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Genetic studies of type 1 diabetes (T1D) have identified 50 susceptibility 

regions1,2 (www.T1DBase.org) revealing major pathways contributing to risk3, 

with some loci shared across immune disorders4-6.  In order to make genetic 

comparisons across autoimmune disorders as informative as possible a dense 

genotyping array, the ImmunoChip, was developed, from which four novel T1D 

regions were identified (P < 5 x 10-8). A comparative analysis with 15 immune 

diseases (www.ImmunoBase.org) revealed that T1D is more similar genetically 

to other autoantibody-positive diseases, most significantly to juvenile 

idiopathic arthritis and least to ulcerative colitis, and provided support for 

three additional novel T1D loci.  Using a Bayesian approach, we defined 

credible sets for the T1D SNPs. These T1D SNPs localized to enhancer 

sequences active in thymus, T and B cells, and CD34+ stem cells.  Enhancer-

promoter interactions can now be analyzed in these cell types to identify 

which particular genes and regulatory sequences are causal. 
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Type 1 diabetes (T1D) results from the autoimmune destruction of the pancreatic β 

cells, leading to absolute dependence on exogenous insulin to regulate blood 

glucose levels7. In the present study we designed and used the ImmunoChip, a 

custom Illumina Infinium high-density genotyping array, in order to (i) identify 

additional risk loci, (ii) refine mapping of T1D risk loci to their sets of most-associated 

credible SNPs in order to (iii) analyze the locations of the credible SNPs with respect 

to regulatory sequences in tissues and cell types, and (iv) assemble summary 

GWAS and ImmunoChip results from multiple immune diseases to allow 

comparisons of their genetic risk profiles. 

The T1D single nucleotide polymorphisms (SNPs) and indel content selected 

for inclusion on ImmunoChip was based on the 41 T1D regions known at the time 

(February, 2010)1 and on 3,000 “wildcard” SNPs that tagged candidate genes or 

other SNPs with suggestive evidence (5 x 10-8 < P < 10-5) of association from T1D 

GWAS.  In parallel, we collected and curated all available association results for 

immune diseases for which the ImmunoChip was designed. For efficient comparison 

and downstream analysis by the research community, we created a publicly 

available, integrated, web-based portal (ImmunoBase) that contains complete 

association summary statistics that are available for querying, browsing, or bulk 

download. 

After data cleaning and quality control8,9, a total of 138,229 SNPs were scored 

in 6,670 T1D cases10, 6,523 controls from the British 1958 Birth Cohort11, 2,893 

controls from the UK National Blood Service12, 2,846 controls from the NIHR 

Cambridge Biomedical Research Centre Cambridge BioResource13, 2,601 Type 1 
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Diabetes Genetics Consortium (T1DGC) affected sib-pair (ASP)14 and 69 T1DGC 

trio families. Case-control and family data were analyzed independently and 

combined by meta-analysis.  We obtained evidence for T1D association in 44 

regions at P ≤ 3.23 × 10-7 (an ImmunoChip Bonferroni-corrected P < 0.05; Table 1). 

Thirty-eight of these are recognized T1D regions (T1DBase and ImmunoBase) and 

four are newly identified regions (genome-wide P < 5 x 10-8): 1q32.1/index SNP 

rs6691977, 2q13/rs4849135, 4q32.3/rs2611215, and 5p13.2/rs11954020. 

rs11954020 is close to the multiple sclerosis (MS) candidate immune response 

gene, IL7R15. Two remaining loci, 17q21.31 and 21q22.3, were marginally 

associated (P > 5 x 10-8) and, as we describe later, additional support for 17q21.31 

comes from genome-wide significant association of the same SNP, rs1052553, with 

primary biliary cirrhosis (PBC)16. 

At each of the 44 loci, we investigated whether additional SNPs were 

independently associated with T1D. Logistic regression analyses, conditional on the 

most associated or index SNP in each region, identified five loci with more than one 

independently associated SNP (Table 1). Four were already known to encode for 

more than one causal variant but the fifth region, 11p15.5 (INS, INS-IGF2 candidate 

genes), was surprising as INS was the first non MHC region in T1D to be 

discovered17, and therefore the region has been examined intensively. The likely 

causal candidates in this region are SNPs rs689/-23HphI, rs3842753/+1140A>C, 

and the 5´ variable number tandem repeat (VNTR) polymorphism. In European-

ancestry populations, these three sites are in near perfect linkage disequilibrium 

(LD)18. SNPs rs689 and rs3842753 were assayed on the ImmunoChip, but both 

were eliminated following quality control. We integrated pre-existing rs689 data with 
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ImmunoChip data in the 6,670 UK GRID cases and 6,304 British 1958 Birth Cohort 

controls, and found rs689 to be the most associated SNP. After conditioning on 

rs689, SNP rs72853903 still exhibited significant evidence for an independent 

association with T1D (P = 5.4 x 10-10; Table 1). We did not have sufficient data to 

integrate rs3842753 or the INS VNTR in these analyses, but rs689 is known to tag 

the VNTR precisely18. We note annotation using VEP19 (Ensembl v75) identifies 

rs3842753 as an INS non-synonymous SNP (His-Pro). However, we found limited 

evidence for the annotation of the underlying transcript isoform and it is more likely to 

be a non-coding 3´UTR SNP. 

Comorbidity between T1D and other immune-mediated diseases has been 

reported widely through epidemiological and clinical studies, but evidence for shared 

genetic etiology has not been assessed in a uniform manner across multiple 

diseases. We sought to compare the underlying genetic susceptibilities to T1D and 

each of 15 immune diseases curated in ImmunoBase (accessed February 13, 2014).  

We first divided the densely mapped regions of the ImmunoChip into two sets 

according to whether there was published association with the index disease and 

that region. We then tested whether T1D single SNP P-values differed between the 

two sets of regions using a variant set enrichment method that accounts for LD 

between SNPs20 (Supplementary Information).  A difference in P-value distributions 

indicated that T1D showed stronger (or weaker) association with regions according 

to their association with the index disease. 

This comparison clearly delineated diseases with characteristic 

autoantibodies (e.g., juvenile idiopathic arthritis (JIA), rheumatoid arthritis (RA) and 
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T1D) compared to auto-inflammatory disorders (e.g., ulcerative colitis (UC) and 

Crohn’s disease (CD); Table 2; Fig. 1A). The strongest positive and negative 

enrichments were observed with JIA (Fig. 1B; P = 2 x 10-13) and UC (Fig. 1C; P = 

5.4 x 10-5), respectively. It should be noted that the susceptibility loci for each 

disease remain incomplete and the extent of the incompleteness varies between 

diseases. This limitation prevents us from drawing any conclusion that ‘T1D is more 

like RA than ATD’; however, individually significant results are likely valid 

representations of disease overlap.  The overlap between T1D and JIA was driven, 

in part, by sharing (P < 10-20) at 1p13.2/PTPN22, 12q24.11/SH2B3, and 

10p15.1/IL2RA (Fig. 1B and Fig. 1C) whereas, for UC, no shared loci reached this 

level of significance.  

We exploited this pleiotropy to identify additional T1D associations.  

Previously, T1D was compared with celiac disease and SNPs robustly associated (P 

< 5 x 10-8) with celiac disease and lesser associated (5 x 10-8 < P < 10-4) with T1D 

were considered T1D associated, and vice versa5.  Here, we demonstrate 

(Supplementary Information) that a SNP with P < 5 x 10-8 in any ImmunoChip 

disease study requires P < 10-5 for T1D to obtain a Bayesian posterior probability of 

T1D association > 0.9, given that different ImmunoChip disease studies shared 

many control samples. Using this analysis, we identified three additional T1D 

regions, bringing the number of known T1D regions to 57: 14q24.1/rs911263, 

17q21.31/rs17564829 (that achieved Bonferroni correction, but not genome-wide 

significance in the primary analysis), and 6q23.3/rs17264332/rs6920220 (Table 3). 
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The 6q23.3 region contains the well-recognized candidate gene TNFAIP3, 

linking T1D susceptibility with the proinflammatory tumour necrosis factor (TNF) 

pathway. The three genes most proximal to the index SNP in the 14q24.1 region 

(RAD51B, ZFP36L1 and ACTN1) do not provide obvious insights into the biology of 

T1D nor do genes near the index SNPs in the three other regions 

(1q32.1/CAMSAP2/GPR25/C1orf106, 2q13/ACOXL and 

4q32.3/LINC01179/CPE/TLL1). CPE encodes Carboxypeptidase E, a protease 

active in the neuroendocrine system and, therefore, could be considered a candidate 

T1D gene. The gene content of the 17q21.31/rs17564829 region, containing a 

megabase-long inversion polymorphism with several copy number variants21, is also 

not informative although SPPL2C, encoding signal peptide peptidase like 2C, could 

be considered a candidate gene. Antigen presentation and associated proteolysis is 

important in the autoimmune process in T1D, including the processing of the major 

autoantigen, preproinsulin, into peptide epitopes some of which contain signal 

peptide amino acids22. 

  We surveyed the NHGRI GWAS catalogue23 to determine overlap between 

diseases and traits with the seven novel loci. After removing diseases curated in 

ImmunoBase, we found that 17q21.31/ rs17564829, in intron 1 of the MAPT 

(microtubule-associated protein tau) gene, is in strong LD (r2>0.9) with the index 

SNP for several neurodegenerative diseases, including Parkinson’s disease. We 

also examined two eQTL datasets in relevant tissues24,25 for overlap with our seven 

newly identified T1D associations. rs17564829 in the 17q21.31 region associated 

with expression of NSF, KANSL1, ARHGAP27 and MGC5736. This region overlaps 

a set of haplotypes in high LD that incorporate duplication and inversion events21, 
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complicating further interpretation. No other identified genes have strong functional 

candidacy. 

It is well established that SNPs showing the strongest association with 

disease in any region are not necessarily the causal variants, owing to a combination 

of sampling variation and LD. Nevertheless, the dense coverage of the ImmunoChip 

increases the likelihood that causal variants are among the SNPs genotyped in the 

T1D loci. Although putative causal variants cannot be identified without further 

experimentation, identification of the most associated SNPs in each region allowed 

us to integrate the location of these SNPs and their flanking sequences with 

emerging knowledge of the regulatory sequences of the genome. Focusing on 

primary and conditional signals in each associated region to define, for each of the 

44 loci listed in Table 1, we used a Bayesian approach similar to that described 

previously6 to define the 99% credible set of SNPs within which the causal variants 

are most likely to be present (Supplementary Table 1). 

 We used the set of credible SNPs to interrogate 15 chromatin states across 

127 tissues derived from the Epigenomics RoadMap and ENCODE projects26. We 

observed a strong enrichment of SNPs in enhancer chromatin states in 

immunologically relevant tissues (Fig. 2). Thymus, CD4+ and CD8+ T cells, B cells, 

and CD34+ stem cells exhibited the strongest enrichment in more than one sample 

of each tissue or cell type. There was less evidence of enrichment in promoter 

sequences (Fig. 2), suggesting that variation of enhancer sequences is more 

relevant to T1D. Our Bayesian approach is more informative in selecting the relevant 

SNPs than the conventional r2-based approach that focuses on SNPs with r2>0.8 
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with index SNPs – the r2-based approach only identified enhancer enrichment in one 

subtype of CD4 T cells (data not shown). Recently, an analysis of active gene 

enhancers across multiple tissues reported enrichment of T1D GWAS SNPs in 

promoters, not enhancers27. This difference could be attributable to the empirical 

technique in defining enhancers or their focus on enhancers generally, rather than 

tissue-specific enhancers, a failure to adjust for potential confounding by minor allele 

frequency, or reliance on the r2-approach rather than establishing a credible set of 

putatively causal SNPs. Our analyses found no evidence of enrichment in pancreatic 

islet enhancers, a result supported by a recent detailed analysis of pancreatic islets 

that found evidence for enrichment of type 2 diabetes and fasting glucose GWAS 

signals in a subset of those enhancers, but not of T1D28. 

 We also investigated whether analysis of available chromatin state data and 

its annotation could narrow our credible SNP lists and point to certain genes and 

SNPs. We focused on credible SNPs that were either non-synonymous/missense 

(as annotated by VEP19 Ensembl v75) or that overlapped enhancer regions in the 

tissues that showed an enrichment for T1D-associated SNPs in Fig. 2 

(Supplementary Data Set). While credible SNP sets can be large, this filtering 

reduced their median size from 28 to eight SNPs (Supplementary Figure 1). In 

Supplementary Table 2, we highlight 29 SNPs corresponding to 12 regions for 

which the size of filtered sets is relatively small (< 5).  The analyses did not identify 

any new candidate gene, other than the known candidate causal genes containing 

high confidence missense variants: PTPN22, IFIH1, CTSH, TYK2 and FUT2. 

Nevertheless, this analysis does identify SNPs that overlap potential enhancers near 

CTSH, TYK2 and UBASH3A that are worthy of specific laboratory investigations. In 
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addition, we identified candidate enhancer SNPs in four other regions, 6q22.32, 

7p12.1, 10q23.31, and 16q23.1, none of which have obvious candidate genes 

(Table 1 and Supplementary Data Set). Chromosome conformational capture can 

be used to directly determine the presence of physical interactions between 

promoters and potential enhancer sequences33 in the most enriched primary cell 

types using our credible SNP positions. There is a discrete cluster of enhancer 

credible SNPs 5´ of the functional candidate gene IL10 (Supplementary Data Set), 

yet this potential regulatory sequence could interact with the promoter of the 

adjacent candidate gene, IL19 (or both). Genome-wide analysis of promoter-

enhancer interactions will help identify new candidate causal genes34,35 

Notwithstanding the current lack of data on promoter-enhancer interactions, these 

analyses identify AFF3 (2q11.2) and BCAR1 (16q23.1) as novel candidate genes for 

T1D. 
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URLs. ImmunoBase, http://www.immunobase.org; T1Dbase, 

http://www.t1dbase.org; wgsea, http://cran.r-

project.org/web/packages/wgsea/index.html; Blood eQTL browser, 

http://genenetwork.nl/bloodeqtlbrowser/2012-12-21-

CisAssociationsProbeLevelFDR0.5.zip accessed 20/19/2014; NHGRI GWAS 

catalogue, http://www.genome.gov/admin/gwascatalog.txt accessed 20/19/2014; 

Epigenomic Roadmap annotations, 

https://sites.google.com/site/anshulkundaje/projects/epigenomeroadmap. 

 

Accession codes. ImmunoChip data for UKGRID cases, T1DGC ASP and trio 

families are deposited in dbGaP and are available from 

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000180.v2.p2; ImmunoChip data for British 1958 Birth 

Cohort, UK National Blood Service and the NIHR Cambridge Biomedical Research 

Centre Cambridge BioResource are deposited in the European Genome-phenome 

Archive (EGA) and are available from https://www.ebi.ac.uk/ega/home. 
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Figure legends 

Fig. 1: T1D ImmunoChip p-value enrichment analysis. Panel (a) shows Z scores for 

densely typed regions against diseases curated in ImmunoBase. Diseases with 

positive Z scores indicate evidence for overall genetic overlap with T1D, within 

densely typed regions accessible on ImmunoChip. Those with negative scores 

indicate evidence for negative association. Each bar is labelled with the Wilcoxon 

rank sum test p-value and coloured by disease autoantibody positive/negative 

status.  The MHC region (chr6:25Mb..35Mb GRCh37) was excluded from analysis.  

AA- Alopecia Areata, AS - Ankylosing Spondylitis ATD - Autoimmune thyroid 

disease,, CEL- Celiac disease, CD - Crohn's disease, JIA - Juvenile Idiopathic 

Arthritis, MS - Multiple Sclerosis, NAR – Narcolepsy, PBC - Primary Biliary Cirrhosis, 

PSC- Primary Sclerosing Cholangitis PSO - Psoriasis, RA - Rheumatoid Arthritis, 

SJO – Sjogren's syndrome, SLE Systemic Lupus Erythematosus, UC - Ulcerative 

Colitis.  Panels (b) and (c) show P’ = min(-log(p.t1d.meta)) for each densely typed 

region accessible on the ImmunoChip excluding the MHC and autosomal regions. 

Regions that overlap known T1D susceptibility regions are identified by blue bars, 

whereas yellow and pink show JIA and UC overlap respectively 

(http://www.ImmunoBase.org – accessed February 13, 2014). Red bars denote 

shared overlap between T1D and focal disease. The y-axis is truncated for clarity. A 

fully interactive version of panels (b) and (c), along with further supporting resources 

are available at http://www.immunobase.org/poster/type-1-diabetes-immunochip-

study-onengut-gumuscu/.  
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Fig. 2:  Heat map showing chromatin state enrichment analysis of T1D 99% credible 

SNP set in ImmunoChip densely mapped regions versus the complement set, within 

Epigenomic Roadmap and ENCODE tissues.  The top coloured row groups cell-

types into 4 anatomical categories with relevance to type 1 diabetes, subsequent 

rows use a red (enrichment) to blue (depletion) scale to illustrate enrichment in a 

particular chromatin state (1_TssA – Active Tss, 2_TssAFlnk – Flanking Active TSS, 

3_TxFlnk – Transcribed at gene 5' and 3', 4_Tx – Strong transcription, 5_TxWk – 

Weak transcription, 6_EnhG – Genic Enhancer, 7_Enh - Enhancer, 8_ZNF/Rpts – 

ZNF genes & repeats, 9_Het - Heterochromatin, 10_TssBiv- Bivalent/Poised TSS, 

11_BivFlnk – Flanking Bivalent TSS/Enhancer, 12_EnhBiv – Bivalent enhancer, 

13_RepPC – Repressed PolyComb, 14_RepPCWk – Weak repressed polycomb, 

15_Quies – Quiescent/Low).        
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Novel Chromosome Position SNP Alleles MAF OR P Condition Candidate gene Previous index SNPs (r2) 

1p13.2 114377568 rs2476601 G>A 0.09 1.89 < 10-100 PTPN22 rs2476601(1) 

* 1q32.1 200814959 rs6691977 T>C 0.19 1.13 4.3 x 10-8 -- 

1q32.1 206939904 rs3024505 G>A 0.16 0.86 6.4 x 10-8 IL10 rs3024493(1),rs3024505(1) 

2q11.2 100764087 rs13415583 T>G 0.35 0.90 1.1 x 10-7 AFF3 rs6740838(0.32),rs9653442(0.41) 

* 2q13 111615079 rs4849135 G>T 0.29 0.89 4.4 x 10-8 -- 

2q24.2 163110536 rs2111485 G>A 0.39 0.85 3.8 x 10-18 IFIH1 rs1990760(0.91) 

2q24.2 163124637 rs35667974 T>C 0.02 0.59 9.3 x 10-9 rs2111485 IFIH1 rs1990760(<0.1) 

2q24.2 163136942 rs72871627 A>G 0.01 0.61 2.4 x 10-6 rs2111485, rs35667974 IFIH1 rs1990760(0.0094) 

2q33.2 204738919 rs3087243 G>A 0.45 0.84 7.4 x 10-21 CTLA4 rs3087243(1),rs11571316(<0.1) 

3p21.31 46457412 rs113010081 T>C 0.11 0.85 4.6 x 10-8 CCR5 rs333(0.34) 

4q27 123243596 rs75793288 C>G 0.36 1.15 5.6 x 10-13 IL2,IL21 rs6827756(0.98),rs4505848(0.85) 

* 4q32.3 166574267 rs2611215 G>A 0.15 1.18 1.8 x 10-11 -- 

* 5p13.2 35883251 rs11954020 C>G 0.39 1.11 4.4 x 10-8 IL7R -- 

6q15 90976768 rs72928038 G>A 0.17 1.20 6.4 x 10-14 BACH2 rs11755527(0.194),rs597325(0.13) 

6q22.32 126752884 rs1538171 C>G 0.45 1.12 7.4 x 10-10 rs9375435(0.96),rs9388489(0.98) 

7p12.2 50465830 rs62447205 A>G 0.28 0.89 2.5 x 10-8 IKZF1 rs10272724(0.97) 

7p12.1 51028987 rs10277986 A>T 0.04 0.76 1.4 x 10-7 rs4948088(0.86),rs10231420(<0.1) 

9p24.2 4290823 rs6476839 A>T 0.40 1.12 1.0 x 10-9 GLIS3 rs10758593(0.98),rs7020673(0.66) 

10p15.1 6094697 rs61839660 C>T 0.10 0.62 2.8 x 10-39 IL2RA rs7090530(<0.1),rs12251307(0.61) 

10p15.1 6108340 rs10795791 A>G 0.41 1.16 5.6 x 10-11 rs61839660 IL2RA rs7090530(<0.1),rs12251307(<0.1) 

10p15.1 6129643 rs41295121 C>T 0.01 0.49 4.9 x 10-8 
rs61839660,
rs10795791 IL2RA rs7090530(<0.1),rs12251307(<0.1) 
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10q23.31 90035654 rs12416116 C>A 0.28 0.85 3.9 x 10-15 rs10509540(0.79) 

11p15.5 2182224 rs689 T>A 0.30 0.42 < 10-100 INS rs7111341(0.265) 

11p15.5 2198665 rs72853903 C>T 0.38 0.85 6.2 x 10-10 rs689 INS rs7111341(0.26) 

12p13.31 9905851 rs917911 A>C 0.36 1.10 1.9 x 10-7 CD69 rs4763879(1),rs10492166(0.470) 

12q13.2 56435504 rs705705 G>C 0.34 1.25 4.4 x 10-32 IKZF4 rs2292239(0.87),rs705704(0.99) 

12q24.12 112007756 rs653178 T>C 0.48 1.30 1.6 x 10-44 SH2B3 rs3184504(0.99) 

13q32.3 100081766 rs9585056 T>C 0.24 1.12 3.3 x 10-8 GPR183 rs9585056(1) 

14q32.2 98488007 rs1456988 T>G 0.27 1.12 2.9 x 10-8 rs4900384(0.98) 

14q32.2 101306447 rs56994090 T>C 0.41 0.88 1.1 x 10-11 rs941576(0.91) 

15q14 38847022 rs72727394 C>T 0.19 1.15 3.6 x 10-10 RASGRP1 rs12908309(<0.1) 

15q25.1 79234957 rs34593439 G>A 0.10 0.78 9.0 x 10-14 CTSH rs3825932(0.26),rs12148472(0.79) 

16p11.2 28505660 rs151234 G>C 0.12 1.19 4.8 x 10-11 IL27 rs4788084(0.1),rs9924471(0.54) 

16p13.13 11194771 rs12927355 C>T 0.32 0.82 3.0 x 10-22 DEXI rs12927355(1),rs12708716(0.86),rs12928822(<1) 

16p13.13 11351211 rs193778 A>G 0.25 1.14 4.4 x 10-10 DEXI rs12927355(<0.1),rs12708716(0.069),rs12928822(<0.1) 

16q23.1 75252327 rs8056814 G>A 0.07 1.32 3.0 x 10-19 BCAR1 rs7202877(0.86),rs8056814(1) 

17q12 38053207 rs12453507 G>C 0.49 0.90 1.0 x 10-8 IKZF3, ORMDL3 ,GSDMB rs2290400(0.97) 

17q21.2 38775150 rs757411 T>C 0.36 0.90 1.1 x 10-7 CCR7 rs7221109(0.95) 

* 17q21.31 44073889 rs1052553 A>G 0.24 0.89 8.2 x 10-8 -- 

18p11.21 12809340 rs1893217 A>G 0.16 1.21 1.2 x 10-15 PTPN2 rs1893217(1) 

18p11.21 12830538 rs12971201 G>A 0.39 0.89 2.1 x 10-6 rs1893217 PTPN2 rs1893217(0.13) 

18q22.2 67526644 rs1615504 C>T 0.47 1.13 1.8 x 10-11 CD226 rs763361(0.99) 

19p13.2 10463118 rs34536443 G>C 0.04 0.67 4.4 x 10-15 TYK2 rs2304256(<0.1) 

19p13.2 10469975 rs12720356 A>C 0.09 0.82 3.7 x 10-7 rs34536443 TYK2 rs2304256(0.26) 

19q13.32 47219122 rs402072 T>C 0.16 0.87 4.7 x 10-8 rs425105(0.98) 

19q13.33 49206172 rs516246 T>C 0.49 0.87 5.2 x 10-14 FUT2 rs601338(1) 

20p13 1616206 rs6043409 G>A 0.35 0.88 3.0 x 10-10 rs2281808(0.91) 
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21q22.3 43825357 rs11203202 C>G 0.33 1.16 1.2 x 10-15 UBASH3A rs11203203(0.42) 

* 21q22.3 45621817 rs6518350 A>G 0.18 0.88 9.6 x 10-8 ICOSLG -- 

22q12.2 30531091 rs4820830 T>C 0.38 1.14 1.2 x 10-12 rs5753037(0.99) 

22q12.3 37587111 rs229533 A>C 0.43 1.11 1.8 x 10-8 C1QTNF6,RAC2 rs229541(0.98),rs229526(0.39) 



24 

 

 

Table 1: T1D associated loci on ImmunoChip. The most associated SNP in a region 

is shown, together with the effect of the minor allele relative to major. Where 

secondary associations are found, they are conditional on SNPs shown in the 

column "condition". For previously known loci, the r2 between our lead SNP and 

previously reported index SNPs is shown.  Novel loci, at P < 3.23 x 10-7, are 

indicated by "*".  Alleles are shown major > minor. MAF=minor allele frequency. 

rs689 (11p15.5, INS) data obtained from previous TaqMan genotyping. Named 

candidate genes are genes for which there is additional evidence that they might be 

causal, or that they encode proteins with known immune functions that are part of 

the immune pathways already identified as involved in T1D pathogenesis. Since 

SNPs may alter enhancer sequences distant from the target gene, we have not 

named a gene (or a non-coding RNA) if the only evidence for a causal role is that the 

peak of SNP association lies in or very near a gene (unless those SNPs alter coding-

sequence or splice signals in a potentially functional way).  For example, RNLS at 

10q23.31 has no established role in the immune system and there is currently no 

specific functional data linked this gene to T1D etiology. 
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Index disease 
Associated 

regions 
SNPs in regions Enrichment result 

  
  disease 

assoc'd 

not 
disease 
assoc'd Z P 

juvenile idiopathic arthritis 15 2527 22725 7.35 2.00 x 10-13

areata alopecia 4 763 24489 6.63 3.40 x 10-11

primary sclerosing cholangitis 10 1866 23386 6.28 3.40 x 10-10

rheumatoid arthritis 27 4382 20870 5.51 3.60 x 10-8

primary biliary cirrhosis 16 2289 22963 5.26 1.50 x 10-7

celiac disease 29 4512 20740 2.55 1.10 x 10-2

autoimmune thyroid disease 9 1622 23630 2.50 1.20 x 10-2

narcolepsy 2 217 25035 1.49 1.40 x 10-1

multiple sclerosis 57 8312 16940 1.15 2.50 x 10-1

systematic lupus 
erythematosus 14 2528 22724 -0.23 8.10 x 10-1

ankylosing spondylitis 21 3103 22149 -0.84 4.00 x 10-1

Sjogren's syndrome 6 985 24267 -1.29 2.00 x 10-1

psoriasis 25 4457 20795 -2.22 2.60 x 10-2

Crohn's disease 83 13225 12027 -2.61 9.10 x 10-3

ulcerative colitis 58 9336 15916 -4.04 5.40 x 10-5
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Table 2: Enrichment Analysis of evidence for T1D association across densely 

genotyped non-MHC loci associated with other autoimmune or auto-inflammatory 

diseases.  ImmunoChip densely mapped regions were assigned as associated or not 

associated with each index disease accorded to publications curated in ImmunoBase 

(accessed February 13, 2014) and tested whether the distribution of T1D P-values 

differed between these sets of regions.  The numbers of SNPs that passed QC in our 

T1D study in the two sets of regions are shown. A positive (negative) Z-score implies 

T1D shows stronger (weaker) evidence of association in regions known to associate 

with the index disease.  
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  Index SNP Chr Position MAF Alleles 
Index 
Disease 

Disease 
association 

T1D association 
Candidate genes Reference 

              OR P OR P      

# rs17264332 6q23.3 1.38E+08 0.22 A>G CEL 1.29 5.00x10-30 1.12 8.26x10-6 TNFAIP3 29

# rs6920220 6q23.3 1.38E+08 0.22 G>A UC 1.16 1.40x10-21 1.12 7.26x10-6 TNFAIP3 30,31

# rs6920220 6q23.3 1.38E+08 0.22 G>A RA 1.2 2.30x10-13 1.12 7.26x10-6 TNFAIP3 32

rs911263 14q24.1 68753593 0.29 T>C PBC 0.79 9.95x10-11 0.89 4.93x10-6 16

* rs17564829 17q21.31 44006601 0.195 T>C PBC 1.25 2.15x10-9 0.89 6.77x10-6    16
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Table 3: Pleiotropic SNPs associated with T1D.  We show all genome-wide 

significant index SNPs for immune mediated diseases15,29-32 that are in regions not 

associated with T1D at genome-wide significance, but have P < 10-5 in the case-

control analysis presented here.  Shown are the index SNPs and diseases, and the 

single SNP association test statistics for each index disease and T1D.  Chromosome 

positions are given according to GRCh37.  MAF=minor allele frequency, OR=odds 

ratio. # rs17264332 is in LD with rs6920220, r2=1. * rs17564829 is in LD with 

rs1052553 in Table 1, r2=0.99.         
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ONLINE METHODS 

Samples 

Affected sib-pair families were collected by the T1DGC from five geographic 

regions through four recruitment networks. Recruitment criteria for the families have 

been discussed previously36. A total of 6,808 T1D case samples were ascertained 

from the UK Genetic Resource Investigating Diabetes (UK GRID) cohort10. Control 

samples were obtained from the British 1958 Birth Cohort (N=6,929)11 and the UK 

National Blood Services collection (UK NBS, N=3,060)12, and the NIHR Cambridge 

Biomedical Research Centre Cambridge BioResource (CBR, N=2,846)13. Many of 

these samples (98% of cases, 59% of controls, and 57% of family samples) were 

also used in an earlier GWAS meta-analysis that initially identified many of the T1D 

regions1. All samples included in this analysis have reported or self-declared 

European ancestry. All DNA samples were collected after approval from relevant 

institutional research ethics committees. Review boards of all contributing institutions 

approved all protocols and informed consent for sharing of data and sample 

collection; appropriate informed consent was obtained from all subjects and families 

 

Genotyping and Quality Control  

Genotyping was performed using a custom high-density genotyping array, 

ImmunoChip (Illumina, Inc; CA) according to manufacturer’s protocols. The 

ImmunoChip, a custom Illumina Infinium HD array, was designed to densely 

genotype, using 1000 Genomes and any other available disease specific 
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resequencing data, immune-mediated disease loci identified by common variant 

GWAS. The ImmunoChip Consortium selected 186 distinct loci containing markers 

meeting genome wide significance criteria (P < 5×10-8) from twelve such diseases 

(autoimmune thyroid disease, ankylosing spondylitis, Crohn’s disease, celiac 

disease, IgA deficiency, multiple sclerosis, primary biliary cirrhosis, psoriasis, 

rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes, and ulcerative 

colitis). All 1000 Genomes Project pilot phase37 CEU population variants (Sept 2009 

release) within 0.1cM (HapMap3 CEU) recombination blocks around each GWAS 

region lead marker were submitted for array design. No filtering on correlated 

variants (linkage disequilibrium) was applied. Additional content included regional 

resequencing data (submitted by several groups) as well as a small proportion of 

investigator-specific undisclosed content including intermediate GWAS results. 

All individuals from T1DGC affected sib-pair (ASP) and trio families 

(N=11,584), T1D cases (N=6,808) and British 1958 Birth Cohort controls (N=5,452) 

were genotyped at the Genome Sciences Laboratory within the Center for Public 

Health Genomics at the University of Virginia. An additional 1,477 control samples 

from the British 1958 Birth Cohort, 2,846 samples from the NIHR Cambridge 

Biomedical Research Centre Cambridge BioResource and 3,060 UK National Blood 

Service samples were genotyped at the Wellcome Trust Sanger Institute. The 

Illumina GeneTrain2 algorithm was used to cluster genotypes.  

Sample and SNP quality control for the family data set and the case, control 

data set was performed separately.  Initial sample quality control metrics included 

sample call rate, heterozygosity, and sex concordance check of reported versus 
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genotyped. Relationship and population structure inference analyses were 

performed, and the inferred relationship and population membership for each 

individual determined from the genetic data were compared to the self-reported 

pedigree and ethnicity data (see sections on population inference and population 

structure for more detail). A total of 34 cases, 192 controls, and 20 individuals in 

T1DGC ASP families were removed for missing rate > 5%. Approximately 2,000 

SNPs on the X chromosome and Y chromosome were used to infer sex based upon 

the genetic data. Individuals with low X chromosome heterozygosity and a large 

number of Y chromosome SNPs were defined as ‘males’; individuals with a high X 

chromosome heterozygosity and a small number of Y chromosome SNPs were 

defined as ‘females’. Inconsistency between the self-reported sex and the genetically 

determined sex for any individual was considered an error in sex. From this analysis, 

39 T1D cases, 79 controls, and 59 individuals in T1DGC ASP families were 

removed. Samples with heterozygosity outside the range of 19% - 23.5% were 

removed, including 7 cases and 19 controls. A further 75 cases and 201 controls 

were removed for other reasons, comprising sample duplication, and inability to map 

sample IDs to demographic information, relatedness (see below) and population 

structure. A total of 6,683 cases, 12,173 controls, 2,601 ASP families and 69 trio 

families (10,796 total individuals) were used for analysis following quality control. 

Monomorphic SNPs (~23,000) were identified and removed. A total of 527 

SNPs in cases, 2,405 SNPs in controls and 1,387 in T1DGC ASP and trio family 

data were rejected due to failure to attain at least 95% genotyping rate. An additional 

618 SNPs in the case and control data were removed due to low genotyping rate at 

less-frequent and rare variants (genotyping rate < 99% for SNPs with MAF < 1%, or 
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genotyping rate less than (1-MAF) for SNPs with MAF < 5%. In the case and control 

collections, 1,432 SNPs failed Hardy-Weinberg Equilibrium tests (with HWE P < 10-6) 

in controls and 527 SNPs failed (with HWE P < 10-10) in cases. In the ASP families, 

2,939 SNPs failed with Mendelian Inconsistency (MI) errors (with a standard MI error 

rate > 0.5% or an adjusted MI error rate > 5% for rare variants). A total of 163,924 

SNPs passed quality control metrics in the case and control collections, and 164,643 

SNPs passed quality control metrics in the families. Of these sets of SNPs, 154,939 

SNPs overlapped and were used for initial analyses. The first iteration of identifying 

the best markers for dense regions produced a large number of markers with visually 

identified noisy signal clouds. As a result, further SNP-QC was undertaken, whereby 

the call-rate cut off was raised to 99%, the HWE cut off was lowered to P < 10-4. A 

further 8,349 SNPs were removed for lower call-rate and 10,708 for violation of 

HWE, and 34 for manually identified poor signal clouds. This strategy reduced the 

total number of SNPs analysed to 135,870 and produced top SNPs with much 

cleaner signal cloud data. 

We observed inflation of test statistics across all SNPs that passed quality 

control, lambda_1000 = 1.09, which was expected as the ImmunoChip was designed 

to target robustly defined immune-mediated disease susceptibility loci. Excluding 

SNPs from regions reported in this paper, lambda_1000 was reduced to 1.07; 

excluding all densely genotyped regions reduced lambda_1000 to 1.03. 

 

Relationship Inference 
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Cryptic relatedness can confound the result of population structure and 

association analyses and lead to inflated type I error rates. We used the relationship 

inference method that was implemented in KING8 to estimate the kinship coefficient 

between every pair of individuals based on their SNP data. Since only SNPs of these 

two individuals are used when the kinship coefficient is estimated for a pair of 

individuals, the estimation accuracy is independent of the population structure in the 

entire data.  

Twenty-two autosomes are well covered on the ImmunoChip array, thus the 

SNP density provides sufficient power to correctly identify close relationships (1st- 

and 2nd-degree) with extremely low false positives (i.e., to separate unrelated pairs 

from close relatives)7.  After the cryptic relatedness was identified, pedigree errors 

were resolved by removing problematic individuals (within families) and/or by 

reconstructing the pedigree (both within and across families) incorporating the newly 

identified 1st and 2nd-degree relationships.  

A total of 30 individuals were removed in family data due to the inconsistency 

between the estimated and documented relationships, and ~500 pairs of 1st-degree 

relatives that were not reflected in the documented pedigree have been incorporated 

in the pedigree data by pedigree reconstruction. Supplementary Figure 2 shows all 

pair-wise relationships in families after QC. The estimated kinship coefficient of each 

pair of relatives is plotted against the proportion of zero IBS, with the documented 

relationships being indicated by colour. All 42 pairs of documented identical twins 

have estimated kinship coefficient > 0.4. Among 16,292 documented 1st-degree 

relative pairs, 16,270 pairs have estimated kinship coefficient between 0.177 and 



34 

 

0.36 (criteria to be inferred as 1st-degree relative in KING), 21 pairs have estimated 

kinship coefficient between 0.150 and 0.177, and 1 pair has estimated kinship 

coefficient 0.137. After pedigree reconstruction, there was no 1st-degree relatedness 

across any two families, and there were only 3 pairs of documented unrelated pairs 

with estimated kinship coefficient > 0.1 (all 3 kinship coefficients < 0.139). In the 

analysed data, a total of 10,796 individuals from 2,682 nuclear families have 

genotypes available. There were 1,670 families with both parents available, 652 with 

only one parent and 360 with neither parent. The distribution of affected siblings was 

69 families with one affected, 2490 with two, 104 with three, 5 with four, and 2 with 

five.    

In the T1D cases and the UK control data, 159 controls and 48 cases were 

removed for being close relatives. After this level of QC, no remaining “unrelated” 

pairs in the case or control data have estimated kinship coefficient > 0.09, indicating 

all individuals are indeed unrelated. We also checked the UK T1D case and UK 

control for relatedness in the T1DGC ASP and trio family data set, since one of the 

four T1DGC collection sites was in the UK. A total of 5 pairs of individuals were 

identified with a genotype concordance rate > 99.99%; the related individuals were 

selectively removed from the T1DGC family data set.  

 

Population Structure 

We applied the principal component analysis (PCA) method that is 

implemented in KING38 for the identification of the population structure. We 
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combined HapMap III data (1097 unrelated individuals were used39, with 215 of 

European ancestry) with each cohort. We kept those SNPs that are present on both 

HapMap and ImmunoChip panels, and removed SNPs with r2 > 0.5 with other SNPs. 

After applying the QC filters, ~30,000 SNPs were used for the structure analysis. 

PCA was first carried out among the HapMap individuals only, and then each 

ImmunoChip individual was projected to the space that was expanded by the 

principal components of HapMap individuals. The projected principal components for 

each individual represent its ancestry relative to the HapMap populations. Using this 

algorithm, we obtained the principal components for case-control individuals by 

cohort, projected to either the entire HapMap III populations (Supplementary Figure 

3), or the European ancestry populations only including CEU and TSI 

(Supplementary Figure 4); we also obtained the principal components for 

individuals in the family data (Supplementary Figure 5). 

In Supplementary Figure 3, population structure of our case-control data 

was compared with all HapMap III populations. A total of 69 individuals were 

identified to be greater than 3 standard deviations (SD) from the average of the 

second principal components in European populations, and these outliers were 

excluded from analysis. The principal components of all case-control individuals from 

four cohorts (GRID and 1958 British Cohort that were genotyped at UVA, 1958 

British Cohort and National Blood Service that were genotyped at Sanger) are in the 

range of the European ancestry populations, clearly separated from non-European 

populations. In Supplementary Figure 4, case-control individuals were compared 

with European populations only, including CEU and TSI. The cluster on the left is for 

CEU that represents the northern European, and the cluster on the right is for TSI 
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which represents the southern European. A total of 55 “outliers” were identified in 

this analysis to cluster with the southern European and have been excluded prior to 

analysis. Supplementary Figure 5 suggests that there is no substructure difference 

between our cases (UVA GRID) and controls (UVA 1958 BC, Sanger 1958 BC, and 

UK NBS). Supplementary Figure 5 shows the population structure in the family 

data, compared with the HapMap populations. Only individuals of European ancestry 

were used in the analysis.    

 

SNP Annotation 

The chromosomal locations of the ImmunoChip SNPs were standardized to 

build 37 (hg19) coordinates using the UCSC liftover utility. For each variant, the SNP 

alleles have been normalized so the reference and alternate alleles are reported on 

the reference (top) strand.  

 

Single SNP Association Analysis 

In order to test association between each SNP and T1D, we applied the 

Generalized Disequilibrium Test (GDT) method39 to the T1DGC ASP and trio 

families, and fit a logistic regression to the T1D case and control data. We then 

combined the family and case-control data using meta-analysis.  

The GDT method computes the genotype difference between all pairs of 

phenotypically discordant relatives within each family. This method utilizes the 



37 

 

information of all discordant relative pairs, including those nuclear families that are 

not efficiently used in family-based tests such as Transmission/Disequilibrium Test 

(TDT) or Family Based Association Test (FBAT). To estimate the effect at each 

variant, we carried out the TDT at each region and approximated the odds ratio of a 

variant by the transmission/non-transmission ratio at this region observed in parent-

affected-offspring trios. In the logistic regression model for T1D in the case-control 

data, association between T1D and an additive genotype score at each SNP was 

performed with adjustment for sex and regions in UK (12 dummy variables created 

for the 13 regions)40. The “snp.rhs.estimates” function from package snpS in R 3.0.2 

was used for analysis41.    

 

Meta-Analysis 

 A weighted z-score was used to combine results from the case-control and 

the family data42. An overall beta coefficient and standard error were computed as 

the weighted average of the individual beta statistics, and a corresponding P-value 

for that statistic was computed. The weights were proportional to the inverse 

variance (1 divided by the standard error squared) in each study and 

σ2
meta =  1/[1/(σ2

cc) + 1/(σ2
fam)] 

scaled by the meta-variance (σ2
meta, equation above) so the weights summed to 1. 

For the family data, instead of using the total number of family members, we used 

twice of the number of parent-affected-offspring trios as the effective sample size for 

the meta-analysis.  
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Conditional Analysis to Identify Secondary Signals 

 To determine if additional SNPs within a region were significantly associated 

with T1D, independent of the most associated SNP identified in the primary analysis, 

we performed conditional analysis using the case-control data. For each T1D region 

the conditional analysis started with the SNP that was the most statistically 

significant as identified in the meta-analysis. A new logistic regression model was fit 

to the case-control data, adjusting for the previously identified SNP as a covariate. 

We repeated this procedure until no SNPs in the region attained our threshold for 

statistical significance.  

 

Overlap of T1D with Other Autoimmune Diseases 

For each disease in ImmunoBase we downloaded the set of curated index 

SNPs (http://www.immunobase.org/page/RegionsLanding accessed February 13, 

2014). We excluded IBD as this is a combination of UC and Crohn's which are 

summarised individually. The MHC region(chr6:25Mb..35Mb GRCh37) was excluded 

from analysis.  For each disease in turn, we used the index SNPs to label each of 

densely mapped regions of the ImmunoChip as associated with the index disease 

and that region or not. After LD pruning (r2 <= 0.95) to remove excessive correlation, 

distributions of T1D association meta-analysis P-values for SNPs were compared 

between the two sets or regions using a non-parametric Wilcoxon rank score test, as 

implemented in the R package, wgsea43. LD between SNPs inflates the variance of 
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the test statistic, so we estimated this variance empirically under the null hypothesis 

using 10,000 permutations of case vs control status. Given overall significant 

evidence of shared or disparate genetic architecture, we examined which loci were 

involved by summarizing the evidence for T1D association in a region using P = 

min(-log(p)) over all SNPs in a given dense region.  

 

eQTL and GWAS Catalogue overlap in seven novel regions 

 To define a query SNP set we took a 2Mb window centred on each novel 

index SNP and then filtered overlapping SNPs  based on a linkage disequilibrium 

(LD) threshold of r2 > 0.9 with the index SNP, using 1000 genomes data. To identify 

potential cis eQTL overlap we downloaded summary statistics from Fairfax et al.44 

(their Table S7) and Westra et al.25 (Blood eQTL browser) and computed overlap 

with the query SNP set. For each significant overlap we computed the LD with the 

top eQTL SNP for that probe/tissue, again using 1000 genome data To look for 

trait/disease overlap outside ImmunoBase scope we used the query SNP set to 

examine overlap between NHGRI GWAS catalogue45. 

 

Credible Sets of Causal Variants  

 For each index SNP (Table 1) we considered all SNPs within a 50 kb window, 

and used the case control data to compare models containing the index SNP, i, or 

each alternative SNP, j, using approximate Bayes factors, by the relation  

 -2 log(ABFij) = BICi - BICj  



40 

 

where ABFij is the approximate Bayes factor comparing models containing SNPs i 

and j, and BICi is the Bayesian Information Criterion (BIC) calculated from a logistic 

model of case/control status against SNP i. For simplicity, this analysis was 

performed using only the case control cohort. For multiple SNP models we 

considered the conditional SNPs as fixed; e.g., for chromosome 10p15.1, when 

considering rs10795791 as an index SNP and conditioning on rs61839660, we 

calculated BICs for the index model containing rs61839660 and rs10795791 and all 

alternative two SNP models containing rs61839660 and another SNP within a 50 kb 

window of rs10795791.   

For any interval, we estimate the probability that any individual SNP j is the 

causal variant responsible for that signal (again, including conditional models where 

appropriate) by the posterior probability,  

 PPj = BICj/sum(BICj)  

and thus we create a 99% credible set of SNPs as the smallest set of SNPs with a 

total PP > 99%.  

  

Enrichment Analysis  

 Epigenomic Roadmap annotations were downloaded from the web portal. 

These were processed using R and Bioconductor packages to annotate those 

ImmunoChip SNPs overlapping tissue specific functional elements. According to the 

credible sets formed above, the ImmunoChip SNPs that passed QC could be divided 

into two sets :  



41 

 

A: those that are in any credible set, within ImmunoChip densely mapped regions 

- potential causal variants (n=1,256)  

B: their complement, within ImmunoChip densely mapped regions - unlikely to be 

causal (n=78,692) 

We tested for enrichment of T1D signals in enhancers in each cell type in turn by 

forming a series of 2x2 contingency tables, stratified by a SNP’s MAF in controls 

(<0.05, <0.1, <0.2, <0.3, <0.4, <0.5) showing the overlap of SNPs in A and B with 

functional elements according to physical location.  The stratification was important 

to control for confounding, as both enhancer presence/absence and membership of 

a SNP in a credible set were associated with MAF. We used Cochran-Armitage 

tests, with Mantel extension to test for association.  The sign of the score statistic 

determined the direction of association.  

 

Filtering of credible SNPs 

To create a filtered set of credible SNPs which could be targeted in future 

functional studies, we first expanded the sets by considering all neighbouring SNPs 

in 1000 Genomes CEU release that were did not pass genotyping on the 

ImmunoChip.  These 1000 Genomes SNPs were assigned to credible sets if the 

ImmunoChip SNP with which they should strongest LD according to r2 was in a 

credible set.  For each set, we calculated the size of the expanded credible set, the 

number of SNPs in the credible set that overlap enhancers in tissues which showed 
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enrichment according to Fig 2, and the number which are non-synonymous.  These 

are presented in Supplementary Table 1. 

 

Evidence for T1D association conditional on genome-wide significant 

association in another autoimmune disease 

Loci have previously been assigned as associated with T1D on the basis of 

p<10-4 for a SNP that also shows p<5x10-8 in another autoimmune disease5. Here, 

we explore the strength of evidence these thresholds provide, based on previous 

work46. For any individual SNP and two diseases, there exist four hypotheses: 

H0: Not associated with either disease 

H1: Associated with only disease 1 

H2: Associated with only disease 2 

H12: Associated with both disease 1 and disease 2 

Realistic prior probabilities46 are: 

π0 = 1 - 2x10-4 – 10-5  π1 = 10-4 

π2 = 10-4    π12 = 10-5 

that imply we expect about 1 in 1000 SNPs show association to either disease and, 

of SNPs associated to one disease, we expect about 1 in 10 to be associated with 

both diseases. 
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Posterior probabilities for independent datasets 

We use the approximate Bayes Factors presented previously47 to estimate φi, the 

Bayes Factor for association to disease i compared to no association to disease i 

given only single SNP p-values and the minor allele frequency (MAF) of the SNP in 

controls. If we assume the case and control datasets for each disease are 

independent, they can be combined to calculate Bayes Factors for each hypothesis 

BF0 = 1  BF1 = φ1 

BF2 = φ2  BF12 = φ1φ2 

Thus, the posterior probability for each hypothesis is given as 

PP0 = π0/B  PP1 = π1φ1/B 

PP2 = π2φ2/B  PP12 = π12φ1φ2/B 

where B = 1 + φ1 + φ2 + φ12. The conditional probability of association to disease 2, 

given we believe there is association to disease 1, is 

PP2|1 = PP12/(PP1 + PP12). 

Effect of shared versus independent controls 

The ImmunoChip consortium genotyped a large sample of shared UK controls. This 

induces correlation between the p-values from different diseases48, so BF12 cannot 

be expressed as a simple product of disease-specific Bayes Factors. Methods to 

account for this appear conservative48, as they do not allow for the reasonable 

assumption that related diseases share genetic susceptibility variants. Instead, we 
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use simulation to explore the effect of non-independence on PP2|1. We use 

multinomial models and the approximate Bayes Factor49 to properly estimate the 

posterior probabilities of each hypothesis.  

To explore the effect of shared controls, we considered two general 

scenarios, relating the sample sizes available in the WTCCC and the ImmunoChip 

papers (Supplementary Table 3). Using pi to denote the single SNP p-value for 

disease I, the results (Supplementary Figure 6) show that, for independent 

controls, PP2|1 > 0.9 (median 0.97) whenever  p2 < 10-4. However, for shared 

controls, we cannot be as confident of association. PP2|1 is independent of p1, given 

that we believe the association with disease 1 is real. The number of cases for each 

disease has a relatively minor effect on PP2|1, while the MAF and the number of 

shared controls have slightly larger effects. Conditional posterior probabilities 

increase with MAF, but decrease with an increasing number of shared controls. The 

strongest determinant is p2, with PP2|1 in the interval (0.37, 0.61)(median 0.46) at p2 

= 10-4 for all scenarios. When p2= 10-5, PP2|1 is in the interval (0.87,0.90)(median 

0.89), suggesting that a p2 = 10-5 threshold may be more suitable for convincing 

evidence of association to a second autoimmune disease.  

The R code is available at http://dx.doi.org/10.6084/m9.figshare.827246 and 

is based, in part, on functions from the R package colocCommonControl at 

https://github.com/mdfortune/colocCommonControl. 
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