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Abstract—Any improvement in packet classification perfor-
mance is crucial to ensure Internet functions continue to track
the ever-increasing link capacities. Packet classification is the
foundation of many Internet functions: from fundamental packet-
forwarding to advanced features such as Quality of Service en-
forcement, monitoring and security functions. This work proposes
a novel trie-based classification algorithm, named Jump-Ahead
Trie (JA-trie), utilizing an entropy-based pre-processing phase
and a novel approach to wildcard matching. Through extensive
experimental tests, we demonstrate that our proposed algorithm
is able to outperform a range of state-of-the-art classification
algorithms.

I. INTRODUCTION

The Internet has been characterized by a relentless growth
and diversity in network capacities, user and host-count, and
an equally staggering diversity of applications. Additionally,
the emergence of new network applications have introduced
significant challenges in Quality of Service (QoS) support for
high-speed networks. Packet classification holds a key role in
modern communication networks, not only to forward packets
in routers but in order to provide security and QoS. Although
many solutions have been proposed over the years, each ap-
proach has limitations. This has permitted a continuous stream
of approaches to be realised, each improving performance
and attending past limitations. Each approach tipically seeks
an optimization (e.g., memory foot-print, inherent latency
of lookups, and algorithmic complexity) permitting a range
of approaches to coexist - their precise implementation and
behaviour dictating the domain of use.

In this work, we propose a novel trie-based classification
algorithm, named Jump-Ahead Trie (JA-trie). Our approach
builds two core ideas: an entropy based pre-processing step is
applied to the classification rule-set and a novel mechanism
is used to incorporate wildcard entries. The entropy is strictly
related to the number of nodes created in a tree-based data
structure indeed. Using such a property we show that it is
possible to reduce the memory requirements of the lookup
data structure. Section III details the proposed classification
algorithms, focusing initially on the construction of the JA-
trie data structure and then discussing the entropy-based pre-
processing phase.

We present the results of experimental evaluations con-
ducted across a range of classification rule-sets. These results
illustrate the effectiveness of our proposed approach and

service to highlight our performance for both tree-depth and
memory footprint. Along with an outline of the experiments,
Section IV presents results for our algorithm and a comparison
with various state-of-the-art algorithms.

We first put our work into the context of the field by
describing the related work.

II. RELATED WORK

Packet classification has been extensively studied over the
past decade. Many different kind of approaches have been
applied to this problem in order to meet the ever-increasing
demands of new networking devices. To provide context to our
approach, we outline a representative set of current algorithms
from each of the CAM-based, trie-based and hash-based
classes of classification.

Hardware classifiers traditionally used Content Addressable
Memory (CAM) based techniques to provide key-based table
lookups. Given an input key, a CAM compares this against all
table entries in parallel; hence, a lookup effectively requires
only one clock cycle. While binary CAMs perform well for
exact match operations, the widespread use of CIDR (Classless
Inter-Domain Routing) requires storing and searching entries
with arbitrary prefix lengths. Hence, ternary CAMs have
become a common hardware approach. With the ability to
store an additional don’t care state this enables them to provide
single clock cycle lookups for arbitrary prefix lengths. This
high degree of parallelism comes at the cost of storage density
and power consumption. Therefore, solutions such as [1], [2]
suffer the same problem.

To overcome these issues, many trie-based, and hash-based,
solutions have been proposed. A few solutions try to leverage
longest-prefix matching trie-based algorithms (which were
conceived for lookup applications) to bi-dimensional matching
involving several fields. Such solutions [3] are commonly used
when rules are specified only over destination and source IP
addresses. Other solutions leverage a geometric formalization
of the classification problem [4]: as each classification rule can
be thought as a range in the multi-dimensional space, classify-
ing a packet means finding out which ranges the corresponding
point belongs to. To this end, well-known results from the field
of computational geometry can be used. Cohen & Lund [5]
proposed to optimize decision trees by introducing the opti-
mization of common branches. These common branches are



rules that, due to wildcards, get assigned to both children of
a decision node; separate-handling reduces worst-case size. A
speed-up is proposed by [6] by using a small cache using a
set of evolving rules, which preserve classification semantics.
Finally, [7] achieves improvements by partitioning the rules
into sets, which are close to one another in the tuple space.
Thereby leveraging information from single-field lookups to
discard subsets and limit the search space. A further class
of algorithms leverage decision trees: although, formally, the
algorithm model is analogous to the trie-based approaches,
it allows for larger flexibility. Instead of having all of the
relevant fields inspected in a sequential manner, each node can
perform an arbitrary check. In particular, Hicuts [8], performs
a range check on a particular field, while [9] tests single
bits. Hypercuts [10] further improves performance by checking
multiple fields at each step. Finally, Efficuts [11] eliminates
overlap among small and large rules and achieves fewer access
per node.

As for hash-based approaches, the Tuple Space Search
(TSS) algorithm [12] currently remains widely respected.
The scheme is motivated by the observation that while fil-
ter databases contain many different prefixes or ranges, the
number of distinct prefix lengths tends to be small. Thus, the
number of distinct combinations of prefix lengths is also small.

It is clear that the opportunities for performance improve-
ments are significant.

III. AN ENTROPY–BASED PACKET CLASSIFICATION
SCHEME

The growth that is a hallmark of Internet networking applies
a specific pressure to network-devices; devices must keep-pace
with this demand. This has led to increasingly optimised and
specialised algorithms, resulting in the packet classification
problem being still an open and on-going issue. The common
approach to packet classification is to create a tree-based
data structure starting from a given rule-set. Every time a
new packet arrives, the 5-tuple (i.e., IP source/destination
addresses, protocol, and layer 4 ports) is extracted and the
lookup process on the data structure starts. Accelerating such
a process can be done by either compressing the data structure
(thus allowing to use smaller and faster memories) or by
reducing the number of memory accesses.

To this end, we have developed a new classification struc-
ture: Jump-Ahead Trie (JA-trie) that, along with entropy-based
optimisation (described in § III-B), is able to reduce the
memory-size footprint while maintaining a very small tree-
depth, leading to fast key lookup times.

The remainder of this section outlines the classification tree
(§III-A), covering the algorithmic processes for forming the
Trie structure (§III-A1) and the mechanism for performing
lookups within the JA-Trie (§III-A2). The Entropy-based pre-
processing phase is outlined in the final sub-section (§III-B).

A. JA-Trie: Jump-ahead Trie data structure

A prefix-tree (i.e., trie) is an ordered tree data structure that
is used to store a dynamic set or associative array where the

keys are usually strings. All the descendants of a node share a
common prefix of the string associated with that node, with the
tree root associated with the empty string. Values are normally
not associated to every node of the tree, but just to the leaves
and to some of the inner nodes that correspond to keys of
interest.

While unibit tries are traversed using a bit at a time, (an
approach that offers excellent memory-usage performance but
terrible memory-lookup overheads; proportional in lookups to
the tree-depth), the multi-bit tries are traversed using b-bits
(i.e., a stride) at a time. This lowers the required number of
memory accesses per lookup, but at the cost of an increase
in memory footprint. For this reason we propose an improved
multi-bit trie, based in part on the “classical” 8-bit multibit-
trie [13][§11.5 Multibit Tries].

Our proposal is significantly different from the “classical”
8-bit multibit-trie in our incorporation of wildcard entries.
Indeed, it is well-understood that wildcards have a significant
performance impact on a tree-based data structure because
they force the creation of a different node for each of the possi-
ble values of the wildcard. This, in-turn, significantly increases
the memory requirements when incorporating wildcards into
the “classical” 8-bit multibit-trie. Moreover, wildcards do not
usefully discern different rules which leads to an increase in
the required tree-depth leading to a slower lookup process.
The drawbacks of incorporating wildcards into “classical” 8-
bit multibit-trie provide the motivation for our approach. Jump-
Ahead Trie, unlike the “classical” 8-bit multibit-trie, does not
directly incorporate wildcard strides. Instead, lookups jump
from one fixed stride to the next.

Let us analyse in detail how this has been achieved. Firstly,
let us consider two different bitmaps that have been inserted
to enable the “jump-ahead” feature:

• transition bitmap: every transition has a k-bit
bitmap associated, where k is the number of strides
composing the string to match. The jth-bit of the bitmap
is asserted if the transition represents the jth stride of the
string to match. It is important to note that a transition
can represent more than one stride at the same time.

• rule bitmap: every rule stored in a node also has a
k-bit bitmap, in which the jth-bit is asserted if the rule is
referring to the jth chunk of the tuple.

In the subsequent sections we will describe both the trie
construction and lookup processes in order to better understand
the JA-trie properties.

1) Trie construction: Algorithm 1 shows the pseudocode
for the trie construction process. Firstly, we note that the
construction-process requires strides to be composed of either
fixed values or wildcards (rule expansion over strides is needed
when such properties are not guaranteed in the actual rule-set).

During the trie construction, only the strides with fixed
values produce a new node in the data structure, while strides
that are wildcards do not create any new node because they are
merged with existing nodes by means of transition bitmaps.
The reduction in the number of transitions and inner-nodes,



Algorithm 1 Pseudo-code for trie construction. n is the current
node, k is the number of strides, S(j) is the jth stride of a
rule

1: procedure CONSTRUCTION(rule)
2: create ROOT
3: read(rule)
4: while rule do
5: n = ROOT
6: for j = 0→ k − 1 do
7: q = S(j)
8: if q 6= ∗ then
9: if n.next(q) 6= NULL then

10: n.TransitionBitmap[j]← 1
11: n = n.next(q)
12: else
13: create NEWNODE
14: n.next(q) = NEWNODE
15: n.TransitionBitmap[j]← 1
16: end if
17: n.RuleBitmap[j] = 1
18: end if
19: end for
20: n.Store(rule, RuleBitmap)
21: end while
22: end procedure

which results from wildcard-strides, leads to a reduction in
the overall memory footprint of the data structure.

Rule Stride 1 Stride 2 Stride 3 Stride 4
R1 ∗ 10 ∗ 7
R2 10 ∗ 2 6
R3 10 2 6 4
R4 10 ∗ 7 ∗

TABLE I
RULE SET EXAMPLE

To illustrate such a concept, let us refer to the rule-set
proposed in Table I, where wildcards are indicated by the
symbol ∗, and to the resulting JA-trie shown in Figure 1. As
can be clearly seen the root node has only one child node,
corresponding to the transition that is obvious for rules R2,
R3, and R4, while it does not have any transition for the rule
R1, where we have a wildcard in the first stride. This implies
that during the lookup process we move from the root node
to the child node, when considering R2, R3, or R4, while we
do not have any transition when considering R1.

Now, let us consider the transitions due to the second stride.
In our case R1 would generate a transition that is already
present in the data structure, R2 and R4 do not generate any
transition (because they have a wildcard in the corresponding
stride), and R3 generates a transition toward a child node,
corresponding to the value 2. It is clear that in this way,
the same node can refer to different strides of different rules.
Considering the current example, the transition from the root
node toward the only child node can refer either to the first
stride of rules R2, R3, and R4, or to the second stride of R1.
To solve such an ambiguity every child node has to maintain
a bitmap, transition bitmap illustrated in Figure 1 alongside
each transition in the figure. This is used in the lookup process
to identify which strides must be considered.

Fig. 1. JA-Trie example

In our example, the transition bitmap associated to the “first”
child node will have the first and second bit set, to indicate
that the transition can be related either to the first or second
stride.

This approach introduces some false positives; more than
one stride can be represented by the same node, thus ambiguity
occurs when we reach a tree leaf corresponding to one or more
rules. We cannot know which transitions we have actually
done.

For this reason, each rule has an associated bitmap. The rule
bitmap associated with each rule is illustrated in Figure 1 as
a table in each transition. The bitmap highlights which strides
have been used to obtain such a result; the lookup process
will consider the rule bitmap to see if it matches the followed
transitions, thus selecting the correct rule.

In our example the leaf node with transition 7 has two rule
bitmaps, corresponding to R1 and R4.

2) Lookup: Algorithm 2 shows the pseudocode for the
lookup process. Jumping from one node to another is allowed
only if there is a valid transition for a given stride S(i). Since
more than one stride can be represented by the same node it
is not obvious to have a valid transition for a matching stride
S(i), beacuse it could be referred to another one (S(j)). The
transition bitmaps are used just to avoid possible wrong paths.

During the lookup process a temporary bitmap (i.e.,
BMclass) must be updated in order to keep track of the
considered strides.

Every time a new node is reached, all possible strides (aside
from the ones already traversed) must be taken into account
to find a valid transition. Once a transition is found, the
temporary bitmap must be updated by asserting the bit referred
to the stride just used. If no valid transitions are present, the



Algorithm 2 Pseudo-code for the lookup in a JA-Trie. n is
the current node, k is the number of strides and S(i) is the
ith stride of the input string

1: procedure LOOKUP(S)
2: n = ROOT
3: for i = 0→ k − 1 do
4: BMclass[i]← 0
5: end for
6: for i = 0→ k − 1 do
7: q ← S(i)
8: if n.next(q) 6= NULL then n1 = n.next(q)
9: if n1.T ransitionBitmap[i] = 1 then

10: BMclass[i]← 1
11: n← n.next(q)
12: end if
13: end if
14: end for
15: if BMclass == RuleBitmap then
16: select(rule)
17: end if
18: end procedure

process ends. Upon reaching a node that stores one or more
rules; if it has just one rule, the lookup result is obvious,
otherwise, if more rules are stored, the process must compare
the temporary bitmap with the rule bitmaps in order to find
the correct match.

B. Entropy-Based JA-Trie

In information theory, entropy is a measure of the uncer-
tainty in a random variable [14]. The term usually refers
to the Shannon entropy, which quantifies the expected value
of information contained in a message. Formally, given a
random variable X , which can assume n possible distinct
values {x1, x2, . . . , xn}, it is defined as:

H(X) =

n∑
i=1

P (xi)× log2
1

P (xi)
(1)

where P (xi) is the probability mass function of outcome xi.
In a nutshell, this means that an event with high probability

has low entropy and vice-versa. An analogous consideration
can also be applied to the strides; low value of the entropy
of a stride means that many strides from different rules share
the same value. Therefore, the entropy is strictly related to
the number of nodes created in a tree-based data structure.
Exploiting such a property makes possible to reduce the
memory requirements of the data structure. JA-Trie can benefit
from this observation, by employing two additional phases,
namely a pre-processing phase and an entropy-based byte
organisation phase.

The pre-processing phase takes care of dividing the rules
into 8-bit strides and calculates the entropy value over each of
them. We note that such a process needs strides composed of
either fixed values or wildcards. Since wildcard strides do not
produce any child node in the trie construction process, they
have zero entropy value.

Once the entropy values have been computed, the rules are
reorganised. In practice the different strides of the rules are
re-ordered based on increasing value of the entropy; the rules

are written so as that they begin with the stride with the lowest
entropy values, followed by the stride with the second lowest
entropy value and so on.

In contrast to a trie constructed without this pre-processing
phase, this phase reduces the number of nodes in the first
levels and enlarge the number of leaf nodes, leading to a
smaller memory footprint. The memory-size of the structure
can be sufficiently small to fit in cache, particularly for new-
generation of large-cache CPUs now entering the market [15],
thus potentially improving the overall lookup speed.

R1 64.91.107.0/32
R2 95.105.142.0/32
R3 96.105.142.0/32
R4 96.10.142.0/32

TABLE II
RULE SET EXAMPLE

Rule Stride 1 Stride 2 Stride 3 Stride 4
R1 64 91 107 0
R2 95 105 142 0
R3 96 105 142 0
R4 96 10 142 0

Entropy 1.5 1.5 0.81 0

TABLE III
RULE SET EXAMPLE, WITH STRIDES ENTROPY VALUES

Fig. 2. Example of standard JA-Trie

To better quantify the effectiveness of the preliminary phase,
let us take into account the rule set shown in Table II. In this
example there are four simple rules each based on a single IP
address. Splitting the rules into different 8-bit long strides, we
get Table III, containing the values of the entropy associated
to each of the single strides in the last row. The corresponding
JA-trie is shown in Figure 2.

Alternatively, applying the pre-processing phase, the pro-
cessed rule set is re-ordered on the basis of the strides entropy
value. This leads to the rule-set shown in Table IV and to the
related Entropy-Based-JA-Trie, shown in Figure 3.



Rule Stride 1 Stride 2 Stride 3 Stride 4
R1 0 107 64 91
R2 0 142 95 105
R3 0 142 96 105
R4 0 142 96 10

TABLE IV
ORDERED RULE SET EXAMPLE

Fig. 3. Example of Entroby-Based-JA-Trie

Even in this very simple case the Entropy-Based-JA-Trie
is more compact than the “standard” JA-Trie; presenting only
10 nodes instead of 15. It is worth highlighting that, given the
construction procedure the number of nodes of the Entropy-
Based-JA-Trie is always less than or equal-to the number of
nodes of the corresponding JA-Trie.

IV. SIMULATION RESULTS

In this section we present the results of an experimental
evaluation of the effectiveness of the proposed algorithm
(note that here and in the following, with the expression our
algorithm, if not differently specified, we always refer to the
Entropy-Based-JA-Trie).

Using Classbench [16] we have run several experimental
tests, varying the number of rules in the dataset (i.e., ranging
from 500 to 10,000 rules). For each dimension of the rule-set
we have generated 1,000 different rule-sets. Each plot shows
the mean value over all the rule-set tests for a particular
parameter. Moreover, to correctly evaluate the performance
of our method we have compared it with a number of the
most popular classification algorithms: WOO, TSS, HiCuts,
and HyperCuts [9], [12], [8], [10]. We chose the best possible
configuration for each algorithm, for example, both the best
binth and space factor in the case of HiCuts.

In common with the past-practice of other papers using
toolkit [8], [10] we do not provide lookup speed results as
this depends on the hardware used for the implementation
(e.g., sizing and use of fast and slow memories). Furthermore,
the majority of the comparative algorithms do not provide
information about sample implementations, rendering a direct
comparison to be error-prone at best while, at-worst, liable

Fig. 4. Comparison of Memory Occupancy between chosen algorithms for
different datasets

to misrepresent the work of others. Instead of direct lookup-
speed results, we use the tree-depth as a proxy representation
of lookup-speed. This is because, in general, the lookup speed
is closely proportional to tree-depth. This consideration allows
us to conclude that our algorithm has the potential to offer
good lookup-speed performance.

Figure 4 shows the memory occupancy of each algorithm.
In this case, the proposed algorithm clearly outperforms both
HiCuts and HyperCuts, but behaves slightly worse than WOO
and TSS.

Fig. 5. Comparison of Tree Depth between chosen algorithms for different
datasets

The tree depth is illustrated in Figure 5. It can be clearly
seen that the JA-trie method presents a near-constant behaviour
with the best performance over the comparison-set of algo-
rithms. Results are almost comparable to those offered by
either WOO or TSS for “small” rule-sets, but our algorithm
behaves considerably better when increasing the rule-set size
is increased.



While there are distinct algorithms capable of either the
best memory-footprint, or the best performance from the tree
with the least depth, aside from JA-trie, no algorithm can
provide a balance. The JA-trie algorithm is able to offer good
performance while considering both performance criteria and
thus this results in a good choice for fast packet classification.

Fig. 6. JA vs Entropy-based JA

Finally, Figure 6 shows the effectiveness of the entropy-
based pre-filtering phase on the memory occupancy. It is clear
that entropy can have a significant effect and its plausible that
such pre-filtering might improve the depth of a number of
other classification algorithms if applied appropriately.

V. CONCLUSIONS

In this work we introduced a novel classification algorithm:
the Entropy-based JA-trie. This approach utilizes an entropy-
based pre-processing phase along with a novel mechanism for
incorporating wildcards. An experimental evaluation illustrates
the effectiveness of the proposed solution for different data-
sets. Indeed, the algorithm is able to offer good performance
both in terms of memory occupation and tree depth. The exten-
sive comparison with state-of-the-art algorithms has demon-
strated that our proposal is able to overcome a significant
limitation of past algorithms able only to optimise a single
performance metric at a time.
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