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Abstract— Economic model predictive control (eMPC), where
an economic objective is used directly as the objective function
of the control system, has gained much popularity in recent
literature. However, with a purely economic objective, the
control designer has no influence over the control performance
of the process. In this paper, we propose a means of tuning
the objective function in order to give some level of control
performance. Also, the stability proof for eMPC relies on some
strict-dissipativity condition. We also show how this condition
can be satisfied when the system is only dissipative with respect
to the original objective function.

I. INTRODUCTION

A new approach to model predictive control (MPC) where
the controller directly optimizes the economic performance
of the system has recently gained popularity. The main ad-
vantage of this approach, labelled ‘economic MPC’ (eMPC),
over the conventional tracking MPC is the possible improve-
ment in economic performance which is extracted from the
transient behaviour of the process as the controller steers the
system to the optimal steady state.

The use of economic performance as the controller’s ob-
jective function is not entirely new [1]–[3]. However, stability
proofs and performance guarantees with optimality of steady
state operation have only been recently developed based
on strict-dissipativity assumption [4], [5]. If the objective
function is quadratic in the states and inputs, the use of
economic objectives can result in indefinite costs. Analysis
on the indefinite linear quadratic case has been carried out
in [6] where the authors showed that any stabilizing linear
quadratic regulator (LQR) can be reformulated as a positive
definite LQR problem.

Unlike conventional MPC where the designer can shape
the cost function to obtain a desired control performance
such as good regulation against disturbances, sufficiently
fast and smooth responses and control of critical signals,
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such flexibility is not available in eMPC since the objective
function is a fixed property of the system derived mainly
from the economic model of its operation which is usually to
minimise economic operation cost and maximize production.
This leads to economic performance optimization at the ex-
pense of control performance. Thus, a way of incorporating
control performance into the objective function with minimal
loss in economic performance is desired. An attempt at
introducing some form of control performance tuning was
introduced in [5] where a function that is positive definite
around the equilibrium was added to the economic objective
function. However, this implies that the objective function is
no longer purely economic.

In this paper, a modified economic cost function is pro-
posed. The approach is based on the use of a discount factor
in the economic cost function to achieve strict-dissipativity
and some level of control performance tuning while making
a minimal modification to the cost function. In particular,
we do not add a positive–definite term to it. The basic
assumption made is dissipativity but not strict-dissipativity
of the system with respect to the economic objective.

This paper is organized as follows: Section II contains a
review of economic MPC problem formulation. The modified
cost function with the proposed tuning is presented in Section
III. A discussion on checking the dissipativity of the system
with respect to the modified cost function and algorithms
for choosing the tuning weight are presented in Section IV.
An established result in the context of eMPC is that if a
system is strictly dissipative with respect to the stage cost,
then the closed–loop system obtained by solving the MPC
problem is asymptotically stable [4], [5]. This result will be
generalized for the new problem formulation in section V.
Section VI contains some numerical examples while Section
VII concludes the paper.
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II. ECONOMIC MPC PROBLEM FORMULATION

Consider the constrained discrete time nonlinear system

xk+1 = f(xk, uk) (1)

with states x ∈ X ⊆ Rn, inputs u ∈ U ⊂ Rm and f :
Rn × Rm → Rn, a state transition map. The cost function
is a sum of the stage costs, l(xk, uk), and is defined as

JN =

N−1X
k=0

l(xk, uk) (2)

The optimal equilibrium of the system (1) is defined as the
pair (xs, us) that satisfies

l(xs,us) = min
x,u
{l(x, u)|x− f(x, u) = 0, (x, u) ∈W} (3)

where W ⊆ X×U is a compact time-invariant set. (xs, us) is
assumed to exist and be unique throughout this paper. The
stage cost l(xk, uk) is a generic cost and not necessarily
positive definite as in the case of conventional MPC (whose
stage cost is positive definite by construction).

As is usually done in conventional MPC formulation, the
cost function in (2) is repeatedly minimized over the horizon
N in a moving horizon manner, yielding the receding horizon
optimization problem

min
u
JN (x, u) ,

N−1X
k=0

l(xk, uk)

subject to

8>><>>:
xk+1 = f(xk, uk), k = 0.....N − 1

xk ∈ X, uk ∈ U , k = 0.....N − 1

xN ∈ XF , x0 = x(0)

(4)

where x(k) is the measured state at time k, xk the predicted
state at time k, XF is a compact terminal region containing
the optimal equilibrium (3) in its interior. In this work, the
origin is taken to be the optimal equilibrium.

Assuming the optimization problem (4) is feasible, it
yields the optimal input sequence u∗ = {u∗0, u∗1, ..., u∗N−1}.
The first element of the sequence is applied to the plant
yielding the control law u(k) = u∗0 = κ(x(k)) and the closed
loop system

x(k + 1) = f(x(k), κ(x(k))). (5)

The standard approach to proving stability of the closed loop
system (5) under conventional tracking MPC is to use the
optimal cost, J∗N as a Lyapunov function for the closed
loop system [7], [8]. The basic assumptions usually made
regarding the system and the objective function are:

Assumption II.1. The system dynamics function f(., .) and

the stage cost, l(xk, uk) both satisfy f(0, 0) = 0 and

l(0, 0) = 0.

Assumption II.2. The set X is closed and contains the origin

in its interior. U is compact and also contains the origin in

its interior. Furthermore, the set of admissible states X also

contains the origin in its interior.

Assumption II.3. There exists a K∞ function γ2 such that

J∗N (xk) ≤ γ2(‖xk‖) ∀ xk ∈ X . (6)

A well known result in MPC literature regarding stability
of the origin of the closed loop system (5) is the following:

Theorem II.1 ( [8]). Consider optimization problem (4) with

the origin as a terminal constraint. Suppose Assumptions

II.1–II.3 are satisfied and the stage cost is positive–definite,

then the optimal cost J∗N is a Lyapunov function for the

closed loop system and the origin of the closed loop system

(5) is asymptotically stable with a region of attraction X .

Theorem II.1 requires the stage cost l(xk, uk) to be posi-
tive definite. However, as previously stated, the stage cost in
eMPC is not necessarily positive-definite. Consequently, the
stability arguments also fail. In order to prove the stability of
the closed loop system, the idea of dissipativity is introduced.

Definition 1. Following [9], the non-linear discrete-time
system (1) is said to be dissipative with respect to a supply
rate ω : X × U → R if there exists a storage function
φ : X→ R such that the dissipation inequality

φ(xk+1)− φ(xk) ≤ ω(xk, uk) (7)

is satisfied for all (xk, uk) ∈W. Furthermore, if there exists
a positive definite function ρ : X→ R such that

φ(xk+1)− φ(xk) ≤ ω(xk, uk)− ρ(xk) (8)

then (1) is said to be strictly dissipative with respect to the

supply rate ω.

The supply rate is defined as any real function that
is locally absolutely summable on the bounded set W
i.e

∑N
k=0|ω(xk, uk)| < B, for some B > 0 where k,N ∈

Z+ with Z+ defined as the set of all non-negative integers.
For the rest of this paper, we consider

ω(xk, uk) = l(xk, uk)− l(xs, us).

III. PROPOSED COST FUNCTION

In this section, we consider a modified cost function of
the form:

JN (x, u) =

N−1X
k=0

(γkl(xk, uk)) (9)

where γ is a positive scalar chosen such that 0 < γ < 1.

Assumption III.1. The system (1) is dissipative with respect



to the stage cost l(xk, uk) i.e there exists a function φ : X→
R such that

φ(xk+1)− φ(xk) ≤ l(xk, uk) (10)

The ‘available storage function’ (φa) [9], [10] of the
system with respect to the stage cost is defined as

φa(x) = sup
u,x0=x

−
NX

k=0

l(xk, uk)

subject to

8<:xk+1 = f(xk, uk) k = 0.....N

(xk, uk) ∈W, k = 0.....N

(11)

where −∞ < φa(x) <∞ is equivalent to the system being
dissipative [9] . Assumption III.1 guarantees φa(x) being
finite. However, no definite statement can be made regarding
the available storage function of the system with respect to
the modified cost. It is possible to lose the finiteness of the
available storage function when the cost function is modified
(due to its indefiniteness). Hence a dissipative system can be
rendered non-dissipative by our choice of γ. As such, there is
the need to check whether the system is still dissipative and
if yes, for what values of γ is it dissipative? Furthermore,
can we make a dissipative system strictly dissipative by our
choice of γ?

Remark 1. The use of γ in the modified cost function can

be given various interpretations. One of these is to view γ as

a knob that helps to tune the controller. Another perspective

is to treat γ as a form of discount factor which places

more emphasis on the system’s economic performance at the

current time and less emphasis on the future performance

down the prediction horizon.

IV. CHECKING FOR DISSIPATIVITY

To ease checking of the dissipativity condition, we focus
on linear quadratic cases from this section onwards. Consider
the linear discrete-time system

xk+1 = Axk +Buk (12)

with (A,B) controllable and a quadratic stage cost

l(xk, uk) = xT
kQxk + uT

kRuk + xT
k Suk + uT

k S
Txk (13)

with no restriction on the definiteness of the matrix
[

Q S

ST R

]
.

Dissipativity of (12) with respect to (13) is equivalent to the
existence of a storage function φ(xk) = xT

k Pxk, P = PT

such that

xT
k+1Pxk+1 − xT

k Pxk ≤ xT
kQxk + uT

kRuk

+ xT
k Suk + uT

k S
Txk

(14)

(A formal proof of this equivalence when the stage cost is
of the form (13) can be found in [11]). Substituting (12) for
xk+1 in (14), the resulting expression can be written as"

xk

uk

#T "
ATPA− P −Q ATPB − S
(ATPB − S)T BTPB −R

# "
xk

uk

#
≤ 0. (15)

Thus, we can set up an LMI to find a symmetric P such that"
ATPA− P −Q ATPB − S
(ATPB − S)T BTPB −R

#
≤ 0. (16)

Feasibility of the LMI (16) implies dissipativity while non-
feasibility implies otherwise as feasibility of (16) is a neces-
sary and sufficient condition for the dissipativity of a system
of the form (12) with respect to a supply rate of the form
(13) [11].

A. Checking for Dissipativity of the System with respect to

the Modified Cost

Lemma IV.1. Consider the linear discrete-time system (12)
with the modified stage cost γkl(xk, uk) where l(xk, uk) is
of the form (13) and 0 < γ < 1. Dissipativity of (12) with
respect to the modified stage cost implies the existence of a
symmetric matrix P such that the LMI"

γATPA− P −Q γATPB − S
(γATPB − S)T γBTPB −R

#
≤ 0 (17)

is feasible.

Proof. Dissipativity of the system (12) with respect to the
modified stage cost is equivalent to the existence of a storage
function φ(xk) = xT

k Pxk such that

φ(xk+1)− φ(xk) ≤ γkl(xk, uk)

≤ γk(xT
kQxk) + γk(uT

kRuk)

+ γk(xT
k Suk) + γk(uT

k S
Txk)

= γ
k
2 xT

kQγ
k
2 xk + γ

k
2 uT

kRγ
k
2 uk

+ γ
k
2 xT

k Sγ
k
2 uk + γ

k
2 uT

k S
T γ

k
2 xk

(18)

Now, consider the transformation

x̃k = γ
k
2 xk, ũk = γ

k
2 uk

such that

x̃k+1 = γ
k+1
2 xk+1

= γ
k+1
2 (Axk +Buk)

= γ
k+1
2 Axk + γ

k+1
2 Buk

= γ
1
2 γ

k
2Axk + γ

1
2 γ

k
2Buk

= γ
1
2Ax̃k + γ

1
2Bũk

(19)

with a storage function x̃T
k Px̃k in the transformed state space

representation (19). Using (15), dissipativity inequality (18)



can be expressed in the form"
x̃k

ũk

#T "
γ

1
2ATPγ

1
2A− P −Q γ

1
2ATPγ

1
2B − S

(γ
1
2ATPγ

1
2B − S)T γ

1
2BTPγ

1
2B −R

# "
x̃k

ũk

#
≤ 0

(20)

The dissipativity (or otherwise) can then be confirmed by
checking for the existence of a symmetric matrix P that
guarantees feasibility of the LMI (17).

B. Choosing γ

As earlier stated in Section III, not all values of γ can
ensure dissipativity of the system with respect to the modified
cost. In this section, we describe an algorithm for finding
values of γ that ensure dissipativity (and strict-dissipativity)
of the system with respect to the modified cost. We consider
linear discrete-time systems of the form (12) with stage cost
γkl(xk, uk) where l(xk, uk) is quadratic and of the form
(13). The search will be for γ and P values that satisfy (17).
Due to the product in γ and P , (17) is a Bilinear Matrix
Inequality (BMI) and cannot be solved directly using linear
semi-definite programming approaches. Thus, we construct
a bisection algorithm to solve the problem.

Algorithm IV.2.

• Since γ is constrained to be between 0 and 1, set the

lower bound on γ as 0 and the upper bound as 1.
• Start a bisection to find the minimum value of γ such

that there exists a symmetric P such that"
γATPA− P −Q γATPB − S
(γATPB − S)T γBTPB −R

#
≤ 0.

This is γm.
• Set the lower bound on γ as γm. Define M = εInx+nu

for a fixed and small ε > 0 where nx is the number of
states and nu is the number of inputs. Start a bisection
algorithm to find the minimum value of γ such that there
exists a symmetric P such that"

γATPA− P −Q γATPB − S
(γATPB − S)T γBTPB −R

#
+M ≤ 0.

This is γl.
• Set the lower bound on γ as γl. With M as defined

above, start a bisection algorithm to find the maximum
value of γ such that there exists a symmetric P such
that "

γATPA− P −Q γATPB − S
(γATPB − S)T γBTPB −R

#
+M ≤ 0.

This is γu.

Remark 2. The use of ε is to guarantee strictness of inequal-

ity (17) while searching for γl and γu and appropriate values

vary depending on the system-cost-function interaction. If

chosen too big, there may be no γ and P pair for which the

inequality holds.

The modified cost function as earlier defined in (9) is

JN (x, u) =
PN−1

k=0 (γkl(xk, uk))

where 0 < γ < 1. Consider the sequence

{γn} = γk, k = 0, 1, 2, 3, ...., N − 1

= 1, γ1, γ2, γ3, ....., γN−1

Define γ = γu, γ
m−1 = γl and solve to get m:

m =
ln γl

ln γu
+ 1 (21)

Thus for any value of γ that satisfies γl ≤ γk ≤ γu where
k > 0, we are assured of strict dissipativity of the stage cost
γkl(xk, uk) over a horizon N ≤ m where N is a positive
integer.

Remark 3. Having an upper bound on the horizon length

may seem counter-intuitive since in conventional MPC, sta-

bility is guaranteed with longer horizons. However, when

dealing with indefinite costs, the conventional MPC thinking

does not always apply.

V. STABILITY ANALYSIS

We now consider the stability of the system defined by
the optimization problem:

min
u
JN (x, u) ,

N−1X
k=0

γkl(xk, uk)

subject to

8>><>>:
xk+1 = f(xk, uk) ∀k = 0.....N − 1

xk ∈ X, uk ∈ U ∀ k = 0.....N − 1

xN = xs, x0 = x(0)

(22)

where 0 < γ < 1.
Assuming feasibility of the optimization problem (22),

the first element of the optimal input sequence u∗ =
{u∗0, u∗1, ....., u∗N−1} is applied to the plant resulting in the
feedback control law u(k) = u∗0 = κ(x(k)) and the closed
loop system

x(k + 1) = f(x(k), κ(x(k))). (23)

Next, we make an assumption regarding the dissipativity
of the system with respect to the modified stage cost,
γkl(xk, uk).

Assumption V.1. Suppose that the stage cost in (22) is used
and that the system is strictly dissipative with respect to that
cost i.e there exists φ and ρ as in Definition 1 such that

φ(xk+1)− φ(xk) ≤ γkl(xk, uk)− ρ(xk) ∀ (xk, uk) ∈W
(24)



We assume that γl and γu exist as defined in Section IV-B
and that the prediction horizon N is such that

N ≤ ln γl

ln γu
+ 1

Theorem V.1. The solution sets of the optimization problem
(22) and the optimization problem defined by

min
u
J̃N (x, u) ,

N−1X
k=0

L̃(xk, uk)

subject to

8>><>>:
xk+1 = f(xk, uk) ∀k = 0.....N − 1

xk ∈ X, uk ∈ U ∀ k = 0.....N − 1

xN = xs, x0 = x(0)

(25)

are identical where

L̃(xk, uk) = γkl(xk, uk) + φ(xk)− φ(xk+1) (26)

is defined as the ‘rotated’ stage cost and φ(.) is the storage

function from (24) with 0 < γ < 1.

Proof. The proof follows the same arguments as in [4]. From
(25),

J̃N (x, u) =

N−1X
k=0

L̃(xk, uk)

=

N−1X
k=0

(γkl(xk, uk) + φ(xk)− φ(xk+1))

=

N−1X
k=0

(γkl(xk, uk)) + φ(x0)− φ(xN )

= JN (x, u) + φ(x0)− φ(xs)| {z }
independent of u

(27)

Since the difference between both objective functions is
independent of the optimization variable (u) and both op-
timization problems are subject to same constraints, it can
be concluded that optimization problems (22) and (25) have
equivalent solution sets.

Theorem V.2. Consider the closed loop system defined by

(23). Let Assumptions II.1– II.3 and V.1 hold. Then the origin

of the closed loop system is asymptotically stable.

Proof. The proof follows similar arguments as in [5]. As a
consequence of Theorem V.1, stability of the origin of closed
loop system (23) can be proven by using the optimal cost
J̃N (x,u∗) as a candidate Lyapunov function for the closed
loop system. Combining (26) with Assumption V.1, we have
that

L̃(xk, uk) = γkl(xk, uk) + φ(xk)− φ(xk+1) ≥ ρ(xk) (28)

Moreover for all x ∈ X , there exists a class K function γ1

such that ρ(xk) ≥ γ1(‖xk‖). As such, we have that

L̃(xk, uk) ≥ γ1(‖xk‖) (29)

which implies that the rotated stage cost is bounded below
by a K∞ function with Assumption V.1 ensuring (29) holds
over the horizon N . Hence, by Theorem II.1, the optimal
cost J̃∗N is a Lyapunov function for the closed loop system
(23) and the origin is asymptotically stable.

VI. EXAMPLES

This section illustrates the results obtained using the cost
function proposed in section III. The optimization problems
are solved using an interior point algorithm-based solver.

A. Example 1

Consider the linear discrete-time system (12) where

A =

"
−0.4 0.8

−0.4 0.1

#
B =

"
0.1

−1.6

#
and an indefinite quadratic stage cost (13) with

Q =

"
−1 −0.08

−0.08 1.7

#
, R = 0.5, S =

"
0.4

0.5

#
The system is only dissipative with respect to the stage
cost and not strictly dissipative. Based on existing stability
proofs [5], the asymptotic stability of the equilibrium can-
not be guaranteed. Now consider the proposed stage cost
γk(l(xk, uk)). Running Algorithm IV.2 with ε = 0.01 gives
γm = 0.001, γl = 0.001, γu = 0.9913 and m ' 788. This
implies that strict dissipativity can be guaranteed using the
modified stage cost up to a prediction horizon, N ≤ 788 for
γ = 0.9913. Hence, the origin of the closed loop system is
guaranteed to be asymptotically stable.

Shown in Figure 1 are the closed loop system trajctories
for different values of γ when the system is simulated from
an initial condition x0 = [2, 1] over a prediction horizon
N = 40. γ = 1 represents the nominal case i.e when no
tuning is incorporated. Also shown in Table I is the average
cost of each scheme computed using the actual cost over
the simulation period. It shows the trade-off between γ, cost
of operation and the number of time steps (Tco) it takes to
converge to within 1% of the origin.

TABLE I
PERFORMANCE COMPARISON FOR DIFFERENT γ

ε γ m̃ N Tco Avg. Cost
- 1 - 40 > 50 -0.0853

0.01 0.9913 788 40 ' 40 -0.0853
0.05 0.9479 129 40 ' 20 -0.0847
0.1 0.8519 44 40 ' 13 -0.0840
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Fig. 1. Comparison of closed loop trajectories for different values of γ
with x0 = [2, 1]

From Figure 1 and Table I, it is seen that not only can a
dissipative system be made strictly dissipative by using the
proposed cost function, the rate of convergence can also be
tuned with a trade-off between the rate of convergence and
economic performance.

B. Example 2

In this second example, we show the effect of a wrongly
chosen γ on the closed loop system. The system considered
is

xk+1 = 1.6xk − 0.6uk (30)

with the stage cost

l(xk, uk) = −x2
k +

2

3
u2

k +
5

3
xkuk (31)

The system (30) is strictly dissipative with respect to the
stage cost (31). Using the proposed stage cost with ε = 0.01
and running Algorithm IV.2 yields γu = 0.999, γl = 0.6106,
γm = 0.6069 and m ' 493. This shows that if γ is chosen
such that γk < 0.6069 for some k > 0, the strict dissipativity
property of the system may be lost.

Shown in Figure 2 are the closed loop state and input
trajectories for different values of γ when initialized from
x0 = 1 over a prediction horizon of 10 with state and input
magnitude constraints |xk| ≤ 2, |uk| ≤ 2 .

As shown, as the value of γ reduces, the time of conver-
gence to the origin increases and when γ = 0.63, the system
is not asymptotically stable.

VII. CONCLUSION

A tuning scheme that incorporates the use of a forgetting
factor was proposed in this paper in order to guarantee the
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Fig. 2. Comparison of closed loop trajectories for different values of γ
with x0 = 1

strict-dissipativity condition needed to prove asymptotic sta-
bility and also incorporate some level of control performance.
We also showed how the tuning weight can be chosen and
its effect on the performance of the closed loop system. To
ease checking of the dissipativity condition, we focused on
linear quadratic cases. Checking dissipativity for nonlinear
systems and non-quadratic costs is much harder and will be
addressed in future work.
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