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Abstract 
We analyze the response of osteoblasts on grooved substrates via a model that 
accounts for the co-operative feedback between intracellular signaling, focal adhesion 
development and stress fiber contractility. The grooved substrate is modeled as a 
pattern of alternating strips on which the cell can adhere and strips on which adhesion 
is inhibited. The coupled modeling scheme is shown to capture some key 
experimental observations including: (i) the observation that osteoblasts orient 
themselves randomly on substrates with groove pitches less than about 150 nm but 
they align themselves with the direction of the grooves on substrates with larger 
pitches, and (ii) actin fibers bridge over the grooves on the substrates with groove 
pitches less than about 150 nm but form a network of fibers aligned with the ridges, 
with nearly no fibers across the grooves, for substrates with groove pitches greater 
than about 300 nm. Using the model, we demonstrate that the degree of bridging of 
the stress fibers across the grooves, and consequently the cell orientation, is governed 
by the diffusion of signaling proteins activated at the focal adhesion sites on the 
ridges. For large groove pitches the signaling proteins are dephosphorylated before 
they can reach the regions of the cell above the grooves and hence stress fibers cannot 
form in those parts of the cell. On the other hand, the stress fiber activation signal 
diffuses to a reasonably spatially homogenous level on substrates with small groove 
pitches and hence stable stress fibers develop across the grooves in these cases. The 
model thus rationalizes the responsiveness of osteoblasts to the topography of 
substrates based on the complex feedback involving focal adhesion formation on the 
ridges, the triggering of signaling pathways by these adhesions and the activation of 
stress fiber networks by these signals. 
 
 
Keywords: mechano-sensitivity, cell signaling, focal adhesions, actin/myosin 
contractility. 

 

                                                        
1 Author for correspondence (vsd@eng.cam.ac.uk) 



1. Introduction 
Cells are known to be very sensitive to their mechanical, chemical and topographical 
environments. For example mesenchymal stem cells (MSCs) sense and respond to the 
stiffness of the substrate they are cultured on and differentiate into bone cells when 
cultured on stiff substrates, but give rise to neuronal cells under identical conditions 
when soft substrates were used [1]. Similarly, endothelial cells sense stresses and 
display an increased proliferation rate in regions of high tractions [2]. The ability of 
MSCs to sense their chemical environment was shown by using ligand patterns [3] to 
limit the spreading of cells. Limiting spreading increases the tendency of MSCs to 
differentiate into fat cells in contrast to their tendency to become bone cells when 
allowed to spread. Building on these strategies, McMurray et al. [4] embossed 
substrates to pattern square-shaped pits 120 nm in size, arranged in a square lattice 
with a separation of 180 nm between the pits. They observed that MSCs cultured on 
the pitted substrates maintained an undifferentiated state for up to eight weeks, 
whereas cells on the control (planar) substrates rapidly differentiated into various cell 
types (mostly bone cells), thus demonstrating that the topography of the substrate too 
has a profound effect on the preservation of pluripotency. 

The cell’s cytoskeleton, which influences a broad range of cellular activities in a 
tension-dependent manner, interacts with the substrate through focal adhesions (FAs) 
— these multiprotein structures in turn transmit regulatory signals (among them, 
mechanical signals). For example, a tense cytoskeleton favors differentiation of MSCs 
into bone cells. The organization and signaling properties of the cytoskeleton can be 
engineered with nano-patterned substrates: these patterns define the positions, shapes 
and sizes of the focal adhesions and thereby control the responsiveness of cells to 
substrate topography. It is thought that similar mechanisms are also employed in-vivo 
to control proliferation and differentiation of cells. For example, natural bone ECM 
(extra-cellular matrix) is a highly organized nano-composite consisting of, among 
other things, molecules of type-I collagen. Collagen type-I forms fibrils with a 
interfibrillar spacing of 68 nm and 35 nm depth [5] and a number of studies [6-8] 
have demonstrated that mimicking such roughness in-vitro has beneficial effects on 
osteoblast proliferation. The role of the collagen fibrillar organization in controlling 
the arrangement of the actin cytoskeleton has sometimes been referred to as “contact 
guidance” [9-10]. In numerous situations [11] contact guidance prevails over 
mechanical cues such as cyclic stretching in governing the arrangement of the 
cytoskeleton, confirming the importance of the topographical environment of cells. 

The response of cells to substrates with ordered textures has received considerable 
attention [12-15]. These studies indicate that cells are especially responsive to 
groove/ridge patterns on the substrate. Of particular note is the study of Lamers et al. 
[16] who created groove patterns (Fig. 1) that best mimic the in-vivo length scales of 
the collagen fibrillar network in natural bone ECM. Their study demonstrated that 
osteoblasts were responsive to substrates with groove pitches down to approximately 
75 nm: at lower pitches the cytoskeletal network was random but with increasing 
groove pitch the actin filaments of the cytoskeleton increasingly aligned with the 
groove (or ridge direction). They quantified this observation in terms of the cell 
orientation with respect to the groove direction on the substrate. 

Despite these growing observations of substrate topography governing the 
cytoskeletal arrangement within cells, no quantitative model to explain these 
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observations, including the so-called phenomenon of contact guidance, has been 
proposed to-date. Numerous numerical models have been proposed for the 
remodeling of the cytoskeleton in response to mechanical cues [17-20] and these have 
successfully predicted the response of cells on a bed of micro-posts [21], subjected to 
cyclic stretching [22] and other mechanical loadings such as indentations [23]. Some 
models have also coupled the stress fiber network with mechano-sensitive focal 
adhesion formation [24] and predicted the focal adhesion distributions on substrates 
with ligand patterns [25]. However, these models all impose an arbitrary spatially 
uniform activation signal for the cytoskeletal processes. This simplification makes 
these models unsuitable to predict the response of cells on nano-patterned substrates. 
Recall that cells sense the topography of their substrates via the feedback between 
intracellular signaling, cytoskeletal stress fiber formation and focal adhesion growth – 
this combination of mechanisms is critical when models are devised for understanding 
the development of the cytoskeleton on nano-patterned substrates. Here we use a co-
operative feedback model proposed by Pathak et al. [26] in order to investigate the 
development of the stress fibers and focal adhesions for osteoblasts lying on grooved 
substrates as investigated by Lamers et al. [16]. 

 
2. Brief description of the bio-chemo-mechanical model 
Pathak et al. [26] presented a framework for analyzing the co-operative feedback loop 
between signaling, focal adhesion formation, and cytoskeletal contractility. In the 
context of a cell placed on a substrate coated with ligands, this loop involves the 
following four steps: 
Step 1. The placement of the cell on a substrate coated stimulates the formation of 
focal adhesions on the contact surfaces. 
Step 2. The aggregation of proteins within the focal adhesion complexes triggers the 
cascade release of a range of signaling proteins and ions such as Rho, Src, and Ca2+. 
Step 3. These signaling molecules stimulate cytoskeletal contractility via the 
formation of actin/myosin stress fibers. 
Step 4. The contractile forces generated by stress fibers apply tractions on focal 
adhesions, which induce further aggregation of integrins in focal adhesions, resulting 
in additional signaling cascades and consequent cytoskeletal rearrangements.  
 
Here we briefly describe the relevant governing equations and the associated cellular 
processes in the context of a cell lying on a grooved substrate as in the experiments of 
Lamers et al. [16].  The substrate lies in the 𝑥! − 𝑥! plane (Fig. 1) and has grooves 
along the 𝑥!-direction with a pitch 𝐿! in the 𝑥! direction. The ratio between the width 
𝑤 of the ridge and the pitch is denoted by  𝑟 ≡ 𝑤/𝐿!. We envisage a two-dimensional 
(2D) cell, of thickness 𝑏  (in 𝑥!  direction) lying on this grooved substrate with 
adhesive contacts occurring only along the ridges (Fig. 1), i.e. the cell does not sink 
into the relatively deep grooves, in line with the experiments of Lamers et al.  [16]. 
Thus, for purposes of modeling it suffices to think of a patterned substrate comprising 
of alternating strips to which the cell can adhere and strips where adhesion is 
prevented. The dimensions of the cell in the 𝑥! − 𝑥! plane are assumed to be ≫ 𝐿! 
and here we aim only to model the response of a central portion of the cell far away 
from the periphery of the 2D cell. Thus, it suffices to model a one-dimensional (1D) 
unit cell of length 𝐿! as shown in Fig. 1 as (i) the response of the central portion of 
the cell is periodic with period 𝐿! and (ii) the state of the central portion of the cell is 
invariant in the 𝑥! direction with the strain rate 𝜀!! = 0 in the 𝑥!-direction.  The 
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precise boundary conditions will be made explicit subsequently and we now proceed 
to describe the relevant governing equations in this 1D context.

 
  

Figure 1: Sketch of the two-dimensional cell on a grooved substrate. The network of 
stress fibers and the integrin–ligand complexes on the ridges are shown as insets 
along with the quasi one-dimensional periodic unit cell of the central portion of the 
cell analyzed in this study. The global co-ordinate system is indicated on the figures 
with the grooves aligned with the 𝑥!-direction. 

The interaction of the cell with a substrate incorporates three components that link in 
a highly nonlinear manner: (i) the activation signal generation; (ii) stress fiber 
dynamics and (iii) focal adhesion dynamics.  We shall briefly describe each of these 
components and readers are referred to the appropriate references quoted in each case 
for further details of the models. 
 
Signal generation: Here we present the 1D version of the signaling model of Pathak et 
al. [26]. We emphasize here that details regarding the precise proteins involved in 
signaling are not crucial to the mathematical model described below. Rather, the 
emphasis is on the structure of the reaction-diffusion scheme that provides a positive 
feedback between focal adhesions and stress fiber formation. Thus, here we 
reinterpret the Ca2+ pathways discussed by Pathak et al. [26] in terms of signalling 
from focal adhesions through Rho GTPase and ROCK (Rho-associated protein 
kinase) with phosphorylation of NMM2 (non-muscle myosin II).  
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The main elements of signal activation and transduction phenomena modeled in the 
cell are: (a) activation of Rho due to the clustering of high affinity integrins, (b) 
simultaneous diffusion and de-phosphorylation of Rho molecules through the cell, (c) 
activation of ROCK by the Rho and finally (d) the activation of the intracellular 
contractile machinery, via ROCK.  Processes (a) and (b) are captured via the reaction 
diffusion equation (overdot denoting differentiation with respect to time 𝑡) 

 𝑆 = 𝑚!𝑘𝑇
𝜕!𝑆
𝜕𝑥!!

− 𝑘!𝑆 +
𝛼
𝑏max 0, 𝜉! − 𝑆  𝜀!!, (2.1) 

where the first term describes the diffusion of Rho through the cytosol, with 𝑆 
denoting the concentration of Rho in molecules per unit volume, 𝑚! the mobility of 
Rho molecules in the cytosol, 𝑘  is Boltzmann’s constant, and 𝑇  the absolute 
temperature. We assume that the de-phosphorylation of Rho is described by a first 
order reaction with a forward rate constant 𝑘! and a negligible reverse reaction rate. 
This forward de-phosphorylation reaction is modeled by the second term in Eq. (2.1). 
The rate of activation of Rho at locations on the cell membrane where high affinity 
integrins cluster is described by the third term in Eq. (2.1). The rate of change of the 
concentration of high affinity integrins per unit cell membrane area is denoted by 𝜉!. 
An increment in 𝜉!  results in the activation of Rho with a non-dimensional 
proportionality constant 𝛼. Thus, 𝛼 is interpreted as the number of Rho molecules 
activated when one low affinity integrin molecule is converted to its high affinity 
configuration1. It is worth reminding the readers here that adhesions only occur on the 
ridges and hence the activation of Rho as described by the third term in Eq. (2.1) is 
non-zero only along the ridges of the substrate. The final term describes the change in 
the concentration of Rho due to the change in the volume of the cytosol under strain. 
In this 2D setting, the volumetric strain rate reduces to 𝜀!!, the strain rate in the 𝑥! 
direction, as 𝜀!! = 0 and the 3rd direction is neglected in this analysis.  

The Rho diffusing through the cytosol activates ROCK which is also being 
simultaneously deactivated as it intramolecularly refolds (i.e. process (c) mentioned 
above). We express these kinetics in terms of the normalized activated ROCK 
concentration 0 ≤ 𝐶 ≤ 1, where 𝐶 is the ratio of the activated ROCK concentration to 
the maximum allowable concentration. Assuming first order kinetics, the rate of 
change of 𝐶 at any location in the cytosol is given as 

 𝐶 = 𝜆!
𝑆
𝑆!

1− 𝐶 − 𝜆!𝐶, (2.2) 

where 𝜆! is the rate constant governing the unfolding of the ROCK by Rho and 𝑆! is a 
reference concentration of Rho. The rate constant 𝜆! governs the rate at which ROCK 
is refolded. The kinetic relation provides the value of the signal C at any location in 
the cytosol to initiate cytoskeletal stress fiber rearrangement; i.e., this is the input to a 
stress fiber contractility model. 

                                                        
1 Note that the transformation of integrins from the high affinity to the low affinity state (resulting in a 
negative 𝜉!) does not contribute toward Rho activation. 
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Stress-fiber contractility model: The bio-chemo-mechanical model of Deshpande et 
al. [17] captures the formation and dissociation of stress fibers, as well as the 
associated generation of tension and contractility. In this model, actin polymerization 
(leading to stress-fiber formation in the cell) is governed by three coupled 
phenomena: (i) an activation signal, (ii) tension-dependent stress-fiber kinetics, and 
(iii) a force generation mechanism governed by cross-bridge cycling between actin 
and myosin filaments. 
 
The formation of stress fibers is parameterized by an activation level, designated as 
𝜂  (0 ≤ 𝜂 ≤ 1) defined as the ratio of the concentration of the polymerized actin and 
phosphorylated myosin within a stress fiber bundle to the maximum concentrations 
permitted by biochemistry. The evolution of 𝜂 𝜙  in a direction 𝜙 with respect to the 
𝑥! axis (Fig. 1) is characterized by a first order kinetic equation, 

 
𝜂 𝑥!,𝜙, 𝑡 = 𝑘!𝐶 1− 𝜂(𝑥!,𝜙, 𝑡)

− 𝑘! 1−
𝜎 𝑥!,𝜙, 𝑡
𝜎! 𝑥!,𝜙, 𝑡

𝜂 𝑥!,𝜙, 𝑡 , (2.3) 

where 𝑘! and 𝑘!  are the forward and backward rate constants, respectively. In this 
formula,   𝜎  is the tension in the stress fiber bundle oriented at angle 𝜙  while 
𝜎! ≡ 𝜂𝜎!"# is the corresponding isometric tension. The stress 𝜎 is related to the fiber 
contraction/extension strain rate 𝜀 𝜙   by the cross-bridge cycling between the actin 
and myosin filaments. A simplified (but adequate) version of the Hill [27] equation is 
employed to model these dynamics and is specified as 

 
𝜎
𝜎!
=

                  0                                                                                    
𝜀
𝜀!
< −

𝜂
𝑘!
  

1+
𝑘!𝜀
𝜂𝜀!

                                      −
𝜂
𝑘!
≤   

𝜀
𝜀!
≤ 0

1                                                                                        
𝜀
𝜀!
> 0,

 (2.4) 

where the rate sensitivity coefficient, 𝑘!  is the fractional reduction in fiber stress upon 
increasing the shortening rate by  𝜀!. Moreover, the fiber strain rate 𝜀(𝜙) is related to 
the material strain rate via 𝜀 = 𝜀!!cos!𝜙 as 𝜀!! = 𝜀!" = 0 and the average stress 
generated by the fibers then follows from a homogenization analysis as  

 
𝜎!! 𝜎!"
𝜎!" 𝜎!! =

1
𝜋

𝜎 cos! 𝜙
𝜎
2
sin 2𝜙

𝜎
2 sin 2𝜙 𝜎 sin! 𝜙

!
!

!!/!
𝑑𝜙. (2.5) 

The constitutive description for the stress state within the cell is completed by 
including contributions from passive elasticity, attributed to intermediate filaments 
and microtubules of the cytoskeleton attached to the nuclear and plasma membranes. 
These act in parallel with the active elements, whereupon additive decomposition 
gives the total stress as  
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𝛴!" = 𝜎!" + 𝜎!"! , (2.6) 

with the passive stress 𝜎!"! assumed to be given by a 2D neo-Hookean elasticity model 
parameterized by the Young’s modulus 𝐸 and Poisson’s ratio 𝜈. In terms of the two in-
plane principal stretches 𝜆!  the two in-plane principal passive stresses 𝜎!

! 
(corresponding to the stress 𝜎!"!) are given as 

 𝜎!
! =   

𝐸
4(1+ 𝜈) 𝐽

!! 2𝜆!! − 𝐼! +
𝐸

2(1− 𝜈) 𝐽 − 1 , (2.7) 

where 𝐼! = 𝜆!! + 𝜆!! and 𝐽 = 𝜆!𝜆!. Note that in the unit cell described above, 𝑥! and 
𝑥! are principal directions and 𝜆! = 1 which greatly simplifies the calculation of 𝜎!"! 
from Eq. (2.7). We note here that for simplicity we only include elastic passive 
stresses and neglect any viscoelastic effects. This simplification suffices in this study 
where the focus is on the steady-state response of the cells: at steady-state viscoelastic 
effects have decayed away and only the elastic passive stresses persist. 

Focal adhesion model: Deshpande et al. [24] presented a thermodynamically 
motivated model for the mechano-sensitive formation (and dissociation) of focal 
adhesions. The model relies on the existence of two conformational states for the 
integrins: low and high affinity states. Only the high-affinity integrins interact with 
the ligand molecules on the ECM to form complexes. The low-affinity integrins 
remain unbonded. Since the formation (or dissociation) of the FAs depends on the 
relative stabilities of the high- and low-affinity integrins, we examine the 
thermodynamic equilibrium of the two states, which we model as an ideal mixture. 
The chemical potential of the low-affinity integrins at concentration 𝜉! is dependent 
on their internal energy and configurational entropy in accordance with 

 𝜒! = 𝜇! + 𝑘𝑇  ln 𝜉!/𝜉! , (2.8) 

where 𝜇! is the reference potential of the low-affinity integrins and 𝜉!   their reference 
concentration. For geometrical reasons, the straight architecture of the high-affinity 
integrins permits the interaction of its receptor with the ligand molecules on the ECM, 
and allows the force transmission between the cell and the substrate. Thus, the high-
affinity integrins have an additional contribution to their chemical potential, due to the 
elastic energy of the integrin–ligand complexes. The ensuing potential is 

 𝜒! = 𝜇! + 𝑘𝑇  ln 𝜉!/𝜉! + 𝛷 𝛥 − 𝐹𝛥, (2.9) 

where 𝜇! > 𝜇! is the reference potential of the high-affinity integrins and 𝛷 𝛥  the 
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stretch energy stored in the integrin ligand complex stretched by 𝛥 via a force 
𝐹 ≡ 𝜕𝛷/𝜕𝛥. Spatial gradients in the foregoing chemical potentials motivate the 
fluxes of the integrins. Two kinetic processes are involved: (i) those governing the 
rate of conversion of the low-affinity integrins to their high-affinity state (and vice 
versa) and (ii) diffusive fluxes of the low-affinity integrins along the plasma 
membrane. The kinetic process (i) is typically fast compared with all other time scales 
involved and hence we assume local thermodynamic equilibrium between the low and 
high affinity states such that 𝜒! = 𝜒!, while the trafficking of the low affinity is 
governed by the diffusion equation 

 𝜉 = 𝑚
𝜕
𝜕𝑥!

𝜉!
𝜕𝜒!
𝜕𝑥!

− 𝜉  𝜀!!, (2.10) 

where 𝜉 = 𝜉! + 𝜉! and 𝑚 is the mobility of the low affinity integrins along the cell  
membrane. It now remains to specify the form of the stretch energy 𝛷 𝛥  and the 
relation of 𝛥 to the displacement 𝑢! of the 1D cell.  Rather than employing a complex 
interaction, such as the Lennard-Jones potential [28] we use a simple functional form 
which is a piecewise quadratic potential expressed as  

 𝛷 =

                
1
2 𝜅!𝛥

!                                                                                    𝛥 < 𝛥!  

𝜅! 2𝛥!𝛥 − 𝛥!! −
1
2𝛥

!                                     𝛥! ≤ 𝛥 ≤ 2𝛥!
𝜅!𝛥!!                                                                                         𝛥 > 2𝛥!,

 (2.11) 

where 𝛾 ≡ 𝛷 𝛥 →∞ = 𝜅!𝛥!!  is the surface energy of the high-affinity integrins and 
𝜅! the stiffness of the integrin-ligand complex. The maximum force in the integrin-
ligand complex, 𝜅!𝛥! occurs at a stretch 𝛥 = 𝛥!. Finally, the evolution of the stretch 
𝛥 is related to the displacement 𝑢! of the material point on the cell membrane in 
contact with the ligand patch on the rigid substrate via 

 𝛥 = 𝑢!                  𝛥 < 𝛥!      or      𝐹𝛥 < 0  
0                                                            otherwise.

 (2.12) 

where 𝜀!! = 𝜕𝑢!/𝜕𝑥!.  

Mechanical equilibrium: Mechanical equilibrium of the 1D cell stipulates that  

 𝑏
𝜕𝛴!!
𝜕𝑥!

= 𝜉!𝐹, (2.13) 

for the portion of the cell along where adhesions occurs (i.e. along the ridges of the 
grooved substrate) and 𝐹  is the force exerted by the cell on the integrin-ligand 
complex. On the portion of the cell that cannot form adhesions (i.e. the portion of the 
cell over the grooves), 𝜕𝛴!!/𝜕𝑥!   = 0.  Thus, the total stress 𝛴!! is spatially uniform 
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over the portion of the cell lying over the grooves. 

Initial and boundary conditions: We analyze a 1D unit cell of length 𝐿! as sketched in 
Fig. 1 with 𝑥! = 0 corresponding to the left edge.  The boundary conditions for the 
mechanical equilibrium Eq. (2.13) follow from periodicity as 𝑢! = 0 at 𝑥! = 0 and 
𝑥! = 𝐿!. In addition, we assume the state of the central portion of the cell to be 
invariant in the 𝑥!-direction and thus impose 𝜀!! = 0 throughout the cell. Periodicity 
also dictates that there is no net flow of the activated Rho or the low affinity integrins 
out of the unit cell and thus the boundary conditions to Eqs. (2.1) and (2.10) are 
𝜕𝑆/𝜕𝑥! = 0 and 𝜕𝜉!/𝜕𝑥! = 0, respectively at 𝑥! = 0 and 𝑥! = 𝐿!.  

For simplicity we assume that the cell is stress, stress-fiber and activation signal free 
at time 𝑡 = 0  which implies that initially 𝑢! = 𝑢! = 𝜀!! = 𝜂(𝜙) =   𝐶 = 𝛴!! = 0 
throughout the cell. It now remains to specify an initial spatial distribution of the low 
and high affinity integrins. At time 𝑡 = 0!, the cell is not in contact with the grooved 
substrate and low and high affinity integrins are uniformly distributed over the cell 
membrane. In this case, the bond stretch 𝛥 → ∞ such that 𝐹 = 0 and 𝛷 = 𝛾. Then, 
over the entire surface of the cell, equilibrium between the low and high affinity 
integrins specifies  

 𝜉! =
𝜉!

exp 𝜇! − 𝜇! + 𝛾
𝑘𝑇 + 1

, 
(2.14) 

where 𝜉! = 𝜉! + 𝜉! is the total integrin concentration at any location on the cell 
membrane. At time 𝑡 = 0!, the cell is placed on the grooved substrate which changes 
the bond stretch to 𝛥 = 0 (and  𝛷 = 0) for the high affinity integrins in contact with 
the substrate. Thus, at time 𝑡 = 0!, the spatial distribution of the integrins is non-
uniform and given by Eq. (2.14) over the domain 𝑤/2 < 𝑥! < 𝐿! − 𝑤/2 (i.e. the 
portion of the cell over the groove where no adhesions form) and by 

 𝜉! =
𝜉!

exp 𝜇! − 𝜇!
𝑘𝑇 + 1

, 
(2.15) 

with 𝜉! = 𝜉! − 𝜉! at locations along the ridges where adhesions form (i.e. over the 
domains 0 ≤ 𝑥! ≤ 𝑤/2  and 𝐿! − 𝑤/2 ≤ 𝑥! ≤ 𝐿! ). The increase 𝛥𝜉!  in the 
concentration of the high affinity integrins along the ridges, given by the difference in 
the values of 𝜉! between Eqs. (2.15) and (2.14), will result in Rho activation in the 
portion of the cell in contact with the substrate. Thus, the initial conditions for 𝑆 
follow as 𝑆 = 0 over 𝑤/2 < 𝑥! < 𝐿! − 𝑤/2 and 𝑆 = (𝛼/𝑏)  𝛥𝜉!  over the domains 
0 ≤ 𝑥! ≤ 𝑤/2  and 𝐿! − 𝑤/2 ≤ 𝑥! ≤ 𝐿! .  These initial spatial gradients in the 
integrin concentrations and the initial development of 𝑆 due to the action of placing 
the cell on the substrate will drive the subsequent production of stress fibers, 
additional focal adhesion formation and signaling via the co-operative model detailed 
above without the need for any artificial external stimuli. The model thus includes 
both the local and global interactions referred to in Oakes and Gardel [29]: the local 
forces cause adhesion growth and signaling but these forces are in turn determined by 
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global mechanical equilibrium considerations. 
 
The numerical technique used to solve the above set of coupled partial differential 
equations is briefly described in the Supplementary material. 
 
2.1 Review of the model assumptions 
The model makes a number of key assumptions in order to make the problem 
mathematically and numerically tractable. Here we review some of the key 
assumptions in view of providing some justifications: 

(i) We model the cell using a quasi 1D assumption. This considerably 
simplifies the solution of the complex coupled equations but also allows 
for easier interpretation of the results. The 1D assumption which only 
models the interior of the cell neglects the process of cell spreading that 
occurs during the early phase of the response of cells on patterned 
substrates [30]. Moreover, this approach also does not include the 
differences in adhesions [30] and stress fibers [31] structures between the 
cell interior and periphery. Thus, the model is restricted to steady-state 
response of the cell interior. 

(ii) We restrict attention to cases where the cell membrane does not dip into 
and form adhesions within the grooves. Lamers et al. [16] show this to be 
true for grooves with depths ≥ 33 nm. With the effect of the migration of 
the cell membrane into the grooves neglected, the modeling of the 
response of cells on grooved substrates reduces to that of cells on 
patterned substrates where cells only form adhesions on patches that 
represent the ridges. 

 
2.2 Material and substrate parameters 
All simulations are reported for cells of thickness 𝑏 = 1  µμm  at a temperature 
𝑇 = 310  K  with  the  period  𝐿! of the grooves varied as a parameter over the range 
0.05  µμm ≤ 𝐿! ≤ 2.0  µμm. Unless otherwise specified we keep the ratio 𝑟 ≡ 𝑤/𝐿!   =
0.5 as in the experiments of Lamers et al. [16] and assume the substrates to be rigid.  
Parameters for the signaling model are inferred from [32] to be: the reference Rho 
concentration 𝑆! = 1000  molecules µμm!!  (i.e. ~ 2  µμM)  with the proportionality 
constant 𝛼 = 1.75. The mobility of Rho is extremely high with 𝑚! = 10!s  mg!!.  
Moreover, the unfolding of ROCK by Rho is very rapid but the refolding of ROCK is 
relatively slow and thus we assume 𝜆! ≫ 𝜆! , with 𝜆! = 2.5×10!  s!!  and 𝜆! =
0.015  s!!. The reference value of the rate constant governing the de-phosphorylation 
of Rho is taken as 𝑘! = 750  s!! but we report simulations where this parameter is 
varied to investigate the sensitivity of the results to 𝑘!. The parameters for the focal 
adhesion model are obtained from [33-36]. The resting integrin concentration is 
𝜉! = 1000 integrins µμm!! and the difference in the reference potentials between the 
high and low affinity integrins is taken to be 𝜇! − 𝜇! = 5𝑘𝑇. The mobility of the low 
affinity integrins is significantly less than Rho with 𝑚 = 10  s  mg!!  while the 
stiffness of the high affinity/ligand bonds is 𝜅! = 15  pN  µμm!! with a peak force 
𝜅!𝛥! = 1.95  pN. The parameters for the cellular contractility model are taken based 
on the calibrations performed by McGarry et al. [21] for osteoblasts with a passive 
elastic modulus 𝐸 = 4  kPa  and 𝜈 = 0.45 . The maximum stress fibre stress is 
𝜎!"# = 2.5  kPa while the Hill model parameters are 𝑘! = 3 and 𝜀! = 2.8×10!!  s!!.  
The rate constants for the stress fiber kinetics are 𝑘! = 0.03    s!! and 𝑘! = 0.1𝑘!. 
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3. Simulations of cell response on grooved substrates 
The action of placing the cell on the grooved substrate initiates the signaling process 
that prompts the cascade of contractility, focal adhesion formation and further 
signaling as described above. The model parameters listed in Section 2.1 result in 
processes occurring over three time-scales: (i) the diffusion of the Rho that occurs on 
the order of a few milliseconds; (ii) the unfolding of ROCK that occurs on the same 
time-scale as the Rho diffusion, but its refolding and consequent de-activation occurs 
on the order of a few minutes and (iii) the stress fiber kinetics that occur on the order 
of hours. While we do not model the cell periphery where the short-time scale 
processes dominate we emphasize here that these fast Rho diffusion and ROCK 
activation processes are the key triggers for the slower stress fiber kinetic processes in 
the interior of the cell modeled here. We now proceed to discuss these processes for 
the two extreme values of 𝐿! = 0.05  µμm and 1  µμm so as to first explain two extreme 
types of responses. 
 
First consider the early time response on the order of a few milliseconds. In this time-
scale there is no significant evolution of the focal adhesions or stress fibers while the 
activated Rho and unfolded ROCK concentrations have responded to the action of the 
placement of the cell on the grooved substrate. The spatial distributions of 𝑆/𝑆! and 𝐶 
are included in Figs. 2a and 2b for the 𝐿! = 0.05  µμm and 1  µμm cases, respectively. In 
each case predictions are shown for three selected values of time 𝑡, where 𝑡 = 0 
corresponds to the instant the cell was placed on the substrate. First consider the 
𝐿! = 0.05  µμm case. At time 𝑡 = 0! the initial condition described above implies that 
𝑆 = 𝛼𝛥𝜉!/𝑏 over the domains 0 ≤ 𝑥!/𝐿!   ≤ 0.25 and 0.75 ≤ 𝑥!/𝐿!   ≤ 1 and 𝑆 = 0 
over the central section where the cell covers the groove. Subsequently, the Rho 
begins to rapidly diffuse towards the central section while it is simultaneously being 
de-phosphorylated at the rate 𝑘!𝑆 . This is clearly seen in Fig. 2a where the 
concentration 𝑆  is reducing across the portion of the cell over the ridges but 
increasing over the portion of the cell above the grooves. However, for 𝑡 > 2.0  ms, 
the de-phosphorylation rate even in this central section becomes higher than the influx 
rate of the Rho and the concentration 𝑆 decreases throughout the cell and reduces to 
zero everywhere for 𝑡 ≥ 3.5  ms. We note that at these early times there is nearly no 
response from the stress fibers, hence no new focal adhesions form and thus there is 
no further Rho activation. Now consider the corresponding evolution of the unfolded 
ROCK concentration. At time 𝑡 = 0, 𝐶 = 0  ∀𝑥! and then begins to rise in response to 
the local Rho concentration. The kinetics of ROCK is slower and hence the ROCK 
concentration continues to increase even as the Rho concentration decreases and 
begins to become more spatially uniform. Over the time-scale of Fig. 2a, the process 
of refolding of ROCK has no significant effect and hence 𝐶  has not begun to 
decrease. The evolution of 𝑆 and 𝐶 for the 𝐿! = 1  µμm  case is similar with once major 
difference. The large length implies that the Rho is de-phosphorylated prior to it 
reaching the central portion of the cell over the groove. Thus, both 𝑆 and 𝐶 are 
approximately zero over the section 0.25 < 𝑥!/𝐿!   < 0.75  (expect for a small 
boundary layer near the edges of the ridges). 
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Figure 2: The spatial distributions of the signal levels !!!! and ! at three selected 
times ! ! ! ms for the cells on substrates with pitches (a) !! ! !!!"!!" and (b) 
!! ! !!!" . Time ! ! !  corresponds to the instant the cell was placed on the 
substrate. 

Now consider the response over the time frame of minutes when ! ! ! due to it 
having been largely de-phosphorylated. In Fig. 3 we plot predictions of the spatial 
distributions of !, the focal adhesions as parameterized by !!!!!, the strain rate 
!!!!!!  and the stress fiber concentrations !!  and !!"  in the ! ! !!  and ! ! !"! ,
respectively for three selected values of the time !. First consider the !! ! !!!"!!!
case in Fig. 3a. The ROCK concentration ! is spatially relatively homogenous and 
decreases throughout the cell over the time scales shown here. On the other hand, the 
focal adhesions, as parameterized by the normalized concentration !!!!! , are 
spatially uniform over the ridges (and approximately zero over the grooves where no 
adhesions form) and do not change on the time scale of the plots in Fig. 3a. This is 
consistent with the observation that !!! ! ! over the ridges which implies that there is 
no additional stretching of the integrin-ligand bonds over these time-scales and 
therefore the focal adhesions are reasonably static. However, tensile strain rates are 
present in the central portion of the cell over the grooves for ! ! ! min, balanced by 
small contractile strain rates over the remainder of the cell as the total length of the 
portion analyzed does not change. The stress fiber distributions are reasonably 
isotropic with!!! ! !!!" throughout the cell though the stress fiber concentrations are 
slightly lower in the central portion due to the lower levels of signal ! in this part of 
the cell.  

Now consider the !! ! ! !! case in Fig. 3b. Recall that the Rho does not diffuse 
into the central portion of this cell over the groove. Thus, the ROCK concentration!!,
as well as the stress fiber concentrations, !! and !!", vanish over this central section. 
The absence of stress fibers results in tensile strain rates over the central section and 
corresponding contractile rates !!!  over the ridges where stress fibers form and 
contract. These strain rates result in stretching of the integrin-ligand bonds especially 
near the edges of the ridges at the larger values of ! (e.g. ! ! !" min in Fig. 3b),
producing both an increase in the focal adhesion concentration at those locations and 
a corresponding rise in the ROCK concentration !. Consider now the stress fibers 
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kinetics. Stress fibers in this case only form on the ridges where there exists a non-
zero signal. Early in the deformation history (i.e. 𝑡 = 0.5  min) the stress fiber 
distributions on the ridges are nearly isotropic with 𝜂! ≈   𝜂!". However, as time 
proceeds the fibers in the 𝜙 = 0! direction dissociate due to the contractile strain 
rates 𝜀!! (and relatively low values of 𝐶) but the fibers in the 𝜙 = 90! direction 
continue to form due to a low persistent signal 𝐶 and aided by the fact that the 
dissociation rate in this direction is zero as 𝜀!! = 0. 
 
A more complete history of the evolution of 𝐶, 𝜉!/𝜉!, 𝜀!!/𝜀! as well as 𝜂! and 𝜂!" 
are shown in Figs. 4a and 4b, respectively for the 𝐿! = 0.05  µμm and 1  µμm cases. 
Contours of the distributions of these quantities are shown in Fig. 4 where the 
horizontal axes indicates the time (now in units of hours), while on the vertical axes 
we plot the normalized position 𝑥!/𝐿!. For the 𝐿! = 0.05  µμm case it is clear that the 
signal 𝐶 has decayed early in the time history (𝑡 ≤ 0.05 h) and the focal adhesions 
too have attained their final distribution very early. However, the stress fiber 
concentration 𝜂!" attains its steady value over a time of about 0.12 h due to the slower 
kinetics of the stress fiber formation. The relaxation rates implicit within the Hill-
relation are even slower, which implies that the strain rate 𝜀!! drops to zero over a 
time scale of about 0.5 h and thus this is also the time-scale over which 𝜂! attains its 
steady-state value. Qualitatively this time history is similar to the 𝐿! = 1  µμm case 
(Fig. 4b), with two major caveats: (i) the presence of the unfolded ROCK is clearly 
restricted to the ridges, and the additional stretching of the integrin-ligand bonds due 
to the longer groove spacing results in additional signal generation2, and (ii) this 
additional signaling takes place on the time-scale of stress fiber contraction, which 
delays the attainment of steady-state in the 𝐿! = 1  µμm case to nearly 1 hour. In this 
context recall that the analysis reported here only models the central portion and not 
the periphery of the cell. Thus, consistent with observations the model predicts that 
nearly no adhesions form in the central portion of cell for substrates with 𝐿! =
0.05  µμm other than those formed at time 𝑡 = 0! by the action of placing the cell on 
the substrate (the cell periphery where adhesions are observed in such cases is not 
modeled here). On the other hand, adhesions form over a time scale of approximately 
0.5 hours in the central portion of cells on the 𝐿! = 1  µμm substrates. This slow 
adhesion growth is consistent with observations [30] for cells on patterned substrates. 
 
 

                                                        
2 We make the contribution of the additional signal generation explicit in the supplementary material.  
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Figure 3: The spatial distributions of !, !!!!!, !!!!!! as well as the stress fiber 
concentrations !! and !!" for three selected values of the time ! ! !" min for cells 
on substrates with pitches (a) !! ! !!!"!!"  and (b) !! ! !!!" . Time ! ! !
corresponds to the instant the cell was placed on the substrate. 

The steady-state spatial distributions of stress fiber concentrations, !! and !!", are 
included in Figs. 5a and 5b for the !! ! !!!" !! and ! !! cases, respectively. Also 
included in Fig. 5 are insets showing circular histograms (similar to those introduced 
in [22, 37]) of ! at three locations along the cell: !!!!! !! !!!"# (mid-point of the 
ridge); !!!!! !! !!!" (edge of the ridge) and !!!!! !! !!! (mid-point of the groove).  
These histograms visually quantify the degree of anisotropy in the distribution of the 
stress fibers. Clearly for the !! ! !!!"!!! case the steady-state distribution of the 
stress fibers is both nearly isotropic and spatially uniform. This implies that stress 
fibers form not only along the ridges but also bridge across the grooves from ridge-to-
ridge as seen in Fig. 4c of Lamers et al. [16]. By contrast, the steady-state distribution 
of the stress fibers in the !! ! !!!!  case is both anisotropic and spatially 
inhomogeneous with fibers only forming on the ridges. On these ridges the angular 
distribution of fibers shows a higher concentration in the ! ! !"!  direction and 
almost no stress fibers forming in the ! ! !! direction. This lower concentration of 
!! is due to the fact that the Rho is de-phosphorylated before it can reach the central 
portion of the cell over the groove, which prevents the formation of a stable stress 
fiber bundle across grooves as in the !! ! !!!"!!! case. This implies that stress 
fibers forming over the ridges at ! ! !! contract as there are no stress fibers in the 
cell over the groove to balance their contractile forces. This contraction results in the 
dissociation of the stress fibers in the ! ! !!  direction, and consequently lower 
concentrations of !! remain above the ridges at steady state. It is worth emphasizing 
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here that unlike in the !! ! !!!"!!! case, stress fibers do not bridge over the grooves 
in the !! ! ! !! case. Thus, long continuous stress fibers will primarily be observed 
only around the ! ! !"!  direction over the ridges for cells on the !! ! !!!!
substrates. 

 
Figure 4: Contour plots of the spatio-temporal distributions of !, !!!!!, !!!!!! as 
well as !!  and !!"  for cells on substrates with pitches (a) !! ! !!!"!!! and (b) 
!! ! !!!!  during transient. Time ! ! !  corresponds to the instant the cell was 
placed on the substrate. Recall that the groove spans the range !!!" ! !!!!! ! !!!". 

Animations showing the evolution of the !, !!!!!, !!!!!!, !! and !!", as well as the 
circular the distribution of ! at selected locations within the cells are included in the 
supplementary material files. 

3.1 Predictions of cell alignment and comparisons with measurements 
One of the key findings of the experiments of Lamers et al. [16] was the change in the 
cell orientation as a function of the groove width !! . In order to quantify cell 
orientation Lamers et al. [16] fluorescently stained the actin filaments and then 
measured the orientation of the dominant actin filaments with respect to the ridge 
direction. We denote this orientation as ! and replot the measured median values of !
as a function of !! in Fig. 6a. In Fig. 6a a non-linear x-axis scale, !!, has been 
employed in order to improve the visualization of the data. A median value of 
! ! !"! indicates a random orientation while ! ! !! indicates that the cells are 
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primarily aligned with the ridge (or groove) directions. The measurements clearly 
show that while cell orientation is random for !! ! !!!!!!, there is a sharp transition 
at !! ! !!!!!! with the cells being primarily aligned with the ridge direction at 
higher values of !!.  

  
Figure 5: The spatial distributions of the stress fiber concentrations !! and !!" at 
steady-state for cells on substrates with pitches (a) !! ! !!!"!!! and (b) !! ! !!!!. 
Circular histograms of !  at steady-state are included as insets at three selected 
locations within the cell. The histogram at !!!!! !! !!!!is omitted in (b) as ! ! !!!!!
in this case. 

The model predictions discussed above clearly indicate that the cells form nearly 
isotropic stress fiber distributions at small values of !! , but form anisotropic 
distributions with high stress fiber concentrations in the ! ! !"!  direction (i.e. 
aligned with the ridge direction) for large values of !!. This indicates that the model 
is predicting cell orientations that are at least qualitatively consistent with the 
observations of Lamers et al. [16]. In order to make more quantitative comparisons 
we attempt to interpret the predictions of the model in a manner analogous to the 
observations reported by Lamers et al. [16]. We first define an average stress fiber 
concentration in any particular direction as 

 !! !
!
!!

! ! !!!
!!

!
! (3.1)

Predictions of !! as function of !!!! ! are plotted in Fig. 6b for selected values of 
!! (we choose the abscissa of !!!! ! rather than ! so as to be consistent with the 
definition of cell orientation ! employed by Lamers et al. [16]).  It is clear that for 
small values of!!!, !! is reasonably independent of ! but at larger values of!!!, !!
decreases sharply with increasing !!!! ! . Moreover, the !!  distributions are
reasonably insensitive to the value of !! for !! ! !!!"!!!. Thus, consistent with the 
experimental observations, the predictions in Fig. 6b suggest that the cell has stress 
fibers over the entire range of orientations, but some orientations are dominant with 
higher values of!!!. It thus remains to quantity these dominant orientations in a 
manner as analogous as possible to the procedure employed by Lamers et al. [16]. 

In cell observations using epifluorescence or confocal microscopes, the fine 
meshwork of actin is expected to not be visible, i.e. if !! is less than a critical value,
fibers in that orientation are likely to be missed in most observations. We define this
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critical value of !! above which fibers are visible to be 50% of the maximum value, 
i.e. only fibers with !! ! !!! will be visible. Now define a new observable stress 
fiber distribution as 

 !! !!
!!!!!!!!!!!!!!!!!!!!!! ! !!!
!!!!!!!!!!!!!!!!!!!"#$%&'($!

 (3.2) 

Then, similar to Lamers et al. [16], the cell orientation ! is defined as the mean value

 ! !
!
! !

!!!!"
!!!
!

!!!"
!!!
!

! (3.3) 

The predicted values of cell orientation using this definition of ! are included in 
Fig. 6a for three selected values of the de-phosphorylation rate constant !!, including 
the reference value of !! ! !"#!!!!. It is clear that the predictions are in reasonable
agreement with the measurements for !!  values in the range !""!!!! ! !! !
!"#!!!!. Recall that there are some uncertainties of the model parameters and the 
metrics used to compare the predictions and observations. Given these uncertainties
the key conclusion of the model is that the lower limit of the groove spacing for an 
interaction between the grooves and the cells is !! ! !!!!!! but the interaction is 
definitely lost with cells orienting randomly on substrates for groove spacings 
!! ! !"!!".  

The predictions in Fig. 6a extend to values of !! higher than those investigated by 
Lamers et al. [16]. These predictions seem to indicate that at !! ! !!!!, the cells will 
slowly begin to reorient themselves away from the ridge directions. We demonstrate 
in the supplementary material that this reorientation is due to additional signal 
production that occurs from the enhanced contractility (resulting in increased 
stretching of the integrin-ligand bonds) of the cells at large values of !!.

  

Figure 6: (a) Comparison between the measured [16] and predicted values of the cell 
orientation !  as a function of the pitch !!  (! ! !!!) for four choices of the de-
phosphorylation rate constant !!. (b) Predictions of !! as function of !!!! ! for 
selected values of !! (! ! !!!) and the reference value of !!. 

The predictions discussed above demonstrate the fidelity of the model in estimating 
the response of cells on grooved substrates. The key ingredient that enables the model 
to capture this behavior is that it includes a spatially inhomogeneous activation signal 
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that arises from the fact that Rho activation only occurs at the focal adhesion sites, i.e. 
only along the ridges in the case of a grooved substrate. The consequences of this are 
that: (i) reducing the ratio 𝑟 of the width of the ridge to the groove results in a higher 
level of alignment of the cells with the grooves as there is insufficient signal 
production to allow for fibers that bridge across the grooves to form and (ii) models 
that use spatially uniform signals for the activation of stress fibers (e.g. Refs. [17-20]) 
would not only predict that the stress fiber network is spatially uniform for cells on a 
grooved substrate but also that the network is isotropically distributed for all values of 
𝐿! , i.e. 𝛺 = 45!∀  𝐿! . These aspects of the model are further elucidated in the 
supplementary material. 
 
 
4.  Concluding remarks 
The response of osteoblasts on grooved substrates is investigated via a model that 
accounts for the complex feedback between focal adhesion formation on the ridges, 
the triggering of signaling pathways by the formation of these adhesions and the 
development of the stress fiber network due to these activation signals. The distance 
over which signaling proteins activated at the adhesions on the ridges diffuse into the 
remainder of the cytosol (prior to being dephosphorylated) governs the formation of 
the actin network. For small groove pitches (less than about 100 nm) the signaling 
proteins diffuse throughout the cytosol resulting in a reasonably spatially homogenous 
and isotropic stress fiber network. Thus, the orientation of cells in such cases is 
random. By contrast, when the groove pitch is large (on the order of 1 µμm) the 
signaling proteins de-phosphorylate before they can diffuse into the portion of the cell 
over the grooves. Therefore, in this case not only does the cytoskeletal network form 
mainly on the ridges but also the fibers are mainly aligned with the direction of the 
ridges (or grooves). This results in the cells orienting themselves so as to be aligned 
with the grooves. The model thus provides a possible explanation for the observations 
of Lamers et al. [16] on the basis of the spatial inhomogeneity of the activation signal 
for stress fibers. In particular it shows that the lower limit of the groove spacing for an 
interaction between the grooves and the cells is about 100 nm but the interaction is 
lost with cells orienting randomly on substrates with groove spacings smaller than 
50 nm. 
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Supplementary material 

1. Numerical solution technique 
The governing Eqs. (2.1)-(2.13) represent a coupled set of partial differential 
equations (PDEs) in space and time and require a complex solution methodology. 
Briefly, at a given time, !, the mechanical equilibrium problem and the stress fiber 
evolutions equations are solved in a coupled manner using a finite element spatial 
discretization and the solution variables at the next time increment ! ! !" obtained 
via a Runga-Kutta time integration. This solution then gives the additional stretch of 
the integrin-ligand bonds in the time step and is used to update the focal adhesion 
distributions by solving the parabolic PDE, Eq. (2.10), again using a finite element 
scheme for the spatial discretization but an Euler-Backward scheme for time 
integration in order to ensure stability of the solution. With the change in the focal 
adhesion concentrations in time !" now available we solve the signaling Eqs. (2.1) 
and (2.2) again using a finite element spatial discretization and a backward Euler time 
integration scheme. This gives a complete solution at time ! ! !" and the process is 
repeated until steady-state is attained. 

 

Figure S1: Contour plots of the spatio-temporal distributions of !, !!!!!, !!!!!! as 
well as !! and !!" for cells on substrates with a pitch !! ! !!!". Recall that the 
groove spans the range !!!" ! !!!!! ! !!!". 

2. Response of cells for large groove widths 
The results of Fig. 6a suggest that cells start to reorient themselves away from the 
groove direction for values of !!! ! !!!!. In order to understand this change in the 
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mechanism we plot contours of the spatio-temporal evolution of !, !!!!!, !!!!!! as 
well as !! and !!" in Fig. S1 for the !! ! !!!! case (! ! !!!) analogous to the 
results in Fig. 4. However, here the temporal axis extends to 2.5 h instead of just 1 h 
as in Fig. 4.  This protraction of the temporal axis is required as steady-state is now 
attained at approximately ! ! !!! h due to the additional signal generation near the 
edge of the ridges over the time range !!! ! ! ! !!! h.  This additional signaling is 
much more significant in the !! ! !!!!  case compared to the !! ! !!!!  case 
discussed in the main body of the paper. To understand this, observe that the integrin 
concentrations in the !! ! !!!! case are about three orders of magnitude larger 
compared to the !! ! !!!! case (compare Figs. S1 and 4b). Moreover, !!!!! ! !
near the edges of the ridges for cells on the !! ! !!!! substrates. This indicates that 
the additional stretching of the integrin-ligand bonds on the ridges results in a 
diffusive flux of integrins towards the ridge edges from the neighboring parts of the 
cell membrane. This large-scale adhesion formation induces high levels of ! and 
finally higher levels of the stress fiber concentrations. This effect is evident in the 
steady-state spatial distributions of the stress fiber concentrations !! and !!" plotted 
in Fig. S2a. While the stress fiber concentrations still vanish across the central section 
of the cell over the groove, the distribution is less anisotropic above the ridges 
compared to the !! ! !!!! case. (e.g. with !! ! !!!! the distribution is isotropic at 
!!!!! ! !!!"). The reduction in anisotropy due to the additional signaling triggers 
the reorientation of the cell as parameterized by ! in Fig. 6a. 

  
Figure S2: The spatial distributions of the stress fiber concentrations !! and !!" at 
steady-state. Circular histograms of ! at steady-state are included as insets at two 
selected locations within the cell. (a) Full model. (b) Model with the production term 
deleted from Eq. (2.1). 

In order to further clarify the role of this additional signaling we performed 
calculations with the signal production term, !!!!!!"#!!!! !!! , deleted from 
Eq. (2.1). The remainder of the problem, including the initial and boundary 
conditions, remains identical to that described in Section 2. Predictions with this 
modification to the model of the spatio-temporal evolution of !  are reported in 
Fig. S3 for the !! ! !!!! case (! ! !!!) and reference value of !! . Comparing 
Figs. S1 and S2 shows that the unfolded ROCK concentration decays significantly 
faster when signal production due to mechano-sensitive adhesions is inhibited and 
thus the time scale in Fig. S2 is only ! ! ! ! !!!!!. The consequence of this 
reduction in the signal duration is a drop in the stress fiber concentration levels,
especially in the ! ! !! direction. To illustrate this we plot in Fig. S2b the steady-
state spatial distributions of !! and !!" and the corresponding circular histograms of !
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at two locations in the cell. A comparison with the corresponding distributions in Fig. 
S2a clearly show the increase in the anisotropy of the stress fiber distribution when 
the production term is deleted from Eq. (2.1). 

 
Figure S3: Contour plots of the spatio-temporal distributions of !, !!!!!, !!!!!! as 
well as !! and !!" for cells on substrates with a pitch !! ! !!!" for the model with 
the production term deleted from Eq. (2.1). Recall that the groove spans the range 
!!!" ! !!!!! ! !!!". 

Predictions of the cell orientation ! as a function of !! for the ! ! !!! substrates are 
included in Fig. S4a (dashed line) for the reference value of !! (again using the non-
linear x-axis scale, !!, consistent with Fig. 6a). The corresponding predictions of the 
full model are also reproduced in Fig. S4a from Fig. 6a. The predictions of the two 
models are nearly identical up to !! ! !!!!, suggesting that the additional signal 
production in those cases is not sufficient to affect the actin stress fiber distributions 
significantly. However, at larger values of !! the full model predicts the reorientation 
of the cells away from the groove direction to a more random orientation. 
Nevertheless, this reorientation does not occur when the production term is deleted 
from Eq. (2.1) with the cells continuing to further align themselves with the grooves 
with increasing !!. This clearly demonstrates that it is the signal production term in 
Eq. (2.1) that results in change in the response of cells for !! ! !!!!. 
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Figure S4: (a) Predictions of the cell orientation ! as a function of the pitch !! for 
three values the substrate ridge fraction !. Predictions are also included for the 
! ! !!! substrate with the signal production termed in Eq. (2.1) switched-off (dashed 
line). (b) Predictions of !!  versus !!!! !  for three selected values of !!  for 
substrates with ! ! !!!"  (solid lines) and ! ! !!!"  (dashed lines) using the full 
model. 

Animations that illustrate the evolution of !, !!!!!, !!!!!!, !! and !!", as well as the 
circular the distribution of ! at selected locations in the cell lying on the !! ! ! !!
substrate (! ! !!!) are included with the supplementary material files. Animations 
with predictions of both the full model and signal production term in Eq. (2.1) deleted 
are also included. 

There are numerous experiments of cells on patterned substrates with pitch lengths on 
the order of !"!!! (e.g. Tan et al. [15] reported the response of cells on a bed of posts 
with a spacing of !"!!!).  In those experiments a strong network of stress fibers is 
formed between the posts though presumably the activation signals would still have 
been initiated only at the focal adhesions on the posts. We speculate here that the 
larger spacings in those experiments result in much higher levels of signals by the 
mechanism discussed here. This allows for stress fibers to form between the posts and 
provides some indirect evidence for the predictions made here that additional 
activation signals are generated for !! values typically in excess of !!!!. 

3. Effect of substrate geometry 
In the experiments of Lamers et al. [16], the ratio of the ridge width to pitch was kept 
fixed at ! ! !!! and the pitch !! varied. Here we investigate the sensitivity of the cell 
orientation ! to !! for two additional values of ! ! !!!" and 0.75 and the reference 
value of!!!. 

Predictions of !! versus !!!! ! are included in Fig. S4b for three selected values of 
!! for substrates with ! ! !!!" (solid lines) and ! ! !!!" (dashed lines). It is evident 
that for a given value of !! the stress fiber distributions are not only more isotropic in 
the ! ! !!!" case compared to ! ! !!!" but also the absolute concentration levels are 
higher for the substrate with ! ! !!!". This is because the adhesion areas are larger 
for the substrate with a higher fraction of ridges and these larger adhesion areas allow 
larger levels of signal for the stress fibers to be generated. Predictions of the cell 
orientation ! as a function of !! are included in Fig. S4a for the three values of 
! ! !!!", 0.5 and 0.75. Clearly with increasing !, the cell orientation remains random 
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(i.e. 𝛺 = 45!) until larger values of 𝐿!. Moreover, the model predicts a higher mean 
cell orientation of 𝛺 ≈ 20! even at large values of 𝐿! for the 𝑟 = 0.75 case. This, is 
in contrast to the observations (and to the model predictions) for the 𝑟 = 0.5 case 
where cells align with the ridges with 𝛺 ≈ 0! at large values of 𝐿!. On the other hand, 
𝛺 decreases sharply with increasing 𝐿! for substrates with 𝑟 = 0.25 and in fact for 
𝐿! ≥ 0.1  µμm we cannot define 𝛺 as 𝜂! < 0.5  ∀  𝜙. The model thus predicts that the 
tendency for cells to orient themselves along the grooves (or ridges) with increasing 
𝐿! will decrease with increasing 𝑟. The fidelity of this prediction remains to be 
confirmed experimentally. 
 
 
4. Effect of spatially inhomogeneous activation signal 
The predictions of cell alignment (due to the anisotropic distributions of the stress 
fibers) are a consequence of the spatially inhomogeneous unfolded ROCK 
concentration resulting from this coupled model.  Most models for cell contractility 
and the evolution of the stress fiber network in the literature to-date (e.g. Refs. [17-
20]) have decoupled the activation signal from the focal adhesion and contractile 
response of cells. In these models, a spatially homogenous activation signal is 
imposed in terms of the parameter 𝐶 in Eq. (2.3). 
 
To understand the limitations of imposing a spatially homogenous signal we consider 
the case of spatially homogenous 𝐶 for the problem analysed above. The governing 
equations are identical to those in Section 2, except for the fact that Eqs. (2.1) and 
(2.2) are no longer needed to calculate 0 ≤ 𝐶 ≤ 1 as it is directly imposed in Eq. (2.3) 
as a spatially uniform (but possibly temporally varying) function. The boundary 
conditions are also identical to those described in Section 2 but again the boundary 
conditions to Eq. (2.1) are no longer relevant. The steady-state solution to the 
governing equations is then given by 𝑢! = 𝜀!! = 0,∀𝑥! and 𝜂 𝜙 = 𝜂!,∀𝑥!, where 
0 ≤ 𝜂! ≤ 1 is a constant dependent on the imposed 𝐶. Moreover, with 𝑢! = 0, there 
is no stretching of the integrin-ligand bonds on the ridges and hence 𝜉!/𝜉! is also 
piecewise uniform and given by Eq. (2.15) on the ridges and by Eq. (2.14) on the 
portion of the cells over the grooves.  
 
Thus, the spatially uniform signal not only predicts that the stress fiber network is 
spatially uniform for cells on a grooved substrate but also isotropic for all values of 
𝐿!, i.e. 𝛺 = 45!∀  𝐿!, contrary to the observations of Lamers et al. [16]. We thus 
argue that the spatially inhomogeneous activation signal, with signal production 
occurring at the focal adhesion sites on the ridges, is critical in capturing the observed 
actin network and cell orientation for cells on grooved substrates. 
 

Video Captions 
Movie M1 (Movie_M1.avi): Animation showing spatial distribution of 𝐶, 𝜉!/𝜉! , 
𝜖!!/𝜖!, 𝜂! and 𝜂!", as well as the circular the distribution of 𝜂 at selected locations 
over the pitch length for the 𝐿! = 0.05 𝜇𝑚 case. Note that time is scaled in the 
movies to be able to clearly show the early fast changes as well as the final steady-
state. 
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Movie M2 (Movie_M2.avi): Animation showing spatial distribution of 𝐶, 𝜉!/𝜉! , 
𝜖!!/𝜖!, 𝜂! and 𝜂!", as well as the circular the distribution of 𝜂 at selected locations 
over the pitch length for the 𝐿! = 1.0 𝜇𝑚 case. Note that time is scaled in the movies 
to be able to clearly show the early fast changes as well as the final steady-state. 
 
Movie M3 (Movie_M3.avi): Animation showing spatial distribution of 𝐶, 𝜉!/𝜉! , 
𝜖!!/𝜖!, 𝜂! and 𝜂!", as well as the circular the distribution of 𝜂 at selected locations 
over the pitch length for the 𝐿! = 2.0 𝜇𝑚 case. Note that time is scaled in the movies 
to be able to clearly show the early fast changes as well as the final steady-state. 
 
Movie M4 (Movie_M4.avi): Animation showing spatial distribution of 𝐶, 𝜉!/𝜉! , 
𝜖!!/𝜖!, 𝜂! and 𝜂!", as well as the circular the distribution of 𝜂 at selected locations 
over the pitch length for the 𝐿! = 2.0 𝜇𝑚 case and the production term deleted from 
Eq. (2.1). Note that time is scaled in the movies to be able to clearly show the early 
fast changes as well as the final steady-state. 


