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Abstract Bicycle sharing systems are increasingly being deployed in urban areas
around the world, alongside online maps that disclose the state (i.e., location, num-
ber of bicycles/number of free parking slots) of stations in each city. Recent work
has demonstrated how regularly monitoring these online maps allows for a granular
analysis of a city’s cycling trends; further, the literature indicates that different cities
have unique spatio-temporal patterns, reducing the generalisability of any insights or
models derived from a single system. In this work, we analyse 4.5 months of online
bike-sharing map data from 10 cities which, combined, have 996 stations. While an
aggregate comparison supports the view of cities having unique usage patterns, re-
sults of applying unsupervised learning to the temporal data shows that, instead, only
the larger systems display heterogeneous behaviour, indicating that many of these
systems share intrinsic similarities. We further show how these similarities are re-
flected in the predictability of stations’ occupancy data via a cross-city comparison
of the error that a variety of approaches achieve when forecasting the number of bi-
cycles that a station will have in the near future. We close by discussing the impact of
uncovering these similarities on how future bicycle sharing systems can be designed,
built, and managed.
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1 Introduction

A growing body of research uses the digital records that we create while using web-
based services to analyse and model behaviour in the physical world. These include,
for example, studying online location-based social networks to understand user be-
haviours [24], rank nearby venues [22], build support for targeted advertising [20],
facilitate mobile/local search [25], and using photo-sharing sites to uncover tourists’
mobility throughout a city [11]; the common trend is that of using interactions with
web services to learn about behaviour, and design future applications that leverage
any predictability and insight derived from the data.

In this work, we examine how the online maps which were built to inform users
of the state of urban bicycle sharing systems can be used to analyse, compare and
predict mobility across the growing number of cities that are adopting these forms of
transport. A bicycle sharing (or bike share) system is a service that makes bicycles
available for use to urban commuters; users can pick up and return the bicycles to and
from any one of the stations dispersed in the city. Notable examples include Barclay’s
Cycle Hire (London, England), Vélib’ (Paris, France), Capital Bikeshare (Washing-
ton DC, USA), and Citi Bike (New York, USA) . While these systems provide a
healthy, sustainable, and traffic-reducing means of navigating a city, they continue
to suffer from a variety of shortcomings: most notably, the problem of balancing be-
tween system usage and demand, which leads to a lack of available bicycles or free
parking spaces at stations at various times of the day [2].

These systems are often accompanied by online maps that give a snapshot of the
current state of the system: for each station, they provide the number of available
bicycles and free parking slots. In the following, we investigate the extent that these
online maps can be used to uncover a variety of bike share systems’ common pat-
terns, and evaluate how the accuracy of a set of forecasting algorithms varies across
cities—which differ in size, geography, and system usage. In particular, we make the
following contributions:

1. We have collected a dataset from 10 cities’ bicycle sharing systems; we describe
how the data was collected and pre-processed prior to analysis in order to accom-
modate for errors that arise from sourcing data from online maps. The resulting
data comprises 4.5 months and over 108 samples from 996 stations in 6 countries.

2. We apply unsupervised clustering techniques to address the extent that bike shar-
ing stations (independently of the city they reside in) share similar patterns in their
usage data. We find that stations across the 10 systems share substantial usage pat-
terns; in fact, the smaller systems’ stations cluster together, and heterogeneity is
only apparent in those systems with more than 100 stations.

3. Finally, we use random forests and neural networks to compare the accuracy of
forecasting how many bicycles will be at a given station and time to two baselines,
and evaluate how prediction accuracy varies across cities. We find that, while pre-
diction accuracy degrades for larger systems as models are queried for estimates
that are further in the future, large systems’ accuracy is not influenced by how
recent the training data is (and the opposite results hold for smaller systems).
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We close by discussing the analyses and applications that arise from this data,
which include further support for cyclists (e.g., based on station occupancy predic-
tion) and the transport authority (e.g., supporting redistribution and station placement
decisions).

2 Related Work

Studies of shared bicycle systems have recently appeared in the data mining litera-
ture, and are often subjects for online data visualisations1. Froehlich, Neumann and
Oliver [10] were the first to apply clustering techniques and forecasting models to
identify patterns of behaviour in stations in Barcelona’s “Bicing” system, explaining
results according to stations’ location and time of day. Similar clustering was used
in a study that focused on London’s system [13], in order to assess the effect of pol-
icy changes; notable differences in the way the system was used prior to and after
the policy change were quantified. Guenther et al. [12] also focused on London, and
built and validated a number of arrival forecasting models that predicted cumulative
arrivals in small geographic clusters of stations (falling within 500m×500m squares)
during peak hours; similar case studies have been published with data from Paris [17]
and Singapore [23], and Lyon [7]. This family of recent work, which focuses on in-
dividual cities, demonstrates that repeated observations of these maps can be used
to characterise a city’s bike share spatio-temporal patterns: a recurring conclusion
across analyses is that spatiotemporal system usage patterns are tied to, and reflect,
city-specific characteristics. By focusing on single cities’ systems, these works seem
to indicate that each city has a unique pattern, and that forecasting algorithms applied
to each one may not be generalisable across the world.

Beyond the data mining literature, two recent works address the multi-city sce-
nario. O’Brien et al. [14] and Austwick et al. [4] characterise systems at the city-level,
comparing them in terms of system size (both by station count and geographic area),
daily usage, and compactness; they build a hierarchy of cities that share similar char-
acteristics and apply community detection algorithms to analyse similarities within
systems. Parkes et al. [15], instead, compare systems’ policies, technologies, and rea-
sons for bike sharing adoption (via both published data and qualitative interviews).
Using diffusion theory, they comment on the importance of private sector operators
as well as the influence of certain successful bike sharing systems such as the ones in
Paris, Lyon, Montreal and Washington DC.

3 Data Pre-Processing

A typical bike sharing online map discloses the latitude, longitude, number of avail-
able bicycles and vacant parking slots of each station in the city. We gathered this
station occupancy data for 10 bike sharing systems (Table 1) by scraping their web
services every two minutes for a number of months. We define the full set of times

1 E.g., http://bikes.oobrien.com/global.php, as of October 13, 2014

http://bikes.oobrien.com/global.php
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Pre-Cleaning Post-Cleaning
City System Observations Stations Observations Stations Data Retained (%)
Barcelona, Spain Bicing 38,674,016 415 37,087,351 409 95.90
Denver, USA Denver B-Cycle 4,907,697 52 4,787,219 50 97.55
Girona, Spain GiroCleta 956,510 10 945,154 10 98.81
João Pessoa, Brazil SAMBA 389,260 4 381,760 4 98.07
London, England Barclays Cycle Hire 37,954,996 410 35,414,070 390 93.31
Miami, USA DecoBike 8,158,542 99 4,589,939 53 56.26
Rio de Janeiro, Brazil BikeRio 2,132,812 22 2,091,210 22 98.05
Rome, Italy Roma‘n’Bike 2,941,530 30 2,924,098 30 99.41
Siracusa, Italy GoBike 1,750,500 18 1,740,400 18 99.42
Taipei, Taiwan YouBike 1,081,630 11 975,540 10 90.19

Table 1 Bike sharing system data collected from their online maps pre/post cleaning.

that we queried for data as T , and the set of stations as S. A sample of station si ∈ S
at time t ∈ T is a tuple of the form:

si(t) : bi(t), vi(t) (1)

Where bi is the number of available bicycles, and vi is the number of vacancies (free
parking bays). The full dataset is the largest continuous sample of data that we ob-
tained and spans the 4.5 months between March 23rd, 2011 and August 6th, 2011.

3.1 Station Size and Location Inference

It is important to note we have no further data; in particular, we could not obtain static
meta-data about stations from the web service, which includes stations’ actual size
(in terms of number of parking bays) and precise geographic location. We thus had
to infer these traits from the data samples we obtained. In doing so, we also pruned
inconsistent and inaccurate samples and stations from the dataset.

Station Capacity. We refer to a station’s capacity as the maximum number of
bicycles that it is possible to park at a station. For each sample si(t) we thus define
an observed capacity, bi(t) + vi(t). We note that for any given station, its observed
capacity time series was not strictly constant or monotonically increasing: this may be
explained by malfunctioning docks (i.e., erroneous data), or stations whose capacity
is changed by new docks being added or removed (i.e., actual changes in station
sizes). To allow for station sizes to grow, yet account for errors in the data, we remove
those stations whose sizes appear to fluctuate at a higher than daily rate. Formally,
we have 720 samples per station per day: if, across the data, we observe a station
size that appears for fewer than 720 times, we remove the station from our analysis.
Across the 10 systems, there are 996 stations in total which range from small (e.g.,
size < 10) to large (size > 50).

Sample Pruning. We found that the fluctuating sizes described above were tem-
porally close to one another: a high number of invalid observations in a single day
signals anomalous station behaviour and, therefore, potential problems with the re-
maining samples of that day. We thus removed all days with fewer than 504 (70% of
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720) samples. Finally, we removed all stations with fewer than 62 remaining days,
i.e. 45% of our total 4.5 month period.

Station Locations. We assume that a station’s usage will be highly dependent
on the characteristics and geography of the urban area that surrounds it; our analysis
resides on these remaining constant throughout the period of observation. However,
stations may be moved and, moreover, the station latitude/longitude data that was
collected was often erroneous: occasionally, coordinates were reported as zero or
outside of the geographic space where the system resides. We thus separated stations
that have been moved (and are thus not amenable to analysis) from those that may
have few erroneously reported locations. To do so, we computed the pairwise ground
distances between all locations recorded for a single station using the Haversine for-
mula [19]. If any of these distances was larger than 10m, the station was removed
from our analysis. If all distances were less than 10 meters (the approximate accu-
racy of civilian GPS systems [1]), the most recently reported location was assumed
the most accurate.

The data loss as a consequence of our preprocessing is presented in Table 1. With
720 daily observations for 996 stations over 150 days, we have over 108 data points.
Fluctuations in Miami’s reported locations led to the removal of nearly 50% of its
observation data, while the remaining stations retained over 90% of theirs.

4 Cross-City Analysis

We now analyse the extent to which cities are comparable using the data from their
online bike share maps. We first examined the data at an aggregate level showing how
daily usage varies across cities.

4.1 System-Level Occupancy Time Series

Station Occupancy. In order to compare stations with different capacities, we refer
to the current occupancy of a station as the proportion of a station’s parking slots
that are occupied (i.e., 0 for no available bicycles; 1 for no available parking slots);
formally,

oi =
bi

bi + vi
. (2)

When taken in aggregate across an entire city, occupancy, or “fullness of stations”,
is to be interpreted as the inverse of usage: it is low when few bikes remain in the
stations, indicating that the bikes are being highly used. Conversely, occupancy is
high when many bikes are idle in stations, indicating that the bikes are not being
used. A negative slope in the occupancy series corresponds to increasing usage; a
positive slope indicates decreasing usage.

To analyse the extent to which cities share similar temporal trends, we divide each
24-hour day into 240 6-minute bins and averaged the observations within each bin on
a per-station basis. This occupancy series was then averaged across all stations in a
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Fig. 1 Aggregate occupancy time series. On the x-axis is the hour of day, and on the y-axis is the average
occupancy of the city’s stations. The red line depicts the series for weekends, and the blue line depicts
weekdays. Note that each plot differs in y-axis scale.

system to create two series, one with weekdays only, and the other with weekends
only (Figure 1). From these, a number of common trends emerge:

First, a number of cities’ week day data indicates usage for commuting purposes
(Barcelona, London, Taipei, Rio de Janeiro), with drops in occupancy that correspond
to typical commuting times. However, these dips in occupancy differ, uncovering how
the usage of these systems is tied to their geography and local habits related to areas
of work: for example, the morning commute dip in occupancy in London is later than
that of Rio de Janeiro. This difference may be explained on two fronts: London’s
system is deployed in the centre of the city, while Rio’s is more geographically dis-
persed, and each city may have its own work-day cultural habits (e.g., Barcelona’s
data indicates a third usage peak during the afternoon [10]). These patterns also show
city-wide preferences for when to cycle: London and Taipei have a greater drop in
occupancy in the later hours of the working day, while the data from cities in Brazil
indicate greater morning usage. Other cities’ system data seems dominated by their
week-end patterns. These include Girona, where usage is at its highest during week-
end evenings, as well as Miami and Denver (USA): these systems’ use is likely to be
driven by leisure rather than work-related reasons. Finally, comparing cities uncovers
variances in bicycle culture; some aggregate patterns are dominated by what seems
like redistribution activity (e.g., the jump in occupancy at 1:00AM in Siracusa, Italy),
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City Pearson Correlation
Miami 0.9625471
Rio de Janeiro 0.9094963
Denver 0.8494322
João Pessoa 0.8428481
Barcelona 0.723479
Girona 0.6216594
London 0.4265658
Siracusa 0.3715248
Taipei 0.2241003
Rome -0.904212

Table 2 Pearson correlation between city’s week day and week end aggregated data.

as well as the strongly variant week day/week end patterns in Rome. Further, the two
Brazilian cities’ week day and week end patterns are more similar than other cities.

To compare the extent to which cities’ behaviours changes from week days to
week ends, we computed the Pearson correlation between the aggregated week day
and week end vectors (Table 2). A wide range of values emerges, ranging from
cities with highly correlated behaviours (e.g., Rio de Janeiro, Denver), lower positive
correlations (London, Barcelona), and negative correlations (Rome). This indicates
that, across cities, variances between week day-week end seem to emerge from the
amount, time, or way in which each system is used.

4.2 Cross-City Occupancy Clustering

We next investigated the extent to which individual stations share similar behavioural
traits across different cities. We used hierarchical clustering [9], using an agglom-
erative strategy. In this bottom-up approach, a vector representation of each bicycle
station is initialised as a singleton cluster. In each iteration of the algorithm, the dis-
tance between every pair of clusters is computed, and the two clusters which have the
highest similarity between them are merged into a single cluster containing the sta-
tions from both. We discovered naturally-occurring behavioural classes for stations
across all systems: certain behavioural classes are system-independent, and that there
is, in fact, significant transferable knowledge between stations and between systems.

Recall that occupancy is defined as the fraction of a station’s total slots currently
occupied by bicycles. As with the preliminary analysis, we created a 240-point oc-
cupancy vector for each station by dividing each 24-hour day into 240 6-minute bins
and averaging observations within each bin. We normalised the vectors by subtracting
its mean from each element:

o′i = oi −
1

240

240∑
i=1

oi (3)

and used this set of station vectors as initial input.
We next selected a metric to measure the similarity between station vectors. Typi-

cal similarity metrics (e.g., the sum of absolute pairwise differences) would not allow
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for stations that share similar patterns that are temporally displaced to be computed
as similar; slight temporal distortions in the series are unduly penalised. To account
for this, we used a distance metric based on the dynamic time warping (DTW) algo-
rithm [6]. This is a well-known technique for finding the optimal alignment of two
temporal sequences. It works by strategically inserting gaps in either of the two se-
quences to maximise their alignment. Our DTW implementation uses a 1-hour Sakoe-
Chiba band [21], effectively limiting the extent to which such gaps are placed, allow-
ing segments of the series to fall out of synchronisation by up to one hour before
incurring a heavy distance penalty. Thus, DTW produces a distance measure from
the sequences which have been optimally aligned subject to our constraints.

An important parameter with hierarchical clustering algorithms is setting when
to stop clustering, and consequently the number of resultant clusters k. The choice
of k is often guided by intuition, based on what level of clustering yields the most
valuable analytical insight, or using heuristics [26]. We use a simple heuristic based
on incremental merge distances. When initialised with n objects, the algorithm begins
with n separate singleton clusters and ends with a single cluster containing n items,
with k decreasing by one at each iteration. Thus there are n− 1 iterations, and at the
end of the ith iteration, k = n− i. In the ith iteration, the distance di between the two
clusters which are selected to be merged is the minimum pairwise distance between
any two cluster centroids in that iteration. We record di for 1 ≤ i ≤ n−1. This series
is differenced to yield a series ∆i = di − di−1 for 2 ≤ i ≤ n − 1. The series ∆i

is the incremental merge distance: how much further apart the two closest clusters in
the ith iteration are than the two closest clusters in the previous iteration.

0 2 4 7 12 17 20 25 30 35 40 45 50 55 60

0

5

10

15

20

k (≡ n− i)

∆
i

Fig. 2 Incremental merge distances for final 60 iterations of an example clustering study.

Consider Figure 2, which depicts ∆i as a function of k for the final 60 iterations
of an example run of hierarchical clustering. The spikes at k=2, 4, 7, 12 and 17
indicate unusual jumps in merge distances, suggesting that clusters which perhaps
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Fig. 3 Common trends across cities after clustering all the stations’ occupancy vectors, four trends emerge
(morning arrival (1), morning departure (2), flat (3), and the final, anomalous (4), result): these are the
cluster centroids.

ought to stay separate are being lost. We were able to decide on an optimal k for all
our clustering cases using a combination of the ∆i heuristic and manual tuning.

Using this approach, we determined that 4 occupancy clusters would produce the
most informative result. The centroids of the resulting clusters are plotted in Figure 3:
there are 3 major clusters and one minor cluster. Of the 3 major clusters, the first, con-
sisting of 212 stations, exhibits a sharp rise in mean-normalised occupancy starting
at approximately 8:00AM. Occupancy peaks at around 11:00AM, then starts to de-
cline until around 3:00PM. These stations can be considered “morning sink, daytime
source” stations, as they act as bicycle sinks in the morning and as bicycle reservoirs
during the day. The second major cluster consists of 349 stations, and is an almost
perfect inverse of the first cluster. Stations in this cluster start the day relatively full,
then are rapidly emptied in the morning and slowly refilled over the course of the day.
These stations can be considered “morning source, daytime sink” stations, as they act
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as bicycle reservoirs in the morning, and are a sink for bicycles over the course of
the day. The final major cluster consists of 434 stations. Stations in this cluster do
not vary significantly in their levels of occupancy over the course of the day. These
stations act neither as reservoirs nor sinks, but rather act equally as both. It is impor-
tant to note that from a flat mean-normalised occupancy series, one cannot conclude
that these stations are not very active, although that is one possible explanation. At
most, one can conclude that the stations have roughly equal rates of bicycle inflow
and outflow. We label the fourth cluster “minor” as it only contains a single station.
The station in question lies in the heart of Barcelona and has a highly distinctive oc-
cupancy series. Judging by the fact that its occupancy starts climbing after midnight
and peaks at 9:00AM, after which its occupancy rapidly drops, it is either close to a
number of night-time attractions or it is being used as a depot for the redistribution
scheme.

We map the stations, coloured by cluster results, in Figure 4. This uncovers the
extent to which cities are homogeneous: several systems are composed entirely of
stations belonging to the same cluster, namely the third cluster with the “flat” occu-
pancy series. This implies that all stations in these small systems behave similarly to
each other. It is likely that because the supply of stations is so constrained in these
systems, demand for bicycles and vacancies is distributed more evenly, leading to the
flat occupancy line. A different view emerges for the larger systems, namely London
(Figure 4(a)) and Barcelona (Figure 4(b)), where the heterogeneity of station be-
haviour is clearly visible. London’s clusters look like concentric circles, with cluster
one (morning sink) stations at the centre, surrounded by successive layers of cluster
three and cluster two (morning source) stations. This reflects a morning surge of bi-
cycles from outside the centre moving inwards, and a slow outwards flow over the
course of the day. This suggests that bicycle redistribution vehicles should move out-
wards in the morning to counteract the morning surge, preventing depletion of the
stations in the outermost cluster and the saturation of stations in the centre. Similarly,
Barcelona’s morning sink stations run through the city centre and spread out along
the coast, and the morning source stations are spread out over the rest of the city.
This map corresponds well with Barcelona’s elevation; it is in a hilly region and the
placement of the “sink” stations corresponds to lower elevations, while the “source”
stations are at higher elevations, a consequence of the natural tendency of users to
prefer riding downhill rather than uphill.

4.3 Cross-City Activity Clustering

To further investigate whether stations share trends across systems, we defined a sta-
tion’s activity level (δ) as a single number generated by summing the absolute differ-
ences between every consecutive pair of points in its occupancy series o:

δ(o) =
∑
i

|oi − oi−1| (4)

This value represents a notion of average “churn”, or “turnover;” we clustered stations
on this value. For example, if a station’s δ is 3, then over the course of the day it has
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(a) London (b) Barcelona

(c) João Pessoa (d) Girona (e) Taipei (f) Siracusa

(g) Rio De Janeiro (h) Rome (i) Denver (j) Miami

Fig. 4 Mapping stations by cluster: heterogeneity only appears in large systems. We use a small red cir-
cular marker to denote a station belonging to cluster one (morning arrival), a blue marker for cluster two
(morning departure), a green marker for cluster three (flat) and a yellow marker for cluster four (anoma-
lous).

seen approximately and no less than 3 times as many borrow/return events as its
capacity. It is accurate only to the granularity of our sampling: we only account for
activity that occurs between one window and the next, losing any activity that has
occurred within window.

We again cluster stations, using the same technique as above, on these values. To
calculate the centroid δc of a cluster of stations S, we simply averaged the deltas of
all stations in the cluster:

δc =

∑
s∈S δ(s)

|S|
(5)

This resulted in 6 clusters (Table 3). The first and largest cluster contains the
majority of stations, 824. The value of δc for the centroid of this cluster is 0.224,
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Cluster n deltac
1 824 0.224
2 134 0.512
3 31 0.884
4 5 1.470
5 1 3.323
6 1 3.047

Table 3 Activity clustering results. The deltac is the average level of activity of stations in each cluster;
clusters with values greater than 1 have, on average, more borrow/return events than their size.

or approximately 20%. Stations in this cluster see approximately 20% of their total
capacity in bike borrowing and returning events over the course of a typical day.
So a bike station in this cluster with a capacity of 10 experiences approximately 2
daily borrow/return events on average. A station with a capacity of 40 experiences
approximately 8 borrow/return events, etc. The reasons for membership to this large
cluster may be unique to each station: there may be a demand for the station to be a
source, but it cannot act as one because it runs out of bikes too quickly; there may be
a demand for it to be a sink, but it cannot be because it runs out of vacancies easily; or
it may simply be too far away from anything of interest to be actually useful. Clusters
then progressively get smaller (in membership) and more active. The second cluster
contains 31 stations and has a centroid δc of 0.884, or ∼90%. By our measure, this is
the most “active” of the three major clusters. A station in this cluster with a capacity
of 10 sees around 9 daily borrow/return events. These stations are well-utilised with
respect to their capacity. The values of δc for the smallest clusters are 1.470, 3.323,
and 3.047, or approximately 150%, 330% and 300%. A station in these clusters with
a capacity of 10 sees over 10 borrow/return events daily. Stations with extreme levels
of activity occur where demand is high throughout the day, and supply and demand
are consistently well matched for both bikes as well as vacant slots. These stations
may not necessarily cope well with sudden changes in activity pattern, suggesting
that auxiliary stations should be built nearby to balance the load.

5 Predicting Station Occupancy

The analysis above demonstrates how temporal patterns differ between aggregated
cities’ systems, as well as similarities that emerge from clustering stations based
solely on their behaviour. We now investigate the extent to which stations’ occupancy
across different cities can be accurately learned and predicted. Forecasting the num-
ber of bicycles at any given time would seem dependent on a number of factors: local
geography and urban surroundings (e.g., dwellings or offices), as well as fluctuations
in demand (e.g., from events or weather). In this section, we do not attempt to use
any external datasets to forecast station occupancy; we rely solely on the historical
patterns observed from the online maps.



Comparing Cities’ Cycling Patterns Using Online Shared Bicycle Maps 13

5.1 Methodology and Metrics

Given a set of timestamps T , and a station s ∈ S, we have a univariate time series of
the number of bicycles the station currently holds. For each station, we considered 2
separate series: the series of observations sampled every 2-minutes, and the same se-
ries of observations as averaged, 6-minute samples. Unlike in the clustering analysis,
the series were not averaged across all days. Thus, for example, a 2 day series at 2-
minute samples contains 1440 observations. The same 2 days as a 6-minute averaged
series contains 480 observations.

For each test timestamp t, we computed forecasts at four horizons: 6, 12, 24 and
48 minutes ahead; given the history of a station’s observations as 2-minute samples,
intervals of 6, 12, 24 and 48 minutes correspond to 3, 6, 12 and 24 samples respec-
tively. To test the predictive models (described below), we trained them with data
from week 10 and sampled for test week day data from weeks 11-19 (9 weeks) of
our dataset: we chose 120 equispaced points at the edges of these intervals to be the
points in time from which to run forecasts. That is, we simulated the situation where
each of these points was the “present” state of the station, and queried the models for
values of (bi, vi) at each forecast horizon. We then compared the predictions against
the actual values to evaluate them.

The stations across the 10 cities we are considering have a very diverse range
of capacities. To account for this, we used error metrics based on occupancy. For a
series of n predicted observations of the form (b̂i, v̂i), and the corresponding series of
actual data (bi, vi), where 1 ≤ i ≤ n, we calculate the Mean Absolute Error (MAE)
in predicted occupancy as follows:

MAE =
1

n

n∑
i

∣∣∣∣∣ b̂i

b̂i + v̂i
− bi
bi + vi

∣∣∣∣∣ (6)

Similarly, we compute the Root-Mean-Square Error (RMSE):

RMSE =
1

n

√√√√ n∑
i=1

(
b̂i

b̂i + v̂i
− bi
bi + vi

)2

(7)

5.2 Predictive Models

We formulated the problem of predicting a station’s occupancy at a given time as a
univariate time series forecasting problem. In this section, we describe the set of pre-
dictors that we tested to examine the predictive similarity shared between different
city’s bike share systems. Our main objective is to compare the performance of pre-
dictive models across cities, and we therefore rely on methods that have historically
been well suited to this kind of problem.

Random and Static Models. Our baseline was a random model. For all hori-
zons, this simply predicts a random value drawn from the discrete uniform distribu-
tion ranging from 0 to the station capacity. The second predictive model was a static
model. This assumes that the time series is horizontal, and predicts that the currently
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observed number of bikes will persist indefinitely into the future. That is, if there are
currently b bikes at the station, the static model will predict b bikes at all points in the
future. These serve as the benchmark against which other models are compared.

Multilayer perceptron with backpropagation. A multilayer perceptron, or feed-
forward artificial neural network with multiple layers of interconnected perceptrons,
has previously been shown to be effective for univariate time-series forecasting [3,8].
We trained 8 separate networks with a single output dimension: one for each forecast
horizon, for the 2-minute sampled series and the 6-minute averaged series. We train
the multilayer perceptrons to predict the occupancy (in the closed interval between 0
and 1) based on previous values of occupancy, as neural network regression is more
effective when the range of the input and output dimensions correspond well to the
sensitive range of the activation functions [18].

Our neural networks had 10 input dimensions (neurons) and a single output neu-
ron. We experimented with the following parameters: activation function of input
layer (linear or sigmoid), number of hidden layers (0 or 1), number of neurons in the
hidden layer (0, 3, or 10), activation function of hidden layer (linear or sigmoid), and
activation function of output layer (linear, sigmoid, or softmax). The combination of
parameters which consistently yielded lowest training error for a subset of our testbed
was as follows: (a) an input layer of 10 neurons, each with a linear (or identity) ac-
tivation function: φI(x) = x, (b) a single hidden layer of 3 neurons, each with a
sigmoid (logistic) activation function: φS(x) = 1

1+e−x , and (c) an output layer of 1
neuron with a linear activation function.

Decision Tree Ensemble. Finally, we also tested an ensemble of decision trees
with random feature selection and bootstrap aggregation, (i.e., a random forest). As
with the multilayer perceptron, we trained 8 separate models per station, correspond-
ing to 4 horizons across 2 time series. We tested the performance of ensembles con-
taining 1, 5, 10, 25, 50, and 100 decision trees. Increasing the number of trees beyond
10 resulted in an extremely small improvement in training error, at the cost of a heavy
penalty in the time taken to train the forest, so we set the number of trees in each
ensemble to 10. Each tree was built using a modified version of Quinlan’s C4.5 deci-
sion tree learning algorithm [16]. The predicted regression output of an input vector
is computed as the mean predicted regression outputs of all the trees in the ensemble.

Mean Absolute Error
City Random Last Value Perceptron Random Forest
Barcelona 0.2003 0.0271 0.0773 0.0521
Denver 0.1772 0.0108 0.0925 0.0312
Girona 0.1683 0.0083 0.0725 0.0423
João Pessoa 0.1949 0.0019 0.0439 0.0549
London 0.1951 0.0145 0.0727 0.0397
Miami 0.1735 0.0098 0.0737 0.0263
Rio de Janeiro 0.2637 0.0003 0.0312 0.0175
Rome 0.2387 0.0021 0.0337 0.0215
Siracusa 0.2123 0.0003 0.0396 0.0314
Taipei 0.1678 0.0035 0.0843 0.0263

Table 4 Mean absolute error results when predicting stations’ occupancy 6 minutes in the future, using
the 2-minute time series.
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Fig. 5 Predictor performance comparison for 2-minute series. Averaged root-mean-square error in pre-
dicted occupancy on the y-axis. Forecast horizon, in minutes, on the x-axis. Random model in dashed
black, static model in black, multilayer perceptron in red and decision tree ensemble in blue.

5.3 Prediction Results

The prediction error of all models, given a 2-minute sampled time series and a 6-
minute horizon, is shown in Table 4. Across cities, the random benchmark has an
error between 0.16 and 0.26. While the decision tree ensemble consistently outper-
forms the multilayer perceptron, the static model achieves the best average perfor-
mance. This result can be explained by comparing to the clustering results, where
we observed that majority of stations’ temporal patterns remain flat. Moreover, even
the bike stations with moderate levels of activity usually experience the bulk of their
activity in certain concentrated times of day. Finally, the series themselves are only
subject to incremental changes in value. That is, except for occasional large changes
in occupancy due to redistribution vehicles, a single borrow/return event has only
a very minor effect on the value of occupancy; even if the static predictor gets the
number of bikes wrong, it is unlikely to be off by a large margin.

Effect of Prediction Horizon. We analysed the extent to which prediction ac-
curacy degrades as we query each model for forecasts of time further in the future.
In the smaller systems, with the exception of Girona, the prediction error generally
remains stable as the forecast horizon is increased. That is, the models are approxi-
mately as good at predicting occupancy levels 6 minutes in the future as they are at
predicting occupancy up to 48 minutes ahead.
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Fig. 6 Predictor performance over time for London’s 2-minute series. Averaged absolute error in predicted
occupancy on the y-axis. 120 testing points, equispaced within a 9-week testing interval, on the x-axis.
Multilayer perceptron in red and decision tree ensemble in blue.

This is not true of the larger systems, where predictor performance deteriorates
as the prediction window increases. This suggests that the borrow/return patterns for
stations in the smaller system are more consistent, and that the larger the system gets,
the more stochastic this pattern appears, at least from the perspective of a univariate
time series.

For the larger systems, prediction errors for the 2-minute series are almost iden-
tical to those of the 6-minute series. However, for the smaller systems, a variety of
differences is observed. In general, the performance of the static model is unaffected,
and the performance of the decision tree ensemble and multilayer perceptrons are
worse in the 6-minute series.

One explanation for this result is that patterns in a station’s occupancy are straight-
forward in the 2-minute series, but have a periodicity that is lost when averaging
into 6-minute bins. This explanation supports the idea that larger systems are more
stochastic than smaller ones. The performance of the predictors was unaffected by
averaging for the larger systems, but negatively impacted by averaging for the smaller
systems, suggesting that the models had been exploiting regular patterns in the smaller
systems which were then being thrown off by averaging.

Temporal Effect of Training Data. As above, we chose one week of training
data (week 10 of the dataset) to train our multilayer perceptron and decision tree
ensemble models. We evaluated the models on 10 weeks of test data (weeks 11-19
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of the dataset). Consequently, as we progress through the test set, the testing point
gets temporally further from the training data: we assume that this may need to be
offset by temporally re-training models with the latest data, and explored the effect
that the proximity to training data had on our predictions. Our initial hypothesis was
that, as the training data becomes further outdated, it becomes less relevant and re-
sults in poorer predictions. Our results show that this is true for the small systems;
however, for larger systems, such as that of London, there is no observable deteriora-
tion of performance, as shown in Figure 6. Each plot serially presents the error in our
models’ predictions for each of the 120 testing points. Each point is approximately
516 minutes later than the previous point in the series. The rightmost point of the
plot is temporally furthest from the training data, and the leftmost point is temporally
nearest.

5.4 Discussion & Applications

The primary purpose of the online maps that support bike sharing systems is to pro-
vide web users with a snapshot of the instantaneous state of the system and, in doing
so, to provide information that supports cyclists’ momentary decisions about whether
and where to cycle to and where to collect and plan to park a rented bicycle. Monitor-
ing, analysing, and forecasting the temporal trends in this data could support a variety
of applications. Broadly speaking, these related to two domains: (a) managing and (b)
planning new bicycle sharing systems.

Managing Bike Sharing Systems. There are several open problems suffered by
existing systems, including bicycle redistribution [5] and meeting customers’ demand
for bicycles and parking slots [2]. Clustering methodologies such as ours could in-
form the planning of efficient redistribution schemes, by categorising areas of cities
as “sinks” or “sources”, or by identifying optimal times for triggering the dispatch of
redistribution vehicles based on the aggregate occupancy behaviour. For instance, two
major clusters in Figure 3 exhibit sharp changes in their occupancy levels between
9:00AM and 12:00PM. This suggests that a minimal redistribution scheme, requiring
only a single daily redistribution occurring within this time window, would still be
very effective. Maps of these clusters can be used to determine rough directions for
redistribution vehicle routes, as we have demonstrated in Figure 4.

Forecasting algorithms may support customer information and gaming systems
that incentivise cyclists to participate in bicycle redistribution, identify anomalous be-
haviour (e.g., due to nearby events), and given them predictions of station occupancy
based on the time they are from their intended destination. Furthermore, accurate
forecasts would enable preemptive action such as redistribution to address scarcity of
bicycles/vacant parking bays due to an anomalous event in the city before the scarcity
becomes disruptive.

Planning and Design. Our inter-city analysis uncovered that bicycle sharing sys-
tems across countries share similar patterns. Throughout our clustering and forecast-
ing analyses, we found evidence to support the new idea that heterogeneity and vari-
ability in station behaviour are functions of the size of the system: the larger the
system, the greater the spread of station types; and the larger the system, the greater
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the variability of an individual station’s behaviour over time. These results could be
used when planning on deploying a new bicycle sharing system in another urban area,
in order to forecast its aggregate utilisation.

Our methodology for clustering on the borrow/return activity levels of stations
(Table 3) is useful for deciding whether to add or remove stations. Physical groups of
low-activity stations suggest the removal of one or more stations within those groups.
Similarly, lone high-activity stations suggest the addition of one or more auxiliary
stations to reduce the load and improve resistance to sudden changes in user activity.

5.5 Limitations

Future research into this domain may benefit from gathering data that is rid of the two
main limitations we faced in this work. First, by being sourced from the web, rather
than directly from the bicycle-station sensors, our data is noisy and subject to inaccu-
racies that had to be addressed (Section 3) by making inferences from the data. This
includes metadata such as station location and its state, since stations can be closed
for maintenance. In fact, more granular behavioural patterns could be uncovered with
data that contains both user and bicycle identifiers. Further, we do not have access to
any operational data (e.g., redistribution schemes or station maintenance schedules):
including this data would allow for data-mining based analysis of vehicle redistri-
bution schemes in different cities, which will be affected by the intersection of road
traffic conditions and bicycle demand. The inclusion of origin-destination data would
allow us to validate and augment studies such as the activity-level clustering.

6 Conclusion

This work examines the extent to which cities’ bicycle sharing systems across the
world share common traits, by sourcing data from monitoring online maps that con-
tain the state of each system. Using 4.5 months of data from 10 cities, we conducted
an analysis of the system-wide occupancy series, looking at the average daily be-
haviour of stations at each system. While aggregate results indicate variations in tem-
poral trends across cities (alongside evidence that bike sharing system usage varies
between weekdays and weekends), applying hierarchical clustering to all the stations
in the system exposed that small systems are largely homogeneous—with heteroge-
neous behaviours appearing in large systems like London and Barcelona.

Next, we framed the problem of predicting the future behaviour of a bike station
as a univariate time series forecasting problem and used the data to test four kinds
of predictive models. We trained our models and evaluated their performance based
on the forecast horizon as well as their proximity to the training data. While our
more sophisticated models were not able to outperform the simple static model, the
multilayer perceptron did nonetheless achieve less than 10% root-mean-square error
in most cases.

Future work would benefit from considering additional datasets, in order to ex-
amine complementary aspects of urban mobility and bicycle sharing; many of these
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datasets are also available online. For example, weather data would reveal how ad-
verse or favourable conditions impact system usage, information from other transport
system APIs (e.g., subways or public buses) would reveal how transport systems in-
teract and affect one another. Terrain-related data, topographical data and point-of-
interest information (e.g., from Wikipedia or Foursquare) could explain unusual or
unique station behaviour. Incorporating safety data could improve our understanding
of the dynamics of safety in bike sharing systems.
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