
A Tutorial on Model Predictive Control for Spacecraft Rendezvous

Edward N. Hartley1

Abstract— This tutorial paper provides a review of recent
advances in the field of spacecraft rendezvous using model
predictive control (MPC), an advanced optimal control strategy
based on on-line constrained optimisation of control inputs
based on predictions of future trajectories. Firstly, the ren-
dezvous objectives, and the generic constrained MPC problem
formulation are summarised. This is followed by a discussion of
how to select the three key ingredients used in an MPC design:
the prediction model, the constraints and the cost function.
Since MPC implementation relies on finding the solution to
constrained optimisation problems in real-time, computational
aspects are also briefly examined. The paper concludes with
conjecture on ways the use of MPC in this application could
be further advanced.

I. INTRODUCTION

Given two spacecraft orbiting a central body, the objective
of rendezvous is for the two vehicles to reach a prescribed
relative configuration in each other’s proximity. Often, as in
rendezvous with a space-station or a Mars Sample Return
(MSR) capture scenario [1], one vehicle (which we will refer
to as the “chaser”) is to be actively controlled, whilst the other
(which we will refer to as the “target”) is passive or actively
maintaining a fixed orbit. The control objective is to command
forces (realised e.g., via gas thrusters), to transfer the chaser
into the same orbit as the target, and then approach so that a
specific point on the chaser intercepts a specific point relative
to the target at a safe terminal velocity (to avoid damage).
This point could be a docking port, a point reachable by a
robotic arm on the target, or in the case of the MSR capture
scenario, a point slightly away from the target from which the
final capture is performed in a free-drift manœuvre. Strategies
typically used involve visiting a sequence of pre-determined
waypoints using a bank of prescribed manœuvres, such as
two-boost transfers (with a limited number of mid-course
corrections), closed-loop controlled straight line trajectories
and position keeping [2]. The ability for the chaser spacecraft
to perform rendezvous autonomously without supervision
from a ground station becomes critical when round-trip
communication delays become long since these impede
the ability to react promptly to perturbations or critical
situations [3]. More detailed overviews of historical and
recent spacecraft rendezvous missions and the technologies
and methods involved can be found in [2], [4], [5], whilst [6],
[7] describe some of the technologies used in the European
Space Agency (ESA)’s Automated Transfer Vehicle (ATV),
which is representative of the state-of-the-art of industrial
design.
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Recently there have been studies in the use of model
predictive control (MPC) as a means of closed-loop feedback
control to improve performance and autonomy of spacecraft
rendezvous missions. MPC is a class of control techniques
based on repeated solution of a (constrained) finite-horizon
optimal control problem in a receding horizon manner (e.g.
[8]–[13]). The ability to explicitly handle input and state
constraints is often cited as the key feature, but MPC can
also be used as part of an indirect adaptive control system,
since the prediction model, cost function and constraints can
all be updated online to reflect changes in plant parameters,
constraints or objectives. The control policy takes the form
of the solution to an optimisation problem that can be
solved online using generic methods, and hence there is
no requirement to pose a problem that admits an analytical
solution. Through creative choices of constraint sets and cost
functions, system designers can achieve quite complex system
behaviours and meet high-level goals in a systematic way.

Such flexibility comes at the cost of increased computa-
tional load in comparison to more basic control methods.
Nevertheless, with ever advancing computational hardware,
and active research into more efficient algorithms, online
optimisation has become less of a barrier to application, and
there has recently been significant activity in exploiting both
the ability to handle constraints and time-varying systems,
whilst optimising a given performance metric in the context
of spacecraft rendezvous. Examples of how MPC has been
employed include: accommodating limited input authority
(thrust constraints) [14]–[26]; using non-quadratic cost func-
tions to achieve particular types of behaviour, for example
sparse control actions [14], [15], [17], [20], [23], [24], [27];
enforcing line-of-sight constraints [15], [16], [18], [19], [21],
[22], [26]; enforcing soft-docking constraints (the approach
velocity reduces in line with with distance to the target)
[18], [21]; collision avoidance (with the target and obstacles)
[14], [16]–[18], [21], [26]; fault-tolerance by constraining
open-loop unforced trajectories to achieve passive safety [16],
[28]; accommodating time-varying prediction dynamics (such
as those describing relative motion in elliptical orbits) [17],
[27], [29], [30]; accommodating time-varying objectives and
constraints (such as docking with a tumbling or rotating target)
[18], [21]; fuel-efficient station or formation keeping [31],
[32] and handling interaction between attitude and translation
control [17], [22].

This tutorial provides a summary of recent advances in
applying MPC to the translational (position) dynamics in the
final phases of spacecraft rendezvous. It should be noted that
attitude control is also critical, so that the final docking or
capture equipment is correctly positioned and because sensors
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can be highly directional. However, unlike translation control,
this can also be performed using reaction wheels, which
expend only solar-generated electrical power, and therefore
does not limit the lifetime of the mission. In Section II we
describe the generic MPC formulation; Section III highlights
a selection of applicable prediction models and compares
their characteristics; Section IV examines constraints; Sec-
tion V considers the choice of cost function structure and
tuning; Section VI discusses computational issues; and finally,
Section VII presents concluding remarks.

II. BASICS OF MODEL PREDICTIVE CONTROL

Consider a time-varying nonlinear discrete-time system
with sampling period Ts, state x ∈ Rnx , and input u ∈ Rnu ,
described by the difference equation

x(k + 1) = f(x(k), u(k), k). (1)

Assume that an estimate x̂(k) of the state is available. Let N
be a prediction horizon over which an optimisation should be
performed, and let `(x(k), u(k), k) : Rnx ×Rnu 7→ R be the
cost of being at state x(k) and applying input u(k) at time
step k. If the prediction horizon is allowed to vary online,
then let Nmax be an upper bound on the prediction horizon.
Let Xu(k) ⊆ Rnx ×Rnu and T(k) ⊆ Rnx be (time-varying)
constraint sets. At each time step k, the archetypal predictive
controller solves the optimisation:

minxi,ui,N J = JN (xN , k +N) +
∑N−1
i=0 `(xi, ui, k + i)

(2a)

s.t. x0 = x̂(k) (2b)
xi+1 = f(xi, ui, k + i) ∀i ∈ {0, . . . , N − 1} (2c)

(xi, ui) ∈ Xu(k + i) ∀i ∈ {0, . . . , N − 1} (2d)
xN ∈ T(k +N) (2e)

1 ≤ N ≤ Nmax. (2f)

The control law u(k) = κ(x̂(k)) , u0 is applied to the plant,
and the procedure is repeated at the next sampling instant. The
“standard” case of fixed prediction horizon can be achieved
by solving for a fixed N = Nmax. The sampling period
Ts must be chosen as a compromise between the control
bandwidth, the length of the predictions horizons required,
and the number of decision variables. If the computation
time is more than ≈ 10% of the sampling period then it is
useful to introduce a unit delay and an open-loop predictor,
i.e., u(k) = κ(f(x̂(k − 1), u(k − 1), k − 1)) so that u(k) is
computed using measurements from time k − 1.

The state constraints, as written in (2d) are hard constraints.
If it is not possible to satisfy them, the optimisation problem
is infeasible and the control action is undefined in the
absence of additional supervisory logic. Constraints can be
“softened” to ensure feasibility of the optimisation problem by
introducing additional “slack” variables measuring violation
of the constraints in the optimisation, and heavily penalising
this in the cost function. Violation of the original constraints
becomes feasible, but the optimiser has an incentive to avoid
this. Exact penalty functions [33] can be imposed on these
slack variables to avoid unnecessary constraint violation.

III. PREDICTION MODEL

To plan over future trajectories, a representative model is
needed to make predictions. Both the chaser and the target
are orbiting the central body, and their behaviour can be
modelled using Newton’s laws in an inertial reference frame.
In principle this model could be applied directly to form a
nonlinear MPC problem. Alternatively, Gauss’s equations can
be used to model the dynamics in terms of Keplerian orbital
elements. Whilst conceptually simple, MPC with a nonlinear
model is computationally demanding, and it is desirable if
possible to find linear time-invariant, or linear time-varying
approximations of the spacecraft motion.

Since the quantity of interest to be controlled is usually
the relative position of the target and chaser, it is more
commonplace to consider a relative reference frame centred
on the target. When the target is in a circular orbit, the
relative dynamics of the chaser with respect to the target can
be expressed in a cartesian, local vertical, local horizontal
(LVLH) reference frame centred on the target with one axis
(ztgt) pointing towards the focus of the orbit, one aligned
with the angular velocity vector (ytgt) and the third (xtgt)
completing a right-handed set. The relative behaviour is
approximated locally by the linearised Hill equations, which
can be discretised to obtain the Clohessy-Wiltshire (HCW)
equations [2], [34]. Zero-order hold (ZOH) can be appropriate
for short sampling periods, but an impulsive discretisation
may be more appropriate for longer manœuvres. Denote the
discretised dynamics, expressed as a linear time-invariant
state space model

f(x(k), u(k), k) = Ax(k) +Bu(k) (3)

whose state comprises of the three relative position vectors
and their first derivatives with respect to time. The accuracy of
the linearisation for large in-track separations can be improved
by transforming measurements expressed in the local LVLH
frame into a cylindrical coordinate system [35]. Figure 1(a)
shows the relation between the measurements in the cartesian
and cylindrical (CRF) reference frame. To emphasise the
effect, Figure 1(b) shows and a comparison of the prediction
in response to an impulse in the in-track direction from an
equilibrium point ≈ 10 km from the target in cylindrical vs
cartesian coordinates in an MSR-circular orbit [17] using
the HCW equations compared with integrating the nonlinear
Gauss’ equations.

Alternatively to expressing forces, accelerations, or im-
pulsive ∆V directly in the LVLH frame, it is possible to
employ a (time-varying as a function of attitude) mapping
matrix M(k) to map the thrust directions in a reference frame
mounted on the chaser body to the LVLH frame, allowing
individual thrust commands to be optimised:

f(x(k), u(k), k) = Ax(k) +BM(k)u(k). (4)

When the orbital eccentricity e > 0, the HCW equations
become increasingly inaccurate over longer periods. Either
the controller must be designed to be accordingly robust to
the inevitable plant-model mismatch [19] or more accurate
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Fig. 1. Cylindrical coordinate system

prediction models should be employed. One such model is
the Yamanaka-Ankersen (YA) state transition matrix (STM)
[36], which is a solution of the continuous-time Tschauner-
Hempel equations. This propagates the current state (defined
in the same way as for the HCW equations) in the cartesian
or cylindrical reference frame over the chosen period of time,
and is a function of the true anomaly of the target at the
start and end of the prediction period. If the target is in an
ideal Keplerian orbit, this is a function of time, obtained by
propagating the mean anomaly using the mean anomaly rate,
then recovering the true anomaly by solving Kepler’s equation
[34] iteratively or by application of a trigonometric expansion
known as L’equation du centre [37]. This is independent of the
chaser control inputs, so is only solved at the point of posing
the optimisation problem, not at each iteration of solution. The
YA-STM does not accommodate a ZOH input discretisation,
but an impulsive input is modelled by considering the input
as an additive perturbation to the velocity components. The
prediction dynamics are therefore of the linear time varying
(LTV) form:

f(x(k), u(k), k) = A(k)x(k) +B(k)u(k). (5)

Note that with this model, the prediction matrices A(k), B(k)
will vary throughout the prediction horizon in (2), and not
simply correspond to re-linearisation at each sampling instant.

The HCW and YA equations assume that the distance
between the chaser and the target is small compared to the
distance between the target and the centre of the gravity
field, and break down for large out-of-plane, or radial sepa-
rations. Gim and Alfriend (GA) [38] propose a STM based
on propagation in terms of non-singular Keplerian orbital
elements. A linearised transformation between cartesian
coordinates and the orbital elements is applied to give an
STM that still applies in cartesian reference frame. The
STM of [38] also includes the J2 effect caused by a non-
uniform gravitational field. An alternative to the GA STM
is to consider the relative non-singular Keplerian orbital
elements between the chaser and target as the state vector, and
transform the cartesian state measurement/estimate into this
coordinate system using a standard nonlinear transformation
[34]. The modified state vector can be propagated using
Gauss’s Variational Equations (GVEs) [39]. The (inverse)
linearised GA transformation matrix is used to transform
constraints and objectives from the cartesian frame. In this
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Fig. 2. Comparison of predictive accuracy of GVE vs HCW at long range

approach, inputs can be assumed to be impulsive velocity
changes expressed in a second cartesian reference frame
centred on the chaser. Figure 2 compares (uncontrolled) GVE
and HCW predictive capability over 1 orbit in an MSR-
circular scenario, from a non-equilibrium initial separation of
approximately 300 km in-track and 75 km radially, translated
back to the cartesian LVLH frame. The (more complex) GVE
model gives better predictive capability than the HCW model
using the cylindrical transformation, without which the HCW
is poor. The trade between model complexity, required control
update period, and prediction accuracy over the expected
manœuvre duration means different models are suitable for
different phases of rendezvous, as demonstrated in [17].

IV. APPLICABLE CONSTRAINTS

The most obvious constraints are input constraints defined
in terms of the maximum thrust available. If the “input” to
the model f(x, u) is three forces, accelerations or impulsive
∆V s, i.e. u = [ux, uy, uz]

T , then the following constraints
may be appropriate

(u2
x + u2

y + u2
z)

2 ≤ u2
max; or (6a)

−upmax ≤ up ≤ upmax, p ∈ {x, y, z}. (6b)

The first constrains the net thrust, whilst the second bounds
each direction independently. If u is partitioned into 3 positive
and 3 negative thrusts (which makes 1−norm costs simple
to implement) then these can be considered as:

0 ≤ up+ ≤ upmax, 0 ≤ up− ≤ upmax, p ∈ {x, y, z}. (7)

If an array of thrusters is mounted on the body of the
spacecraft, a constraint on the individual thrusters would
minimise conservatism, but the mapping between these and
the force delivered in the LVLH frame varies with attitude.

A second commonly imposed constraint is a visibility cone
that limits the direction of approach of the target [15], [16],
[18], [19], [21], [22]. A projection of this onto the x−z plane
is shown in Figure 3 for an in-track approach with a cone
half-angle of γ. The 3-D constraint for an in-track approach
“from behind” as shown in the figure can be expressed as:

ztgt + xtgt tan γ ≤ 0 −ztgt + xtgt tan γ ≤ 0, (8a)
ytgt + xtgt tan γ ≤ 0 −ytgt + xtgt tan γ ≤ 0. (8b)

For different approach directions, the inequalities can be
generalised by shifting and rotating the cone [18], [19], [21].

Collision avoidance constraints have also been proposed.
The obstacle to avoid could be a part of the target itself, or
an external object such as debris. The convex hull of the
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space occupied by the object is a compact set defined in the
relative reference frame by the linear inequalities Hox ≤
h0. For the chaser to remain outside of this set is a non-
convex constraint, and imposing Hox(k) ≥ ho would be
infeasible. If dim(ho) = nh, a workaround is to introduce an
nh dimensional vector b(k) of binary variables, a sufficiently
large scalar M , and impose the constraint:

Hox(k) ≥ ho + (b(k)− 1)M
∑nh

q=1 bq(k) ≥ 1. (9)

This implies that bq(k) = 0 allows row q of the inequality
to be relaxed, but at least one row of Hox(k) ≥ ho must be
active. The binary constraint implies a mixed-integer program,
and M must be large enough to relax the constraint but
small enough to avoid ill conditioning [15], [40]. A convex
alternative is to use a time-varying halfspace constraint chosen
to rotate at a pre-determined rate based on the anticipated
trajectory and current state. Slightly different implementations
of this approach are applied in [21] for obstacle avoidance,
and [17] to avoid collision with the target. In [41] collision
avoidance is also a feature but using a different approach
based on analytical optimal solutions to trajectory segments.
An innovative application of constraints in [16] involves not
only constraining predicted trajectories to not collide with
the target, but also extrapolating an open-loop prediction over
a pre-chosen time period from every sampling instant and
constrain these passive trajectories to also avoid collision.
Thus, the constrained MPC generates trajectories that are
passively safe with respect to total thrust loss. In [28], passive
safety is considered in a probabilistic setting, whilst [16]
considers also the possibility of active abort using subsets of
available thrust directions. In a similar vein, [42] proposes an
approach to guarantee feasibility of a reactive safety mode in
case of changes in state constraints (e.g., due to detection of
new obstacles). The purpose of the reactive safety mode is to
hold the system state in a constraint-admissible invariant set
to buy time for higher level decision processes. Constraint
satisfaction between sampling instants is also guaranteed in
[42].

Positively invariant terminal constraints T (2e) are a tool
often used to achieve theoretical guarantees of closed-loop
stability and recursive feasibility of MPC control laws [8].
For tracking control [43], [44] parameterises these in terms
of the setpoint, and [45] in terms of piecewise-constant
constraint bounds. When a variable prediction horizon [15] is
employed, a terminal constraint is used to achieve finite-time
“completion” of a manœuvre, and does not necessarily have
to be invariant. It defines the “end point” of the manœuvre,
and the cost function (see Section V) trades completion time

against fuel usage. Constraints can also limit the approach
velocity, either through a simple bound, or a “soft docking”
constraint, which limits the magnitude approach velocity as
a function of distance from the desired manœuvre end point
[18], [21].

Modelling error, disturbances, and sensor noise mean that
the predictions and the true trajectories will not exactly
coincide. When there are state constraints, this can lead
to infeasibility. Two complementary approaches tackle this.
The first is to simply “soften” the constraints and accept a
degree of constraint violation. The second is to systematically
tighten constraints based on the bounds of the disturbance.
Conservatism can be reduced by considering feedback in the
predictions when determining the constraint tightening policy
[15], [46]. Since the disturbance bounds may not be known
a priori, in [19], a recursive estimation algorithm with a
forgetting factor to accommodate time-varying behaviour is
employed to estimate the corresponding mean and covariance
matrices for a Gaussian distribution, which is then used to
tighten nominal constraints online to achieve a specified
probability of violation of the original constraints.

Another method to ensure robust constraint satisfaction
is a tube-MPC [47] approach, which can be interpreted as
separating the control policy into a nominal “guidance” term
with tightened constraints and an explicit feedback “tracking”
component which maintains the state in an admissible
invariant tube around the predicted nominal trajectory [30],
[48]. In tube approaches the feedback term is often a static
policy that is designed a priori, but the guidance term is
periodically re-computed in a receding horizon manner.

V. COST FUNCTION STRUCTURE AND TUNING

Let xs and us denote a state and input setpoint value.
Letting notation ‖y‖2Z , yTZy, the classical quadratic cost
function used in MPC uses the stage and terminal costs

`(x, u, k) = ‖x− xs‖2Q + ‖u− us‖2R, FN (x) = ‖x− xs‖2P
(10)

where Q ≥ 0, R > 0 and P ≥ 0 are appropriately sized
matrices. Assuming horizon N is fixed, if P is chosen to
solve the appropriate Riccati equation, and there are no active
constraints, then this coincides with the classical infinite-
horizon linear quadratic regulator (LQR), giving a smooth
closed-loop transient response and has desirable intrinsic
robustness properties. In [19] Q is chosen as time-varying
Q(k) (with P = 0), to encode a prescribed arrival time.

The core MPC concept centres on explicitly optimising
finitely-parameterised trajectories online, and there is no
specific need, even in the absence of constraints, for a simple
analytical solution to exist. This gives more flexibility in the
choice of cost function than is practical for off-line control
policy synthesis. As a pertinent example, to more directly
encode the fuel consumption, which is directly proportional
to the force delivered, a 1-norm cost function can be used:

`(x, u, k) = ‖Q(x− xs)‖1 + ‖R(u− us)‖1 (11a)
FN (x) = ‖P (x− xs)‖1. (11b)



This particular class of cost function leads to sparser control
actions, which can be preferable when thrust delivery is
not continuously variable. It can be tuned to give dead-beat
(minimum time) or idle (do nothing) control [49], but can
also be non-robust to uncertainties and sensor noise since
small perturbations in state can lead to a large perturbation in
control action. In [27] a “zone-based” 1−norm cost was used
to improve robustness to uncertainties. The cost function
is designed to be zero if the state is inside a hyper-cube
−b ≤ x ≤ b containing the setpoint, and a 1-norm penalty
placed on the deviation s from this set:

`(x, u) = ‖Qs‖1 + ‖R(u− us)‖1 (12)
s.t. x− xs ≤ b+ s, xs − x ≤ b+ s, s ≥ 0.

An alternative approach to sparsify the control action is the
`asso cost function:

`(x, u, k) = ‖x− xs‖2Q + ‖u− us‖2R + ‖Rλu‖1 (13a)

FN (x) = ‖x− xs‖2P . (13b)

This blends the quadratic and 1-norm cost, weighted by
matrix Rλ ≥ 0 in an attempt to inherit the robustness of
the former with the sparse action of the latter. In [23] the
costs (10), (11), (12), and (13) were analysed for the terminal
phase of a circular MSR capture scenario, and (13) was
shown to robustify a terminal-phase rendezvous trajectory
tracking control law to the effects of the “minimum impulse
bit” (MIB), a discontinuity in the thrust command envelope
around zero.

In [22], [26] a different regularisation term is used, this time
to smooth the response. Letting ∆u(k) = u(k)− u(k − 1),

`(x, u, k) = ‖x− xs‖2Q + ‖u− us‖2R + ‖∆u‖2R∆
. (14)

The penalty on ∆u (weighted by matrix R∆ ≥ 0) limits
the attitude manœuvres when a single thruster must be re-
directed. In [22], [26], the setpoint (xs, us) is virtualised as
a decision variable in the optimisation and constrained to
be an equilibrium pair. An additional cost term (also termed
“offset cost function” in [44]) penalises deviation of this pair
from the “true” setpoint, in what is described as a “reference
governor” approach.

When a variable horizon is used, a terminal constraint is
a compulsory part of the design, and the state error penalty
is removed. Instead the stage cost includes a constant term
which when summed represents a penalty on the number of
time steps to reach the terminal constraint. The cost of being
inside the terminal set is zero, e.g.,

`(x, u, k) = 1 + ‖Ru‖1, FN (x) = 0 (linear) (15a)

`(x, u, k) = 1 + ‖u‖2R, FN (x) = 0. (quadratic) (15b)

This type of cost function trades completion time against fuel
usage, and can be used to enforce finite-time completion.

Different cost functions are appropriate for different
mission phases and different mechanical configurations. For
example, [17] uses (15a) at longer-range where fuel optimality
is the key priority, and (10) at terminal-range where robust
tracking accuracy is most important. In [17], [23] multiple
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Fig. 4. Rendezvous trajectories obtained using MPC with different cost
functions

thrusters that can be used without re-orientation are considered
and sparse control actions are preferred, whilst [22], [26]
considers a scenario where a single thruster must be re-
oriented and therefore the thrust direction change must be
limited to avoid over-exertion of the attitude control system.
Tuning the weights in any of these cost functions is an
important part of the design. This can be done “by hand”
based on intuition, or by gridding a limited number of
parameters and analysing simulations (the approach in [17]),
or using global optimisation routines to tune the cost weights
to minimise a high-level heuristic functions evaluated over
closed-loop simulations (as in [23]). If a good linear control
law is already known and the requirement is simply to
“upgrade” it with constraint handling, controller matching
or reverse-engineering can be applied [50]–[52].

Figure 4 shows a simulation of MPC transferring a chaser
from 15 km to 1 km from a target in an MSR circular orbit
scenario, assuming a 20◦ visibility cone constraint (softened
using an exact penalty), umax = 5 m/s with Ts = 200 s
and a prediction horizon N = 30 with a quadratic cost
(QP), a 1-norm cost (LP), and Nmax = 30 for their variable
horizon counterparts (VHLP) and (VHQP). The VH examples
use T , xs, and are tuned so that convergence happens in
approximately half an orbit. Prediction and simulation use
the HCW equations with impulsive ∆V discretisation. As
expected the quadratic costs given a smoother response away
from the constraints, whilst the 1−norm costs give a more
“bang-off-bang” input trajectory, with corrections to enforce
the cone constraint. The fixed-horizon quadratic cost could
be tuned to use less fuel (cumulative ∆V ), but whilst initial
response is fast, the final convergence is asymptotic and
reaching the setpoint becomes very slow (see zoom box).



VI. COMPUTATIONAL ISSUES

For fixed horizon MPC, if the inequality constraints are
convex and linear, the prediction model is linear and a
1−norm cost function is used, then the optimisation problem
is a linear program (LP). A (convex) quadratic cost leads
to a quadratic program (QP). Additional convex quadratic
constraints (e.g. (6a)), leads to a quadratically constrained
quadratic program (QCQP), which can be embedded in a
second-order cone program (SOCP). If the problem is time
varying, the problem needs to be re-formed at each time
step. Conventionally, these problems are solved using either
active set (AS) or interior point (IP) methods. For embedded
control, with limited computational resources, it is helpful
to use tailored software that exploits the structure of the
problem. Examples include CVXGEN [53] and FORCES
[54] which are online code-generators to generate custom
structure-exploiting IP solvers. ECOS [55] is a library-free
ANSI-C tool to solve SOCPs, and in [56] automatic code
generation is used to create custom IP SOCP solvers. Recently
other classes of optimisation methods have been investigated,
such as projected gradient methods [57] and the alternating
direction of multiplier method (ADMM) [58]. Custom code
generators also exist for first order methods, for example
the FiOrdOs toolbox [59]. Compared to IP and AS, these
involve a larger number of simpler iterations. Useful iteration
bounds have also been found [57], but convergence is sensitive
to conditioning, and it is worthwhile testing a selection of
different solvers for a given application.

Explicit MPC [60] has been applied to time-invariant
spacecraft rendezvous problems in [21], [25]. Here, multi-
parametric programming is applied to compute the control
law off-line as a piecewise-affine function. The online task
is then a point location problem followed by evaluation of a
local affine control law. However, the complexity becomes
intractable with growing problem sizes. Another approach
is to customise the computation hardware. In [24], [29],
MPC is implemented in a Field Programmable Gate Array
(FPGA) and applied to different phases of rendezvous in
circular and elliptical orbits. This approach parallelises parts
of the algorithms to reduce computation latency between
measurement and control application, whilst maintaining
relatively low clock rates required for robustness to effects
such as solar radiation.

Variable horizons are implemented by enumerating a
sequence of optimisation problems with fixed horizon N
and taking the feasible solution for which the minimum cost
is achieved [17], [29] or by using mixed-integer program
ming (MIP) as for non-convex collision avoidance constraints
with binary variables and a “big-M”. MIPs are NP-complete,
but one systematic and often tractable approach is to use a
“branch-and-bound” method.

VII. CONCLUDING REMARKS

Recent investigations have shown overlap between the
requirements of spacecraft rendezvous and the capabilities
of MPC. MPC has already been tested in space by the
PRISMA project [20], the interior-point solvers of [56] have

already been validated for a landing scenario on a NASA
test rocket, and the European Space Agency’s ORCSAT
project [17] investigated applicability of MPC to the MSR
capture scenario. Nevertheless, there is scope for further
development. For longer manœuvres, which should ideally
comprise of short thrusts interspersed with long periods of
free drift, performance might also be limited by the fixed-
period sampling nature. Event triggered MPC [61] could
be an applicable tool. Also, recent modelling developments
(e.g., [62], [63]) could be applied to simplify handling of
elliptical orbits. Many of the studies cited in this tutorial
assume good quality state estimates with idealised uncertainty
models and rigid-body models of the spacecraft. Analysis of
the cross-interaction between MPC, navigation uncertainty
and state estimators, and flexible modes of the vehicles
will be critical to it becoming a main-stream rendezvous
technology. Moreover, efficient verification, validation and
clearance methods must also be investigated, and on-going
algorithmic developments are likely to contribute to this task.
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[37] F. Tisserand, Traité de Mécanique Celeste. Paris: Gauthier-Villars et
Fils, Imprimeurs-Libraires, 1889, vol. 1.

[38] D. Gim and K. T. Alfriend, “State transition matrix of relative motion
for the perturbed noncircular reference orbit,” J. Guidance, Control,
and Dynamics, vol. 26, no. 6, pp. 956–971, 2003.

[39] L. Breger and J. P. How, “J2-modified GVE-based MPC for formation
flying spacecraft,” in Proc. AIAA Guidance, Navigation, and Control
Conf., vol. 1, San Francisco, CA, August 15–18 2005, pp. 158–169.

[40] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

[41] L. Sauter and P. Palmer, “Analytic model predictive controller for
collision-free relative motion reconfiguration,” J. Guidance, Control,
and Dynamics, vol. 35, no. 4, pp. 1069–1079, 2012.

[42] J. M. Carson III, B. Acikmese, R. M. Murray, and D. G. MacMartin,
“A robust model predictive control algorithm augmented with a reactive
safety mode,” Automatica, vol. 49, no. 5, pp. 1251–1260, 2013.

[43] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC for
tracking piecewise constant references for constrained linear systems,”
Automatica, vol. 44, no. 9, pp. 2382–2387, 2008.

[44] A. Ferramosca, D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho,
“MPC for tracking with optimal closed-loop performance,” Automatica,
vol. 45, no. 8, pp. 1975–1978, 2009.

[45] E. N. Hartley and J. M. Maciejowski, “Reconfigurable predictive control
for redundantly actuated systems with parameterised input constraints,”
Systems & Control Letters, vol. 66, pp. 8–15, 4 2014.

[46] A. Richards and J. P. How, “Robust variable horizon model predictive
control for vehicle maneuvering,” Int. J. Robust Nonlin. Control, vol. 16,
no. 7, pp. 333–351, 2006.

[47] D. Q. Mayne, M. M. Seron, and S. V. Rakovic, “Robust model predic-
tive control of constrained linear systems with bounded disturbances,”
Automatica, vol. 41, no. 2, pp. 219–224, 2005.

[48] B. Acikmese, J. M. Carson, and D. S. Bayard, “A robust model
predictive control algorithm for incrementally conic uncertain/nonlinear
systems,” Int. J. Robust Nonlin. Control, vol. 21, no. 5, pp. 563–590,
2011.

[49] C. V. Rao and J. B. Rawlings, “Linear programming and model
predictive control,” J. Process Control, vol. 10, no. 2–3, pp. 283–289,
2000.

[50] S. Di Cairano and A. Bemporad, “Model predictive control tuning by
controller matching,” IEEE Trans. Autom. Control, vol. 55, no. 1, pp.
185–190, 2010.

[51] E. N. Hartley and J. M. Maciejowski, “Designing output-feedback
predictive controllers by reverse engineering existing LTI controllers,”
IEEE Trans. Autom. Control, vol. 58, no. 11, pp. 2934–2939, 2013.
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