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Summary 

Recent lineage tracing studies based on inducible genetic labeling have emphasized a 

crucial role for stochasticity in the maintenance and regeneration of cycling adult 

tissues. These studies have revealed that stem cells are frequently lost through 

differentiation and that this is compensated by the duplication of neighbors, leading 

to the consolidation of clonal diversity. Through the combination of long-term 

lineage tracing assays with short-term in vivo live-imaging, the cellular basis of this 

stochastic stem cell loss and replacement has begun to be resolved. With a focus on 

mammalian spermatogenesis, intestinal maintenance, and the hair cycle, we review 

the role of dynamic heterogeneity in the regulation of adult stem cell populations. 

 

Introduction 

In multicellular organisms, groups of cells specialize within tissues and organs to 

perform particular tasks and functions. In the course of adult life, these functional 

cells can become exhausted and progressively lost. To compensate for the ongoing 

loss of differentiated cells, new functional cells must be generated so that tissues 

remain in homeostasis. The maintenance and repair of cycling adult tissues usually 

rely upon the turnover of a small population of cells – termed adult stem cells - that 

possess the ability to self-renew, giving rise to differentiated cells while maintaining 

their number (1, 2).  

The capacity of self-renewal has long been considered the defining feature of adult 

stem cells (3-5). To achieve homeostasis, stem cell proliferation and differentiation 

must be perfectly balanced such that, following division, one daughter cell stays in 

the stem cell compartment, while the other differentiates either directly or through 

a limited series of divisions. Such fate asymmetry can be achieved as the invariant 



result of each and every stem cell division (termed “invariant asymmetry”). 

Alternatively, fate asymmetry may be orchestrated at the level of the population 

(termed “population asymmetry”), such that cell fate following each stem cell 

division is unpredictable or “stochastic”, and is specified only up to some defined 

probability (6, 7). These alternative models (Fig. 1A), both of which may be 

instructed by intrinsic (cell-autonomous) or extrinsic (environmental) cues, suggest 

very different regulatory mechanisms.  

To address the factors that regulate stem cell self-renewal in adult tissues, attention 

has focused on defining the molecular mechanisms that control fate behavior. By 

combining static marker-based assays with the transcriptional profiling of fixed 

samples, significant progress has been made in resolving key elements of the gene 

regulatory networks and signaling pathways that control stem cell activity and fate 

behavior (8-13). However, it is becoming evident that stem cells function in dynamic 

and noisy environments in which levels of gene expression may adjust or fluctuate in 

response to promoter activity and extrinsic signals from the local microenvironment 

or niche (14). Therefore, to discriminate tissue stem cells from their more 

differentiated cell progeny and define their functional behavior, it is essential to 

address dynamic as well as static measures. Historically, the importance of such an 

approach was recognized prior to the genomics revolution. Charles Philippe Leblond, 

considered by many as the father of modern stem cell biology, emphasized the ‘time 

dimension in histology’, and did much to advance early lineage tracing methods 

using autoradiography and the incorporation of thymidine analogues (15). However, 

it was not until the advent of transgenic animal models that it became possible to 

reliably trace the lineage of individual cells and their labeled progeny over time (16).  

In recent years, pioneering studies using in vivo live-imaging platforms have begun to 

provide access to continuous-time lineage data (17-22), while methods based on 

single-cell deep sequencing now offer the potential to resolve individual phylogenies, 

even in human tissues (23, 24). By combining these lineage tracing approaches with 

static marker-based assays, snapshots of clonal evolution over time can be 

integrated with population-level measures to reveal how stem and progenitor cells 

contribute to tissue maintenance. Efforts have also been made to develop statistical 

and mathematical methods that can resolve (conserved) strategies of progenitor cell 

fate in development and tissue maintenance (6). Applied to actively cycling adult 

tissues in both human and model organisms, including the epidermis (25, 26), 

oesophagus (27), intestine (7, 28-31), and germline (32), these studies show a 

preference for population asymmetric self-renewal, in which stem cells are 

continuously and stochastically lost and replaced by neighbors. This pattern of self-

renewal results in “neutral drift” dynamics, with the continual and stochastic loss of 

clones through differentiation compensated by the expansion of others so that the 

overall stem cell population remains constant in size. In some cases, these studies 

have overturned long-held paradigms and refocused the search for the molecular 

regulatory mechanisms that underpin stochastic fate behavior. In particular, they 

have prompted the question of how the balance of stem cell proliferation and 

differentiation is regulated within dynamically changing environments (7). 



These studies have also begun to question our understanding of stem cell identity in 

adult tissues. When considering the identity of stem cells, two key assumptions are 

usually implicit, but rarely challenged. First, it is presumed that stem cells are 

defined by the signature expression of molecular markers, distinct from their more 

differentiated cell progeny. Second, in the course of tissue turnover, stem cells and 

their progenitor cell progeny are thought to move irreversibly through a 

differentiation hierarchy (Fig. 1B). However, with the advent of more refined lineage 

tracing approaches, both of these assumptions have been called into question. 

Increasing evidence suggests that expression levels of key fate determinants are not 

fixed, but drift over time or fluctuate in response to transcriptional activity and 

extrinsic cues from the local microenvironment (33-37). Furthermore, progenitors 

expressing the same putative stem cell marker can exhibit heterogeneous fate 

choices (38), while stem cells with different expression profiles may behave similarly 

in the long term. Finally, recent studies in disparate tissues have also shown that 

cells normally committed to differentiation can, in the course of regeneration 

following the targeted ablation of endogenous stem cell populations, reacquire the 

hallmark properties of tissue stem cells, including the potential for long-term self-

renewal (22, 39-42). 

Together, these findings question the traditional view of adult stem cell populations 

as discrete entities comprising functionally equivalent cells. Instead, gathering 

evidence suggests that, in some tissues, stem cells may transit reversibly between 

discrete or a continuum of states in which they become temporarily biased towards 

particular fates, but the final decision is made stochastically or governed locally by 

cell-extrinsic factors (43-45). In this way, a transcriptionally heterogeneous cell 

population may function, long-term, as a single equipotent stem cell pool (Fig. 1C). 

Here, we review case studies from three canonical cycling adult tissues types – the 

mammalian germline, intestine, and hair follicle – that exemplify the role of 

heterogeneity and stochasticity in the regulation of adult stem cell behavior, as well 

as the conservation of self-renewal strategies between seemingly disparate tissue 

types. These studies highlight the value of a multifaceted approach to the study of 

tissue maintenance that places emphasis on quantitative and dynamic measures of 

fate behavior.  

 

Examples of dynamic stem cell heterogeneity 

Mammalian spermatogenesis  

In mammals, spermatogenesis takes place in the seminiferous tubules of testes (46). 

In common with other cycling adult tissues, the testes contain adult stem cells – 

termed germline stem cells (GSCs) – that continually self-renew throughout adult life 

and are capable of rapid regeneration following injury. Throughout all stages of their 

development, germ cells are nourished by large somatic Sertoli cells, which support a 

network of tight junctions that separate the basal and adluminal compartments of 

the seminiferous tubule (Fig. 2A). Spermatogonia (mitotic germ cells that include 

GSCs) lie in close association with the basement membrane of the seminiferous 

tubule, and form the basal germ cell compartment. When meiosis begins, cells 



detach from the basement membrane, and translocate across the tight junctions. 

They then undergo meiotic divisions and spermiogenesis (Fig. 2B) before their 

release into the lumen as mature sperm. In mice, spermatogonia are subdivided into 

‘undifferentiated’ and ‘differentiating’ populations, with the differentiated cells 

expressing the receptor tyrosine kinase c-Kit. Furthermore, undifferentiated 

spermatogonia can exist as singly isolated cells (termed Asingle or As) or as syncytial 

chains of cells connected by cellular bridges, consisting mainly of 2 (Apair or Apr), 4 

(Aaligned-4 or Aal-4), 8 (Aal-8), or 16 (Aal-16) cells (Fig. 2C) (47).  

In early studies, detailed analyses of fixed specimens led to the conjecture that stem 

cell activity is limited to the population of As spermatogonia, while interconnected 

Apr and Aal syncytia were irreversibly committed to differentiation, a hypothesis 

known as the ‘As model’ (48, 49). Consistent with this model, post-transplantation 

colony formation and regeneration assays confirmed that the vast majority of stem 

cell activity is restricted to the population of undifferentiated (Kit-negative) 

spermatogonia (50). More recently, the identification of genetic markers that are 

enriched in or restricted to As spermatogonia, including the transcriptional repressor 

ID4 the polycomb complex protein Bmi1, and the paired-box protein Pax7, allowed 

the potency of individual As cells to be assessed (51-53). These studies confirm that 

at least a fraction of As cells retains long-term self-renewal potential, lending further 

support to the As model paradigm.  

However, recent lineage tracing studies have questioned the validity of the As model 

and offer a new perspective on the identity and function of adult stem cell 

populations, in germline and indeed in other adult tissues. These studies focused on 

the fate and behavior of two separate compartments of undifferentiated 

spermatogonia, characterized by the expression of glial cell-derived neurotrophic 

factor (GDNF) family receptor alpha-1 (GFR� 1) and the transcription factor 

Neurogenin 3 (Ngn3). In undisturbed testes, these factors are expressed 

heterogeneously, with GFR�1 expressed more widely in As cells and shorter syncytia 

(Apr and a few Aal), while Ngn3 is expressed in a complementary manner (Fig. 2C). By 

developing an inducible genetic labeling transgenic mouse model based on the Cre-

loxP recombination system with a Ngn3 promoter, studies by the Yoshida lab 

showed that the vast majority of Ngn3-expressing cells proceed rapidly to 

differentiation, maturation and loss, but that a small minority of cells retains long-

term self-renewal potential (54). Further, through the development of long-term 

“scaling” properties of the measured clone size distribution, a follow-up study 

showed that GSCs are not individually long-lived, but are stochastically lost through 

differentiation and replaced by neighboring GSCs, leading to neutral drift dynamics 

of the surviving clone size (55). While these results are seemingly compatible with 

the As model, a subsequent in vivo live-imaging study by the same group revealed 

that the cellular bridges that connect cells within syncytia can break down, leading to 

the infrequent “fragmentation” of Ngn3-expressing syncytia into single cells or 

shorter syncytia (56). Such flexible behavior of Ngn3-expressing spermatogonia 

questions the premise of the As model that syncytia are irreversibly committed to 

differentiation. Instead, these results suggest that the entire pool of undifferentiated 

spermatogonia may contribute to stem cell activity.  



To address this question, Yoshida and colleagues combined detailed in vivo live-

imaging with long-term genetic lineage tracing using a pulse-labeling assay to follow 

the fate of individual GFR�1+ spermatogonia and their differentiating progeny (30). 

Continuous live-imaging data totaling more than 1 year of filming revealed that just 

5% of GFR�1-expressing As cell divisions are complete, with the vast majority leading 

to the generation of Apr syncytia. Therefore, if the transition from As to Apr indeed 

signaled commitment to differentiation, as conjectured by the As model, the GFR�1+ 

As population would become rapidly depleted over time. However, alongside the cell 

division rate of around once per 10 days for GFR�1-expressing cells (independent of 

syncytial length), the live-imaging study also revealed fragmentation of GFR�1-

expressing syncytia at a rate of around once per 20 days per interconnecting bridge, 

providing a possible route to replenish the As compartment. 

Together, these findings suggest a revised model of GSC maintenance in which a 

morphologically heterogeneous cell population, comprised predominantly of GFR�1-

expressing spermatogonia (including As and syncytial chains), functions long-term as 

a single stem cell pool. In this paradigm, germ cell production involves a coordinated 

process in which the commitment of cells to differentiation (signaled by the down-

regulation of GFR�1 expression and up-regulation of Ngn3) is perfectly compensated 

by the fragmentation of neighboring GFR�1-expressing syncytia (Fig 2D). To test this 

hypothesis, the measured rates of cell division and syncytial fragmentation were 

used to predict the medium (weeks to months) and long-term (months to over a 

year) clonal evolution of labeled GFR�1-expressing cells and their differentiating 

progeny. By collecting clone size and compositional data at single cell resolution, 

compelling quantitative evidence was obtained in support of the new model for 

germline maintenance. Through continual GSC loss and replacement, clones undergo 

a neutral drift process in which their chance expansion through syncytial 

fragmentation is perfectly compensated by the contraction or loss of others through 

differentiation. At the same time, this study established a cellular basis to 

understand the process of GSC loss and replacement that was revealed by the long-

term scaling behavior of the clone size distribution reported in the earlier Ngn3 

lineage tracing study. 

Although the cellular organization of the mammalian germline is of course unusual, 

these studies highlight several important features of stem cell dynamics that may 

translate to other stem cell-supported cycling adult tissues. First, maintenance of the 

stem cell compartment involves the continual stochastic loss and replacement of 

stem cells, leading to a progressive consolidation of clonal diversity. Second, stem 

cell competence is not restricted to a homogeneous cell population, defined by a 

signature expression of molecular markers. Instead, through the reversible transfer 

of cells between morphologically and genetically distinct states with differential 

survival probability, a heterogeneous population is able to function long-term as a 

single equipotent stem cell pool (cf. Fig. 1C). Third, it is only through quantitative 

analysis that “neutral” competition between equipotent stem cells can be 

discriminated from “non-neutral” clonal dominance associated with engrained (i.e. 

long-term) heterogeneity of fate potential. Fourth, the elucidation of short-term 

heterogeneity, and the cellular basis for GSC loss and replacement, is facilitated by 

access to continuous time in vivo live-imaging. 



As well as presenting a new perspective on the identity of GSCs and the cellular basis 

for stem cell self-renewal, these studies also raise new mechanistic questions. What 

is the molecular regulatory basis for stochastic GSC loss and replacement? What role 

is played by the periodic seminiferous cycle that orchestrates the progression of 

spermatogonia and spermatocytes through the differentiation pathway? How is the 

fragmentation of GFR�1+ syncytia so exquisitely correlated with the commitment to 

differentiation of neighbors when GSCs are separated by legions of differentiating 

progeny? And, functionally, given the singular role of the germline in the 

propagation of genetic information to the next generation, what are the implications 

of neutral drift clone dynamics for the inheritance of congenital disorders due to the 

acquisition and spread of de novo mutations in GSCs (57, 58)? But before speculating 

on potential regulatory mechanisms and their implications, it is instructive to look 

for parallels of these dynamics. To this end, we turn now to consider a second 

mammalian epithelial tissue that is characterized by a high degree of turnover.  

 

Intestinal maintenance 

The epithelium of the mammalian small intestine is organized into large numbers of 

self-renewing crypt-villus units (Fig. 3A). Villi form finger-like protrusions of the gut 

wall that project into the lumen to maximize available absorptive surface area. The 

villi are covered by a simple post-mitotic epithelium, beneath which capillaries and 

lymph vessels mediate transport of absorbed nutrients into the body. The base of 

each villus is surrounded by multiple epithelial invaginations, termed crypts of 

Lieberkühn. The crypts play host to a population of rapidly proliferating intestinal 

stem cells (ISCs), which fuel the active self-renewal of the epithelium throughout 

adult life (59). These multipotent cells give rise to lineage restricted transit-

amplifying cell progeny, which migrate along the walls of the intestinal crypt and 

generate the various differentiated absorptive and secretory cell types.  

The identity, multiplicity, and behavior of ISCs have remained the subjects of 

continuing debate and controversy. Beginning with the early pioneering studies of 

Leblond, which were based on incorporation of thymidine analogues, ISCs have been 

localized to the base region of the crypt (60, 61). However, these early studies could 

not assess the long-term potency or heterogeneity of individual crypt base 

progenitors. Subsequent lineage tracing studies of individual clones marked by a 

chemical mutagen (ethylnitrosourea) showed that, in the course of turnover, the 

entire intestinal epithelium could be derived from a single marked cell (62). This 

result provided strong evidence that the intestinal epithelium is maintained by 

multipotent progenitor cells, which reside at the apex of a proliferative hierarchy. 

Later, with the advent of transgenics, long-term lineage tracing studies based on the 

clonal marking of targeted cell populations identified several putative ISC markers 

including the leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), the 

polycomb complex protein Bmi1, and the homeodomain protein Hopx as (63-65). 

These markers have been associated with different subpopulations of ISCs (Fig. 3B). 

Lgr5 expression is enriched in “crypt base columnar cells”, which lie interspersed 

between large mature secretary cells known as Paneth cells (63). By contrast, Bmi1 is 



more widely expressed in the crypt base region, with a peak of expression around 

the boundary of the Paneth cell compartment (row +4 from the base of the crypt), 

while Hopx is more tightly expressed in the same region (66).  

Although these studies confirm that the ISC compartment contains cells expressing 

Lgr5, Bmi1, and/or Hopx, such qualitative studies cannot define the range, potential 

short-term heterogeneity, and fate behavior of ISCs. Once again, long-term lineage 

tracing studies, allied with short-term in vivo live imaging, have provided the means 

to address the identity and functional properties of the ISC compartment. The first of 

these studies, a long-term lineage tracing investigation based on the inducible 

genetic labeling of intestinal cells using a Cre-loxP recombinase system under the 

control of a ubiquitous promoter, showed that, in common with GSCs, ISCs follow a 

pattern of population asymmetric self-renewal (as evidenced by scaling behavior of 

the clone size distribution) in which ISC loss through differentiation is perfectly 

compensated by the duplication of a neighboring ISC (28). Through this process of 

stochastic ISC loss and replacement, stem cell-derived clones undergo neutral drift 

dynamics, expanding or contracting around the crypt base until individual clones 

become lost, or the crypt becomes monoclonal. 

While this study provided insight into the functional behavior of the ISC 

compartment, by focusing on medium- (weeks) and long-term (months to a year) 

clonal dynamics, the size, molecular identity, and short-term potential of the ISC 

compartment could not be resolved. However, subsequent pulse-chase lineage 

tracing studies based on Lgr5 expression (29), combined with studies of the colony 

forming efficiency of Lgr5-expressing cells co-cultured with Paneth cells (67), led to 

the conjecture that stem cell competence may be linked to Wnt factors, which signal 

through Lgr5, associated with Paneth cells (68). Thus, through “neutral” competition 

for Paneth cell contact following cell division, ISCs become displaced from the niche 

environment, and enter into a differentiation pathway (Fig. 3C).  

Although, in principle, the short-term potency of crypt base progenitors can be 

assessed through the use of targeted promoters, difficulties associated with the 

toxicity and delayed action of the Cre recombinase, effects of the inducing agent, 

and the slow acquisition of fluorescent reporters make a definitive assessment 

problematic. Instead, to resolve potential heterogeneity of the stem cell 

compartment, medium- and long-term lineage tracing assays were combined with 

short-term in vivo live imaging of clonally labeled tissue (69). By following the fate of 

marked Lgr5-expressing cells and their differentiating progeny over several days of 

time-lapse imaging, van Rheenen and colleagues showed that cells positioned at the 

base of the crypt (rows 0 to +2) experience a survival advantage over cells positioned 

near the border of the Paneth cell niche (rows +3 to +4). Yet, through the reversible 

transfer of cells between the border and base regions, the heterogeneous 

population of ISCs function long-term as a single equipotent stem cell pool (cf. Fig. 

1C) (28, 70). Whether the short-term potency of ISCs correlates with the expression 

of the putative stem cell markers remains an intriguing open question.  

Together these findings highlight the fact that, despite obvious differences in 

anatomy and cellular organization, the dynamics and behaviors of GSCs and ISCs, as 



well as the means through which they were elucidated, show striking and 

unexpected parallels. In both cases, the stem cell compartment is heterogeneous, 

with cells transferring reversibly between “states” temporarily biased or “primed” 

for proliferation or differentiation. Yet, once a clone comprised of an individually 

labeled stem cell and its progeny has become representative by composition of the 

heterogeneous stem cell pool (a situation that will prevail on time scales comparable 

to the time of transfer between different primed states), the subsequent clonal 

evolution will become statistically indistinguishable from that of an effective single 

equipotent stem cell pool (Fig. 1C). In this limit, quantitative clonal analyses of both 

the germline and intestine reveal a process of stochastic stem cell loss and 

replacement, leading to (one-dimensional) neutral drift dynamics in which continual 

clonal contraction and loss is compensated by the expansion of neighboring clones 

(6).  

 

Hair follicle  

We have emphasized the functional similarities of stem cell maintenance in the 

germline and intestine. But to what extent does their behavior provide insight into 

other cycling tissue types? As mentioned above, quantitative clonal analyses based 

on genetic lineage tracing approaches have provided evidence that population 

asymmetric stem cell self-renewal may be a ubiquitous feature of adult tissue 

maintenance, at least in actively cycling epithelial tissues (6, 7, 25-31). In each 

documented case in which quantitative data on long-term clonal evolution has been 

available, its analysis is seen to be consistent with the steady turnover of an 

equipotent stem cell population. However, as illustrated by the examples of the 

mammalian testis and intestinal crypt, long-term steady-state behavior may mask 

the presence of short-term dynamic heterogeneity and fate priming of the stem cell 

pool.  

In this context, the mammalian hair follicle provides an interesting case study. The 

hair follicle is unusual as a cycling tissue because it is not generated at a constant 

steady rate, but undergoes periodic bouts of regression and regeneration 

throughout adult life. On the basis of label-retaining assays and lineage tracing 

studies using targeted promoters (71, 72), stem cell identity has been localized to a 

permanent and discrete region of the hair follicle known as the bulge (Fig. 4A). 

Otherwise dormant stem cells residing in the bulge region enter sporadically into cell 

cycle in response to signals derived from the base of the niche, and give rise to 

progeny that repopulates the hair follicle. Alongside putative stem cell markers such 

as Keratin 15 and the transcription factor Sox9, which are expressed throughout the 

bulge region, other markers are expressed heterogeneously such as the 

Hematopoietic progenitor cell antigen CD34, which is expressed more strongly in the 

distal region, while Lgr5 is enriched proximally (73) (Fig. 4A).  

To trace the dynamics of hair follicle stem cells during the phase of regeneration, the 

Greco lab has recently employed a novel two-photon in vivo live-imaging approach, 

allowing deep penetration into the tissue (22). When combined with genetic lineage 

tracing, this method has enabled individual stem cell lineages to be followed from 



their exact place of origin throughout the process of regeneration (74). This study 

found that stem cells located in the upper half of the hair follicle niche were more 

likely to remain quiescent, or proliferate without committing to a specific fate (Fig. 

4A). In contrast, stem cells situated in the lower bulge region were more likely to 

proliferate in response to activating stimuli from the niche base, undergoing limited 

amplification before differentiating. These observations suggest that, in common 

with intestinal crypt, the location of a stem cell within the niche at the onset of a 

new regeneration cycle dictates its fate during the cycle (74). Whether stem cells in 

the lower bulge region continue to harbor long-term self-renewal potential, as do 

stem cells at the niche border of crypt, or whether they have irreversibly entered a 

differentiation pathway remains unclear. However, the flexibility and regenerative 

capacity of the progenitor populations have been tested under injury conditions. 

Using laser-induced cell ablation to specifically remove either the bulge stem cells or 

the hair germ (stem cell progeny) at the onset of hair growth (74), further studies by 

the Greco lab showed that, remarkably, in both cases the hair follicle niche 

recovered the lost cell population, restored its anatomical features, and proceeded 

normally through the hair cycle (Fig. 4C). Differentiating hair follicle cells can thus 

regain stem cell competence in response to injury. Surprisingly, distant epithelial 

cells located above the bulge were also observed to become proliferative, and some 

descended rapidly into the niche (Fig. 4C). By limiting genetic labeling to epithelial 

cells outside of the niche, it was confirmed that loss of the stem cell pool due to 

injury can mobilize cells that do not normally participate in hair regeneration to re-

populate the niche and sustain hair growth. Indeed, once these cells entered the 

niche, they displayed characteristics consistent with the fate of endogenous stem 

cells in their new locations.  

The hair follicle study therefore provides evidence for both stem cell heterogeneity 

and flexibility under conditions of stress. While, in this case, the recruitment of 

differentiating cells to the stem cell niche has not yet been confirmed under normal 

physiological conditions, the conversion of epithelial cells to bulge stem cells in 

response to crisis suggests that cells seemingly committed to a differentiation 

lineage are able to “reprogramme” and assume long-term stem cell fate identity. 

Future studies will reveal whether stem cell heterogeneity and the flexibility of 

differentiating progeny represent a more ubiquitous feature of this and other adult 

stem cell populations. 

 

Questioning stem cell identity 

The emergence of stochastic stem cell fate behavior, stem cell heterogeneity and 

priming in tissue maintenance questions our understanding of adult stem cell 

identity and the definition of commitment. Even within an equipotent stem cell 

population, while all cells retain long-term self-renewal potential, chance stem cell 

loss and replacement mean that only a diminishing minority of clones actually persist 

long-term. Yet it would make no sense to segregate cells prospectively according to 

their eventual long-term fate. Similarly, in a dynamic heterogeneous stem cell 

population, the long-term survival potential of individual cells may itself vary over 



time. For example, in the intestinal crypt, an ISC positioned at the border of the 

niche has a long-term survival probability that is several times smaller than an ISC 

positioned towards the crypt base (69). However, if the border ISC or its ISC progeny 

transfers to the base region, the survival probability is proportionately readjusted. It 

would therefore seem inappropriate to designate only the base population as a stem 

cell type; instead, the entire compartment functions as just one heterogeneous 

population. 

Further, in defining stem cell behavior, much of the discussion in the literature has 

centered on the mode of division, and in particular on whether the fate outcome is 

symmetric or asymmetric (1, 75-77). However, this designation is useful only if fate 

behavior is defined shortly prior to, or on, division. If fate outcome is linked to the 

proximity of daughter cells to the niche following division, as implicated in the 

germline and intestine, the division mode may not be the primary determinant of 

daughter cell fate. In the search for mechanism, it would therefore be expedient to 

focus more on local environmental cues instructing fate behavior. 

The potential for ambiguity in the definition of an adult stem cell doesn’t end there. 

Alongside the innate regenerative capacity of the endogenous stem cell population, 

evidence from regenerative studies of hair follicle shows that cells normally 

committed to differentiation in steady-state are able to repopulate the stem cell 

compartment and reacquire long-term self-renewal potential in response to injury or 

stress. Indeed, such behavior is far from unique (42). Following the ablation of 

spermatogonia through busulphan administration, studies have shown that the 

recovery of the GSC compartment involves the large-scale transfer of Ngn3-

expressing cells to the GFR�1-expressing stem cell compartment, as well as the 

expansion of the surviving GFR�1-expressing cell population (30, 56). Similarly, the 

targeted genetic ablation of Lgr5-expressing cells following exposure to diphtheria 

toxin leads to the transfer of differentiating cells back into the stem cell 

compartment, and the regeneration of the stem cell pool (78). Further, independent 

studies show that cells positive for the Notch ligand Dll1 as well as quiescent Lgr5-

expressing cells, which are both largely committed to differentiation into the 

secretory cell lineage in conditions of normal homeostasis, can reestablish 

multipotency and contribute to long-term self-renewal following the ablation of ISCs 

through radiation damage (39, 79). Finally, the regeneration of trachea following the 

genetic ablation of basal cells (which includes the resident stem cell population) 

involves the de-differentiation of club cells (40). Together, these results suggest that 

the entry of cells into a differentiation pathway may not involve an abrupt ‘binary’ 

decision but may occur progressively, with cells retaining stem cell potential ready to 

be mobilized under appropriate cues. Such flexibility may strengthen the resilience 

of tissues to crisis or injury, enabling the ensemble of differentiating progeny to 

function as a “reserve” stem cell population (cf. (80)). 

Taken together, these studies suggest that the fate potential of stem and progenitor 

cells may not be organized into a strict classical “one-way” proliferative hierarchy 

involving functionally discrete cell populations. Rather, the arrangement of cell types 

may be more accurately represented as a continuum, in which both the proliferative 

and fate potential becomes gradually restricted. In such cases, transitions between 



different cell “states” may occur reversibly even under physiological conditions, in 

response to niche-dependent factors, and can be promoted through injury or stress.  

 

Stem cell-niche interactions 

The intestinal crypt and hair follicle bulge highlight the crucial role played by 

interactions with the local microenvironment in defining the proliferative capacity 

and fate behavior of stem cells. In the intestinal crypt, the balance between stem cell 

loss and replacement, as well as the size of the stem cell pool, are regulated by 

exposure to Paneth cells as well as factors from the adjacent stromal tissue. Through 

competition for limited niche access, ISCs are able to self-renew, and they can 

recover their number during the regeneration of tissue following the partial ablation 

of the stem cell compartment by radiation damage or other forms of injury (78, 81). 

A similar strategy to regulate the size of the stem cell compartment may operate in 

the germline. Although studies have not yet identified a localized niche structure in 

the mammalian testis, the association of undifferentiated spermatogonia with the 

vasculature (82) suggests that intratubular domains may play host to a somatic cell 

type (or types) that create a niche environment to support GSCs, much as Paneth 

cells do in crypts. Competition of spermatogonia for access to these limited niche 

domains may provide a simple and robust mechanism to regulate both the balance 

between syncytial fragmentation and differentiation, and the total size of the stem 

cell pool. Furthermore, if GFR�1 expression is linked to proximity to the niche, then 

the fragmentation of GFR�1+ syncytia may displace their neighbors from niche-

maintaining sites, leading to loss of GFR�1 expression and the upregulation of 

differentiation markers such as Ngn3. 

In contrast to the mammalian testis, the function of localized niche factors on stem 

cell regulation have been defined in the Drosophila ovary and testis. In these cases, 

stem cell identity is traditionally thought to be restricted to the population of GSCs 

that directly contact a central hub of stromal cells (83, 84). These cells remain closely 

associated with their niche during the cell cycle through cadherin-mediated cell 

adhesion (85). Through a regulated process of spindle orientation, GSC division leads 

to predominantly asymmetric fate outcome in which one daughter cell remains 

anchored to the hub and retains GSC identity while another is displaced from the 

niche and enters into a differentiation pathway (83). However, static lineage tracing 

studies and ex vivo live-imaging in the Drosophila testis and ovary show that, even 

under normal physiological conditions, sporadic stem cell loss from the hub may be 

compensated by the symmetric duplication of neighboring stem cells, and vice versa, 

leading to neutral drift dynamics of the clonal population (32, 86). Whether these 

rare events are associated with chance loss or active displacement of “inferior” GSCs, 

or whether infrequent symmetric divisions are a routine part of the normal program 

of homeostatic turnover remains unclear. In this context, it is interesting to note that 

the second resident stem cell population in Drosophila testis, the somatic cyst stem 

cells (CySC) that give rise to the cyst cells ensheathing developing germ, undergo loss 

and replacement at a much higher rate (31, 87).  



Alongside the ability of GSCs to undergo symmetric as well as asymmetric cell 

divisions in normal homeostasis, differentiating germ cells also retain the ability to 

reestablish contact with the hub and reacquire stem cell function in the course of 

regeneration following the depletion of the GSC pool by protein starvation or genetic 

ablation (88, 89). Although such behavior has been traditionally associated with a 

process of de-differentiation, and distinct from the GSC renewal through symmetric 

cell division, it is interesting to note that the process of spindle orientation and 

division asymmetry may not be essential for germline maintenance. In particular, 

studies based on the targeted depletion of stat in GSCs, which lead to their 

detachment from the hub, show that contact with CySCs alone is sufficient to 

maintain GSC self-renewal and spermatogenesis (87). Indeed, under these conditions, 

the maintenance of Drosophila germ line may in fact parallel the process of dynamic 

heterogeneity that characterizes the mammalian system.  

Dynamic interactions with the niche may thus serve to both constrain stem cell 

identity under physiological conditions, and orchestrate the regeneration of the 

stem cell compartment following injury. Future studies might address the extent to 

which recruitment to the stem cell pool upon injury is a reflection of underlying cell 

fate heterogeneity, or instead is the consequence of active cell fate reprogramming 

following catastrophic stem cell loss.  

 

The role of stem cell quiescence  

Although lineage tracing assays provide a powerful read-out of the behavior and 

dynamics of cycling cells, they are notoriously insensitive to the existence and 

potential function of long-term quiescent (slow-cycling) or dormant cell populations. 

Indeed, both the germline and intestinal crypt have been associated with a quiescent 

progenitor cell population. In humans and other primates, detailed analyses of fixed 

specimens have identified a subpopulation of singly isolated spermatogonia, termed 

Adark on the grounds of their appearance in histological (47). It has been speculated 

that this minority cell population may play a special role in the long-term 

maintenance of tissue, supporting the more rapidly cycling but transient 

spermatogonial cell population (90). Similarly, studies of the mouse intestinal crypt 

have identified a population of quiescent cells marked by the expression of 

telomerase reverse transcriptase (mTert) or Lgr5 (66, 91). 

It is difficult to identify the potential function and significance of these minority 

quiescent cell populations, particularly in tissues such as the germline and intestinal 

crypt, where active cycling cells are seen to maintain life-long self-renewal (at least 

in mice). As shown by a recent study of intestinal crypt, quiescence may not in itself 

be a signature of stem cell function, at least under conditions of normal maintenance 

(79). However, in long-lived organisms, it may be advantageous to hold a dedicated 

slow-cycling or dormant stem cell population in reserve so that it may “drip-feed” 

the cycling stem cell pool to compensate for progressive chance loss or ageing.  

Alternatively, the reversible transfer of stem cells between an active and quiescent 

state under physiological conditions (Fig. 1C), itself a manifestation of dynamic 



heterogeneity, may provide a robust mechanism to maintain a stem cell pool where 

the overall turnover rate of the tissue is steady but slow. Equally, the sporadic entry 

of stem cells into a quiescent or dormant state in a cycling tissue may provide an 

insurance mechanism to shield the wider population from demands experienced by 

actively cycling cells, and thereby protect the long-term integrity of tissue. Such 

behavior would mirror the strategy of phenotypic switching observed in bacterial 

populations (92). 

 

Conclusion  

Taken together, these observations highlight the requirement to develop an 

extended definition of stem cell identity, one that adequately captures the 

heterogeneity of tissue stem cells and the flexibility of their progeny. In the studies 

discussed above, stem cell identity consistently emerges not as the property of a 

discrete population, but as a functional state that a wider population of cells may 

enter, exit, and re-enter according to the demands of the tissue. All cells belonging 

to this wider population therefore have the capacity for long-term self-renewal, but 

their proliferative potential at any given time may depend on their precise location, 

signals from the niche environment, and other extrinsic and intrinsic factors. 

If stem cell identity is indeed a state that is accessible to a wide population of 

progenitors, it becomes crucial to ask how recruitment to and exit from the stem cell 

pool is regulated at the molecular level. The dependence of self-renewal potential on 

the position of a cell within the niche that was observed in intestine and hair follicle 

suggests that spatially localized signals may play an important role in determining 

the state of progenitors; these could result from direct interactions with surrounding 

cells of the same or different types, extracellular matrix components, or soluble 

paracrine mediators (93). Non-local signals, including metabolic and endocrine 

factors, may furthermore contribute to aligning overall niche stem cell activity with 

the requirements of distant tissues (94).  

In maintaining the stem cell pool at a constant size, it is not clear whether the 

aberrant loss of a stem cell triggers recruitment of a differentiating progenitor back 

to the niche, or whether stem cells exit the compartment in response to the fate 

reversal of differentiating cells. While the mechanisms that govern regeneration 

after injury may differ substantially from those operative in homeostasis, the 

examples above, however, suggest that stem cell recruitment may occur in response 

to stem cell loss from the niche. As repopulation of the niche has been observed 

even following the ablation of the entire stem cell pool, it is conceivable that stem 

cell identity can be initiated by factors derived from supporting cells or the 

extracellular matrix, rather than other stem cells. The physical structure of the niche, 

which is independently maintained by the extracellular matrix, associated 

vasculature and supporting cells, may therefore play a more active role in regulating 

stem and progenitor cell fate than previously appreciated.  

The observation that the recruitment of differentiating progenitors back to the stem 

cell pool occurs under normal physiological conditions opens up an intriguing new 



possibility for the mechanism of ageing in tissues with high cellular turnover. While 

the accumulation of mutations in nuclear and mitochondrial DNA is considered to be 

the most fundamental and irreversible cause of ageing, declining homeostasis in 

cycling tissues has also been associated with changes in the numbers or properties of 

stem cells and their niches (95, 96). In particular, tissue ageing may be accompanied 

by a gradual loss of functional stem cells, which has been thought to result from 

increased rates of stem cell death, quiescence, or differentiation (97, 98). However, 

paradigms that could explain how the global process of ageing leads to the gradual 

loss of only a small fraction of stem cells at any one time have so far been lacking. 

Following the discoveries of heterogeneity within stem cell compartments and the 

ongoing interconversion between stem cells and their differentiating progeny, it may 

be that ageing is a result not (only) of an increase in the active loss of stem cells, but 

(also) of a decrease in the recruitment of differentiating cells back to the niche. This 

would be consistent with a number of studies showing that stem cells from ageing 

animals can continue to function normally when maintained in a young niche or 

provided with young systemic factors (99, 100). 

Over the past few years, the coexistence of distinct progenitor cell behaviors has 

been reported across a wide range of tissues, often through genetic lineage tracing 

approaches (101-103). It remains an open question whether these observations 

reflect an underlying heterogeneity within a single stem cell compartment, and 

whether the continual inter-conversion of long-term stem cells and their 

differentiating progeny occurs in these tissues under physiological conditions. Static 

lineage tracing alone can provide important clues to the degree of progenitor cell 

plasticity in some tissues, but owing to the lack of tools for the targeted labeling of 

particular subpopulations of cells, it is frequently impossible to identify 

unambiguously the source of labeled clones. To unravel stem cell heterogeneity, 

lineage hierarchies, and the de-differentiation capacity of differentiating cells, in vivo 

live imaging approaches will therefore be indispensable. In resolving the biological 

significance of heterogeneity within the stem cell compartment, we expect that stem 

cell diversity and lineage plasticity will emerge as ubiquitous features of adult tissue 

stem cell populations.  
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Figures 

Fig. 1. Proliferative hierarchies and patterns of stem cell self-renewal. (A) During 

tissue homeostasis, patterns of adult stem cell self-renewal can be grouped into four 

generic classes depending on whether stem cell fate is regulated intrinsically (cell-

autonomously), or whether it relies on extrinsic signals associated with the niche/ 

microenvironment, and whether fate asymmetry is enforced at each and every stem 

cell division, or whether it is achieved only at the level of the population. (B) 

Traditionally, adult stem cell populations are thought to reside at the apex of linear 

(i.e. “one-way”) proliferative hierarchies in which they give rise to one or more types 

of transit-amplifying cell progeny with strictly limited proliferative potential. (C) 

Recent studies suggest a more flexible organization in which long-term self-renewal 

potential, fate bias, and proliferative activity may be moderated by niche location 

and/or dynamical changes in transcriptional activity. In this scheme, stem cells form 

a “dynamically heterogeneous” pool in which cells may transfer reversibly between 

“states” of variable survival and fate potential. In addition, progenitors that are 

normally committed to differentiation may reacquire long-term self-renewal 

potential in crisis or injury, following exposure to niche factors.  

 

Fig. 2. Stem cell dynamics during mammalian spermatogenesis. (A) Schematic 

showing the architecture and cellular organization of the mammalian testis. 

Spermatogonia lie in close association with the basement membrane of the 

seminiferous tubule. When meiosis begins, they detach from the basement 

membrane, translocate across the tight junctions between supporting Sertoli cells 

and undergo meiotic divisions and differentiation before their release into the lumen 

as mature sperm. (B) Spermatogonia progress through a differentiation hierarchy 

while migrating from the basement membrane to the lumen. (C) In the 

undifferentiated compartment, spermatogonia can exist as singly isolated cells 

(termed Asingle or As) or as syncytial chains of 2 (Apair or Apr), 4 (Aaligned-4 or Aal-4), 8 (Aal-

8), or 16 (Aal-16) cells. Undifferentiated spermatogonia are characterized by 

heterogeneous and complementary expression of GFR�1 and Ngn3, with As and 

smaller syncytial chains biased towards GFR�1. Following up-regulation of Ngn3, 

spermatogonia are competent to transfer to the differentiated Kit+ compartment, in 

concert with the periodic seminiferous cycle. (D) Whole-mount (top panels) of a 

seminiferous tubule showing GFR�1 expression (magenta) and GFP-labelled clones 

(green) at 14 days post clonal induction. Fragmentation of an Aal-4 syncytial chain 

results in two Apr chains. (Courtesy of Ref. (34).) Schematic (bottom) showing the 

cellular basis for germ line stem cell maintenance: chance stem cell loss through 

differentiation, signaled by the down-regulation of GFR�1, is perfectly compensated 

by stem cell duplication achieved through the fragmentation of neighboring GFR�1+ 

syncytia. Through this ongoing process of stem cell loss through differentiation and 

replacement, stem cell-derived clones follow a “quasi” one-dimensional pattern of 

“neutral drift” where their chance extinction is compensated by the expansion of 

neighbors along the seminiferous tubule. 

 



Fig. 3. Stem cell dynamics during intestinal maintenance. (A) Schematic showing the 

cellular organization of the mammalian small intestine. In adults, stem cells at the 

intestinal crypt base exhibit multi-lineage potential, giving rise to transit-amplifying 

cell progeny, which migrate along the walls of the crypt and differentiate into 

functional secretory and absorptive cell types. (B) On the basis of genetic lineage 

tracing assays, the intestinal stem cell compartment has been associated with 

several molecular markers (including Lgr5, Bmi1, and Hopx), which are expressed 

heterogeneously within the crypt. (C) Time-lapse in-vivo clonal data depicting the 

process of dynamic heterogeneity. Upper panels: Following genetic labeling, a clone 

marked by RFP containing two Lgr5-positive cells (GFP), both at the niche border, 

expands over the next 3 days to occupy both border and niche base regions. Lower 

panels: A clone containing 3 Lgr5+ cells all at the niche base expands to occupy both 

border and base regions. (Courtesy of Ref. (67).) Through this process of loss and 

replacement, stem cell-derived clones follow a quasi one-dimensional pattern of 

neutral drift in which their chance extinction is perfectly compensated by the 

expansion of neighbors around the collar of the crypt, leading to scaling of the clone 

size distribution. 

 

Fig. 4. Stem cell dynamics in the hair follicle. (A) Schematic of mouse hair follicle 

during the resting phase of the hair cycle. Stem cells reside in the bulge and hair 

germ, while other epithelial cell populations occupy the compartments located 

above the bulge. Clones derived from stem cells situated in different parts of the 

niche have been observed to follow different fates, with cells in the hair germ 

primed for differentiation while cells in the upper part of the bulge are mostly 

quiescent. (B) Hair growth and stem cell self-renewal in the bulge is driven by a 

hetereogenous progenitor population. While cells express Keratin 15 and Sox9 

throughout the compartment, CD34 is expressed more strongly towards the upper 

end of the bulge, and Lgr5 is enriched proximally. (C) Following ablation of either the 

hair germ or the bulge region, the entire niche is repopulated through proliferation 

and migration of the remaining stem cells. In response to ablation of the entire stem 

cell niche, non-hair epithelial cells migrate downwards to regenerate the stem cell 

compartment.  
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