
Template Attacks on Different Devices

Omar Choudary and Markus G. Kuhn

Computer Laboratory, University of Cambridge, Cambridge, UK
{omar.choudary,markus.kuhn}@cl.cam.ac.uk

Abstract. Template attacks remain a most powerful side-channel tech-
nique to eavesdrop on tamper-resistant hardware. They use a profiling
step to compute the parameters of a multivariate normal distribution
from a training device and an attack step in which the parameters ob-
tained during profiling are used to infer some secret value (e.g. crypto-
graphic key) on a target device. Evaluations using the same device for
both profiling and attack can miss practical problems that appear when
using different devices. Recent studies showed that variability caused by
the use of either different devices or different acquisition campaigns on
the same device can have a strong impact on the performance of tem-
plate attacks. In this paper, we explore further the effects that lead to
this decrease of performance, using four different Atmel XMEGA 256
A3U 8-bit devices. We show that a main difference between devices is a
DC offset and we show that this appears even if we use the same device
in different acquisition campaigns. We then explore several variants of
the template attack to compensate for these differences. Our results show
that a careful choice of compression method and parameters is the key
to improving the performance of these attacks across different devices.
In particular we show how to maximise the performance of template
attacks when using Fisher’s Linear Discriminant Analysis or Principal
Component Analysis. Overall, we can reduce the entropy of an unknown
8-bit value below 1.5 bits even when using different devices.

Keywords: Side-channel attacks · Template attacks · Multivariate
analysis

1 Introduction

Side-channel attacks are powerful tools for inferring secret algorithms or data
(passwords, cryptographic keys, etc.) processed inside tamper-resistant hard-
ware, if an attacker can monitor a channel leaking such information, most no-
tably the power-supply current and unintended electromagnetic emissions.

One of the most powerful side-channel attacks is the template attack [2],
which consists of a profiling step to compute some parameters (the templates)
on a training device and an attack step in which the templates are used to
infer some secret data on a target device (Section 2). However, most previous
studies [2,5,8,10,17] used the same device (and possibly acquisition campaign)
for the profiling and attack phases. Only recently, Renauld et al. [12] performed

E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 179–198, 2014.
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-10175-0_13

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/42338731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-319-10175-0_13

an extensive study on 20 different devices, showing that the template attack may
not work at all when the profiling and attack steps are performed on different
devices; Elaabid et al. [14] showed that acquisition campaigns on the same device,
but conducted at different times, also lead to worse template-attack results; and
Lomné et al. [16] evaluated this scenario using electromagnetic leakage.

In this paper, we explore further the causes that make template attacks
perform worse across different devices. For this purpose, we evaluate the template
attacks with four different Atmel XMEGA 256 A3U 8-bit devices, using different
compression methods and parameters.

We show that, for our experiments, a main difference across devices and ac-
quisition campaigns is a DC offset, and this difference decreases very much the
performance of template attacks (Section 4). To compensate for differences be-
tween devices or campaigns we evaluate several variants of the template attack
(Section 5). One of them needs multiple profiling devices, but can improve sig-
nificantly the performance of template attacks when using sample selection as
the compression method (Section 5.3). However, based on detailed analysis of
Fisher’s Linear Discriminant Analysis (LDA) and Principal Component Analy-
sis (PCA), we explain how to use these compression techniques to maximise the
performance of template attacks on different devices, even when profiling on a
single device (Section 5.4).

Overall, our results show that a good choice of compression method and pa-
rameters can dramatically improve template attacks across different devices or
acquisition campaigns. Previous studies [12,14] may have missed this by evalu-
ating only one compression method.

2 Template Attacks

To implement a template attack, we need physical access to a pair of devices
of the same model, which we refer to as the profiling and the attacked device.
We wish to infer some secret value k? ∈ S, processed by the attacked device at
some point. For an 8-bit microcontroller, S = {0, . . . , 255} might be the set of
possible byte values manipulated by a particular machine instruction.

We assume that we determined the approximate moments of time when the
secret value k? is manipulated and we are able to record signal traces (e.g.,
supply current or electromagnetic waveforms) around these moments. We refer
to these traces as leakage vectors. Let {t1, . . . , tmr} be the set of time samples
and xr ∈ Rmr

be the random vector from which leakage traces are drawn.
During the profiling phase we record np leakage vectors xr

ki ∈ Rmr

from the
profiling device for each possible value k ∈ S, and combine these as row vectors
xr
ki
′ in the leakage matrix Xr

k ∈ Rnp×mr

.1

Typically, the raw leakage vectors xr
ki provided by the data acquisition device

contain a very large number mr of samples (random variables), due to high sam-
pling rates used. Therefore, we might compress them before further processing,

1 Throughout this paper x′ is the transpose of x.

2

either by selecting only a subset of m � mr of those samples, or by applying
some other data-dimensionality reduction method, such as Principal Component
Analysis (PCA) or Fisher’s Linear Discriminant Analysis (LDA).

We refer to such compressed leakage vectors as xki ∈ Rm and combine all of
these as rows into the compressed leakage matrix Xk ∈ Rnp×m . (Without any
such compression step, we would have Xk = Xr

k and m = mr.)
Using Xk we can compute the template parameters x̄k ∈ Rm and Sk ∈

Rm×m for each possible value k ∈ S as

x̄k = 1
np

np∑
i=1

xki, Sk = 1
np−1

np∑
i=1

(xki − x̄k)(xki − x̄k)
′
, (1)

where the sample mean x̄k and the sample covariance matrix Sk are the estimates
of the true mean µk and true covariance Σk. Note that

np∑
i=1

(xki − x̄k)(xki − x̄k)
′

= X̃′kX̃k, (2)

where X̃k is Xk with x̄′k subtracted from each row, and the latter form allows
fast vectorised computation of the covariance matrices in (1).

In our experiments we observed that the particular covariance matrices Sk

are very similar and seem to be independent of the candidate k. In this case, as
explained in a previous paper [17], we can use a pooled covariance matrix

Spooled =
1

|S|(np − 1)

∑
k∈S

np∑
i=1

(xki − x̄k)(xki − x̄k)
′
, (3)

to obtain a much better estimate of the true covariance matrix Σ.
In the attack phase, we try to infer the secret value k? ∈ S processed by the

attacked device. We obtain na leakage vectors xi ∈ Rm from the attacked device,
using the same recording technique and compression method as in the profiling
phase, resulting in the leakage matrix Xk? ∈ Rna×m . Then, using Spooled, we
can compute a linear discriminant score [17], namely

djoint
LINEAR(k | Xk?) = x̄′kS−1

pooled

(∑
xi∈Xk?

xi

)
− na

2
x̄′kS−1

pooledx̄k, (4)

for each k ∈ S, and try all k ∈ S on the attacked device, in order of decreasing
score (optimized brute-force search, e.g. for a password or cryptographic key),
until we find the correct k?.

2.1 Guessing Entropy

In this work we are interested in evaluating the overall practical success of the
template attacks when using different devices. For this purpose we use the guess-
ing entropy, which estimates the (logarithmic) average cost of an optimized

3

brute-force search. The guessing entropy gives the expected number of bits of
uncertainty remaining about the target value k?, by averaging the results of the
attack over all k? ∈ S. The lower the guessing entropy, the more successful the
attack has been and the less effort remains to search for the correct k?. We com-
pute the guessing entropy g as shown in our previous work [17]. For all the results
shown in this paper, we compute the guessing entropy on 10 random selections
of traces Xk? and plot the average guessing entropy over these 10 iterations.

2.2 Compression Methods

Previously [17], we provided a detailed comparison of the most common compres-
sion methods: sample selection (1ppc, 3ppc, 20ppc, allap), Principal Component
Analysis (PCA) and Fisher’s Linear Discriminant Analysis (LDA), which we
summarise here. For the sample selection methods 1ppc, 3ppc, 20ppc and allap,
we first compute a signal-strength estimate s(t) for each sample j ∈ {1, . . . ,mr},
by summing the absolute differences2 between the mean vectors x̄r

k, and then se-
lect the 1 sample per clock cycle (1ppc, 6 ≤ m ≤ 10), 3 samples per clock cycle
(3ppc , 18 ≤ m ≤ 30), 20 samples per clock cycle (20ppc, 75 ≤ m ≤ 79)
or the 5% samples (allap, m = 125) having the largest s(t). For PCA, we
first combine the first m eigenvectors uj ∈ Rmr

of the between-groups ma-
trix B =

∑
k∈S(x̄r

k − x̄r)(x̄r
k − x̄r)

′
, where x̄r = 1

|S|
∑

k∈S x̄r
k, into the matrix

of eigenvectors U = [u1, . . . ,um], and then we project the raw leakage matri-
ces Xr

k into a lower-dimensional space as Xk = Xr
kU. For LDA, we use the

matrix B and the pooled covariance Spooled from (3), computed from the un-
compressed traces xr

i, and combine the eigenvectors aj ∈ Rmr

of S−1
pooledB into

the matrix A = [a1, . . . ,am]. Then, we use the diagonal matrix Q ∈ Rm×m , with

Qjj = (aj
′Spooledaj)

− 1
2 , to scale the matrix of eigenvectors A and use U = AQ

to project the raw leakage matrices as Xk = Xr
kU. In this case, the compressed

covariances Sk ∈ Rm×m and Spooled ∈ Rm×m reduce to the identity matrix I,
resulting in more efficient template attacks.

For most of the results shown in Sections 4 and 5, we used PCA and LDA
with m = 4, based on the elbow rule (visual inspection of eigenvalues) derived
from a standard implementation of PCA and LDA. However, as we will then
show in Section 5.4, a careful choice of m is the key to good results.

2.3 Standard Method

Using the definitions from the previous sections, we can define the following
standard method for implementing template attacks.

Method 1 (Standard)

1. Obtain the np leakage traces in Xk from the profiling device, for each k.
2. Compute the template parameters (x̄k,Spooled) using (1) and (3).
3. Obtain the leakage traces Xk? from the attacked device.
4. Compute the guessing entropy as described in Section 2.1.

2 The SNR signal-strength estimate generally provided similar results (omitted here).

4

3 Evaluation Setup

For our experimental research we produced four custom PCBs (named Alpha,
Beta, Gamma and Delta) for the unprotected 8-bit Atmel XMEGA 256 A3U mi-
crocontroller. The current consumption across all CPU ground pins is measured
through a single 10-ohm resistor. We powered the devices from a battery via a
3.3 V linear regulator and supplied a 1 MHz sine wave clock signal. We used a
Tektronix TDS 7054 8-bit oscilloscope with P6243 active probe, at 250 MS/s,
with 500 MHz bandwidth in SAMPLE mode. Devices Alpha and Beta used a
CPU with week batch ID 1145, while Gamma and Delta had 1230.

For the analysis presented in this paper we run five acquisition campaigns:
one for each of the devices, which we call Alpha, Beta, Gamma and Delta (i.e.
the same name as the device), and another one at a later time for Beta, which we
call Beta Bis. For all the acquisition campaigns we used the settings described
above. Then, for each campaign and each candidate value k ∈ {0, . . . , 255} we
recorded 3072 traces xr

ki (i.e., 786 432 traces per acquisition campaign), which we
randomly divided into a training set (for the profiling phase) and an evaluation
set (for the attack phase). Each acquisition campaign took about 2 hours. We
note a very important detail for our experiments: instead of acquiring all the
traces per k sequentially (i.e. first the 3072 traces for k = 0, then 3072 traces
for k = 1, and so on), we used random permutations of all the 256 values k and
acquired 256 traces at a time (corresponding to a random permutation of all
the 256 values k), for a total of 3072 iterations. This method distributes equally
any external noise (e.g. due to temperature variation) across the traces of all the
values k. As a result, the covariances Sk will be similar and the mean vectors
x̄k will be affected in the same manner so they will not be dependent on factors
such as low-frequency temperature variation.

For all the results shown in this paper we used np = 1000 traces xr
ki per

candidate k during the profiling phase. Each trace contains mr = 2500 sam-
ples, recorded while the target microcontroller executed the same sequence of
instructions loaded from the same addresses: a MOV instruction, followed by
several LOAD instructions. All the LOAD instructions require two clock cycles
to transfer a value from RAM into a register, using indirect addressing. In all
the experiments our goal was to determine the success of the template attacks in
recovering the byte k processed by the second LOAD instruction. All the other
instructions were processing the value zero, meaning that in our traces none of
the variability should be caused by variable data in other nearby instructions
that may be processed concurrently in various pipeline stages. This approach,
also used in other studies [8,13,17], provides a general setting for the evaluation
of the template attacks. Specific algorithm attacks (e.g. on the S-box output of
a block cipher such as AES) may be mounted on top of this.

4 Ideal vs Real Scenario

Most publications on template attacks [2,5,8,10,17] used the same device (and
most probably the same acquisition campaign) for the profiling and attack phase

5

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

LDA, m=4
PCA, m=4
sample, 1ppc
sample, 3ppc
sample, 20ppc
sample, allap

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

LDA, m=4
PCA, m=4
sample, 1ppc
sample, 3ppc
sample, 20ppc
sample, allap

Fig. 1. Template attacks using Method 1 in different scenarios. Top-left (ideal): using
same device and acquisition campaign (Beta) for profiling and attack. Top-right: using
Alpha for profiling and Beta for attack. Bottom-left: arithmetic average of guessing
entropy over all combinations of different pairs of devices for profile and attack. Bottom-
right: using same device (Beta) but different acquisition campaigns for profile (Beta)
and attack (Beta Bis).

in their evaluation. The results of the standard Method 1 in this ideal case, where
we used the same acquisition data for profiling and attack (but disjoint sets of
traces), are shown in Figure 1 (top-left). We can see that most compression
methods perform very well for large na, while for smaller na LDA is generally
the best. This is in line with our previous results [17].

However, in a more realistic scenario, an attacker who wants to infer some
secret data from a target device may be forced to use a different device for
profiling. Indeed, there are situations where we could use non-profiled attacks,
such as DPA [1], CPA [3], or MIA [9], to infer secret data using a single device
(e.g. by targeting values that represent a known relationship between key and
plaintext). But these methods cannot be used in more general situations where
we want to infer a single secret data value that does not depend on any other
values, which is the setting of our experiments. In such cases the template attacks
or the stochastic approach [4] might be the only viable side-channel attack.3

3 In our setting we cannot use the non-profiled stochastic method (termed on-the-fly
attacks by Renauld et al. [12]) either, because our attacker only has data dependent
on the target secret value.

6

Moreover, the template attacks are expected to perform better than the other
attacks when provided with enough profiling data [11]. Therefore, we would like
to use template attacks also with different devices for profiling and attack.

As we show in Figure 1 (top-right), the efficacy of template attacks using
the standard Method 1 drops dramatically when using different devices for the
profiling and attack steps. This was also observed by Renauld et al. [12], by
testing the success of template attacks on 20 different devices with 65 nm CMOS
transistor technology. Moreover, Elaabid et al. [14] mentioned that even if the
profiling and attack steps are performed on the same device but on different
acquisition campaigns we will also observe weak success of the template attacks.
In Figure 1 (bottom-right) we confirm that indeed, even when using the same
device but different acquisition campaigns (same acquisition settings), we get
results as bad or even worse as when using different devices. In Section 5, we
offer an explanation for why LDA can perform well across different devices.

4.1 Causes of trouble

In order to explore the causes that lead to worse attack performance on different
acquisition campaigns, we start by looking at two measures of standard deviation
(std), that we call std devices and std data.

Let x̄
(i)
kj be the mean value of sample j ∈ {1, . . . ,m} for the candidate

k ∈ S on the campaign i ∈ {1, . . . , nc}, x̄(i)
j = 1

|S|
∑

k∈S x̄
(i)
kj , zk(j) = [(x̄

(1)
kj −

x̄
(1)
j), . . . , (x̄

(nc)
kj − x̄

(nc)
j)] = [z

(1)
k (j), . . . , z

(nc)
k (j)] and z̄k(j) = 1

nc

∑nc

i=1 z
(i)
k (j).

Then,

std devices(j) =
1

|S|
∑
k∈S

√√√√ 1

nc − 1

nc∑
i=1

(z
(i)
k (j)− z̄k(j))

2
, (5)

and

std data(j) =
1

nc

nc∑
i=1

√
1

|S| − 1

∑
k∈S

(x̄
(i)
kj − x̄

(i)
j)

2
. (6)

We show these values in Figure 2. The results on the left plot are from the four
campaigns on different devices, while the results on the right plot are from the
two campaigns on the device Beta. We can observe that both plots are very
similar, which suggests that the differences between campaigns are not entirely
due to different devices being used, but largely due to different sources of noise
(e.g., temperature, interference, etc.) that may affect in a particular manner
each acquisition campaign. Using a similar type of plots, Renauld et al. [12,
Fig. 1] observed a much stronger difference, attributed to physical variability.
Their observed differences are not evident in our experiments, possibly because
our devices use a larger transistor size (around 0.12 µm)4.

4 See http://www.avrfreaks.net/?name=PNphpBB2&file=viewtopic&p=976590.

7

http://www.avrfreaks.net/?name=PNphpBB2&file=viewtopic&p=976590

850 900 950

0

Sample index

std devices
std data
clock

850 900 950

0

Sample index

std devices
std data
clock

Fig. 2. std devices(j) and std data(j), along with clock signal for a selection of samples
around the first clock cycle of our target LOAD instruction. Left: using the 4 campaigns
on different devices. Right: using Beta and Beta Bis.

850 878 884 900 950
−0.3

−0.2

−0.1

0

0.1

0.2

Sample index

M
ill

ia
m

ps

Alpha
Beta
Beta bis
Gamma
Delta
Beta + ci
Beta − ci
SNR of Beta

Fig. 3. Overall mean vectors x̄ for all campaigns, from which the overall mean vector of
Beta was substracted. Beta+ci and Beta−ci represent the confidence region (α = 0.05)
for the overall mean vector of Beta. SNR of Beta is the Signal-to-Noise signal strength
estimate of Beta (rescaled). Samples at first clock cycle of target LOAD instruction.

4.2 How it differs

Next we look at how the overall power consumption differs between acquisition
campaigns. In Figure 3, we show the overall mean vectors x̄ = 1

|S|
∑

k∈S x̄k for

each campaign, from which we removed the overall mean vector of Beta (hence
the vector for Beta is 0). From this figure we see that all overall mean vectors x̄
(except the one for Beta) are far outside the confidence region of Beta (α = 0.05).
Moreover, we see that the overall mean vector x̄ for Beta Bis is the most distant
from the overall mean vector of Beta. This confirms our previous assumption
that the main difference between acquisition campaigns is caused by campaign-
dependent factors, such as temperature drift, environmental noise, etc. and not
necessarily by the use of different devices. A similar observation was made by
Elaabid et al. [14], however they used different setups for the different campaigns
on the same devices. In our study we have used the exact same setup for the
acquisition of data, while replacing only the tested device (evaluation board).

8

It is clear from Figure 3 that a main difference between the different cam-
paigns is an overall offset. We see that this is also the case over the samples
corresponding to the highest SNR. If we now look at the distributions of our
data, as shown in Figure 4 for Alpha and Beta, we observe that the distribu-
tions are very similar (in particular the ordering of the different candidates k is
generally the same) but differ mainly by an overall offset. This suggests that,
for our experiments, this offset is the main reason why template attacks perform
badly when using different campaigns for the profiling and attack steps.

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
0

0.5

1

1.5

2

2.5

Milliamps

0
1
2
3
4
5
6
7
8
9

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
0

0.5

1

1.5

2

2.5

Milliamps

0
1
2
3
4
5
6
7
8
9

Fig. 4. Normal distribution at sample index j = 884 based on the template parameters
(x̄k,Spooled) for k ∈ {0, 1, . . . , 9}. Left: on Alpha. Right: on Beta.

4.3 Misalignment

We also mention that in some circumstances the recorded traces might be mis-
aligned, e.g. due to lack of a good trigger signal, or random delays introduced by
some countermeasure. In such cases, we should first apply a resynchronisation
method, such as those proposed by Homma et al. [7]. In our experiments we
used a very stable trigger, as shown by the exact alignments of sharp peaks in
Figure 3.

5 Improved attacks on different devices

In this section, we explore ways to improve the success of template attacks when
using different devices (or different campaigns), in particular by dealing with
the campaign-specific offset noted in Section 4. We assume that the attacker can
profile well a particular device or set of devices, i.e. can get a large number np

of traces for each candidate k, but needs to attack a different device for which
he only has access to a set of na traces for a particular unknown target value
k?. Unless otherwise mentioned, in the following evaluations we considered all
possible combinations of the campaigns Alpha, Beta, Gamma and Delta, always
ensuring that the campaign of one device is only used in either the profiling or
attack phases, but not in both.

9

5.1 Profiling on Multiple Devices

Renauld et al. [12] proposed to accumulate the sample means x̄k and variances
Sjj (where S can be either Sk or Spooled) of each sample xj across multiple
devices in order to make the templates more robust against differences between
different devices. That is, for each candidate k and sample j, and given the
sample means x̄k and covariances S from nc training devices, they compute the

robust sample means x̄
(robust)
kj = 1

nc
(x̄

(1)
kj + . . . + x̄

(nc)
kj) (i.e. an average over the

sample means of each device), and the robust variance as S
(robust)
jj = S

(1)
jj +

1
nc−1

nc∑
i=1

(x̄
(i)
kj − x̄

(robust)
kj)

2
(i.e. they add the variance of one device with the

variance of the noise-free sample mean across devices, using simulated univariate
noise for each device). However, this approach does not consider the correlation
between samples or the differences between the covariances of different devices.
Therefore, we instead use the following method, where we use the traces from
all available campaigns.

Method 2 (Robust Templates from Multiple Devices)

1. Obtain the leakage traces X
(i)
k from each profiling device i ∈ {1, . . . , nc}, for

each k.
2. Pull together the leakage traces of each candidate k from all nc devices into

an overall leakage matrix X
(robust)
k ∈ Rnpnc×m composed as

X
(robust)
k

′
= [X

(1)
k

′
, . . . ,X

(nc)
k

′
]. (7)

3. Compute the template parameters (x̄k,Spooled) using (1) and (3) on X
(robust)
k .

4. Obtain the leakage traces Xk? from the attacked device.
5. Compute the guessing entropy as described in Section 2.1.

In our evaluation of Method 2, we used the data from the campaigns on
the four devices (Alpha, Beta, Gamma, Delta), by profiling on three devices
and attacking the fourth. The results are shown in Figure 5. We can see that,
on average, all the compression methods perform better than using Method 1
(Figures 1 and 5, bottom-left). This is because, with Method 2, the pooled
covariance Spooled captures noise from many different devices, allowing more
variability in the attack traces. However, the additional noise from different
devices also has the negative effect of increasing the variability of each leakage
sample [12, Fig. 4]. As a result, we can see that for the attacks on Beta, LDA
performs better when we profile on a single device (Alpha) than when we use
three devices (Figures 1 and 5, top-right).

5.2 Compensating for the Offset

In Section 4.2 we showed that a main difference between acquisition campaigns
(and devices) is a constant offset between the overall mean vector x̄. Therefore,

10

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

LDA, m=4
PCA, m=4
sample, 1ppc
sample, 3ppc
sample, 20ppc
sample, allap

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

Fig. 5. Results of Method 2, profiling on three devices and attacking the fourth one.
Top-left: attack on Alpha; top-right: attack on Beta; bottom-left: arithmetic average
of guessing entropy over all four combinations; bottom-right: attack on Delta.

we expect that a template attack that removes this offset should provide better
results. Elaabid et al. [14] have shown that, indeed, if we replace each trace from
each campaign by the difference between itself and the overall mean x̄ of that
campaign (they refer to this process as normalisation, and this process may also
include division by the overall standard deviation), we can obtain results very
similar to those in the ideal case (profiling and attack on the same campaign).
However, this approach does not work straight away in a more realistic scenario
in which the attacker only has access to a limited number of traces from the target
device for a particular target value k?, and hence he cannot compute the overall
mean x̄ of the campaign. Nevertheless, if the difference between campaigns is
mainly a constant overall offset (as we showed in Section 4.2), then an attacker
may still use the subset of available attack traces Xk? to improve the template
attack. The method we propose is the following.

Method 3 (Adapt for the Offset)

1. Obtain the raw leakage traces Xr
k from the profiling device, for each k.

2. Compress the raw leakage traces Xr
k to obtain Xk, for each k.

3. Compute the template parameters (x̄k,Spooled) using (1) and (3) on Xk.

4. Compute the overall mean vector x̄r(profile) = 1
|S|
∑

k x̄r
k from Xr

k.

11

5. Compute the constant offset c(profile) = offset(x̄r(profile)) ∈ R.5

6. Obtain the leakage traces Xk? from the attacked device.
7. Compute the offset c(attack) = offset(xr) ∈ R from each raw attack trace xr

(row of Xr
k?). As in step 5, for our data we used the median of xr.

8. Replace each trace xr (row of Xr
k?) by xr(robust) = xr−1r·(c(attack)−c(profile)),

where 1r = [1, 1, . . . , 1] ∈ Rmr

.
9. Apply the compression method to each of the modified attack traces xr(robust),

obtaining the robust attack leakage matrix X
(robust)
k? .

10. Compute the guessing entropy as described in Section 2.1 using X
(robust)
k? .

Note that instead of Method 3 we could also compensate for the offset (c(attack)−
c(profile)) in the template parameters (x̄k,Spooled), but that would require much
more computation, especially if we want to evaluate the expected success of an
attacker using this method with an arbitrary number of attack traces, as we
do in this paper. Note also that in our evaluation, each additional attack trace
improves the offset difference estimation of the attacker: the use of the linear
discriminant from (4) in our evaluation implies that, as we get more attack
traces, we are basically averaging the differences (c(attack)−c(profile)), thus getting
a better estimate of this difference.

In Figure 6 we show the results of Method 3. We can see that, on average, we
get a similar pattern as with Method 2, but slightly worse results. For the best
case (top-right), LDA is now achieving less than 1 bit of entropy at na = 1000,
thus approaching the results on the ideal scenario. On the other hand, we also
see that for the worst case (top-left) we get very bad results, where even using
LDA with na = 1000 doesn’t provide any real improvement. This large difference
between the best and worst cases can be explained by looking at Figure 3. There
we see that the difference between the overall means x̄ of Alpha and Beta is
constant across the regions of high SNR (e.g. around samples 878 and 884),
while the difference between Beta and Delta varies around these samples. This
suggests that, in general, there is more than a simple DC offset involved between
different campaigns and therefore this offset compensation method alone is not
likely to be helpful.

We could also try to use a high-pass filter, but note that a simple DC block
has a non-local effect, i.e. a far-away bump in the trace not related to k can affect
the leakage samples that matter most. Another possibility, to deal with the low-
frequency offset, might be to use electromagnetic leakage, as this leakage is not
affected by low-frequency components, so it may provide better results [16].

5.3 Profiling on Multiple Devices and Compensating for the Offset

If an attacker can use multiple devices during profiling, and since compensating
for the offset may help where this offset is the main difference between campaigns,
a possible option is to combine the previous methods. This leads to the following.

5 We used the median value of x̄r(profile) as the offset, since it provides a very good
approximation with our data. However, when using a higher clock frequency, the
median can become very noisy, so we might have to find more robust methods.

12

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

LDA, m=4
PCA, m=4
sample, 1ppc
sample, 3ppc
sample, 20ppc
sample, allap

Fig. 6. Results of Method 3, profiling on one device and attacking a different device.
Top-left: worst case (profiling on Beta, attack on Delta); top-right: best case (profiling
on Alpha, attack on Beta); bottom-left: average over all possible 12 combinations using
campaigns Alpha, Beta, Gamma, Delta.

Method 4 (Robust Templates and Adapt for the Offset)

1. Obtain the overall raw leakage matrix X
r(robust)
k using Steps (1,2) of Method 2.

2. Use Method 3 with X
r(robust)
k instead of Xr

k.

The results from Method 4 are shown in Figure 7. We can see that using this
method the sample selections (in particular 20ppc, allap) perform much better
than using the previous methods, and in most cases even better than LDA. This
can be explained as follows: the profiling on multiple devices allows the estima-
tion of a more robust covariance matrix (which helps both the sample selection
methods and LDA), while the offset compensation helps more the sample selec-
tion methods than LDA. We also notice that PCA still performs poorly, which
was somewhat expected since the standard PCA compression method does not
take advantage of the robust covariance matrix. In the following sections, we
show how to improve template attacks when using LDA or PCA.

5.4 Efficient Use of LDA and PCA

In the previous sections, we showed that LDA did not benefit much from pro-
filing on different devices or adapting the attack traces for a DC offset. In fact,

13

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

LDA, m=4
PCA, m=4
sample, 1ppc
sample, 3ppc
sample, 20ppc
sample, allap

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

Fig. 7. Results of Method 4, profiling three devices and attacking the fourth one.
Top-left: attack on Alpha; top-right: attack on Beta; bottom-left: average over all 4
combinations; bottom-right: attack on Delta.

using the standard Method 1, LDA was already able to provide good results
across different devices (see Figure 1). To understand why this happens, we
need to look at the implementation of LDA, summarised in Section 2.2. There
we can see that LDA takes into consideration the raw pooled covariance Spooled.
Also, as we explained in Section 3, we acquired traces for random permutations
of all values k at a time and our acquisition campaigns took a few hours to
complete. Therefore, the pooled covariance Spooled of a given campaign contains
information about the different noise sources that have influenced the current
consumption of our microcontrollers over the acquisition period. But one of the
major sources of low-frequency noise is temperature variation (which can affect
the CPU, the voltage regulator of our boards, the voltage reference of the os-
cilloscope, our measurement resistor; see also the study by Heuser et al. [15]),
and we expect this temperature variation to be similar within a campaign as
it is across campaigns, if each acquisition campaign takes several hours. As a
result, the temperature variation captured by the covariance matrix Spooled of
one campaign should be similar across different campaigns. However, the mean
vectors x̄k across different campaigns can be different due to different DC offsets
(even if the overall temperature variation is similar), and this is why the sample
selection methods (e.g. 20ppc, allap) perform poorly across different campaigns.
Nevertheless, the LDA algorithm is able to remove the DC component and use
only the rest of the trace for the attack. This, combined with the fact that with

14

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40
−10

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40
−10

0

10

20

30

40

50

0 500 1000 1500 2000 2500

u1
u2
u3
u4
u5
u6

0 500 1000 1500 2000 2500

u1
u2
u3
u4
u5
u6

0 500 1000 1500 2000 2500

u1
u2
u3
u4
u5
u6

0 5 10 15 20
10

3

10
4

10
5

10
6

10
7

0 5 10 15 20
10

9

10
10

10
11

10
12

10
13

10
14

LDA (S−1
pooledB) PCA (B) Spooled

eigenvector index

sample index

D
C

co
m

p
o
n
en

t

Fig. 8. Top: DC components of eigenvectors of LDA (S−1
pooledB), PCA (B) and Spooled.

Middle: First six eigenvectors of LDA (S−1
pooledB), PCA (B) and Spooled. Bottom: eigen-

values (log y axis) of LDA and PCA.

LDA we no longer need a covariance matrix after compression, allows LDA to
filter out temperature variations and other noise sources that are similar across
campaigns, and provide good results even across different devices.

In order to show how LDA and PCA deal with the DC offset, we show in
Figure 8 (top) the DC components (mean) of the LDA and PCA eigenvectors.
For LDA we can see that there is a peak at the fifth DC component, which
shows that our choice of m = 4 avoided the component with largest DC offset
by chance. For PCA we can see a similar peak, also for the fifth component, and
again our choice m = 4 avoided this component. However, for PCA this turned
out to be bad, because PCA does use a covariance matrix after projection and
therefore it would benefit from getting knowledge of the temperature variation
from the samples. This temperature variation will be given by the eigenvector
with a high DC offset and therefore we expect that adding this eigenvector may
provide better results. We also show in Figure 8 the first six eigenvectors of
LDA (S−1

pooledB), PCA (B) and Spooled, along with the first 20 eigenvalues of
LDA and PCA. The fifth eigenvector of PCA clearly contains a DC offset, while

15

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

LDA, m=4
PCA, m=4
sample, 1ppc
sample, 3ppc
sample, 20ppc
sample, allap
LDA, m=3
LDA, m=5
LDA, m=6
LDA, m=40
PCA, m=5
PCA, m=6
PCA, m=40

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

LDA, m=4
LDA, m=5
PCA, m=4
PCA, m=5

LDA m = 3,m = 4

PCA m = 4

Fig. 9. Template attack on different campaigns (profiling on Alpha, attack on Beta).
Left: using various compressions with Method 1. Right: using PCA and LDA with
Method 5.

this is not obvious in LDA. Also, we see that the division by Spooled in LDA has
removed much of the noise found in the PCA eigenvectors, and it appears that
LDA has reduced the number of components extracting most information from
four (in PCA) down to three.

To confirm the above observations, we show in Figure 9 (left) the results of
template attacks when using PCA and LDA with different values of m. We see
that for LDA there is a great gap between using m = 4 and m = 5, no gap
between m = 3 and m = 4, while the gap between m = 5 and m = 40 is very
small. This confirms our previous observation that with LDA we should ignore
the eigenvector containing a strong DC coefficient. Also, we see that for PCA
there is a huge gap between usingm = 4 andm = 5 (in the opposite sense as with
LDA), but the gap between m = 5 and m = 40 is negligible. Therefore, PCA
can work well across devices if we include the eigenvectors containing the DC
offset information. These results provide an important lesson for implementing
template attacks across different devices or campaigns: the choice of components
should consider the DC offset contribution of each eigenvector. This suggests that
previous studies may have missed important information, by using only sample
selections with one to three samples [12] or only the first PCA component [14].

5.5 Add DC Offset Variation to PCA

Renauld et al. [12] mentioned that “physical variability makes the application of
PCA irrelevant, as it cannot distinguish between inter-plaintext and inter-chip
variances”. While it is true that the standard PCA approach [6] is not aimed at
distinguishing between the two types of variance, we showed in Section 5.4 that
PCA can actually provide good results if we select the eigenvectors carefully.
Starting from this observation, we can try to enhance the PCA algorithm by
deliberately adding DC noise, in the hope of concentrating the DC sensitivity
in one of the first eigenvectors, thereby making the other eigenvectors less DC
sensitive (as all eigenvectors are orthogonal).

16

0 5 10 15 20 25 30 35 40
−35

−30

−25

−20

−15

−10

−5

0

5

0 5 10 15 20 25 30 35 40
−50

−40

−30

−20

−10

0

10

0 500 1000 1500 2000 2500

u1
u2
u3
u4
u5
u6

0 500 1000 1500 2000 2500

u1
u2
u3
u4
u5
u6

LDA (S−1
pooledB) PCA (B)

eigenvector index

sample index

D
C

co
m

p
o
n
en

t

Fig. 10. Top: DC components of eigenvectors of LDA (S−1
pooledB) and PCA (B) after

using Method 5. Bottom: First six eigenvectors of LDA (S−1
pooledB) and PCA (B).

Method 5 (Add Random Offsets to the Matrix B – PCA and LDA only)

1. Obtain the raw leakage traces Xr
k from the profiling device, for each k.

2. Obtain the raw pooled covariance matrix Spooled ∈ Rmr×mr

.

3. Pick a random offset ck for each mean vector x̄k.6

4. Compute the between-groups matrix as

B =
∑

k∈S(x̄r
k − x̄r + 1r · ck)(x̄r

k − x̄r + 1r · ck)
′
.

5. Use PCA (uses B only) or LDA (uses both B and Spooled) to compress the
raw leakage traces and obtain Xk for each k.

6. Compute the template parameters (x̄k,Spooled) using (1) and (3).

7. Obtain the compressed leakage traces Xk? from the attacked device.

8. Compute the guessing entropy as described in Section 2.1.

The results of this method are shown in Figure 9 (right). We see that now
PCA provides good results even with m = 4. However, in this case LDA gives
bad results with m = 4. In Figure 10 we show the eigenvectors from LDA and
PCA, along with their DC component. We can see that, by using this method,
we managed to push the eigenvector having the strongest DC component first,
and this was useful for PCA. However, LDA does not benefit from including a
noise eigenvector into B, so we propose this method only for use with PCA.

6 We have chosen ck uniformly from the interval [−u, u], where u is the absolute
average offset between the overall mean vectors shown in Figure 3.

17

6 Conclusions

In this paper, we explored the efficacy of template attacks when using different
devices for the profiling and attack steps.

We observed that, for our Atmel XMEGA 256 A3U 8-bit microcontroller
and particular setup, the campaign-dependent parameters (temperature, envi-
ronmental noise, etc.) appear to be the dominant factors in differences between
campaign data, not the inter-device variability. These differences rendered the
standard template attack useless for all common compression methods except
Fisher’s Linear Discriminant Analysis (LDA). To improve the performance of
the attack across different devices, we explored several variants of the template
attack, that compensate for a DC offset in the attack phase, or profile across
multiple devices. By combining these options, we can improve the results of tem-
plate attacks. However, these methods did not provide a great advantage when
using Principal Component Analysis (PCA) or LDA.

Based on detailed analysis of LDA, we offered an explanation why this com-
pression method works well across different devices: LDA is able to compensate
temperature variation captured by the pooled covariance matrix and this tem-
perature variation is similar across campaigns. From this analysis, we were able
to provide guidance for an efficient use of both LDA and PCA across different
devices or campaigns: for LDA we should ignore the eigenvectors starting with
the one having the strongest DC contribution, while for PCA we should choose
enough components to include at least the one with the strongest DC contri-
bution. Based on these observations we also proposed a method to enhance the
PCA algorithm such that the eigenvector with the strongest DC contribution
corresponds to the largest eigenvalue and this allows PCA to provide good re-
sults across different devices even when using a small number of eigenvectors.

Our results show that the choice of compression method and parameters (e.g.
choice of eigenvectors for PCA and LDA) has a strong impact on the success
of template attacks across different devices, a fact that was not evidenced in
previous studies. As a guideline, when using sample selection we should use a
large number of samples, profile on multiple devices and adapt for a DC offset,
but with LDA and PCA we may use the standard template attack and perform
the profiling on a single device, if we select the eigenvectors according to their
DC component. Overall, LDA seems the best compression method when using
template attacks across different devices, but it requires to invert a possibly large
covariance matrix, which might not be possible with a small number of profiling
traces. In such cases, PCA might be a better alternative.

We conclude that with a careful choice of compression method we can obtain
template attacks that are efficient also across different devices, reducing the
guessing entropy of an unknown 8-bit value below 1.5 bits.

Data and Code Availability: In the interest of reproducible research we make
available our data and related MATLAB scripts at:

http://www.cl.cam.ac.uk/research/security/datasets/grizzly/

18

http://www.cl.cam.ac.uk/research/security/datasets/grizzly/

Acknowledgement: Omar Choudary is a recipient of the Google Europe Fellowship in

Mobile Security, and this research is supported in part by this Google Fellowship. The

opinions expressed in this paper do not represent the views of Google unless otherwise

explicitly stated.

References

1. P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis”, CRYPTO 1999,
LNCS 1666, pp 388–397.

2. S. Chari, J. Rao, and P. Rohatgi, “Template Attacks”, in CHES 2002, LNCS
2523, pp 13–28.

3. E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a Leakage
Model”, in CHES 2004, LNCS 3156, pp 16–29.

4. W. Schindler, K. Lemke, and C. Paar, “A Stochastic Model for Differential Side
Channel Cryptanalysis”, in CHES 2005, LNCS 3659, pp 30–46.

5. B. Gierlichs, K. Lemke-Rust, and C. Paar, “Templates vs. Stochastic Methods”,
in CHES 2006, LNCS 4249, 2006, pp 15–29.

6. C. Archambeau, E. Peeters, F. Standaert, and J. Quisquater, “Template Attacks
in Principal Subspaces”, in CHES 2006, LNCS 4249, 2006, pp 1–14.

7. N. Homma, S. Nagashima, Y. Imai, T. Aoki, and A. Satoh, “High-Resolution
Side-Channel Attack Using Phase-Based Waveform Matching”, in CHES 2006,
LNCS 4249, 2006, pp 187–200.

8. F.-X. Standaert and C. Archambeau, “Using Subspace-Based Template Attacks
to Compare and Combine Power and Electromagnetic Information Leakages”,
in CHES 2008, LNCS 5154, pp 411–425.

9. B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel, “Mutual Information Analy-
sis”, in CHES 2008, LNCS 5154, pp 426–442.

10. F.-X. Standaert, T. G. Malkin, and M. Yung, “A Unified Framework for the
Analysis of Side-Channel Key Recovery Attacks”, EUROCRYPT 2009, LNCS
5479, pp 443–461.

11. F.-X. Standaert, F. Koeune, and W. Schindler, “How to Compare Profiled Side-
Channel Attacks?” in Applied Cryptography and Network Security, LNCS 5536,
pp 485–498.

12. M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, D. Kamel, and D. Flan-
dre, “A Formal Study of Power Variability Issues and Side-Channel Attacks for
Nanoscale Devices”, in EUROCRYPT 2011, LNCS 6632, pp 109–128.

13. D. Oswald and C. Paar, “Breaking Mifare DESFire MF3ICD40: Power Analysis
and Templates in the Real World”, in CHES 2011, LNCS 6917, pp 207–222.

14. M. A. Elaabid and S. Guilley, “Portability of templates”, Journal of Crypto-
graphic Engineering, 2(1), pp 63–74, 2012.

15. A. Heuser, M. Kasper, W. Schindler, and M. Stöttinger, “A New Difference
Method for Side-Channel Analysis with High-Dimensional Leakage Models”, in
CT-RSA 2012, LNCS 7178, pp. 365–382.

16. V. Lomné, E. Prouff, and T. Roche, “Behind the Scene of Side Channel Attacks”,
in ASIACRYPT 2013, Part I, LNCS 8269, pp. 506–525.

17. O. Choudary and M. G. Kuhn, “Efficient Template Attacks”, in CARDIS 2013,
LNCS 8419, pp. 253–270.

19

http://thehackademy.net/madchat/crypto/papers/DPA.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.5172&rep=rep1&type=pdf#page=29
https://www.iacr.org/archive/ches2004/31560016/31560016.pdf
https://www.iacr.org/archive/ches2004/31560016/31560016.pdf
http://link.springer.com/chapter/10.1007/11545262_3
http://link.springer.com/chapter/10.1007/11545262_3
https://www.hgi.rub.de/media/crypto/veroeffentlichungen/2011/01/29/ches2006v15.pdf
http://perso.uclouvain.be/fstandae/PUBLIS/38.pdf
http://perso.uclouvain.be/fstandae/PUBLIS/38.pdf
http://link.springer.com/chapter/10.1007/11894063_15
http://link.springer.com/chapter/10.1007/11894063_15
http://www.iacr.org/archive/ches2008/51540408/51540408.pdf
http://www.iacr.org/archive/ches2008/51540408/51540408.pdf
http://eprint.iacr.org/2007/198.pdf
http://eprint.iacr.org/2007/198.pdf
https://eprint.iacr.org/2006/139.pdf
https://eprint.iacr.org/2006/139.pdf
http://link.springer.com/chapter/10.1007/978-3-642-01957-9_30
http://link.springer.com/chapter/10.1007/978-3-642-01957-9_30
http://link.springer.com/chapter/10.1007/978-3-642-20465-4_8
http://link.springer.com/chapter/10.1007/978-3-642-20465-4_8
http://link.springer.com/chapter/10.1007/978-3-642-23951-9_14
http://link.springer.com/chapter/10.1007/978-3-642-23951-9_14
http://link.springer.com/article/10.1007/s13389-012-0030-6
http://link.springer.com/chapter/10.1007/978-3-642-27954-6_23
http://link.springer.com/chapter/10.1007/978-3-642-27954-6_23
http://link.springer.com/chapter/10.1007/978-3-642-42033-7_26
https://eprint.iacr.org/2013/770.pdf

	Template Attacks on Different Devices
	Introduction
	Template Attacks
	Guessing Entropy
	Compression Methods
	Standard Method

	Evaluation Setup
	Ideal vs Real Scenario
	Causes of trouble
	How it differs
	Misalignment

	Improved attacks on different devices
	Profiling on Multiple Devices
	Compensating for the Offset
	Profiling on Multiple Devices and Compensating for the Offset
	Efficient Use of LDA and PCA
	Add DC Offset Variation to PCA

	Conclusions

