they provide the right asymptotic regime needed to satisfy the rapid mixing
condition: in fact, the existence of a system size independent log-Sobolev con-
stant implies a logarithmic scaling of the mixing time, which is exactly what is
required in definition 5. Without going into the technical details of log-Sobolev
inequalities (which can be found in [32]), we summarize this fact in the following
corollary:
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Corollary 8. Let L belong to a uniform family of translationally-invariant Lind-
bladians with a unique fixed point for each system size. If L satisfies the log-
Sobolev inequality with a system-size independent constant, then the dissipative
dynamics are stable, in the sense of theorem 7.

In particular, in [60] it was shown that product evolutions, i.e. Lindbladians
that can be decomposed as a sum of independent terms Lk acting on a single
subsystem, satisfy a log-Sobolev inequality with a log-Sobolev constant lower
bounded by the minimum of the spectral gaps of Lk (times a factor depending
on the maximum dimension of the subsystems). Moreover, the authors of [60]
were able to show that Davies maps associated to a graph state Hamiltonian [26]
(which are not in a product form, but can be analyzed in a similar way) and the
ones associated to free-fermionic Hamiltonians have a system-size independent
log-Sobolev constant.

In all such cases, corollary 8 implies that the evolution of local observables is
stable.

4.3. Local observables vs. global observables. The bound in equation (13) scales
with the size of the support of the observable OA. Although the dependence
is polynomial, for observables with large support the result is not useful. Still,
in most realistic experiments, we are interested in the behavior of observables
with fixed support and low-degree correlation functions, making the above result
widely applicable. Nonetheless, one might ask more generally for a system-size
independent bound on:

sup
ρ
‖T∞(ρ)− S∞(ρ)‖1, (14)

where S∞ is the fixed-point projector for the evolution of the perturbed Lindbla-
dian. However, this is not possible; the limitation to local observables is in some
sense strict. There is no hope of finding such a bound for global observables, as
the following simple example shows.6

Example 1. Consider N independent amplitude damping processes, with uniform
rate γ (which we can suppose w.l.o.g. equal to 1). This Lindbladian can be
written as

LN =
N∑
k=1

11...k−1 ⊗ L1 ⊗ 1k+1...N ,

where

L1(ρ) = |0〉〈1| ρ |1〉〈0| − 1
2{ρ, |1〉〈1|}

is an amplitude damping process on a single qubit, describing the decay of the
state |1〉 into |0〉 at a constant rate γ = 1. This Lindabladian has gap 1/2 and
etLN = (etL1)⊗N has mixing time of order O(logN) [31, Sec. V. C.]. The fixed
point is the pure state |0 . . . 0〉〈0 . . . 0|.

6 Indeed, all global stability results for quantum Linbladians we are aware of have a depen-
dency on the total Hilbert space dimension [58].
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Now consider Lε1, a rotation of L1, which fixes |α0〉 =
√

1− ε2 |0〉 +ε |1〉.
We have ‖L1 − Lε1‖1→1 = O(ε), but the new fixed point |α0〉〈α0|⊗N is almost
orthogonal to the original one, since the overlap between the two is

〈0 . . . 0|α0 . . . α0〉= 〈0|α0〉N = (1− ε2)N/2 ∼ e−Nε
2/2 → 0 as N →∞.

This shows that, in general, there is no good bound on (14) (note that we have
‖ |0 . . . 0〉〈0 . . . 0| − |a0 . . . α0〉〈a0 . . . α0| ‖1 > 1 − | 〈0 . . . 0|α0 . . . α0〉 |2) and that
the dependence on the support of the observable in equation (13) cannot be
improved: to see this consider the observable Or = |0 . . . 0〉〈0 . . . 0|1...r acting on
r 6 N spins. Or has norm one, and

O∞ := lim
t→∞

T ∗t (Or) = 1, Oε∞ := lim
t→∞

T ε ∗t (Or) = 〈0|α0〉2r 1 = (1− ε2)r1.

Consequently, we have:

‖O∞ −Oε∞‖ = 1− (1− ε2)r = rε2 + o(ε2).

This implies that any upper bound to ‖O∞ −Oε∞‖ has to be at least linear in
r, which is the size of the support of Or.

4.4. Do we need all the assumptions?. It is reasonable to ask if the assumptions
of theorem 7 are all necessary. We have just shown that we must necessarily
consider local observables if we are to have meaningful bounds, but what about
the other conditions? We will now present three examples, each consisting of a
family of Lindbladiands with periodic boundary conditions, such that, in order:

– The family is uniform and translationally invariant, satisfies rapid mixing,
but does not have a unique fixed point;

– The family has a unique fixed point, but is not uniform and fails to satisfy
rapid mixing;

– The family (presented in appendix A) has a unique fixed point, satisfies rapid
mixing, but is not uniform.

All these systems will be shown to be unstable.

Example 2. Consider a 1D chain composed of N 4-level systems, with an inde-
pendent Lindbladian acting on each site, having the following Lindblad operators

L1 = |0〉〈1| , L2 = |0〉〈3| , L3 = |2〉〈1| , L4 = |2〉〈3| ,

and denote by

L0(ρ) =
4∑
i=1

LiρL
∗
i −

1
2{ρ, L

∗
iLi}.

The global Lindbladian LN is given by applying L0 independently on each site
k = 1 . . . N :

LN =
N∑
k=1

11,...,k−1 ⊗ L0 ⊗ 1k+1,...,N .
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Then we have that

L0(|i〉〈j|) =


0 if i = j ∈ {0, 2}
|0〉〈0| + |2〉〈2| − 2 |i〉〈j| if i = j ∈ {1, 3}
−[χ{1,3}(i) + χ{1,3}(j)] |i〉〈j| if i 6= j.

Diagonal states of the form |i〉〈i| evolve according to the classical Markov
process embedded in the Lindbladian, while off-diagonal elements |i〉〈j| evolve
as

Tt(|i〉〈j|) = exp(−t[χ{1,3}(i) + χ{1,3}(j)]) |i〉〈j| ;
where χ{1,3} denotes the indicator function of the set {1, 3}. This implies that the
space of fixed points FL0 is given by span{|0〉〈0| , |2〉〈2| , |0〉〈2| , |2〉〈0|}. Since L0
has gap equal to 1, theorem 6 implies that LN satisfies rapid mixing. LN forms
a uniform family, but it does not satisfy the unique fixed point condition.

Consider now the following additional Lindbladian

E0(ρ) = 2
N

[
|0〉〈2| ρ |2〉〈0| − 1

2{ρ, |2〉〈2|}
]
.

Then, we have:

(L0 + E0)(|i〉〈j|) =


0 if i = j = 0
|0〉〈0| + |2〉〈2| − 2 |i〉〈j| if i = j = 1, 3
2
N (|0〉〈0| − |i〉〈j|) if i = j = 2
−
(
χ{1,3}(i) + χ{1,3}(j) + χ{i,j}(2)

N

)
|i〉〈j| if i 6= j.

Again, this implies that FL0+E0 = {|0〉〈0|}. Consequently LN + EN has a
unique fixed point. It is not a uniform family, and it does not satisfy rapid mixing,
as it is not even globally gapped. To see this, note that for σ = |200 . . . 0〉〈200 . . . 0|−
|020 . . . 0〉〈020 . . . 0|:

(LN + EN )(σ) = − 2
N
σ.

Analogously, LN + E∗N satisfies the same conditions as LN + EN , but the unique
fixed point is now |2 . . . 2〉〈2 . . . 2|.

All three systems described above are unstable, since we can transform one
into the other by applying a perturbation of order O(1/N), yet the fixed points
of LN + EN and LN + E∗N are locally orthogonal (while LN has both of them as
fixed points).

4.5. Relaxations of the rapid mixing condition. In the case of finite range or
exponentially decaying interactions, the proof of theorem 7 still holds if we relax
equation (11) by requiring only a polynomial decay in time, i.e. a bound of the
form

η(TΛt ) 6 c |Λ|δ γ(t), (15)
if γ(t) is a fast enough decaying function, where the threshold decay rate is deter-
mined by system-size independent constants (such as the Lieb-Robinson bound
constants and the geometrical dimension of the underlying lattice structure).

Determining the precise value of such threshold requires an argument similar
to the one given for the case of power-law decaying interactions in section 6.4,
and is presented in section 6.5.
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5. Toolbox for the proof

Before presenting the proof of theorem 7, we need to introduce some useful
tools. We present them in full generality, including the case of power-law decay
of interactions, without restricting here to exponentially decaying interactions.

5.1. Lieb-Robinson bounds for Lindbladian evolution. We first recall a general-
ization of Lieb-Robinson bounds to non-Hamiltonian evolution, due to [54] and
[50], which we use to derive a number of useful tools that allow us to approxi-
mate the support of an evolving observable with a finite set which grows linearly
in time. The following condition is sufficient for the bounds to hold.

Assumption 1 (Lieb-Robinson condition). Let L =
∑
u,r Lu,r be a local

Lindbladian. There exist positive constants µ and v, such that:

sup
x∈Λ

∑
u∈Λ

∑
r>dist(u,x)

‖Lu,r‖1→1,cb |bu(r)| νµ(r) 6 v

2 <∞; (16)

where νµ(·) is one of the following:

νµ(r) = eµr, (LR-1)
νµ(r) = (1 + r)µ. (LR-2)

Note that both functions are submultiplicative, in the sense that νµ(r + s) 6
νµ(r)νµ(s). Moreover, νa(r)b = νab(r).

The constant v is called the Lieb-Robinson velocity of L, while the reciprocal
function ν−1

µ (r) = 1/νµ(r) is called the Lieb-Robinson decay of L.

Note that if L has interaction strength (J, f), then condition (16) can be
replaced by:

J sup
x,y∈Λ

∑
n>0
|bx(r) \ bx(r − 1)|

∑
r>n

f(r) |by(r)| νµ(r) 6 v

2 <∞. (17)

Since our systems are embedded in the lattice ZD, we have that v <∞, as long
as: ∑

n>0
nD−1Fµ(n) <∞, Fµ(n) :=

∑
r>n

rD f(r) νµ(r). (18)

Remark 6. Condition (LR-1) is satisfied when L has finite-range or exponentially
decaying interactions, while condition (LR-2) is satisfied when L has quasi-local
interactions. If L has interactions decaying as a power-law with exponent α, then
condition (LR-2) is satisfied whenever α > 2D+1 (by choosing µ < α−(2D+1)).

Theorem 9 (Lieb-Robinson bound). Suppose L is a local Lindbladian satis-
fying assumption 1. Let OX be an observable supported on X ⊂ Λ, and denote by
OX(t) = T ∗t (OX) its evolution under L. Let K : AY → AY be a super-operator
supported on Y ⊂ Λ which vanishes on 1. Then, the following bound holds [54,
50]:

‖K(O(t))‖ 6 ‖K‖∞→∞,cb ‖OX‖C(X,Y ) (evt − 1)
νµ(dist(X,Y )) , (19)

where C(X,Y ) = min(|X| , |Y |).
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From now on, we will only consider Lindbladians which satisfy equation (17)
with either of the two possible assumptions on νµ(·).

Lemma 10 (Comparing different dynamics). Let L1 and L2 be two local
Lindbladians, and suppose L2 has Lieb-Robinson speed and decay bounded by v
and ν−1

µ . Consider an operator OX supported on X ⊂ Λ, and denote by Oi(t)
its evolution under Li, i = 1, 2. Suppose that L1 −L2 =

∑
r>0 Mr, where Mr is

a superoperator supported on Yr which vanishes on 1, and dist(X,Yr) > r. Then
the following holds:

‖O1(t)−O2(t)‖ 6 ‖OX‖ |X|
evt − vt− 1

v

∞∑
r=0
‖Mr‖1→1,cb ν

−1
µ (r). (20)

Proof. Let h(t) = O1(t)−O2(t). Calculating its derivative, we obtain

h′(t) = L∗1O1(t)− L∗2O2(t) = L∗1h(t) + (L∗1 − L∗2)O2(t).

Since h(0) = 0, this differential equation for h(t) has solution

h(t) = O1(t)−O2(t) =
t∫

0

e(t−s)L∗1 (L∗1 − L∗2)O2(s) ds

=
∑
r>0

t∫
0

e(t−s)L∗1M∗rO2(s) ds,

(21)

giving us a useful integral representation for O1(t)−O2(t). From this, we obtain
the estimate

‖O1(t)−O2(t)‖ 6
∑
r>0

t∫
0

‖M∗rO2(s)‖ ds,

where we have used the fact that etL∗1 is a contraction with respect to ‖·‖∞ for
each t > 0.

We can now apply the Lieb-Robinson bound (equation (19)) to each of the
terms in the sum in the previous estimate, to obtain:

‖O1(t)−O2(t)‖

6
∑
r>0
‖Mr‖1→1,cb ‖OX‖C(X,Yr)ν−1

µ (dist(X,Yr))
t∫

0

(evs − 1) ds,

which implies the claimed bound. ut

A particular application of the previous lemma is when L2 is a restriction of
L1 onto a smaller region. Since this case occurs frequently, and is of particular
interest, we state it as a separate lemma. Similar results were presented in [50,
6].
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Lemma 11 (Localizing the evolution). Let OA be an observable supported
on a finite A ⊂ Λ. Denote by OA(t) = T ∗t (OA) its evolution under a local
Lindbladian L with strength (J, f). Given r > 0, denote by OA(r; t) its evolution
under the localized Lindbladian LA(r).

Then, the following bound holds:

‖OA(t)−OA(r; t)‖ 6 ‖OA‖ |A| J
evt − 1− vt

v
ν−1
β (r), (22)

where ν−1
β (r) decays exponentially if L satisfies condition (LR-1), while decays

as (1 + r)−β if L satisfies condition (LR-2). In this case, if we denote by α the
decay rate of L, then β is given by:

β =
{
α− 3D if α > 5D − 1;
1
2 (α−D − 1) if α 6 5D − 1.

Proof. First, let us decompose L − LA(r) as a telescoping sum

L − LA(r) =
∑
l>r

LA(l+1) − LA(l).

Since each element in the sum is the difference between restrictions on dif-
ferent subsets of the same global Lindbladian, it is easy to explicitly write their
difference

LA(l+1) − LA(l) =
l+1∑
δ=0

∑
dist(u,A)=δ

Lu(l + 1− δ).

We group the terms in the sum by their distance from A: Let

d = dist(A, bu(l + 1− δ)) = max{0, 2δ − l − 1}

and

M0 =
∑
l>r

l+1
2∑

δ=0

∑
dist(u,A)=δ

Lu(l + 1− δ); (23)

Md =
∑
l>r

∑
dist(u,A)=δ
δ= l+1+d

2

Lu(l + 1− δ). (24)

Then, we can write:∑
d>0

Md = L − LA(r); dist(A, suppMd) = d.

Applying lemma 10, we obtain:

‖OA(t)−OA(r; t)‖ 6 ‖OA‖ |A| J
evt − 1− vt

v
ζ(r);
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where, by denoting q(l) = |A(l) \A(l − 1)|, ζ(r) is the following:

ζ(r) = 1
J

∑
d>0
‖Md‖1→1,cb ν

−1
µ (d) 6

∑
l>r

l+1
2∑

δ=0
q(δ)f(l + 1− δ) +

l+1∑
δ= l+1

2

q(δ)f(l + 1− δ)ν−1
µ (2δ − l − 1). (25)

If δ > (l + 1)/2, since νµ(·) is submultiplicative, we have:

νµ(δ) 6 νµ(l + 1− δ)νµ(2δ − l − 1).

Otherwise, since νµ(·) is increasing, we have that νµ(δ) 6 νµ(l+1− δ). Plugging
these inequalities in the above sum, we get:

ζ(r) 6
∑
l>r

l+1∑
δ=0

[
q(δ)ν−1

µ (δ)
]

[f(l + 1− δ)νµ(l + 1− δ)] .

Since f satisfies equation (17), which in particular implies∑
δ>0

f(δ)νµ(δ) |b0(δ)| <∞,

then the sequence f(δ)νµ(δ) is decreasing. We distinguish two cases: If νµ is of
the type (LR-1), then the decay of f(δ)νµ(δ) is exponential. Since q(δ) grows
polynomially, q(δ)ν−1

µ (δ) is exponentially decaying. Then, the convolution of the
two sequences, which is exactly:

l+1∑
δ=0

[
q(δ)ν−1

µ (δ)
]

[f(l + 1− δ)νµ(l + 1− δ)]

is exponentially decaying too, which implies an exponential decay rate for ζ(r).
Thus, there exists some β > 0 such that ζ(r) 6 ν−1

β (r), and this concludes
the proof for the case of exponential decay. Let us suppose now that νµ is
of type (LR-2). Then, f(δ)νµ(δ) decays as (1 + δ)µ−α, while q(δ)ν−1

µ (δ) de-
cays as (1 + δ)D−1−µ. This implies7 that their convolution decays as (1 +
l)−min(α−µ,µ−D+1) and thus

ζ(r) 6 c(1 + r)−min(α−µ−1,µ−D) = ν−1
β (r).

Recalling that condition (LR-2) requires µ < α− (2D+ 1), a simple calculation
shows that the above decay rate is maximized for

µ < min
(
α− 2D − 1, α+D − 1

2

)
,

which gives the claimed formula for β. ut
7 Consider two positive decreasing sequences (xn) and (yn). Since 0 < p < 1 implies that

(x+ y)p 6 xp + yp, it holds that (x ∗ y)p
n 6

∑
k
xp

k
yp

n−k
= (xp ∗ yp)n.
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Another specialization of lemma 10, similar in spirit to the one just presented,
is when we compare the evolution of local observables under LA(r) and LA(r),
as defined in definition 3.
Lemma 12. Let OA be an observable supported on A ⊂ Λ. Given r > 0, it holds
that ∥∥∥T ∗t A(r)(OA)− T ∗t

A(r)(OA)
∥∥∥ 6 ‖OA‖ |A| J

evt − 1− vt
v

ν−1
β (r). (26)

Proof. Without loss of generality, we consider the case of A(r) being a convex
set. By construction, LA(r) − LA(r) = L∂A(r), and L∂A(r) =

∑
d>1 Nd, where

each Nd acts on sites that are closer than d to the border of A(r). We group
these terms by their distance from A. Let k = 1

2 diamA and set:

M0 =
k∑
i=0

Nr+1+i,

Mj = Nr+1−j , j = 1 . . . r.
It is easy to see that dist(A, suppMj) = j. By applying lemma 10, we have that:∥∥∥T ∗t A(r)(OA)− T ∗t

A(r)(OA)
∥∥∥ 6 ‖OA‖ |A|

evt − 1− vt
v

r∑
j=0
‖Mj‖1→1,c.b. ν

−1
µ (j).

We are left to prove that the sum appearing on the r.h.s. is fast-decaying in r.
From definition 3 it follows that for j > 0:
‖Mj‖1→1,c.b. 6 J |∂r−jA(r)| f(r + 1− j) = J |A(r) \A(j)| f(r + 1− j),

while for j = 0:

‖M0‖1→1,c.b. 6
k∑
i=0

J |∂r+iA(r)| f(r + 1 + i).

Setting hm,n = |b0(m) \ b0(n)|, we have that:
r∑
j=0
‖Mj‖1→1,c.b. ν

−1
µ (j) 6 Jζ(r), (27)

where

ζ(r) :=
k∑
i=0

hr+k,k−if(r + 1 + i) +
r∑
j=1

hr+k,k+jf(r + 1− j)ν−1
µ (j).

An argument similar to the one in the proof of lemma 11 shows that ζ(r)
is fast-decaying. Indeed, hr+k,k−if(r + 1 + i) scales asymptotically as rDf(r),
while hr+k,k+jf(r + 1− j) scales as (r − j)Df(r + 1− j). If L satisfies (LR-1),
then ζ(r) will be exponentially decaying, with rate min(α, µ)− 1 = µ− 1.

If otherwise L satisfies (LR-2), then ζ(r) has a polynomial decay, with rate
min(α−D,µ)− 1 = µ− 1. In both cases, then:

ζ(r) 6 ν−1
µ−1(r).

Notice that the constant β defined in lemma 11 is smaller than µ− 1. ut
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5.2. Local rapid mixing. The rapid mixing condition implies a local version of
mixing that will be a useful tool for the proof of theorem 7. We state its definition
here.

Definition 13 (Local rapid mixing). Take A ⊂ Λ, and define the contraction
of Tt relative to A as

ηA(Tt) := sup
ρ>0

tr ρ=1

‖trAc [Tt(ρ)− Tφ,t(ρ)]‖1

= sup
ρ>0

tr ρ=1

sup
OA∈AA
‖OA‖=1

tr (OA [Tt(ρ)− Tφ,t(ρ)])

= sup
ρ>0

tr ρ=1

sup
OA∈AA
‖OA‖=1

tr
(
ρ
[
T ∗t (OA)− T ∗φ,t(OA)

])
. (28)

We say that L satisfies local rapid mixing if, for each A ⊂ Λ, we have that

ηA(Tt) 6 k(|A|)e−γt, (29)

where k(r) grows polynomially in r, γ > 0 and all the constants appearing above
are independent of the system size.

Remark 7. It follows from the definition that ηA(Tt) 6 ηB(Tt) whenever A ⊂ B.
In particular, ηA(Tt) 6 η(Tt).

Note that, in contrast with definition 5, the quantity ηA(Tt) depends on the
evolution on the whole system Λ, and not just on the subset A. Thus local rapid
mixing is a very strong condition: the term k(r) appearing in equation (29) only
depends on the support of A, so the local mixing time (i.e. the time it takes
for the reduced density matrix on the subset A to converge) is required to be
independent of system size.

Example 3. A simple dissipative system satisfying definition 13 is the tensor
product of amplitude damping channels acting (with the same rate) on different
qubits. Note that, though it might seem a trivial example, there are interesting
dissipative systems of this form: among others, dissipative preparation of graph
states [31] can be brought into this form by a non-local unitary rotation (which
of course does not change the convergence rates).

6. Proof of main result

We are now ready to prove our main resul, theorem 7. The proof proceeds in
three steps. First, we show that the assumptions of theorem 7 imply that the
fixed points of LΛ for different Λ are locally indistinguishable. Then, we prove
that rapid mixing implies local rapid mixing. Finally, we show how local rapid
mixing and the uniqueness of the initial fixed point imply the desired stability
result.
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6.1. Step 1: closeness of the fixed points. Topological quantum order (TQO),
namely the property of certain orthogonal quantum states to be locally indistin-
guishable from each other, is a widely studied property of ground state subspaces
in the Hamiltonian setting. In the dissipative setting on the other hand, where
the concept of ground states is no longer applicable, one may define the analo-
gous concept for periodic states of Lindbladians. Below we describe the concept
of Local Topological Quantum Order (LTQO) [49], which extends the concept
of TQO to the invariant subspace (periodic states) of local restrictions of the
global Lindbladian.

We note that, in contrast to the Hamiltonian case, in order to prove the
desired stability result we do not require extra assumptions like LTQO, or
frustration-freeness. Indeed, we show in this section that rapid mixing implies
LTQO and a property similar to frustration-freeness. These properties will play
a role in the proof of stability, via lemma 17.

Definition 14 (Local Topological Quantum Order (LTQO)). Consider a
Lindbladian L. Take a convex set A ⊂ Λ and let A(`) = {x ∈ Λ|dist(x,A) 6 `}.
Given two states ρi ∈ XLA(`) , i = 1, 2, consider their reduced density matrices
on A:

ρAi = trA(`)\A ρi, i = 1, 2.
We say that L has local topological quantum order (LTQO) if for each ` > 0:∥∥ρA1 − ρA2 ∥∥1 6 p(|A|)∆0(`), (30)

where ∆0(`) is a fast-decaying function, and p(·) is a polynomial.

As a first step in the proof, we will show that the conditions of theorem 7
imply that the fixed point of Tt, the fixed point of TAt and the periodic points of
TAt are difficult to distinguish locally, in the same spirit as the LTQO condition.

Lemma 15. Let L be a uniform family satisfying condition (11), and suppose
each LA has a unique fixed point and no other periodic points. Let OA be an
observable supported on A ⊂ Λ, ρ a periodic point of TA(s)

t and ρs∞ the unique
fixed point of TA(s)

t . Then, we have

|trOA(ρ− ρs∞)| 6 ‖OA‖
(
J

v
|A|+ c |A|δ

)
∆0(s), (31)

where
∆0(s) = (|A(s)| / |A|)δv/(v+γ)ν−1

β′ (s), β′ = βγ/(v + γ),

with c, γ, δ the constants defined in the rapid mixing condition RM(γ, δ), β the
rate defined in lemma 12 and v the Lieb-Robinson velocity.

Proof. Fix a t := t(s) > 0, to be determined later. Since TA(s)
t acts on its space

of periodic points as a unitary evolution, there exists a periodic point of LA(s),
ρ′, such that ρ = T

A(s)
t (ρ′). Then, by the triangle inequality, we have:

|trOA(ρ− ρs∞)| 6
∣∣∣trOA[TA(s)

t − TA(s)
t ](ρ′))

∣∣∣+
∣∣∣trOA(TA(s)

t (ρ′)− ρs∞)
∣∣∣ . (32)
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The first term is bounded by lemma 12, since

trOA(TA(s)
t (ρ′)− TA(s)

t (ρ′)) = tr ρ′(T ∗t
A(s)(OA)− T ∗t

A(s)(OA))

and∣∣∣tr ρ′(T ∗t A(s)(OA)− T ∗t
A(s)(OA))

∣∣∣ 6 ‖ρ′‖1‖T ∗t
A(s)(OA)− T ∗t

A(s)(OA)‖∞.

The second term is bounded using the rapid mixing condition on T
A(s)
t . By

putting the two bounds together, we obtain

|trOA(ρ− ρs∞)| 6 ‖OA‖ |A|
J

v
evtν−1

β (s) + ‖OA‖ c |A(s)|δ e−γt.

Setting p(s) = (|A(s)| / |A|)δ and choosing t(s) such that

evt(s)ν−1
β (s) = p(s)e−γt(s),

we have that t(s) = ln(νβ(s) · p(s))1/(v+γ). Under such choice, it holds that

e−γt(s) = (νβ(s)p(s))−γ/(v+γ) = ν−1
β′ (s)p(s)−γ/(v+γ),

where β′ = βγ/(v + γ). Defining

∆0(s) := (|A(s)| / |A|)δv/(v+γ)ν−1
β′ (s),

concludes the proof. ut

Corollary 16 (LTQO). Under the assumptions of lemma 15, the Lindbladian
LΛ satisfies LTQO (definition 14) for all Λ.

Proof. Take A ⊂ Λ, and s > 0. Let ρ1 and ρ2 be two periodic points of TA(s)
t .

Then, by the triangle inequality, we have that:

|trOA(ρ1 − ρ2)| 6 |trOA(ρ1 − ρs∞)|+ |trOA(ρs∞ − ρ2)| 6

6 2 ‖OA‖
(
J

v
|A|+ c |A|δ

)
∆0(s).

Since ‖ρA1 − ρA2 ‖1 = sup‖OA‖=1 |trOA(ρ1 − ρ2)|, the result follows immediately.
ut

Lemma 17. Under the same notation and assumptions of lemma 15, we have
the following bound for ρ∞ the unique fixed point of Tt:

sup
‖OA‖=1

|trOA(ρ∞ − ρs∞)| 6 ‖OA‖
(
J

v
|A|+ c |A|δ

)
∆0(s). (33)
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Proof. By the triangle inequality:

|trOA(ρ∞ − ρs∞))| 6
∣∣∣trOA(ρ∞ − TA(s)

t (ρ∞)
∣∣∣+
∣∣∣trOA(TA(s)

t (ρ∞)− ρs∞)
∣∣∣ .

The first term on the right can be bounded using lemmas 11 and 12 along with
Tt(ρ∞) = ρ∞:∣∣∣trOA(Tt(ρ∞)− TA(s)

t (ρ∞)
)∣∣∣ =

∣∣∣tr ρ∞(T ∗t (OA)− T ∗t A(s)(OA))
∣∣∣

6 ‖ρ∞‖1

(
‖T ∗t (OA)− T ∗t A(s)(OA)‖∞ + ‖T ∗t A(s)(OA)− T ∗t A(s)(OA)‖∞

)
6 ‖OA‖ |A| Jv e

vtν−1
β (s).

The second term is bounded using the rapid mixing condition:∣∣∣trOA(TA(s)
t (ρ∞)− ρs∞

)∣∣∣ 6 ‖OA‖ c |A|δ p(s)e−γt.
By making the same choice of t = t(s) as in lemma 15, we get the desired bound.

ut

Corollary 18 (Approximate frustration-freeness). Under the same nota-
tion and assumptions of lemma 15, denote by ρ∞ the unique fixed point of Tt,
and by ρ a periodic point of TA(s)

t . Then, we have the following bound:

sup
‖OA‖=1

|trOA(ρ∞ − ρ)| 6 2 ‖OA‖
(
J

v
|A|+ c |A|δ

)
∆0(s). (34)

Proof. By the triangle inequality and lemmas 15 and 17, we have:

|trOA(ρ∞ − ρ))| 6 |trOA(ρ∞ − ρs∞)|+ |trOA(ρs∞ − ρ)| 6

6 2 ‖OA‖
(
J

v
|A|+ c |A|δ

)
∆0(s).

ut

6.2. Step 2: from global to local rapid mixing. As a second step in the proof, we
show that the assumptions on L imply local rapid mixing.

Proposition 19 (From global to local rapid mixing). Let L be a uniform
family of Lindbladians with unique fixed point. Then, if condition (11) is satisfied,
L satisfies local rapid mixing.

Proof. Let OA be an observable supported on A with ‖OA‖ = 1. Denote by s0
the minimum s > 0 such that A(s) = Λ. Fix 0 6 s 6 s0, and let B = A(s).
Then, by the triangle inequality, we can bound the norm of (T ∗t −T ∗∞) as follows:

‖(T ∗t − T ∗∞)OA‖ 6
∥∥∥(T ∗t − TB∗t )OA

∥∥∥+
∥∥∥(TB∗t − TB∗∞ )OA

∥∥∥+
∥∥∥(TB∗∞ − T ∗∞)OA

∥∥∥ .
(35)
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We bound the first term on the right using lemmas 11 and 12:

∥∥∥(T ∗t − TB∗t )OA
∥∥∥ 6 |A| J

v
(evt − 1− vt)e−βs. (36)

The second term is bounded by the rapid mixing condition (11), setting p(s) =
(|A(s)| / |A|)δ: ∥∥∥(TB∗t − TB∗∞ )OA

∥∥∥ 6 η(TBt ) 6 c |A|δ p(s)e−γt. (37)

Finally, the third term is bounded by using lemma 17:

∥∥∥(TB∗∞ − T ∗∞)OA
∥∥∥ = |trOA(ρs∞ − ρ∞)| 6

(
J

v
|A|+ c |A|δ

)
∆0(s). (38)

Substituting bounds (36), (37) and (38) into equation (35), we obtain, for 0 6
s 6 s0 and for all t > 0:

ηA(Tt) 6
J

v
|A| evte−βs + c |A|δ p(s)e−γt +

(
J

v
|A|+ c |A|δ

)
∆0(s).

We want to show that we can choose s = s(t) ∈ [0, s0] in such a way that
both evte−βs and e−tγ p(s) are exponentially decaying in t. Choose s := s(t) =
t(v + γ)/β. Since ∆0(s) = (|A(s)| / |A|)δv/(v+γ)ν−1

β′ (s), denoting

p̄(t) = p ◦ s(t) = p(t(v + γ)/β),

we have that
∆0(s(t)) = p̄(t)v/(v+γ)e−γt.

Therefore, since p̄(t) > 1,

ηA(Tt) 6
J

v
|A| e−γt + c |A|δ p̄(t)e−γt +

(
J

v
|A|+ c |A|δ

)
p̄(t)v/(v+γ)e−γt 6

6 2
(
J

v
|A|+ c |A|δ

)
p̄(t)e−γt, ∀t 6 β

v + γ
s0.

When t > β/(v + γ)s0, we can simply bound ηA(Tt) by η(Tt) (see remark 7),
obtaining:

ηA(Tt) 6 c |A|δ p(s0)e−γt 6 c |A|δ p̄(t)e−γt, ∀t > β

v + γ
s0.

This completes the proof. ut
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6.3. Step 3: from local rapid mixing to stability. We now prove that local rapid
mixing alone implies stability. This is the last step in the proof of theorem 7, as
we already proved in the previous sections that the condition of theorem 7 imply
local rapid mixing. However, the following result also stands independently: if a
system can be shown to satisfy local rapid mixing by other means, it will also be
stable. Moreover, the same proof holds if we relax the assumption on prefactor
k(|A|) in equation (29): a similar (but weaker) stability result will hold true as
long as |A| is independent of system size.

Theorem 20. Let L be a local Lindbladian satisfying local rapid mixing, and
having a unique fixed point ρ∞ such that

T ∗φ (OA) = T ∗∞(OA) = tr(OAρ∞)1.

Then, using the notation of theorem 7, for all observables OA supported on A ⊂ Λ
we have that

‖T ∗t (OA)− S∗t (OA)‖ 6 c(|A|) ‖OA‖
(
ε+ |Λ| ν−1

η (dA)
)
, (39)

where dA = dist(A,Λc); η is positive and independent of Λ; ν−1
η (d) 6 (1 +

d)−D−1; c(|A|) is independent of Λ and t, and is bounded by a polynomial in
|A|.

Proof. Let O0(t) = T ∗t (OA) and O1(t) = S∗t (OA) and write the difference O0−O1
using the integral representation from equation (21):

O0(t)−O1(t) =
t∫

0

S∗t−sE
∗T ∗s (OA) ds.

The triangle inequality implies:

‖O0(t)−O1(t)‖ 6
∑
u

∑
r

t∫
0

∥∥E∗u,rO0(s)
∥∥ds+

∑
d

t∫
0

‖E∗dO0(s)‖ ds,

where we used the fact that St is a contraction.
Fix a K ∈ {Eu,r}u,r ∪ {Ed}d, and let δ = dist(A, suppK). We can split the

integral at a time t0 (to be fixed later, depending on δ). We bound the first part
of the integral with Lieb-Robinson bounds:

t0∫
0

‖K∗O0(s)‖ ds 6 ‖K‖1→1,cb ‖OA‖ |A|
evt0 − vt0 − 1

vνµ(δ) .

Now pick t0 = t0(δ) such that

ν−1
µ (δ)e

vt0 − vt0 − 1
v

6 ν−1
µ/2(δ).

We can choose t0(δ) = µ
2

log v
v δ = O(δ), for exponentially decaying (or faster)

ν−1
µ (δ).
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If t 6 t0(δ), then we have bounded the entire integral, and we are done.
Otherwise, we treat the second part of the integral as follows:

t∫
t0(δ)

‖K∗O0(s)‖ ds =
t∫

t0(δ)

‖K∗(O0(s)− T ∗∞(OA))‖ ds

6 ‖K‖1→1,cb ‖OA‖
∞∫

t0(δ)

ηA(Ts) ds 6 ‖K‖1→1,cb ‖OA‖ q(|A|)
∞∫

t0(δ)

e−γs ds

= ‖K‖1→1,cb ‖OA‖ k(|A|) 1
γ
e−γt0(δ)

where we used K∗T ∗∞(OA) = K∗(tr(ρ∞OA)1) = tr(ρ∞OA)K∗(1) = 0, together
with the local rapid mixing condition.

Since t0(δ) is linear in δ, we have that:

h(δ) := e−
µδ
2 + 1

γ
e−γt0(δ)

is exponentially decaying in δ.
Putting the different bounds together, we obtain:

t∫
0

‖K∗O0(s)‖ ds 6 ‖K‖1→1,cb ‖OA‖ k1(|A|)h(δ),

where k1(|A|) = max(k(|A|), |A|).
Returning to the sum, we have proven that:

‖O0(t)−O1(t)‖ 6 ε k1(|A|) ‖OA‖
[∑

u

∑
r

e(r)h(dist(A, br(u)))︸ ︷︷ ︸
I1(A; e,h)

+
∑
d

|∂dΛ| e(d)h(dist(A, ∂dΛ))︸ ︷︷ ︸
I2(A; e,h)

]
. (40)

It suffices to show that I1 and I2 are finite (and independent of system size), and
that I2 decays exponentially in dist(A,Λc). Let us decompose the I1 as follows

I1(A; e, h) =
∑
u

∑
r

e(r)h(dist(A, br(u)))

=
∑

dist(u,A)=0

∑
r

e(r)h(0) +
∑
d>0

∑
dist(u,A)=d

(
d∑
r=0

e(r)h(d− r) +
∞∑

r=d+1
e(r)h(0)

)

= h(0) |A|
∑
r

e(r) +
∑
d>0

q(d)
(

d∑
r=0

e(r)h(d− r) + h(0)
∞∑

r=d+1
e(r)

)
,
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where q(d) = |{u : dist(u,A) = d}| grows polynomially in d.
The first term is clearly bounded, since e(r) is summable. Since e and h

are both exponentially decaying functions, their discrete convolution e ? h(d) =∑d
r=0 e(r)h(d − r) is also exponentially decaying, and consequently summable

against any polynomial. The same holds for
∑
r>d e(r). This proves that the

second term is also bounded.
On the other hand, we have that

I2(A; e, h) =
∑
d

|∂dΛ| e(d)h(dist(A, ∂dΛ)) 6 |Λ| (e ? h(dA) +
∑
d>dA

e(d)),

where dA = dist(A,Λc). We have just proven that e ? h(dA) and
∑
d>dA

e(d)
are exponentially decaying. This implies that there exists a positive η such that
ν−1
η (dA) upper bounds both. Denoting c(|A|) = k1(|A|)I1(A; e, h), we have the

desired bound. ut

6.4. Power-law decay. As we stated before, the results and proofs presented
above still hold when L has quasi-local or power-law interactions. In the latter
case, this is only true when certain conditions are met on the decay of L. In
what follows, we highlight the changes one needs to make in the case of power-
law decay, in order for the main stability results to hold.

Definition 21 (Compatibility condition). Let L be a local Lindbladian, and
suppose it satisfies (LR-2) and rapid mixing RM(γ, δ). Let µ and v be the Lieb-
Robinson constants for L defined in assumption 1 and β the constant defined
in lemma 11. Then we say that L satisfies the weak compatibility condition for
stability, if the following inequality is satisfied.

βγ − δDv > 0; (CC-1)

we say that L satisfies the strong compatibility condition for stability if

µ
βγ − δDv
β(γ + v) > D + 2. (CC-2)

Moreover, if the perturbation E, defined in theorem 7, is decaying polynomially
and not exponentially, it must satisfy∑

n

nD
∑
r>n

e(r) <∞ (CC-e)

for the theorem to hold.

Remark 8. Clearly, the strong version of the compatibility condition implies the
weak one. If L has quasi-local interactions, then the (polynomial) decay rate α of
the interactions can be chosen to be larger than any fixed value. Consequently,
since β and µ can be taken to be linear in α, quasi-local Lindbladians L satisfy
the strong compatibility condition (CC-2).
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Under the weak compatibility condition, all the results presented in sec-
tions 6.1 and 6.2 still hold true, while under the strong compatibility condition
also the results presented in 6.3 are still valid, and in particular our main result,
theorem 20.

We will now show this in the cases in which we made explicit use of con-
dition (LR-1), and give the needed modifications to the proofs of lemma 15,
proposition 19 and theorem 20 in order to make them valid for power-law de-
caying interactions.

From now on, we proceed under the working hypothesis that L satisfies (LR-2)
and that the above compatibility conditions are satisfied.

Proof (Modifications in the proof of lemma 15). The argument below follows
closely the proof of the original lemma, but now one must check that ∆0(s) is
still decaying. Recall the definition of ∆0(s) from the original proof of lemma 15:

∆0(s) = (|A(s)| / |A|)δv/(v+γ)ν−1
β′ (s), β′ = βγ/(v + γ).

Since (|A(s)| / |A|)δv/(v+γ) grows as (1 + s)δDv/(v+γ), we have:

∆0(s) ∼ (1 + s)−γ
′
,

where γ′ = βγ−δDv
v+γ is positive because of (CC-1). ut

Proof (Modifications in the proof of proposition 19). Keeping the notation in-
troduced in the original proof of this proposition, we have already shown that,
for each 0 6 s 6 s0:

ηA(Tt) 6
J

v
|A| evtν−1

β (s) + c |A|δ p(s)e−γt +
(
J

v
|A|+ c |A|δ

)
∆0(s).

At this point, we can no longer choose s = s(t) to scale linearly in t, since the
decay ν−1

β (s) is polynomial in s and the prefactor evt would render the bound
trivial. Still, we may choose s = s(t) ∈ [0, s0] in such a way that the r.h.s. above
is exponentially decaying in t.

Fix k > 0 (to be determined later), and consider:

s(t) = ekt − 1,

in such a way that for t 6 log(1 + s0)/k, we have:

p̄(t) = p ◦ s(t) =
(∣∣A(ekt − 1)

∣∣ / |A|)δ ∼ ekDδt.
Then, the r.h.s. of the desired bound for ηA(Tt) contains the following exponen-
tials:

evtν−1
β (s) = e−(βk−v)t; p(s)e−γt ∼ e−(γ−kDδ)t,

and
∆0(s) ∼ (1 + s)−γ

′
= e−kγ

′t,

where
γ′ = βγ − δDv

v + γ
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is defined in the modified proof of lemma 15. We want to show that we can
choose k in such a way that all the exponential functions appearing above are
decaying, i.e. each exponent is negative for t > 0. (CC-1) implies that ∆0(s) is
decaying for all k > 0. Let

k′ = v + γ

β + δD
,

such that βk′ − v = γ − k′Dδ = k′γ′, making all of the above exponents equal
to −(βγ − δDv)/(β + δD) and negative (due to (CC-1)), as desired.

When t > log(1 + s0)/k′, as in the proof for exponentially decaying interac-
tions, we bound ηA(Tt) by η(Tt) (see remark 7), thus obtaining:

ηA(Tt) 6 c |A|δ p(s0)e−γt 6 c |A|δ p̄(t)e−γt ∼ c |A|δ e−k
′γ′t.

ut

Proof (Modifications in the proof of theorem 20). Following the same steps as
in the original proof, but now using the constants for the local rapid mixing
obtained in the modified proof of proposition 19, we have that, for each 0 6 t0 6
t:

t∫
0

‖K∗O0(s)‖ ds 6 ‖K‖1→1,cb ‖OA‖
(
|A| 1

v
evt0ν−1

µ (d) + k(|A|)e−t0
βγ−δDv
β+δD

)
,

where d = dist(A, suppK).
Let us define t0(d) = k log(1+d) for some positive k (to be determined later),

and denote h(d) = νvk−µ(d) + ν−k βγ−δDvβ+δD
(d), such that

t∫
0

‖KO0(s)‖ ds 6 ‖K‖1→1,cb ‖OA‖ k1(|A|)h(d),

where k1(|A|) = max(k(|A|), |A| /v). Then we have that h has a maximum decay
rate of

µ′ = sup
k>0

min
(
µ− vk, kβγ − δDv

β + δD

)
.

The optimal choice of k is k = µ
β
β+δD
v+γ , in such a way that µ′ = µ

β
βγ−δDv
v+γ . µ′ is

positive because of condition (CC-1).
Recalling the following definitions from the original proof of theorem 20:

q(d) = |{u : dist(u,A) = d}| , l(d) = |∂dΛ| e(d),

x ? y(d) =
d∑
r=0

x(r)y(d− r), dA = dist(A,Λc),

we need to show that

I1(A; e, h) = h(0) |A|
∑
r

e(r) +
∑
d>0

q(d)
(
e ? h(d) + h(0)

∑
r>d

e(r)
)
e ? h(d)
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is finite, and that

I2(A; e, h) = l ? h(dA) +
∑
d>dA

l(d) 6 ν−1
η (dA)

for some positive η. Notice that

I1(A; e, h) 6 (1 + |A|)h(0)
∑
d

q(d)
∑
r>d

e(r) +
∑
d

q(d) e ? h(d).

Since q(d) grows as (1 + d)D,
∑
d q(d)

∑
r>d e(r) is finite if

∑
n n

D
∑
r>n e(r) <

∞, which is condition (CC-e).
On the other hand, e ? h decays as the slowest of the two functions. Since we

have already assumed that
∑
d q(d)

∑
r>d e(r) is finite, we only need to satisfy

that
∑
d q(d)

∑
r>d h(r) is finite. For this to happen, it suffices that µ′ > D+ 2,

which is condition (CC-2).
In order to bound I2(A; e, h), note that l(d) 6 |Λ| e(d), and therefore

I2(A; e, h) 6 |Λ| (e ? h(dA) +
∑
d>dA

e(d)).

We have already proven that conditions (CC-2) and (CC-e) imply that the r.h.s.
of the latter bound is decaying polynomially in dA at least as fast as ν−1

D+1(dA).
This concludes the proof. ut

6.5. Relaxing rapid mixing. In this section, we will show that, in the case of
exponentially decaying interactions (LR-1), the proof of theorem 7 still holds if

∑
n

nD
∑
d>n

∞∫
d

(
1 + v

β
s− 1

β
log γ(s)

)δD
γ(s) ds <∞. (41)

We will directly prove proposition 19, without the intermediate step of a
lemma like 15. Nonetheless, results of that kind can be proven using exactly the
same arguments that we will use in the following proof.
Proof (Proof of proposition 19). Using the same notation as in the original proof,
we have that for 0 6 s 6 s0:

‖(T ∗t − T ∗∞)OA‖ 6
∥∥∥(T ∗t − TB∗t )OA

∥∥∥+
∥∥∥(TB∗t − TB∗∞ )OA

∥∥∥+
∥∥∥(TB∗∞ − T ∗∞)OA

∥∥∥ .
We will bound the first two terms as in the original proof (using lemma 11,

lemma 12 and equation (15)) while we rewrite the third term as in the proof of
lemma 15:∥∥∥(TB∗∞ − T ∗∞)OA

∥∥∥ = |trOA(ρs∞ − ρ∞)| 6∣∣∣trOA(ρ∞ − TA(s)
t (ρ∞))

∣∣∣+
∣∣∣trOA(TA(s)

t (ρ∞)− ρs∞)
∣∣∣ =∣∣∣trOA(Tt(ρ∞)− TA(s)

t (ρ∞))
∣∣∣+ ‖OA‖

∥∥∥TA(s)
t (ρ∞)− ρs∞

∥∥∥
1
6∥∥∥(T ∗t − TB∗t )OA

∥∥∥+ η(TBt ).
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Thus we have that

‖(T ∗t − T ∗∞)OA‖ 6 2J
v
|A| evtν−1

β (s) + 2c |A|δ p(s)γ(t),

where p(s) = (|(A(s)| / |A|)δ ∼ (1 + s)δD.
We have claimed that the result only holds in the case of exponentially de-

caying or faster decay of interaction. Suppose νβ(s) = (1 + s)β (i.e., if L satis-
fies (LR-2)). Defining s = s(t) as

s(t) = e
v

β+δD tγ(t)−
1

β+δD − 1,

then it holds that
evt

γ(t) = p(s(t))νβ(s(t)) ∀t 6 t0,

where t0 is such that s(t0) = s0. Thus

δ0(t) := evtν−1
β (s) = e

δD
β+δD vtγ(t)

β
β+δD .

We have that this last function is decaying in t if

γ(t) < e−(vδD/β)t.

This forces γ(t) to be exponentially decaying, and thus there is no possible
relaxation of the rapid mixing condition.

On the other hand, if νβ(s) = eβs (i.e., if L satisfies (LR-1)), we define

s(t) = v

β
t− 1

β
log γ(t),

such that evtν−1
β (s) = γ(t) and

p̄(t) = p ◦ s(t) ∼
(

1 + v

β
t− 1

β
log γ(t)

)δD
grows polynomially.

In this case, we have proved that

‖(T ∗t − T ∗∞)OA‖ 6 2
(
J

v
|A|+ c |A|δ

)
p̄(t)γ(t),

and this concludes the proof since equation (41) implies that p̄(t)γ(t) is decaying
in t. ut

Proof (Proof of theorem 20). Following the same steps as in the original proof,
we have that for any K ∈ {Eu,r}u,r ∪ {Ed}d, and let δ = dist(A, suppK)

t∫
0

‖K∗O0(s)‖ ds 6 ‖K‖1→1,cb ‖OA‖ k1(|A|)h(δ).
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where h(δ) is now

h(δ) = e−µδ/2 +
∞∫

µ
2

log v
v δ

p̄(s)γ(s) ds.

We want to show that h(δ) is decaying fast enough for the r.h.s. of equation (40)
to be summable. This is the case (see the proof of theorem 20 in section 6.4) if
equation (41) holds. ut

7. Glauber dynamics

7.1. Quantum embedding of Glauber dynamics. As an example of a non-trivial
dynamics for which we can now prove stability using our results, we turn to one of
the most studied dynamics in classical statistical mechanics: Glauber dynamics,
a Markov process that samples thermal states of local (classical) Hamiltonians
on lattices. Apart from being an interesting model in itself, it has important
applications in Monte-Carlo Markov chain algorithms for numerical many-body
physics [41]. Determining whether Glauber dynamics is stable against noise or
errors is therefore an important question and, as far as we are aware, still open
(with partial results obtained under the assumption of attractiveness [27]).

In this section, we present a natural embedding of Glauber dynamics into the
Linbdlabian setting, showing how this embedded dynamics inherits properties
from the classical Markov chain8. We will then apply the results of section 4 to
prove, in the appropriate regime, stability of Glauber dynamics.

We will consider a lattice spin system over Γ = ZD or Γ = (Z/LZ)D, with
(classical) configuration space of a single spin a finite set S. For simplicity, we
will consider the case S = {+1,−1}. For each Λ ⊂ Γ , we will denote by ΩΛ the
space of configurations over Λ, namely SΛ. Λc will denote the complementary of
Λ in Γ , namely Γ \ Λ.

Definition 22. A finite range, translationally-invariant potential {JA}A⊂Γ is a
family of real functions indexed by the non empty finite subsets of Γ satisfying
the following properties:

1. JA : ΩA → R.
2. For all A ⊂ Γ and all x ∈ Γ :

JA(σ) = JA+x(η) if σ(y + x) = η(y) ∀y ∈ A.

3. There exists a positive r > 0 such that JA = 0 if diamA > r, called the range
of interaction.

Given a finite-range, translationally-invariant potential, we can define a Hamil-
tonian for each finite lattice Λ ⊂ Γ and each boundary condition τ ∈ ΩΛc by

Hτ
Λ(σ) = −

∑
A∩Λ6=0

JA(σ × τ) ∀σ ∈ ΩΛ,

8 A similar construction was proposed in [4].
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where σ × τ is the configuration that agrees with σ over Λ and with τ over Λc.
For each such Hamiltonian, we define the Gibbs state state as

µτΛ(σ) = (ZτΛ)−1 exp(−Hτ
Λ(σ)),

where ZτΛ is a normalizing constant.9 The convex hull of the set of Gibbs states
over Λ will be denoted by G(Λ):

G(Λ) = conv{µτΛ | τ ∈ ΩΛc}.

Definition 23. The Glauber dynamics for a potential J is the Markov process
on ΩΛ with the following generator:

(QΛf)(σ) =
∑
x∈Λ

cJ(x, σ)∇xf(σ),

where ∇xf(σ) if defined as f(σx) − f(σ), and σx is the configuration obtained
by flipping the spin at position x:

σx(y) =
{
σ(y) if x 6= y

−σ(x) if x = y.

The numbers cJ(x, σ) are called transition rates and must satisfy the following
assumptions:
1. Positivity and boundedness: There exist positive constants cm and cM such

that:
0 < cm 6 cJ(x, σ) 6 cM <∞ ∀x, σ.

2. Finite range: cJ(x, ·) depends only on spin values in br(x).
3. Translational invariance: for all k ∈ Γ ,

cJ(x, σ′) = cJ(x+ k, σ) if σ′(y) = σ(y + k) ∀y.

4. Detailed balance: for all x ∈ Γ and all σ

exp
(
−
∑
A3x

JA(σ)
)
cJ(x, σ) = cJ(x, σx) exp

(
−
∑
A3x

JA(σx)
)
.

These assumptions are sufficient to ensure that QΛ generates a Markov process
which has the Gibbs states over Λ as stationary points.

Definition 24. A quantum embedding of the classical Glauber dynamics for a
potential J is generated by the following Lindblad operators

Lx,η =
√
cJ(x, η) |ηx〉〈η| ⊗ 1, ∀x ∈ Λ,∀η ∈ Ωbx(r); (42)

Lx,η(ρ) = Lx,ηρL
∗
x,η −

1
2 {ρ, cJ(x, η) |η〉〈η|} ;

LΛ(ρ) =
∑
x∈Λ

∑
η

Lx,ηρL
∗
x,η −

1
2{ρ,K}, K =

∑
σ

(∑
x

cJ(x, σ)
)
|σ〉〈σ| ; (43)

9 Following [46], in our notation we have incorporated the usual inverse temperature param-
eter β directly into the potential J .
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plus a dephasing channel acting independently and uniformly on all sites x ∈ Λ:

Dx,0 = √γ |0〉〈0| , Dx,1 = √γ |1〉〈1| , D(ρ) =
∑
x∈Λ

∑
i=0,1

Dx,iρD
∗
x,i − |Λ| γρ.

(44)

LΛ satisfies translational invariance because the transition rates cJ do, and
it easy to see that this family of Lindbladians is uniform.

Remark 9. Take |α〉〈β| an element of the computational basis, and let d(α, β) be
the Hamming distance between α and β. Then it holds that

D(|α〉〈β|) = −γd(α, β) |α〉〈β| .

In other words, D is a Schur multiplier in the computational basis, represented
by (−γd(α, β))α,β .

On the other hand, we have that for all x:

∑
η∈Ωbx(r)

Lx,η(|α〉〈β|) =


cJ(x, α) (|αx〉〈βx| − |α〉〈β|) if α|bx(r) = β|bx(r),

− 1
2 (cJ(x, α) + cJ(x, β)) |α〉〈β| otherwise.

(45)
Since d(αx, βx) = d(α, β), [D,

∑
η Lx,η] = 0 for all x ∈ Λ, and in particular D

and LΛ commute.

This quantum dissipative system inherits various properties from its classical
counterpart.

Definition 25. Let µ be a full-rank positive state. Denote by

Γµ(ρ) = µ
1
2 ρµ

1
2 .

We say that L is in detailed balance [59,37,44,45] with respect to µ if Γµ ◦ L =
L∗ ◦ Γµ.

Proposition 26. Let µτΛ be a Gibbs state over Λ. Then LΛ and D are in detailed
balance with respect to µτΛ.

Proof. Note that Γµτ
Λ

is a Schur multiplier in the computational basis:

Γµτ
Λ

(|η1〉〈η2|) = µτΛ(η1) 1
2µτΛ(η2) 1

2 |η1〉〈η2| .

From the detailed balance condition for the transition rates cJ(x, σ), it follows
that for all x ∈ Λ, denoting Lx =

∑
η∈Ωbx(r)

Lx,η,

Γµτ
Λ
◦ Lx ◦ Γ−1

µτ
Λ

(|η1〉〈η2|)

= δxη1,η2

(
cJ(x, η1)µ

τ
Λ(ηx1 )
µτΛ(η1)

)
|ηx1 〉〈ηx2 | −

cJ(x, η1) + cJ(x, η2)
2 |η1〉〈η2|

= δxη1,η2
cJ(x, ηx1 ) |ηx1 〉〈ηx2 | −

cJ(x, η1) + cJ(x, η2)
2 |η1〉〈η2|

= L∗x(|η1〉〈η2|)),



Stability of local quantum dissipative systems 35

where

δxη1,η2
=
{

1 if η1|bx(r) = η2|bx(r)
0 otherwise.

To prove detailed balance for D, note that Schur multipliers commute, thus
[D, Γµ] = 0. This, together with the fact that D∗ = D, implies that D is in
detailed balance w.r.t. µτΛ. ut

The above proposition implies that Gibbs states are stationary states for the
quantum Glauber dynamics. Let us prove that there are no other fixed points
apart from the classical ones (i.e. states that are diagonal in the computational
basis). Clearly, D has all classical states as stationary points. We just have to
check LΛ.

Proposition 27. The set of fixed points of LΛ is equal to G(Λ), the set of Gibbs
states over Λ.

Proof. Let ρ be a fixed point of LΛ. We want to prove that ρ is diagonal, i.e.
that it is of the form

ρ =
∑
σ

pσ |σ〉〈σ| .

Consider a non-diagonal element |α〉〈β|, and suppose α(x) 6= β(x) for some
x ∈ Λ. Then, from equation (45), we have that for all y ∈ bx(r),

Ly(|α〉〈β|) = −1
2(cJ(y, α) + cJ(y, β)) |α〉〈β| .

For y 6∈ bx(r), Ly is not supported on x, and thus cannot change the configuration
there. This implies that the evolution cannot change the configurations over the
set ∆(r), where ∆ = {x ∈ Λ |α(x) 6= β(x)}. In turn, this implies that L∆
commutes with L−L∆ (since it acts as a Schur multiplier whose entries depend
only on the sites in ∆(r)). Finally, this means that

∥∥etLΛ(|α〉〈β|)
∥∥

1 6
∥∥etL∆(|α〉〈β|)

∥∥
1 = exp

(
−t12

(∑
x∈∆

cJ(x, α) + cJ(x, β)
))

6 exp
(
−t12cmd(α, β)

)
→ 0.

Since the off-diagonal elements are killed, ρ must be of the form
∑
σ pσ |σ〉〈σ|.

Writing the equation LΛ(ρ) = 0 we obtain∑
σ

∑
x

cJ(x, σ)pσ |σx〉〈σx| −
∑
σ

∑
x

cJ(x, σ)pσ |σ〉〈σ| = 0,

which implies ∑
x

cJ(x, σx)pσx =
∑
x

pσcJ(x, σ).

The last equation is simply a rewriting of the fact that (pσ) is a stationary
distribution for QΛ, that is, it is exactly a Gibbs state on Λ. ut
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Since LΛ and LΛ + D have the same stationary distributions, even locally,
all properties that depend just on the structure of the fixed-point sets will be
shared by both: this is the case, for example, of frustration freeness (which we
will prove next) and LTQO (which will be proved later).

Proposition 28. LΛ (and consequently LΛ +D) is frustration free.

Proof. By the previous proposition, we have that XLΛ = G(Λ). We know [41]
that for Gibbs states it holds that

∆ ⊂ Λ⇒ G(Λ) ⊂ G(∆),

but this is exactly the frustration-freeness condition for LΛ. ut

7.2. Stability of Glauber dynamics. We want to show that the contraction of the
semigroup generated by LΛ+D can be controlled by the contraction of the clas-
sical Glauber dynamics. To fix notation, denote by C : AΛ → AΛ the projector
on the diagonal subspace with respect to the computational basis. C is a com-
pletely positive, trace preserving map, and it also satisfies C = limt→∞ exp(tD).
Since LΛ commutes with D, it also commutes with C. Then we can prove the
following:

Lemma 29. If Tt = exp (t(LΛ +D)), then

η(Tt) 6 η(Tt ◦ C) + η(exp(tD)). (46)

Proof. Fix an initial state ρ. Then we can write

‖Tt(ρ)− T∞(ρ)‖1 6 ‖Tt ◦ C(ρ)− T∞(ρ)‖1 + ‖Tt ◦ (1− C)(ρ)‖1
6 ‖Tt ◦ C(ρ)− T∞ ◦ C(ρ)‖1 + ‖exp(tD) ◦ (1− C)(ρ)‖1
6 η(Tt ◦ C) + η(exp(tD)),

where we have used the fact that LΛ and D commute, and that the fixed points
of LΛ are invariant under C. ut

We know, because of theorem 6, that

η(exp(tD)) 6 |Λ| e−
γ
2 t, (47)

and this implies the following result.

Corollary 30. If the classical Glauber dynamics satisfies rapid mixing, then also
the quantum embedded Glauber dynamics generated by LΛ +D does.

Remark 10. Convergence rates of classical Glauber dynamics are a well studied
subject. It is known that, in some regimes, classical Glauber dynamics satisfies a
Log Sobolev inequality with system-size independent Log Sobolev constant (for
a review on the subject see [46]). In such situations the classical chain has a
logarithmic mixing time, and thus satisfies rapid mixing.
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For this class of classical dynamical systems it is possible to apply our main
result 7. In particular, we can arbitrary perturb the transition rates cJ(x, σ)
by some e(x, σ), not necessary preserving detailed balance. If we denote by E
the maximum of |e(x, σ)|, the difference between the perturbed and the original
evolution of local observables can be bounded by E times a factor depending on
the size of the support of the observables taken into account.

Theorem 31. Let QΛ the generator of a classical Glauber dynamics, having a
unique fixed point and satisfying a Log Sobolev inequality with constant indepen-
dent of system size. Let E be the generator of another classical Markov process
of the form

(Ef)(σ) =
∑
x∈Λ

e(x, σ)∇xf(σ).

Suppose that E = supx,σ |e(x, σ)| <∞ and that e(x, ·) has support bounded uni-
formly in x. Denote by Tt the evolution generated by QΛ and by St the evolution
generated by QΛ + E. Then, for each function f supported on A ⊂ Λ, it holds
that

‖Tt(f)− St(f)‖∞ 6 c(|A|) ‖f‖∞ E ,
for some c(·) independent of system size and polynomially growing.

Remark 11. It is known [47,43] that the Ising model on Z2 or (Z/nZ)2 has a
system size independent Log Sobolev constant for high temperatures (when the
inverse temperature β is lower than the critical value βc), or at any temperature
in presence of an external magnetic field. In this regime the Glauber dynamics
sampling the Ising model is stable (in the sense of theorem 7).

7.3. Weak mixing and LTQO. As a nice observation, though not necessary to
prove theorem 31, we want show that weak mixing, a condition on Gibbs states
defined in [46], is equivalent to the LTQO condition given in section 6. The weak
mixing conditions for two-dimensional systems has been shown [47] to imply L2
convergence of the corresponding Glauber dynamics.

Definition 32. We say that the Gibbs measures in G(Λ) satisfy the weak mixing
condition in V ⊂ Λ if there exist constants C and m such that, for every subset
∆ ⊂ V , the following holds:

sup
τ,τ ′∈ΩV c

∥∥∥µτV,∆ − µτ ′V,∆∥∥∥1
6 C

∑
x∈∆,
y∈∂+

r V

e−m dist(x,y), (48)

where ∂+
r V = {x ∈ V c | dist(x, V ) 6 r} and µτV,∆ = trV \∆ µτV .

Proposition 33. If G(Λ) satisfies the weak mixing condition for each V ⊂ Λ,
then LΛ (and consequently LΛ +D) satisfies LTQO.

Proof. Take A ⊂ Λ, ` > 0, and let V be A(`). The weak mixing condition for V
implies that there exist constants C and m such that

sup
τ,τ ′∈ΩV c

∥∥∥µτV,A − µτ ′V,A∥∥∥1
6 C

∑
x∈A,
y∈∂+

r V

e−m dist(x,y) 6 Ce−m` |A|
∣∣∂+
r A(`)

∣∣ .
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This is the LTQO condition with ∆0(`) = Ce−m` |A| |∂+
r A(`)|. The bound,

proven for states of the form µτV , can be extended by convexity to all G(V ).
Let η0, η1 ∈ G(V ). By definition, η0 and η1 are convex combination of states of
the form µτV , thus we can write

η0 =
∑
i

piµ
τi
V , η1 =

∑
j

qjµ
σj
V ,

∑
i

pi =
∑
j

qj = 1; pi, qj > 0.

Then we have

‖η0,A − η1,A‖1 =

∥∥∥∥∥∥
∑
i

piµ
τi
V,A −

∑
j

qjµ
σj
V,A

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
∑
i

pi(
∑
j

qjµ
τi
V,A)−

∑
j

qj(
∑
i

piµ
σj
V,A)

∥∥∥∥∥∥
1

6
∑
i,j

piqj

∥∥∥µτiV,A − µσjV,A∥∥∥1
6 sup

τ,σ

∥∥µτV,A − µσV,A∥∥1 .

ut

8. Conclusions and open questions

In the context of local perturbations of local Hamiltonians, changes in the ground
state can be detected by the lack of smoothness of the expectation value of local
observables. Via the quasi-adiabatic technique [25], the regularity of such ex-
pectation values can be related to the study of the effect that the perturbation
has on the spectral gap of the Hamiltonian. In [49], the stability of the spectral
gap was shown under the assumptions of frustration-freeness and local indistin-
guishability between ground states of local patches of the original Hamiltonian.

In this paper we have studied a class of open quantum systems described by
local Lindbladian evolutions with unique fixed points, focusing on the problem
of the smoothness of evolution of local observables in the presence of local per-
turbations. Given any initial configuration, the system will converge toward the
fixed point with a certain rate. The slowest rate over all possible initial configu-
rations defines a mixing property of the Lindbladian, and we consider how this
scales with the system size. In the case of power-law decay of interactions, we
show that a logarithmic scaling is sufficient for the stability of the evolution of
local observables, while for exponentially decaying and finite range interactions
a scaling at least as fast as a certain polynomial, determined by equation (41), is
also sufficient. Moreover, the same assumptions imply certain properties of the
fixed point, such as local topological quantum order. It should be emphasized
that Log Sobolev inequalities provide strong enough convergence-time estimates
to satisfy our assumptions, but that our results also apply more generally.

The most important open question involves state engineering of degenerate
topologically ordered states, such as topologically protected quantum codes. For
such states, all known preparation maps have a convergence time that is slower
than required for our result to apply [36]. It is an interesting question whether
it is possible to exploit the very weak requirements in terms of locality of the
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boundary condition in our definition of uniform families (see definition 2) to
construct faster mixing maps for which one could prove stability, since logical
observables partially supported on such boundaries are not necessarily localizable
in the sense of [36].

Acknowledgements. T.S.C. is supported by a Royal Society University Research fellowship,
and was previously supported by a Juan de la Cierva fellowship. T.S.C., A.L., and D.P.-G. are
supported by Spanish grants MTM2011-26912 and QUITEMAD, and European CHIST-ERA
project CQC (funded partially by MINECO grant PRI-PIMCHI-2011-1071). A.L. is supported
by Spanish Ministerio de Economı́a y Competividad FPI fellowship BES-2012-052404. SM
acknowledges funding provided by the Institute for Quantum Information and Matter, an NSF
Physics Frontiers Center with support of the Gordon and Betty Moore Foundation through
Grant #GBMF1250 and by the AFOSR Grant #FA8750-12-2-0308. The authors would like
to thank the hospitality of the Centro de Ciencias Pedro Pascual in Benasque, where part of
this work was carried out.

Appendix A The non-stable example

The following example will satisfy all the conditions of theorem 7, except forming
an uniform family, and will be shown to be unstable. Interestingly, the system
is rapid mixing, showing that without the correct structure with respect to
system size scaling, rapid mixing alone is not sufficient to imply stability of local
observables. This example is the generalization to dissipative systems of the
globally gapped but not locally gapped example in [49]. We will show that the
characteristics of the dynamics are essentially determined by a classical Markov
chain embedded into the Lindbladian. For a general review on convergence of
Markov chains, see [40].

Example 4. Consider a chain of 2N classical spins, with values in {0, 1}. Let us
define a generatorQ2N of a classical Markov chain over the configuration space {0, 1}2N .
We will define Q2N in a translationally-invariant way as follows:

Qc =


|10〉 |00〉 |11〉 |01〉

|10〉 − 2
3N 0 0 2

3N
|00〉 0 −1 0 1
|11〉 0 0 −1 1
|01〉 0 0 0 0

, Qr =


|10〉 |00〉 |11〉 |01〉

|10〉 −1 0 1 0
|00〉 0 −1 0 1
|11〉 0 0 0 0
|01〉 0 0 0 0

,

Ql =


|10〉 |00〉 |11〉 |01〉

|10〉 −1 1 0 0
|00〉 0 0 0 0
|11〉 0 0 −1 1
|01〉 0 0 0 0

, δ0 = |0〉〈0| , δ1 = |1〉〈1| .

We then define for each i = 1 . . . N , a generator matrix Qi acting on spins
(2i− 2, . . . , 2i+ 1) by

Qi = 1⊗Qc ⊗ 1 + 1⊗Qr ⊗ δ0 + δ1 ⊗Ql ⊗ 1;

and Q2N =
∑N
i=1 Qi.
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The matrix Qi can only change spins (2i−1, 2i): its transition graph restricted
to such spins is presented in figure 3.

00

01

10

11

2
3N

δ0(2i+ 1) δ0(2i+ 1)

δ1(2i− 2)

δ1(2i− 2)


|10〉 |00〉 |11〉 |01〉

|10〉 ∗ 1 1 2
3N

|00〉 0 ∗ 0 1 + 1
|11〉 0 0 ∗ 1 + 1
|01〉 0 0 0 0



Fig. 3. The transition matrix for Qi on the spins (2i−1, 2i). The blue and the red transitions
are present depending on the nearby sites: the blue ones if there is a 0 on the right, the red
ones if there is a 1 on the left. Asterisks in the diagonal are such that the sum of each row is
zero.

By construction, Q2N is upper triangular. Thus the elements on the diagonal
are the eigenvalues. The unique steady state is then |0101 . . . 01〉, and the smallest
non-zero eigenvalue, corresponding to the state |1010 . . . 10〉, is 2

3 . Furthermore,
it is easy to see that the diameter of the graph of the transitions of Q2N is N ,
and in turn this implies that the mixing time for Q2N is of order O(logN)10.

Let us now embed this classical Markov chain into a Lindbad operator, in
a similar fashion as we have done in section 7 with Glauber dynamics. We will
consider then a chain of 2N qubits, and define the following Lindblad operators:
if k is odd, then

Lk,1 = σk+1
x |0〉〈0|k ⊗ |0〉〈0|k+1 ,

Lk,2 = σkx |1〉〈1|k ⊗ |1〉〈1|k+1 ,

Lk,3 =
√

2
3N σkx ⊗ σk+1

x |1〉〈1|k ⊗ |0〉〈0|k+1 ;

if k is even, then

Lk,1 = σkx |0〉〈0|k ⊗ |0〉〈0|k+1 ,

Lk,2 = σk+1
x |1〉〈1|k ⊗ |1〉〈1|k+1 ,

Lk,3 = 0.

The Lindbladian is then defined translationally-invariantly as

L2N =
2N∑
k=1

3∑
i=1
Lk,i +Dk;

where Dk is a dephasing channel acting on site k, as in equation (44). Since Lk,3
depends on N , the family we have defined is not a uniform family.
10 This can be seen from the upper triangular form of Q2N , noticing that the polynomials

appearing in etQ2N have degree of at most the diameter of the transition graph.
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It is easy to see that the action of L2N on diagonal states of the form |α〉〈α|,
with α ∈ {0, 1}2N , is equal to that of Q2N acting on α: this is indeed an embed-
ding of Q2N .

Then, by a similar argument as in section 7, we can prove that the fixed
points of L2N are exactly the same as those of Q2N (namely, the unique state
|0101 . . . 01〉〈0101 . . . 01|), and that the mixing time of L2N is bounded by the
sum of the mixing times of Q2N and of D. Since both of them are mixing in time
O(logN), we see that L2N satisfies rapid mixing.

But the system is unstable: if we perturb L2N by removing the terms gen-
erated by Lk,3 (which is a perturbation of order O( 1

N )), the diagonal state
|1010 . . . 10〉〈1010 . . . 10| becomes a stationary state, and it is clearly locally or-
togonal from the original one |0101 . . . 01〉〈0101 . . . 01|.
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