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There is increasing evidence suggesting that epoxyeicosatrienoic acids (EETs) play an important role in cardioprotective mechanisms.
These include regulating vascular tone, modulating inflammatory responses, improving cardiomyocyte function and reducing
ischaemic damage, resulting in attenuation of animal models of cardiovascular risk factors. This review discusses the current knowledge
on the role of EETs in endothelium-dependent control of vascular tone in the healthy and in subjects with cardiovascular risk factors,
and considers the pharmacological potential of targeting this pathway.
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Introduction

Cardiovascular disease remains one of the greatest chal-
lenges faced by medicine today. It is responsible for ap-
proximately 3 in 10 deaths worldwide [1]. In the UK, 1 in
6 deaths in men and 1 in 10 deaths in women are attribut-
able to cardiovascular disease, resulting in an average of
200 deaths per day [2].

The vascular system is made up of approximately 60
000 miles of different-sized blood vessels, lined by a
single layer of endothelial cells [3]. The pioneering work
of Furchgott in the 1980s demonstrated that the endo-
thelium not only serves as an inert lining of blood
vessels, but releases endothelium-derived relaxing fac-
tors (EDRF) [4], later identified as nitric oxide (NO). It is
now known that the endothelium releases many
vasodilating molecules including prostacyclin (PGI2)
[5, 6], and endothelium-derived hyperpolarizing factors
(EDHF) (Figure 1) [7], and vasoconstricting molecules
such as endothelin, angiotensin II and thromboxane.
These regulate smooth muscle tone (Figure 2), balance
anticoagulation and thrombosis, modulate immune re-
sponses, and regulate cell growth. Shear stress exerted
on the vessel wall or stimulation of endothelial receptors
with drugs can induce the release of endothelium-
derived mediators [8]. Change in vascular tone in re-
sponse to pharmacological stimulation is a reproducible
‘surrogate measure’ of overall endothelial function [9],
which importantly predicts cardiovascular events in
humans [10–14].

Endothelial dysfunction, characterized by an under-
production of vasodilators and an overproduction of va-
soconstrictors, is a key predisposing factor to the
initiation of atherosclerosis [15]. It appears early in the
course of cardiovascular disease, even before the clinical
manifestation of atherosclerosis or vascular disease. Tradi-
tionally, endothelial dysfunction predominantly refers to
impaired NO signalling [16], but it has become evident
that other endothelium-derived mediators, such as EDHF,
may also be affected. EDHF (or EDHFs) describes a num-
ber of factors, including epoxyeicosatrienoic acids (EETs),
hydrogen peroxide (H2O2) [17], potassium (K+) ions
[18, 19] and likely other factors, depending on the vascular
bed. It appears that larger conduit arteries have a greater
expression of endothelial nitric oxide synthase (NOS),
whereas the EDHF mediated pathway becomes more sig-
nificant as vessel size reduces [20]. Indeed, resistance ar-
teries with a diameter <400μm are vital in modulating
peripheral vascular resistance, and may be involved in
the pathophysiology of hypertension. Increasing evidence
suggests that EETs, in particular, exert cardio-protective
effects in the smaller resistance vessels, and up-regulating
the EETs signalling pathway pharmacologically may be
beneficial in improving endothelial function. All drug
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Figure 1
Mechanisms of endothelial dependent vasodilatation mediated by nitric oxide, prostacyclin and endothelium derived hyperpolarizing factors. Pharma-
cological agonists can bind to endothelial receptors and stimulate the release of these factors in a calcium dependent manner. The vasodilating factors
act on the smooth muscle and mediate vasodilatation by mechanisms shown in Figure 2. R, receptor; M1 and M3, muscarinic receptors; B2, bradykinin
receptor; Ca2+, calcium ions; NOS, nitric oxide synthase; NO, nitric oxide; GC, guanylate cyclase; cGMP, cyclic guanosine monophosphate; PGI2, prosta-
cyclin; AC, adenylate cyclase; cAMP, cyclic adenylate monophosphate; EDHF, endothelium derived hyperpolarising factor; EET, epoxyeicosatrienoic acid;
H2O2, hydrogen peroxide; K+, potassium ions
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and molecular target nomenclature in this review con-
forms to the British Journal of Pharmacology’s Guide
to Receptors and Channels [21].
Synthesis and metabolism of EETs

Arachidonic acid metabolism leads to the production of
two vasodilating factors, PGI2 and EETs. EETs are the
product of a number of cytochrome P450 (CYP450) en-
zymes. CYP2C and CYP2J produce EETs of four different
isoform,: 5,6-EET, 8,9-EET, 11,12-EET and 14,15-EET
(Figure 3) [22]. EETs are mainly produced by CYP2C9
and CYP2J9, although CYP2C8, CYP2C19 and CYP2J2
are also involved [23, 24]. CYP2C9 mainly produces
EETs in the vascular endothelial cells, and CYP2J9 is
expressed in the cardiomyocytes [25], kidneys [26],
pancreas [27], lung [28] and the brain [29], though, with
less catalytic activity compared with the 2C family [30].
CYP4A and CYP4F families in the vascular smooth mus-
cle cells catalyze the ω-hydroxylation of arachidonic
acid to hydroxyl-eicosatetraenoic acids (HETEs), which
act as vasoconstrictors in the vascular system. Although
this review mainly focuses on the role of EETs metabo-
lized from arachidonic acid, EETs can also be generated
from eicosapentaenoic acid, and mediate dilatation of
microvessels with comparable potency in a similar
mechanism [31].

In vivo, EETs are rapidly metabolized by soluble ep-
oxide hydrolase enzymes (sEH) to their corresponding
diols, dihydroxyepoxyeicosatrienoic acids (DHETs), with
a short half-life of about 8min [32, 33]. The C-terminal
domain of the sEH enzyme is involved in the hydrolysis
of EETs, whilst the N-terminal domain of sEH demon-
strates lipid phosphatase activity. This is thought to
limit the physiological effects of EETs, as they are
generally more biologically active than DHETs [34],
but in some vascular beds, such as canine coronary mi-
crocirculation [35] and murine mesenteric arteries [36],
EETs and DHETs may be equipotent vasodilators. The
substrate specificity for sEH is regio-isomer selective,
e.g. 5,6-EET is a poor substrate for sEH [37, 38]. EETs
are also metabolized by other pathways, including
β-oxidation, ω-oxidation and chain elongation, partic-
ularly under sEH inhibition [39]. EETs can be incorpo-
rated into cell membrane phospholipids, through an
Br J Clin Pharmacol / 80:1 / 29



Figure 2
The diagram shows that both EDHF and NO mediate smooth muscle relaxation by reducing smooth muscle cell intracellular calcium, whereas PGI2 me-
diates relaxation via a calcium independent mechanism. EDHF, endothelium derived hyperpolarising factor; K+, potassium; NO, nitric oxide; cGMP, cyclic
guanosine monophosphate; PKG, cGMP- dependent protein kinase; PGI2, prostacyclin; cAMP, cyclic adenylate monophospate; PKA, cAMP- dependent
protein kinase; Ca2+, calcium; MLCK, myosin light chain kinase; MLC, myosin light chain
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acyl-coenzyme A-dependent mechanism, and liberated
through the action of phospholipase A2 when the cell
is activated [30].
The role of EETs in regulating
vascular tone

It has long been known that derivatives of arachidonic
acid regulate vascular tone [40, 41]. The hypothesis that
non-cyclo-oxygenase metabolites are involved in endo-
thelium dependent regulation of vascular tone arose
from experiments showing attenuated arachidonic acid
induced relaxation under CYP450 inhibition [42, 43].

There is now convincing evidence that hyperpolariz-
ing factors released from the vascular endothelium
show similar characteristics to CYP450 metabolites [44]
and EETs have been identified as a hyperpolarising fac-
tor in both animal [45] and human vessels [46]. The
vasodilatory effects of EETs can be regio-isomer and
organ selective [47]. For example, in mice mesenteric
arteries, 8,9-EETs are the most potent for regulating
30 / 80:1 / Br J Clin Pharmacol
vasorelaxation [36], whereas in rat kidneys, 8,9-EETs
can be metabolized by COX enzymes to vasoconstrictor
metabolites in pre-glomerular vessels [48], and in pul-
monary arteries, 8,9-EETs increase pulmonary artery
constriction [49].

In humans, 11,12-EETs mediate vasorelaxation in in-
ternal mammary arteries and under inhibition of NO
and PGI2 syntheses, cytochrome P450 inhibition further
reduces both bradykinin and acetylcholine stimulated
flow, suggesting a role for CYP450 metabolites in ago-
nist induced vasodilatation [46]. In vivo, the role of
EDHFs also varies depending on the vascular bed and
the mode of stimulation. In healthy subjects, there is
a greater role of EDHF in bradykinin-, but not
acetylcholine-induced vasodilatation. Exercise induced
vasodilatation in skeletal muscles can release EETs un-
der NOS inhibition [50], elucidating cross-talk between
the various endothelial released vasodilating factors,
and this may be more significant in different cardiovas-
cular risk groups.

The physiological role of EETs in maintaining basal
tone appears to be limited. Basal flow response was



Figure 3
Arachidonic acid is liberated from phospholipids by phospholipase A2 enzyme. There are many products of arachidonic acid metabolism and EETs are
products of cytochrome P450 enzymes. There are four regio-isomers of EETs. In vivo, the majority of EETs are readily hydrolyzed by soluble epoxide hy-
drolase enzymes to their corresponding DHETs. HETE, hydroxyyl-eicosatetraenoic acid; EET, epoxyeicosatrienoic acid; sEH, soluble epoxide hydrolase;
DHET, dihydroxyepoxyeicosatrienoic acid
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investigated in six human in vivo studies, and five re-
ported no change in basal flow in healthy subjects
[51–55], and one reported 13% and 17% reduction in
response to fluconazole in 26 healthy subjects and
seven patients with cardiovascular risk factors, respec-
tively [56]. Three of these in vivo studies assessed basal
tone in fewer than 10 subjects [51–53], and thus were
significantly underpowered.
Mechanisms of action in the vascular
system

A number of different pathways are involved in mediat-
ing EET-induced vasodilatation, including calcium-
dependent K+ channels, gap junctions, endothelial NOS
and transient receptor potential (TRP) channels. The pre-
cise pathway(s) involved depends on the vascular bed,
and can be endothelium dependent via intermediate-
conductance calcium-dependent K+ (IK) and small-
conductance (SK) channels, TRP channels [8, 57] leading
to NOS activation [36], or through a smooth muscle effect
via TRP channels or a G-protein coupled receptor, and
acting via large conductance (BK) channels.

Calcium-dependent K+ channels on endothelial and
smooth muscle cells are usually activated in a
calcium-dependent fashion. K+ influx and hyperpolari-
zation of the cell membrane leads to calcium channel
closure on smooth muscle cells and vasorelaxation
occurs as a result of reduction in intracellular calcium
(Figure 2) [58].

In porcine [59] and bovine coronary arteries [60], EETs
can act locally on the endothelial IK and SK channels. This
interaction with calcium-dependent K+ channels may be
through TRP channels.

TRP channels, particularly TRPV4 in the vallinoid
subfamily, interact with EETs and regulate vascular
tone [61, 62]. TRPV4 is a calcium permeable voltage
gated channel expressed in a range of tissues including
the endothelial and the smooth muscle cells. In mice,
inhibition of TRPV4 with ruthenium red significantly re-
duces vasodilatation in CYP2C9 over-expressed arteries.
Br J Clin Pharmacol / 80:1 / 31
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Co-inhibition of EET synthesis and TRPV4 does not
have an additive inhibitory effect, suggesting that EETs
act primarily through the TRPV4 pathway [63]. Under
NO and PGI2 inhibition, 11,12-EETs elicit hyperpolariza-
tion in mesenteric arteries in wild type mice, but not
TRPV4�/� mice, and this can be completely inhibited
by blocking IK, SK and BK channels with charybdotoxin,
apamin and iberiotoxin, respectively [64]. Blood pres-
sure is higher in TRPV4 �/� mice, suggesting that
TRPV4 may be an important regulator of vascular tone.

TRPV4 agonists and 11,12-EET can activate TRPV4
channels in a cluster fashion and leverage a large calcium
influx through each TRPV4 channel, leading to activation
of IK and SK channels [8]. The current is then likely to
spread through myoendothelial gap junctions resulting
in relaxation [65–68]. When vessels are stimulated with
bradykinin, other TRP channels are activated, transient
receptor potential cation (TRPC) channel 3 and 6.
Bradykinin-induced calcium influx can be inhibited by
CYP inhibitors and EET antagonists, and enhanced by a
sEH inhibitor [69]. TRP channels rapidly translocate to
caveolae to modulate calcium influx in response to
11,12-EETs [69]. This process is dependent on the activa-
tion of cAMP-dependent protein kinase and may be de-
pendent on caveolin-1 [70]. In some vascular beds, an
increase in intracellular calcium stimulates endothelial
NOS (Figure 4) [36, 71].
Figure 4
This diagram shows the mechanisms by which EETs exert hyperpolarization effe
to a luminal receptor of the endothelial cell activates phospholipase A in a calc
acid. EETs are products of CYP450 enzyme metabolism. EETs may activate th
and KATP channels via an EET receptor or via TRPV4 channels. R, receptor; M1 a
NOS, nitric oxide synthase; NO, nitric oxide; GC, guanylate cyclase; cGMP, cyclic g
AA, arachidonic acid; CYP, cytochrome P450 enzymes; K+, potassium ions; BK, la
sitive potassium channel; TRP, transient receptor potential channels, RGS, G-pro
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In human internal mammary arteries [46], EETs act on
the BK channels expressed on smooth muscle cells, and
this may be via TRPV4 channels or through a specific
EET receptor. TRPV4 channels mediate the activation of
BK by forming a signalling complex with ryanodine re-
ceptors and BK channels on the smooth muscle.

It appears that EET activation of BK channels is not
simply by binding to an extracellular domain, but there
are strict requirements for their vascular activity. In
bovine coronary arteries, 14(S),15(R)-EET, but not 14
(R),15(S)-EET increases BK channel activity [72], whereas
11(R),12(S)-EET is the isomer that activates the BK
channel in rat renal smooth muscle cells [73]. Further-
more, tethering 14,15-EET to silica beads restricts entry
into smooth muscle cells, but does not attenuate its
inhibitory effect on aromatase [74]. This suggests that
there is a specific EET binding site on the smooth muscle
cell (Figure 4). A high affinity binding site has been char-
acterized using radioligands in U937 monocyte mem-
branes, where a novel radiolabelled EET agonist bound
in a specific, saturable and reversible manner, resulting
in the production of cAMP production with similar po-
tency as 11,12-EET and 14,15-EET. The G-protein ana-
logue GTPγS inhibited this binding, suggesting that
EETs act via a G-protein coupled receptor [75, 76].
However, a group of 47 known receptors were screened
for the ability of EET regio-isomers to displace high
cts on the endothelial cell and the smooth muscle cell. Agonist binding
ium dependent manner, which converts phospholipids to arachidonic
e IKCa and SKCa channels via TRPV4 channels. EETs may activate BKCa
nd M3, muscarinic receptors; B2, bradykinin recetor; Ca2+, calcium ions;
uanosine monophosphate; PL, phospholipids; PLA2, phospholipase A2;
rge conductance calcium-dependent potassium channel; KATP, ATP sen-
tein coupled receptor coupled; cAMP, cyclic adenylate monophosphate
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affinity radioligands, and none was identified as a recep-
tor for EETs [77].

In bovine [78] and porcine [79] coronary smooth
muscle cells, EET-mediated smooth muscle BK activation
requires intracellular GTP, but not ATP, and can be
blocked by a G protein inhibitor or antibodies against
Gαs, suggesting that a G protein is required for EETs to ac-
tivate BK channels. EETs promote GTP binding to Gαs in
endothelial cells [80], and BK channels can be activated
directly by GTP-activated Gαs through a membrane-
delimited action of Gαs, or by activation of a classic
signalling cascade. In both bovine endothelial cells and
U937 monocytes, EETs activate adenylyl cyclase and pro-
tein kinase A [75, 80–82], which can stimulate transmis-
sion of hyperpolarization through gap junctions [83]. In
a similar fashion to activation of BK channels, EETs can
activate ATP-sensitive K+ channels on smooth muscle
cells in rats [84, 85].
Other physiological roles of EETs

Other than mediating vascular tone, EETs modulate
calcium channels on cardiomyocytes [86, 87] and 11,12-
EETs can improve recovery of cardiac contractile function
following prolonged ischaemia [88]. EETs also regulate
pancreatic β-cell function, where 5,6-EETs directly induce
insulin secretion [89], and CYP2J is highly expressed in
the cells of islets to produce a significant amount of EETs
in human and rat pancreas [90].

EETs attenuate inflammatory processes, which play a
key role in the pathophysiology of cardiovascular dis-
eases [91]. Various stimuli, such as microorganisms, lipid
products or hypoxia can cause vascular injury and lead to
endothelial activation, a highly dynamic and complex
process that intertwines endothelial dysfunction and in-
flammation. Leukocyte-endothelial adhesion and subse-
quent leukocyte transmigration across the endothelium
are primary events in the vascular inflammatory process
influencing the initiation of atherosclerosis and cardio-
vascular diseases. 11,12-EET can attenuate endothelial
activation and leukocyte adhesion in induced models of
inflammation by inhibiting nuclear factor-kappaB (NFκB),
a central mediator of this process [92].

Increased recognition of the benefits of EETs has re-
vealed a worrying paradox that is their broad physiological
impact may potentially have deleterious effects too. EETs
promote endothelial cell survival by pro-angiogenetic [93]
and anti-apoptotic mechanisms [94]. They contribute to
vascular endothelial growth factor (VEGF) mediated stimu-
lation of angiogenesis [95]. Whilst this may exert some pro-
tective benefits in preserving endothelial function and
promoting neovascularization in ischaemic tissues [96],
their potential to promote cancer metastases warrants
careful consideration [97, 98]. Indeed, inhibition of CYP-
derived EET synthesis increases tumour cell apoptosis,
and decreases tumour growth and metastases [99].
EET signalling in cardiovascular
disease

Dysregulated EET signalling pathways may be implicated
in a number of disease states. Whilst most cardiovascular
risk factors are associated with impaired EETs and induc-
tion of sEH expression, there is much crosstalk between
the endothelial factors, and alteration in EET signalling
may change as cardiovascular disease progresses. In the
presence of stable coronary atherosclerotic disease,
where there is reduced NO signalling [100], EETs may in
fact be up-regulated to compensate for the overall endo-
thelial dysfunction. The first study to quantify plasma
concentrations of EETs in patients with stable coronary
atherosclerosis reported that subjects with ≥50% steno-
sis in at least one major epicardial coronary artery had
significantly higher total EETs compared with healthy
controls. However, within the group of patients with cor-
onary artery disease, obese subjects had lower plasma
concentrations of total EETs [101]. This is consistent with
preclinical models of obesity [102, 103], suggesting a de-
creased CYP450 and increased sEH expression, and the
overall increased EETs in subjects with coronary artery
disease may be a compensatory response to the pres-
ence of advanced cardiovascular disease. Furthermore,
within the group of subjects with stable coronary athero-
sclerotic disease, those with comparatively higher sEH
activity exhibit higher levels of inflammatory molecules,
such as cellular adhesion molecules, and therefore may
be predisposed to more advanced vascular inflammation
[104]. Thus, sEH inhibition in these higher risk subjects
may represent an effective secondary prevention strat-
egy. Although no association between flow mediated di-
latation (FMD) and plasma concentrations of EETs has
been observed in subjects with coronary artery disease,
bradykinin-induced changes in forearm blood flow may
be more reflective of EET associated microvascular func-
tion [56, 105] and more predictive of cardiovascular out-
come [10]. Interestingly, the cytochrome P450 inhibitor
sulfaphenazole enhances acetylcholine-induced flow in
patients with coronary artery disease and this may be
due to a reduction in the generation of reactive oxygen
species by CYP2C in endothelial cells, thus improving
NO bioavailability [53, 106].

Diabetes and obesity are associated with reduced
expression of CYP2C enzymes in mice and rat models
[107–109], and increased expression of CYP4A and sEH
[110, 111]. Inhibition and genetic deletion of sEH can
augment pancreatic EET concentrations, and prevent
hyperglycaemia in diabetic mice [112]. EDHF activity ap-
pears to be impaired in different animal models of type 1
[113] and type 2 diabetes [114, 115]. In insulin resistant
Br J Clin Pharmacol / 80:1 / 33
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rats, chronic feeding of miconazole (CYP inhibitor) had
no effect on mesenteric artery relaxation, whereas
phenobarbital (CYP inducer) restored EDHF mediated re-
laxation [116]. Type 1 diabetic mice up-regulate the sEH
mRNA and have lower concentrations of EETs in the
brain, associated with worse stroke outcome [117]. Inter-
estingly, one study reported increased EDHF mediated
vasodilatation in femoral and mesenteric arteries of type
1 diabetic rats [118] and this was thought to be a com-
pensatory mechanism for impaired NO production
[119]. There are no human studies as yet which assess
EET mediated endothelial function in diabetic patients.

In essential hypertension, there is certainly some al-
teration in EET signalling but its role in modulating hu-
man vascular function remains somewhat unclear. In
animal models, an infusion of angiotensin II elevates
blood pressure, and stimulates 20-HETE synthesis in renal
microvessels [120], and decreases EETs by down regulat-
ing CYP450 epoxygenases, and increasing sEH activity
[121]. In spontaneously hypertensive rats, sEH expression
is elevated [122]. In humans, plasma concentrations of
EETs are reduced in women with pregnancy-induced hy-
pertension [123] and in subjects with renovascular hy-
pertension [124]. This may be a result of reduced EET
synthesis by CYP450 enzymes, and increased EET metab-
olism by sEH enzymes [124]. Another group reported no
difference in basal plasma concentrations of EETs be-
tween healthy control subjects and hypertensive pa-
tients, but an impairment in induced EET release, in
combination with NO and reactive oxygen species bal-
ance, and the endothelin-1 pathway contributed to en-
dothelial dysfunction of conduit arteries (measured by
flow mediated dilatation) in essential hypertensives
[125]. The same group later demonstrated that inhibition
of CYP450 reduced basal conduit arterial diameter only
in healthy subjects, and not in essential hypertensives,
but it did not change resistance arterial flow in both
groups [55]. This is consistent with another study, which
reported that a CYP450 inhibitor did not change basal
flow within both normotensive and hypertensive
patients, but conversely, it significantly blunted both
acetylcholine and bradykinin induced flow only in hyper-
tensives. The authors attributed this to EETs compensat-
ing for impaired NO activity in the hypertensive group
[54]. Thus, it remains unclear whether there is true func-
tionally important EET impairment in hypertensives,
and in order to elucidate this, larger studies combining
quantitative measure of plasma EETs and vascular func-
tion assessment would be required.

Smoking has a synergistic effect with sEH polymor-
phisms coding for enhanced sEH activity and thus re-
duced EET signalling [126] and may initiate pulmonary
vascular impairment through direct injury of endothelial
cells or release of inflammatory mediators [127]. Chronic
injury leads to some of the vascular impairment observed
in chronic obstructive pulmonary disease (COPD), such as
34 / 80:1 / Br J Clin Pharmacol
reduced NOS and EDHF in vitro in pulmonary vessels
[128], worsening with the progression of disease [129].
A quantitative study showed 8,9-EETs are significantly
reduced in the breath condensate of COPD patients
[130], and one study showed no difference in bradykinin
induced vasodilatation in resistance vessels between
COPD patients and other healthy smokers, though not
assessing the role of EETs directly [131]. This may be an
interesting group to explore and target therapeutically
for the vascular and anti-inflammatory effects of EETs,
as a subset of COPD patients is of a systemic inflamma-
tory phenotype [132] associated with a three-fold
elevated risk of cardiovascular admissions [133]. It is esti-
mated that approximately 30% of COPD patients die
from cardiovascular disease.

In hypercholesterolaemia, EETs may be up-regulated
to compensate for an impaired NO pathway. In choles-
terol fed animals, EDHF is maintained, while NO is re-
duced [134] and only cholesterol-fed rabbits synthesize
EETs in the aorta [135]. In vivo, there appears to be en-
hanced EDHF activity in hypercholesterolaemia where
there is NO deficiency [56]. It is possible to speculate that
some of the EDHF activity may be secondary to EET sig-
nalling, thus suggesting that the mechanism by which
EETs act, i.e. through hyperpolarization, or via the NO sig-
nalling pathway, may be dependent on the health condi-
tion of the subject.

A summary of the in vivo studies investigating endo-
thelial function and the EET pathway in the healthy and
diseased subjects are shown in Table 1. Current evidence
suggests that EET signalling may be differentially im-
paired in patients with cardiovascular risk factors associ-
ated with endothelial dysfunction. EETs may become up-
regulated in patients with advanced coronary artery dis-
ease, suggesting that there may be a role for targeting
EET impairment early to prevent disease progression.
Genetic polymorphisms

Polymorphisms exist for both the CYP450 families in-
volved in EET synthesis and sEH enzymes required for
EET metabolism. CYP2J2 gene cloning and sequence
analysis revealed a range of polymorphisms, with the
commonest being the G-50 T single nucleotide polymor-
phism (SNP). The G-50 T SNP is in the proximal promoter
of CYP2J2 gene, which regulates basal transcriptional ac-
tivity. The polymorphism is found in approximately 17%
Africans, 13% Asians and 10% of Caucasians and is
associated with lower EET activity and an increased risk
of coronary artery disease [136]. Furthermore, CYP2J2
polymorphism may be an independent risk factor for
the premature onset (<45 years old) of myocardial infarc-
tion (MI) in the Chinese Han population [137], and it has a
synergistic effect with smoking, increasing the risk of MI
by approximately 6.7 fold compared with non-smoker
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wild types. In type 2 diabetes, the frequency of the
CYP2J2 G-50T polymorphism is significantly higher in youn-
ger onset diabetics (<40years) and is associated with lower
plasma EET concentration [138]. A variant of CYP4A11,
which oxidizes arachidonic acid to 20-HETE is associated
with hypertension [139]. CYP2C9 [140] and CYP2C19 [141]
polymorphisms may be associated with hypertension in
the Chinese population. Interestingly, CYP2C19 plays a key
role in activating clopidogrel, and polymorphisms may
determine the prognosis in young patients who are receiv-
ing clopidogrel treatment following MI [142].

Multiple reports have demonstrated an association be-
tween sEH gene polymorphisms and coronary artery dis-
ease [113, 114] and cerebrovascular disease [145–147].
The human sEH gene, EPHX2, is localized to chromosome
8p21-p12, enclosing 19 exons. A number of polymorphisms
have been identified, including variants with higher
(Lys55Arg) and lower (Arg287Gln) sEH activities in vitro
[148]. In African American subjects selected from the Coro-
nary Artery Risk Development in young Adults (CARDIA)
study, although coding for lower sEH activity in vitro, a pos-
itive association was found between Arg287Gln and sub-
clinical atherosclerosis defined by coronary artery plaque
calcification, with no influence on blood pressure [143].
This was attributed to EETs increasing intracellular calcium
concentration in vascular smooth muscle cells [149]. An-
other study genotyped 2065 subjects (1085 with incident
coronary heart disease and 980 non-cases) selected from
the Atherosclerosis Risk in Communities (ARIC) study, and
reported Lys55Arg was associated with higher sEH activity
in vivo, and greater risk of incident coronary heart disease
in Caucasians [144]. Lys55Arg genotype is also associated
with reduced vasodilator response to bradykinin in Cauca-
sian Americans [150].
Pharmacological target

The cardioprotective benefits of up-regulating EET sig-
nalling have been elucidated by genetic and pharmaco-
logical modulation of this pathway. Deficiency in the
sEH gene reduced EET metabolism and improved endo-
thelial function [151], glucose homeostasis [152] and
protected against experimental models of cerebral is-
chaemia [153]. Successful EET analogues act on a similar
signalling pathway as endogenous EETs via the K+ chan-
nel, and cause vasodilator effects in bovine coronary ar-
teries [154, 155]. In particular, one 11,12-EET analogue
has the potential to reduce blood pressure in vivo in
spontaneously hypertensive rats [156], but this has not
progressed into humans yet. EET analogues may also ex-
hibit some anti-inflammatory benefits in addition to anti-
hypertensive effects [157, 158].

Novel sEH inhibitors developed with the aim of reduc-
ing EET metabolism have been the most progressive
pharmacological agent. Older generations have weak
36 / 80:1 / Br J Clin Pharmacol
inhibitory effectiveness and poor stability, but the newer
agents are competitive, tight-binding inhibitors with
nanomolar Ki values, which interact stoichiomerically
with purified recombinant sEH [159]. In animal models
of atherosclerosis, sEH inhibition can reduce atheroscle-
rotic plaque lesions by up to approximately 50% in mice
aortae [160, 161]. In rats with induced myocardial ischae-
mia and hypertension, it has the potential to reduce
blood pressure [162, 163] and infarct size independent
of NO [162]. In mice with induced renovascular hyper-
tension, sEH inhibition restores the functional role of
EETs in endothelium-dependent relaxation, allowing an
attenuation of blood pressure, cardiac hypertrophy
and prevention of coronary endothelial dysfunction
[164]. Interestingly, in rats with induced malignant hy-
pertension, the antihypertensive and renoprotective ef-
fects of sEH inhibition can be completely abolished by
NO inhibition, suggesting the benefits of sEH inhibition
in this condition may be dependent on the endogenous
bioavailability of EETs and NO [165].

Other observed benefits of sEH inhibition include
amelioration of the metabolic syndrome [166], anti-
inflammatory properties [167] and protection against
ischaemic stroke [168, 169]. One sEH inhibitor (AR9281)
improved endothelial function in mice models of diabe-
tes, hypertension and obesity, and significantly reduced
fasting plasma glucose [170]. Whilst the same compound
was well tolerated in healthy subjects in a phase 1 trial, it
was terminated at phase 2 due to lack of efficacy in pa-
tients with hypertension and impaired glucose tolerance
(http://clinicaltrials.gov/show/NCT00847899) [171].

In rats, sEH inhibition can improve lung function, and
attenuate smoking related inflammation and emphyse-
matous changes [172]. One concern is that in the EET
pathway can enhance acute hypoxic pulmonary artery
vasoconstriction in mice isolated lungs, and thus possibly
contribute to the development of pulmonary hyperten-
sion, but chronic treatment with sEH inhibition for
4months did not affect muscularization of the pulmo-
nary vasculature and exercise tolerance. It is thought that
the C-terminal epoxide hydrolase of the sEH enzyme
plays a lesser role in the regulation of pulmonary resis-
tance and morphology compared with the N-terminal
phosphatase [173]. Repeat dose oral administration of a
potent sEH inhibitor (GSK2256294A) attenuated lung in-
flammation in mice exposed to cigarette smoke [174].
The authors of this review have been involved in the
phase 1 clinical trial of GSK2256294 to assess its safety,
tolerability and pharmacokinetics of single and repeat
doses in healthy and obese smokers (http://clinicaltrials.
gov/ct2/show/NCT01762774). The pharmacodynamic ef-
fects of this drug will be assessed by venous plethysmog-
raphy at baseline, after acute dosing (day 1) and after
chronic dosing (day 14).

Dual action compounds which act as an EET analogue
and sEH inhibitor are also under development. The extent

http://clinicaltrials.gov/show/NCT00847899
http://clinicaltrials.gov/ct2/show/NCT01762774
http://clinicaltrials.gov/ct2/show/NCT01762774
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of enzyme inhibition is dependent on the structure, and
vascular relaxation has been demonstrated in bovine coro-
nary arteries [175]. In mice with the metabolic syndrome
phenotype, an EET agonist/sEH inhibitor increased vascular
EET concentrations, lowered blood pressure, prevented
weight gain, increased insulin sensitivity and restored ace-
tylcholine stimulated vessel relaxation [176]. Interestingly,
dual inhibition of cyclo-oxygenase 2 and soluble epoxide
hydrolase may have synergistic anti-angiogenic and anti-
cancer activity [177] Thus, progression of dual action
agents may be a more enlightening route to unravel
and balance the controversy between up-regulating EETs
and their effects on cancer activity.
Conclusion

In the last couple of decades, the broad biological effects
of EETs have gained greater recognition. The beneficial
role of EETs in maintaining vascular tone, modulating in-
flammatory responses and mediating endothelial cell
growth has propelled the development of basic and clin-
ical pharmacological research focusing on this pathway,
though this is not without some challenges considering
the current lack of an identifiedmembrane protein target
for EETs. Nevertheless, the need for novel compounds to
impact on the pathophysiology of cardiovascular disease
remains and current research is focused on up-regulating
EETs with sEH inhibitors. As impairment in EET signalling
is not universal across all cardiovascular risk factors, it
would be worth stratifying a group of people with the
most impaired EETs to target. Theoretically, augmenting
EETs with an sEH inhibitor in an ideal population should
enhance their cardioprotective effects, and this may be
an exciting and promising route to impact on endothelial
dysfunction, a disease process thought to appear early in
the development of atherosclerosis, but this is not with-
out potential risks, and certainly warrants large scale clin-
ical trials to demonstrate efficacy.
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