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Summary: 1 

1. Cooperative behaviours by definition are those that provide some benefit to another 2 

individual. Allonursing, the nursing of non-descendent young, is often considered a 3 

cooperative behavior and is assumed to provide benefits to recipient offspring in 4 

terms of growth and survival, and to their mothers, by enabling them to share the 5 

lactation load. However, these proposed benefits are not well understood, in part 6 

because maternal and litter traits and other ecological and social variables are not 7 

independent of one another, making patterns hard to discern using standard univariate 8 

analyses.  9 

2. Here, we investigate the potential benefits of allonursing in the cooperatively 10 

breeding Kalahari meerkat, where socially subordinate females allonurse the young of 11 

a dominant pair without having young of their own.  12 

3. We use structural equation modelling to allow us to account for the interdependence 13 

of maternal traits, litter traits and environmental factors.  14 

4. We find no evidence that allonursing provides benefits to pups or mothers. Pups that 15 

received allonursing were not heavier at emergence and did not have a higher survival 16 

rate than pups that did not receive allonursing. Mothers whose litters were allonursed 17 

were not in better physical condition, did not reconceive faster, and did not reduce 18 

their own nursing investment compared to mothers who nursed their litters alone. 19 

These patterns were not significantly influenced by whether mothers were in 20 

relatively good, or poor, condition.  21 

5. We suggest that allonursing may persist in this species because the costs to allonurses 22 

may be low. Alternatively allonursing may confer other, more cryptic, benefits to 23 

pups or allonurses, such as immunological or social benefits. 24 



 1 

 2 
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 5 

Introduction 6 

 7 

Cooperative behaviours by definition are those that provide some benefit to another 8 

individual, and this benefit is a fundamental assumption of hypotheses regarding their 9 

evolution (West et al. 2007; Cockburn et al. 2008). Although studies have demonstrated that 10 

the presence of cooperative “helper” individuals benefits breeders in a number of 11 

cooperatively breeding species (Hatchwell 1999; Gilchrist 2007; Russell et al. 2007; 12 

Cockburn et al. 2008), the benefits to recipients of individual cooperative behaviours are 13 

poorly understood, in part due to difficulties in separating the effects of cooperative 14 

behaviours from other related factors (Cockburn et al. 2008). As a result, some behaviours 15 

might be classified as cooperative without evidence supporting the key assumption that the 16 

behaviour provides benefits and has evolved at least partly due to this benefit.  17 

 18 

Allonursing, the nursing of non-descendent young, is frequently assumed to be a 19 

cooperative behaviour, but may be at risk of misclassification in some species as the driving 20 

factors in its evolution remain unclear (Hayes 2000; Roulin 2002). Allonursing is widespread 21 

in mammals where females live in stable groups (Packer et al. 1992) despite lactation 22 

carrying a substantial energetic cost (Clutton-Brock et al. 1989). Hypotheses regarding the 23 

evolution of allonursing fall into two groups centered around its potentially cooperative 24 



nature. Perhaps the most intuitive interpretation of allonursing is that it is a cooperative 1 

behaviour, the evolution of which has been driven at least partly by benefits to recipients 2 

(Hayes 2000; Roulin 2002). Offspring may benefit in terms of growth and survival (König 3 

1997; König et al. 2006) as milk is often the sole source of nutrition in early life (Loudon 4 

1985). Mothers of allonursed young also may be likely to benefit in terms of physical 5 

condition and future reproductive success through sharing the lactation load with other 6 

females. Such benefits to recipients may result in indirect genetic benefits for females that 7 

nurse kin (Hayes 2000; Roulin 2002). Alternatively, allonursing might be a behaviour that is 8 

not actively cooperative in nature and does not necessarily benefit recipients. For example, 9 

milk might be “dumped” by females with excess, or might be stolen by non-offspring as a 10 

result of misdirected parental care (Hayes 2000; Roulin 2002).  Understanding whether 11 

allonursing provides benefits to recipients is crucial to understanding whether and in which 12 

circumstances allonursing can be considered a cooperative behaviour.  13 

 14 

Quantifying the benefits associated with cooperation is difficult, in part because the 15 

presence of helpers is often associated with other factors that might confound any beneficial 16 

effect, such as territory quality or size (Cockburn et al. 2008). This is also true of allonursing, 17 

which is most common in species that breed communally; here, incidences of allonursing 18 

commonly coincide with incidences of communal nesting (Hayes 2000), the benefits of 19 

which possibly confound any beneficial effects of allonursing. For example, comparisons of 20 

communally nursing groups to singly nursing females that nest alone have suggested that 21 

allomaternal rearing, including allonursing, provides benefits to both offspring and mothers 22 

in communally breeding rodents (Hayes & Solomon 2004; König et al. 2006, Auclair et al. 23 

2014). However, interpretation of these results in terms of the benefits of allonursing 24 

specifically may be subject to flaws inherent in the paired comparisons methodology 25 



(Dickinson & Hatchwell 2004), as any benefits of allonursing are likely to be closely linked 1 

to the benefits of communal nesting and group living, for example, increased 2 

thermoregulation (Hayes & Solomon 2004). An additional challenge in quantifying the 3 

benefits of a behaviour such as allonursing for recipient offspring and mothers is that 4 

offspring traits are often influenced by maternal body condition or age (Mousseau & Fox 5 

1998), and both maternal and offspring traits can be sensitive to environmental and social 6 

factors. Determining the benefits of allonursing when many of the measured variables are 7 

influenced by common factors is clearly a challenge, as the interconnected nature of the data 8 

might obscure patterns and make it impossible to tease apart the role of allonursing using 9 

traditional univariate statistical analyses. Thus, although allonursing seems likely to convey a 10 

variety of benefits to recipients, these benefits, and therefore the cooperative nature of this 11 

behaviour, remain unclear.  12 

 13 

In this study, we investigate the potential benefits of allonursing to offspring and 14 

mothers in the cooperatively breeding Kalahari meerkat (Suricata suricatta). In this species 15 

behaviourally subordinate females regularly allonurse the young of a dominant pair while 16 

rearing no offspring of their own (though subordinate females may occasionally breed) 17 

(MacLeod et al. 2013). Allonursing is most commonly undertaken by females that have 18 

recently lost litters of their own as a result of infanticide or recent eviction by the dominant 19 

female (MacLeod et al. 2013), though spontaneous lactation has also been reported (Doolan 20 

& Macdonald 1999). Allonursing has the potential to provide substantial benefits to both 21 

offspring and mothers in the meerkat. Offspring mass influences survival to independence 22 

(Russell et al. 2002), suggesting a role for extra nutrition through allonursing in determining 23 

survival and recruitment. Dominant mothers are also likely to benefit as the presence of non-24 

lactating helpers reduces maternal energetic costs in meerkats (Scantlebury et al. 2002): the 25 



energetic demands on dominant mothers could thus be further reduced by allonurses sharing 1 

the burden of lactation, resulting in increased maternal condition post-lactation. Interbirth 2 

intervals have been shown to be positively correlated with maternal effort (Silk 1988), and 3 

negatively correlated with maternal condition (Hendrickx & Dukelow 1995). It is therefore 4 

likely that mothers whose litters are allonursed are able to reconceive faster and are in better 5 

condition than mothers whose litters are not allonursed. 6 

 7 

The Kalahari meerkat system is uniquely suited to examine the benefits of allonursing 8 

for two major reasons. First, the allonursing recipient and donor roles are clear-cut as the 9 

litter born to the dominant female is most commonly the only litter being raised at any time 10 

(Clutton-Brock et al. 1998). Thus, allonursing is not reciprocal among females and any 11 

benefits of allonursing are not confounded with the simultaneous costs of also providing 12 

allonursing (mothers), or having maternal resources diverted to other young (offspring). This 13 

allows us to more clearly determine the extent to which offspring and mothers benefit from 14 

the presence of allonurses. Second, problems associated with a paired comparison 15 

methodology do not apply, as allonursing probability in this species is not associated with 16 

indicators of territory, environmental, or maternal quality (group size, maternal condition, 17 

rainfall), and allonursing and non-allonursing females exist in the same group (MacLeod et 18 

al. 2013). Thus, comparisons between litters that did and did not receive allonursing are 19 

unlikely to be confounded by other factors. To test predictions that allonursing should result 20 

in larger offspring that are more likely to survive to independence, and that dominant mothers 21 

whose litters are allonursed should be in better body condition after lactation, and have a 22 

reduced time to reconception, we use structural equation modelling and data from a long-23 

term field project. While univariate analyses can provide information about how specific 24 

variables are associated, by taking a multivariate approach we can examine and disentangle 25 



the relationships among many interdependent variables, a previous constraint on estimating 1 

the benefits of cooperative behaviors and helpers (Cockburn et al. 2008).  2 

 3 

 4 

 5 

Methods 6 

 7 

We created a general framework (Fig. 1) relating allonursing, maternal and litter traits, and 8 

environmental factors. We used this framework to create a hypothesized a priori structural 9 

equation model to investigate whether the presence of allonursing influences maternal traits 10 

(physical condition, interbirth interval, lactation duration) and litter traits (average emergence 11 

weight, average survival to independence). Our framework also included expected 12 

relationships between maternal and litter traits. Primarily, we predicted that if a litter was 13 

allonursed, its mother might reduce her own lactation duration, resulting in better physical 14 

condition post-lactation, and reduced interbirth intervals. We also predicted that allonursing 15 

should benefit pups by increasing offspring size and, indirectly, survival. We also expected 16 

that several variables associated with both the abiotic environment (rainfall: Hodge et al. 17 

2009) and the social environment (group size: Russell et al. 2002) would influence maternal 18 

condition. Maternal condition in turn was likely to influence litter traits such as litter size, 19 

average emergence weight, and proportion litter survival. 20 

 21 

Data collection 22 

All data were collected at the Kuruman River Reserve in the Kalahari region of South Africa 23 

(26°58´ S, 21°49´ E) between December 1996 and April 2011. The study population 24 



observed over this period included over 40 social groups; our dataset includes litters born in 1 

22 of these groups. Groups were visited every 1-3 days. All individuals were habituated to 2 

close human proximity (<1 m), and were easily identifiable by unique dye-mark patterns 3 

(Hodge et al. 2008). The majority of individuals (>95%) were able to be voluntarily weighed 4 

on electronic scales (±1g) (Clutton-Brock et al. 2004). Individuals were weighed before they 5 

commenced foraging in the morning. Dominance rank is easily detected, as dominant females 6 

are the primary breeders in the group, and other individuals are behaviourally submissive to 7 

her. The dataset we used contained only litters born to dominant females and these were the 8 

only litters being raised by the group at that time. While subordinate females may 9 

occasionally breed, no subordinate litters are included in this analysis, and allonurses in this 10 

dataset were not concurrently nursing young of their own. Litters born to dominant females 11 

were given a binary code identifying whether they were nursed by more than one female 12 

(allonursed - “1”), or only by their mother (not allonursed - “0”). Lactation is easy to detect 13 

both in mothers and allonurses due to the obvious presence of damp, sandy rings around the 14 

nipples of lactating females (MacLeod et al. 2013).  15 

 16 

Meerkat pups are born in an underground burrow, where they remain until they 17 

emerge at approximately three weeks of age. Few pups are lost during the birth-emergence 18 

period, unless the whole litter is lost or killed; this has been confirmed by ultrasonic imaging 19 

data (Russell et al. 2003). Litter size at emergence was therefore judged to be a suitable proxy 20 

for the same measurement at birth. Emergence weights were calculated for each pup by 21 

averaging all weight measurements collected before 1 month of age; from this data we 22 

calculated the mean emergence weight for each litter. Whether a pup survived to 23 



independence (3 months of age) was determined; from this data we determined the proportion 1 

of surviving offspring per litter (number of survivors to 3 months/litter size).  2 

 3 

Maternal condition at conception was calculated as the residuals of conception 4 

biphasic growth model (English et al. 2012). It is therefore a measure of how heavy the 5 

female was for her age, relative to other females in the population. Females with positive 6 

residual values are in relatively good condition, and females with negative residual values are 7 

in relatively poor condition. Conception date was estimated by back-dating the length of 8 

gestation (70 days: Russell et al. 2002) from birth of a litter. Maternal mass at conception was 9 

the mean of the female’s pre-foraging mass records in the week after the conception date. 10 

Maternal age was measured in days from the date of her birth to the date of conception. 11 

Maternal condition at the end of lactation was calculated in the same way, using the mean of 12 

the female’s pre-foraging mass records in the week after she stopped lactating, and her age on 13 

the last day of lactation. Post-lactation weight is obviously affected if females reconceive 14 

during lactation – as we were testing effects on interbirth interval we could not standardize 15 

this measure by omitting any females that were pregnant again during this time from this 16 

analysis. However, as there is no discernible weight gain during the first month of pregnancy 17 

(Sharp et al. 2013), early pregnancy should not have a strong effect on post-lactation 18 

condition.  19 

 20 

Maternal lactation duration was calculated as the time in days between the recorded 21 

onset and cessation of lactation. Lactation periods artificially shortened by the death of a litter 22 

or mother were not included in the analyses (N=306 excluded). Likewise, records without 23 

sufficient accuracy (either the start or end of lactation had occurred when the female had not 24 



been seen for over 7 days, N=89), or where an allolactation period overlapped with lactation 1 

for the female’s own litter (N=5), were excluded from analyses. Resultantly all records of 2 

lactation duration used in the analyses were accurate to within a week. Interbirth interval was 3 

defined as the time in days between the birth of a current litter, and that of a subsequent litter. 4 

Although meerkats can potentially breed year round, there is a substantial drop in births 5 

between May-July and a peak in births in Nov-Dec. We thus deemed the reproductive season 6 

to begin in July, and litters born from July onward were the first of the season. We excluded 7 

interbirth intervals that spanned reproductive seasons (i.e., between litters born at the end of 8 

one season and those born at the beginning of the next), as the length of these periods is 9 

likely to be driven primarily by environmental variables.   10 

 11 

Rainfall is an established proxy for resource availability in this system (Hodge et al. 12 

2009), and accounts for effects of environmental and seasonal variation. For each litter, we 13 

calculated average daily rainfall (ml) between litter conception and birth. We also include 14 

litter order (within the group, within the season) to account for variation according to time in 15 

the season that might not be explained by rainfall. Group size was defined as the total number 16 

of adult individuals (older than 6 months of age) present in the group on the litter’s birthdate.  17 

 18 

In total, we had complete data on 120 different litters from 39 females across 12 19 

years. Of these 120 litters, allonursing occurred in 58 litters which is consistent with 20 

frequencies seen in larger samples (MacLeod et al. 2013). Ranges, means, and standard 21 

deviation values are reported for all variables in the model in Supplementary Table 1. 22 

 23 

Statistical analysis 24 



We used structural equation modelling (SEM) to examine how environmental variables and 1 

allonursing influenced maternal and litter traits. Structural equation modelling is particularly 2 

useful when variables are not independent of one another and can quantify the direct and 3 

indirect effects of factors while holding other factors constant (Grace 2006; Grace 2008). We 4 

used AMOS (Arbuckle 2006) to create our a priori hypothesized model and assess its 5 

adequacy (confirmatory analyses sensu Grace 2006; Grace 2008). We did not remove any 6 

non-significant relationships from the hypothesized model. We included curved lines without 7 

arrows between the errors of the following variables that we predicted to be strongly 8 

correlated with one another (i.e., covariance between residuals): condition of mothers pre-9 

conception and post-lactation; rainfall and litter order; and number of offspring in a litter and 10 

the average mass of an offspring at emergence. Transformation of variables was determined 11 

based on the assessment of normality in AMOS to ensure that the data were approximately 12 

multivariate normal. Most variables were untransformed except for rainfall, interbirth interval 13 

and emergence weight which were natural log-transformed. We added one to rainfall values 14 

to account for zero values prior to transformation.  15 

 16 

We compared the fit of our a priori hypothesized model to the fit of two alternative 17 

models. First, to examine whether including allonursing was an important component of the 18 

model (whether it improved the fit of the model), we compared our hypothesized model (with 19 

allonursing included) to an alternative ‘allonursing excluded’ model where the binomial 20 

‘allonursing’ variable and all of its relationships were removed. Second, to examine whether 21 

there were maternal influences across years particular to the identity of the mother, we 22 

compared our hypothesized model (without mother identity) to an alternative model 23 

including mother identity as an observed variable. In this alternative ‘mother identity 24 



included’ model, mother identity connected the following variables: maternal condition pre-1 

conception, maternal condition post-lactation, lactation duration, average emergence mass, 2 

litter size and proportion survival.  3 

 4 

To examine whether the nature and extent of effects of allonursing depends on 5 

maternal condition, we again used our a priori hypothesized model but instead of treating all 6 

mothers as part of a single group (as described above), we separated mothers into two groups 7 

based on their pre-conception condition. Mothers with positive residuals pre-conception were 8 

included in the ‘good condition’ group (N = 68) and mothers with negative pre-conception 9 

residuals were included in the ‘poor condition’ group (N = 52). We specified these two 10 

groups in the data structure and reran our a priori hypothesized model. In so doing, the 11 

relationships among the factors in the model are free to vary between the maternal condition 12 

groups (i.e. no constraints) although a single model is fit to the dataset. We then compared 13 

our hypothesized model with no constraints to a model where we constrained the 14 

relationships with allonursing to be equal between our maternal condition groups. In other 15 

words, we specified four constraints and constrained the regression weights between 16 

allonursing and ‘maternal lactation duration’, ‘litter order’, ‘post-lactation maternal condition’ 17 

and ‘mean litter emergence weight’ to be equivalent between good and poor quality mothers. 18 

By comparing the unconstrained and constrained models, we can examine whether the 19 

relationships with allonursing are significantly different between mothers of good versus poor 20 

condition. If, for example, there are benefits of allonursing for poor quality mothers but not 21 

for good quality mothers, then we should find a significant difference between these models, 22 

with the constrained model being unsupported.  23 



 1 

In comparing models, we subtracted the Chi-square value of our a priori hypothesized 2 

model from that of the alternative model and determined whether this difference was 3 

statistically significant at the difference in degrees of freedom between the two models 4 

(Grace 2006). Standardized regression weights (henceforth S.R.W.’s) are reported for 5 

relationships between variables in our hypothesized model. These estimates can be 6 

interpreted as the strength of an association and indicate how changing a variable by 1 7 

standard deviation would impact another connected variable (in standard deviations) while 8 

holding all other variables constant. 9 

 10 

Results 11 
 12 

The a priori hypothesized structural equation model fit the data adequately and was not 13 

rejected (Table 1, Fig. 2). Allonursing did not have a significant effect on any of the paths 14 

specified in our hypothesized model: comparing the hypothesized model to the alternative 15 

‘allonursing excluded’ model indicated that the models did not differ significantly from one 16 

another (χ2
 difference = 1.849, df = 6, P = 0.933). The alternative ‘allonursing excluded’ 17 

model fit the data adequately and was in fact a better fit to the data than our hypothesized 18 

model including allonursing (according to AIC), suggesting that allonursing did not affect 19 

patterns in the hypothesized model substantially (Table 1). Inclusion of maternal identity and 20 

its connections to maternal and litter traits significantly reduced model fit compared to the 21 

hypothesized model (χ2
 difference = 15.139, df = 5, P = 0.010) and did not adequately fit the 22 

data (Table 1). 23 



 1 

The comparison between the models with and without allonursing suggests that the 2 

presence of allonursing did not contribute significantly to the overall patterns in the model. 3 

The weak effect of allonursing is further confirmed by examining its influence on both 4 

maternal and litter traits (Fig. 2). Allonursing did not strongly affect average pup emergence 5 

weight (S.R.W.= -0.11, P = 0.137), or influence pup survival indirectly (S.R.W. = -0.01). The 6 

presence of allonursing had its strongest influence on the body condition of mothers post-7 

lactation with mothers being in lower condition after nursing if their litters had been 8 

allonursed, though these effects were weak and marginally not significant  (S.R.W. = -0.14, P 9 

= 0.052). The presence of allonursing did not correlate with the lactation duration of mothers 10 

(S.R.W. = -0.06, P = 0.480). Allonursing had only a very small indirect effect on interbirth 11 

interval (S.R.W. = 0.07) through its effects on post-lactation maternal condition and lactation 12 

duration. Allonursing was more likely to occur for later litters (S.R.W. = 0.21; P = 0.018), 13 

which tended to be larger (S.R.W. = 0.43; P <0.001). 14 

 15 

Maternal condition at conception was not associated with how long mothers nursed 16 

the litter (S.R.W. = 0.01, P = 0.938). However, mothers that had nursed for longer were 17 

significantly heavier at the end of lactation (S.R.W. = 0.18, P = 0.014), and mothers in good 18 

condition after lactation reconceived faster (S.R.W. = -0.51, P < 0.001). Pup weight at 19 

emergence was strongly positively associated with maternal condition: mothers that were 20 

heavier after lactation had larger pups (S.R.W. = 0.38, P < 0.001). Pups were more likely to 21 

be small at emergence when they had been nursed for longer periods by their mother (S.R.W. 22 

= -0.29, P < 0.001). Measures of maternal condition were more strongly influenced by 23 

environmental factors than by the presence of allonursing: higher rainfall and larger groups 24 

were associated with poorer maternal condition pre-conception (rainfall: S.R.W. = -0.20, P = 25 

0.019; group size: S.R.W. = -0.15, P = 0.035). Higher rainfall was also weakly associated 26 



with shorter interbirth intervals and lower pup survival although neither relationship was 1 

significant (interbirth interval: S.R.W. = -0.14, P = 0.066; pup survival: S.R.W. = -0.19, P = 2 

0.081).  3 

 4 

The benefits of allonursing (or lack of) did not strongly depend on maternal body 5 

condition. The fit of the hypothesized model and the relationships among the factors were 6 

similar regardless of whether we included all mothers in a single group (Table 1) or separated 7 

them into two groups based on their pre-conception condition (no constraints: χ2 
= 57.664, 8 

d.f. = 52, P = 0.274, CFI = 0.97, RMSEA = 0.030, AIC = 261.66). Importantly, the 9 

relationships with allonursing did not differ significantly between mothers of relatively good 10 

and poor pre-conception condition and the constrained model adequately fit the data (paths 11 

with allonursing constrained: χ2 
= 59.636, d.f. = 56, P = 0.345, CFI = 0.981, RMSEA = 12 

0.023, AIC = 255.64). Allowing the relationships with allonursing to vary freely between 13 

good and poor quality mothers did not substantially improve the model over a constrained 14 

model (χ2
 difference = 1.714, df = 4, P = 0.788). 15 

 16 

Discussion 17 

 18 

We found no evidence to suggest that allonursing significantly benefits pups in terms of 19 

increasing their weight at emergence or survival, or that allonursing significantly benefits 20 

mothers in terms of reducing their lactation duration or interbirth intervals, or boosting their 21 

physical condition. Instead, litter traits and maternal reproductive decisions were strongly 22 

affected by maternal condition (independent of identity), which was itself strongly influenced 23 



by environmental factors. Furthermore, the patterns with allonursing did not differ 1 

substantially between mothers in relatively good condition and those in relatively poor 2 

condition. These results suggest that in this species, allonursing does not meet the definition 3 

of a cooperative behaviour (West et al. 2007). If allonursing does not have measurable 4 

benefits for pups or mothers, why then does it occur so regularly (~50% of litters)? We 5 

suggest three possible, and non-mutually exclusive, reasons for why allonursing might occur 6 

in this species: it may incur little cost, it may provide allonurses with social benefits, or the 7 

benefits of allonursing to recipients may be cryptic. 8 

 9 

Allonursing may occur in the meerkat not because it is beneficial to pups or mothers, 10 

but because the costs are low for subordinate females. Meerkat females are more likely to 11 

allonurse when they have lost litters of their own and have excess milk (MacLeod et al. 12 

2013). Allonursing is similarly suggested to occur in lions when females have excess milk as 13 

a low-cost by-product of crèching (Pusey & Packer 1994). For example, female lions tend to 14 

nurse non-offspring when their own offspring are older and have less need of it, and when 15 

their own litters are small. The “dumping” of excess milk not consumed by a female’s own 16 

offspring is also thought to play a role in the evolution of allonursing in bats and seals 17 

(Wilkinson 1992; Beck 2000). These results are in line with comparative analyses across 18 

mammalian species where indirect benefits from allonursing are likely, that suggest that 19 

allonursing has evolved where the costs are low (MacLeod & Lukas 2014). 20 

 21 

 Allonursing may also confer social benefits to the allonurse without necessarily 22 

benefitting offspring or mother. For example, tufted capuchin (Cebus nigritus) females 23 

preferentially nurse the offspring of dominant females, possibly to gain social benefits such 24 

as increased tolerance or willingness to share resources by the dominant female (Baldovino & 25 



Di Bitteti 2006). Subordinate female meerkats are more likely to allonurse if they have 1 

recently been forcibly evicted from the group by the dominant female, or if they have 2 

recently been pregnant (MacLeod et al. 2013), both conditions entailing sustained aggression 3 

from the dominant female (Young 2006). Allonursing to increase the tolerance of the 4 

dominant female may therefore be a beneficial strategy for females in these categories. This 5 

hypothesis, however, implies that not helping may result in punishment. There is no evidence 6 

for coercion of subordinate meerkat females by the dominant female (Santema & Clutton-7 

Brock 2012), and evidence for punishment of lazy helpers is restricted to male helpers which 8 

“false feed” pups (Clutton-Brock et al. 2005). Thus, appeasement of the dominant female 9 

seems unlikely to be a main driving force behind subordinate allonursing in this species. 10 

 11 

Alternatively, offspring may benefit from allonursing in cryptic ways not directly 12 

related to growth and survival: for example, by gaining immunological benefits from 13 

suckling from more than one female (Roulin & Heeb 1999). By receiving milk from a 14 

number of females, offspring may receive a wider range of immune compounds, boosting 15 

immunocompetence (Roulin & Heeb 1999). Although we did not see a difference in survival 16 

to independence, which could be influenced by these sorts of immunological benefits, it is 17 

possible that immunological benefits may only be detectable in adulthood when variation in 18 

survival may be greater. It would therefore be informative to look for long term effects of 19 

allonursing in adult individuals. A detailed analysis of milk composition and immune 20 

compounds would also provide information on whether allonursed pups do indeed receive a 21 

wider range of immune compounds compared to pups that only receive milk from their 22 

mothers.  23 

 24 



Another possible cryptic benefit of allonursing is that it serves to soothe offspring 1 

after a stressful event. This is thought to be the case in tufted capuchin monkeys, where 2 

allonursing bouts are short and non-lactating females may also suckle young  (Baldovino & 3 

Di Bitteti 2006); and in African elephants, where allonurses are most commonly nulliparous 4 

females that are unlikely to be transferring milk (Lee 1987). Non-nutritive suckling is 5 

widespread in mammals (Cameron 1998) and soothing offspring via non-nutritive suckling 6 

might possibly explain allonursing in non-pregnant meerkat females, which has been thought 7 

to represent spontaneous lactation (Doolan & Macdonald 1999). However, the majority of 8 

meerkat allonurses are females that have recently lost litters and so are likely to have excess 9 

milk. In these cases, it is likely that milk is being transferred during nursing, making it 10 

unlikely that soothing is the primary function of allonursing in meerkats. Whether and how 11 

much milk is transferred to offspring by non-pregnant females is necessary to determine the 12 

whether soothing offspring is a cryptic benefit of allonursing in this species. 13 

 14 

 Although non-significant, the apparent associations between allonursing and poor 15 

maternal condition post-lactation and low pup emergence weights are surprising. Despite the 16 

inferred directionality of the relationships in the model, these associations are correlative and 17 

do not necessarily indicate that allonursing has negative effects on maternal or litter traits. 18 

Instead, these negative associations are more likely indicative of allonursing being more 19 

common when mothers are in poor condition, and that initially small pups may be more 20 

likely to be allonursed. When mothers are in relatively poor condition, allonurses nurse for 21 

longer periods (MacLeod et al. 2013), indicating that allonurses may compensate for a 22 

reduced ability of mothers to invest in lactation. Evidence for allonursing as compensation 23 

for low birth weight and/or nutritional deficiency has been seen in cattle: calves with low 24 

birth weight and those which were suckled at a lower rate by their mother, suckled other 25 



females at a higher rate (Vichova & Bartos 2005). Likewise, guanaco calves which were 1 

allonursed had mothers with lower body weight than the mothers of calves that did not 2 

receive allonursing (Zapata et al. 2010). In this analysis, however, we do not see different 3 

relationships with allonursing for mothers in good versus poor condition, which might be 4 

expected if compensation for poor maternal condition was the primary function of 5 

allonursing in this species. Unfortunately the greatest potential compensatory effects on pup 6 

growth are likely to be seen before access to the pups is possible, as the average length of 7 

allonursing is around 30 days (MacLeod et al. 2013), and weight data for pups only begins to 8 

be collected around this time.  9 

 10 

In contrast to the weak effects of allonursing, environmental factors had a strong 11 

effect on maternal condition. Maternal condition, unexpectedly, was poorest when mothers 12 

were in large groups and when rainfall was high. Subordinate female meerkats are more 13 

likely to breed, and be evicted, when rainfall is high, and groups are large (Clutton-Brock et 14 

al. 2001; Clutton-Brock et al. 2008). If the aggressive suppression of subordinate breeding 15 

carries a physical cost, as has been shown in a number of species (Hackländer et al. 2003; 16 

Bell et al. 2012), dominant female body condition could consequently be reduced in these 17 

circumstances. However, this hypothesis would rely on the costs of reproductive suppression 18 

being greater than any benefits accrued through the increased food availability shown to be 19 

associated with rainfall (Barnard 2000; Russell et al. 2002; Hodge et al. 2009), so this 20 

explanation remains speculative. Litter traits and maternal reproductive decisions were 21 

primarily influenced by maternal condition, rather than allonursing. Mothers in good 22 

condition reconceived quickly and produced large pups which consequently had higher 23 

survival to independence. Contrary to predictions, mothers that nursed their litters the longest 24 



were in the best condition after lactation. This result could indicate that the time spent 1 

nursing does not represent the cost of lactation or milk transfer (Cameron 1998).  2 

 3 

 A number of hypotheses for why females allonurse assumes that allonursing is a 4 

cooperative behavior and is associated with benefits to recipients. We examined potential 5 

direct and indirect benefits of allonursing in the meerkat to determine whether allonursing fits 6 

the definition of a cooperative behavior in meerkats. Our results, however, suggest that 7 

allonursing does not have a strong influence on the framework we investigated, and is not 8 

associated with clear physical benefits to pups or mothers. These results caution that the 9 

benefits of allonursing to recipients, and its potential cooperative nature, should not be 10 

assumed. Quantification of what, if any, benefits allonursing provides to recipients in other 11 

species would provide valuable insights into the evolution of this behaviour. Our multivariate 12 

structural equation modelling approach also unveils interesting patterns that may have been 13 

masked by a univariate approach: for example, though we would have predicted that high 14 

rainfall and large group size should positively influence offspring condition, these variables 15 

were negatively associated with maternal condition, which was the strongest predictor of 16 

offspring condition. This highlights the usefulness of a multivariate approach, especially 17 

when dealing with social behaviour where many variables are likely to be interdependent. 18 

 19 
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Table 1. Chi-squared values and fit indices of our three candidate models. For a model to adequately fit the data, 6 
P > 0.05, and CFI > 0.95. Model (c) does not fit the data. 7 

Model χ2 d.f. P CFI RMSEA AIC 

a) Hypothesized model 29.995 26 0.268 0.982 0.036 131.99 

b) ‘Allonursing 

excluded’ model 

28.146 20 0.106 0.963 0.059 118.15 

c) ‘Mother identity 

included’ model 

45.134 31 0.049 0.939 0.062 163.13 

 8 
CFI = Comparative Fit Index; RMSEA = Root Mean Square Error of Approximation; AIC = Akaike 9 
Information Criterion. 10 
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FIGURE HEADINGS 8 
 9 

 10 
Figure 1. A general framework regarding associations of interest among environmental 11 

factors, maternal traits, litter traits and allonursing.  12 

 13 



 1 
Figure 2. Path diagram for the a priori hypothesized structural equation model showing the 2 

standardized regression weights (measured in standard deviation units). Statistically 3 

significant paths are indicated by solid arrows (P < 0.05) with the strength of the relationships 4 

indicated by the width of the arrows and color indicating the direction (positive relationships 5 

in black and negative relationships in grey). Non-significant paths are indicated by dashed 6 



arrows. Straight arrows reflect causal paths; curved lines without arrows indicate correlations. 1 

The values in the boxes indicate the amount of variation in that variable explained by the 2 

input arrows (R
2 

values). N = 120 litters. (See supplemental Figure S1 for unstandardized 3 

coefficients).  4 

 5 

 6 



 1 


