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Abstract—Simulations for the quadratically-constrained model
predictive control (QMPC) with power system linear models are
studied in this work. In QMPC, the optimization is imposed
with two additional constraints to achieve the closed-loop system
stability and the recursive-feasibility simultaneously. Instead of
engaging the traditional terminal constraint for MPC, both
constraints in QMPC are imposed on the first control vector
of the MPC control sequence. As a result, QMPC has the
potential for further extension to the control of network centric
power systems. The algorithm of QMPC has been developed
in a previous paper. Here, simulation studies with small-signal
linear models of three typical power systems are presented
to demonstrate its efficacy. We also develop a computational
strategy for the decentralized static state-feedback control using
the same quadratic dissipativity constraint as of the QMPC. Only
state constraints are considered in the state feedback design. A
comparison is then provided in the simulation study of QMPC
relatively to the constrained-state feedback control.

I. INTRODUCTION

Decentralized control strategies are prevalent in the power
system applications, see, e.g. [1], [2], [3], [4], and references
therein. The developed QMPC is suitable to the decentralized
control of interconnected systems rationalized by its engage-
ment with the global information in the design phase. The
quadratic dissipativity constraint [5] plays an important role in
QMPC for assuring the closed-loop system stability. The linear
matrix inequality (LMI) optimizations that compute the multi-
plier matrices for this constraint take the global information of
the large-scale system into their formulations. As a result, the
global interactions between subsystems are encapsulated by
the dissipativity constraint. The deployment of such constraint
for each individual QMPC in a decentralized architecture
will, therefore, ensure the stability of the large-scale system.
We have presented the QMPC algorithm developments for
constrained linear systems in [6]. This paper emphasizes the
application aspect of QMPC and focuses on the simulation
studies with power systems.

The use of linearized models in load frequency control
applications for power systems is justified by the small load
variations in a nominal operating regime [7]. The treatment for

nominal-linear plus nonlinear-coupling models such as those
in the decentralized excitation control problems, e.g. [3], [4],
[8], has also been presented elsewhere. QMPC algorithm for
nonlinear input-affine systems is a subject of current research
[9].

The small-signal linearized power system models used in
this simulation study are: -

• A three-area power system with tie-lines for decentralized
supplement load frequency control that includes a pre-
designed local PI controllers, taken from [2];

• A four-area power system with tie-lines for decentralized
power flow control, taken from [10]; and

• An isolated wind-diesel system supplement load fre-
quency control, taken from [11]. The local PI controllers
are also included in this example.

The reduced order nonlinear model of wind-diesel systems
and the nominal-linear plus nonlinear-coupling models used in
the decentralized excitation control problem can be referenced
to, e.g., [12], [3], respectively. The QMPC strategy with the sta-
bility and recursive-feasibility constraints is firstly introduced
in the sequel.

The optimization problem in QMPC is additionally imposed
with two inequality constraints to achieve the closed-loop
system stability and the recursive-feasibility. They are con-
straints on the first control vector of the MPC control sequence.
The terminal constraint and the monotonically decreasing of
Lyapunov function are not applicable to QMPC as usually are
in the other traditional MPCs. As a direct result, the QMPC
scheme is suitable for distributed and decentralized control of
network systems and other forms of MPC such as multiplexed
MPC [13] or economic MPC [14].

The quadratic dissipativity constraint plays an important
role within the QMPC scheme. It is deployed as a stability
constraint for assuring the closed-loop system stability. The
quadratic dissipativity constraint resembles the generic dissi-
pative property, defined by Jan C. Willems in [15], informally
as −

∫ T

t0
s(t)dt ≤ K for T ≥ t0 ≥ 0. We engage the

quadratic dissipativity constraint with the open-loop system
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dissipativity [16] here to obtain the input-to-power-and-state
stability (IpSS). IpSS is an extension of the input-to-state
stability (ISS) [17], in which the power term yTw - inner
product of the chosen output and input, is explicitly inclusive
in the quadratic supply rate of the dissipation inequality. In
parallel with the stability, the recursive feasibility is assured by
the maximal one-step controllability criterion [18] in QMPC.
It is also implemented by a constraint on the immediate future
control vector. The assumption on the robustly constrained
control invariant set [19] will guarantee that the constrained
MPC problem has solutions.

This paper is organized as follows. Notations, existing
results and the QMPC algorithm are outlined in Section 2. The
stability condition is provided in this section. The decentralized
constrained-state feedback is then developed in Section 3.
Numerical simulations with small-signal linear models of three
typical power systems demonstrate the effectiveness of QMPC
in Section 4. Section 5 concludes this paper.

II. PRELIMINARIES AND QMPC ALGORITHM

A. Notation

Capital and lower case alphabet letters denote matrices
and column vectors, respectively. (.)T denotes the transpose
operation. ∥u∥2 is the ℓ2−norm of vector u. ∥x∥Q is the
weighted ℓ2−norm of x, Q ≻ 0. ∥M∥2 is the induced 2-
norm of matrix M . In the discrete time domain, the time index
is denoted by k, k ∈ Z. In symmetric block matrices, ∗ is
used as an ellipsis for terms that are induced by symmetry.
A function γ : R+ → R+ belongs to class K if it is
continuous, strictly increasing and γ(0) = 0. A function
α : R+ × R+ → R+ belongs to class KL if for each fixed
ℓ ∈ R+, α(., ℓ) ∈ K and for each fixed s ∈ R+, α(s, .) is
decreasing and lim

ℓ→∞
α(s, ℓ) = 0.

B. System Model and Stability Condition

Consider an interconnected system Σ consisting of h sub-
systems, each denoted as Si, i = 1, . . . , h and has a discrete-
time state equation of the form:

Si :

{
xi(k + 1) = Aixi(k) +Biui(k) + Eivi(k) + Lidi(k),

wi(k) = Fixi(k),
(1)

where xi(k) ∈ Rni , vi(k) ∈ Rmvi and wi(k) ∈ Rqwi are
the state, interactive (or coupling) input and interactive output
vectors respectively. ui(k) ∈ Rmi is the control input. (Ai, Bi)
is controllable. di represents the unknown load disturbance,
which is assumed a white noise sequence with zero mean
and finite variances. But it is bounded by ∥di∥22 ≤ δi. The
constraints

Ui := {ui : ∥ui∥22 ≤ ηi, ηi > 0}, (2)

Xi := {xi : ∥xi∥22 ≤ ρi, ρi > 0}, (3)

Vi := {vi : ∥vi∥22 ≤ θi, θi > 0}. (4)

are considered herein. The interactive input vi(k) of subsystem
Si and the output wj(k) of subsystem Sj , i ̸= j, are

Controller 1 Controller i Controller h
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Fig. 1. The conceptualized block diagram of an interconnected system [5].
The top network (multiple-topology communication links) is not available
in a decentralized control architecture. The intermittent data losses are not
considered in this paper.

connected to each other in an arbitrary topology. Using the
definitions of block-diagonal matrices A := diag[Ai]

h
1 , the

stacking vector x := [xT1 . . . x
T
h ]

T , and similarly for the other
matrices and vectors, the state equation of the large-scale
system Σ is obtained in the following:

Σ :

{
x(k + 1) = (A+ EHF )x(k) +Bu(k) + Ld(k),

v(k) = Hw(k),
(5)

with a global coupling matrix H of entries 1 or 0 only.

The conventional model predictive control (MPC) algorithm
using Si model (1) with vi ≡ 0 in predictions will be deployed
in this paper. We are concerned with the design of h decoupled
stability constraints for these h local MPCs to achieve the
overall control performance and the global stabilization.

The conceptualized block diagram of an interconnected
system is given in Figure 1 with detailed captions. The stability
constraint that has been derived from the quadratic dissipativity
constraint in [6] is firstly provided in the next subsection.

C. Stability Constraint

Considering the quadratic supply rate ξ(., .) with respect to
the input and state pair (ui, xi) for Si, the stability constraint
for each subsystem is as follows:

uiRiu
T
i + 2xTi S

T
i ui + ψi ≤ 0, (6)

where ψi(k) := xTi (k)Qixi(k)− βi ξi(k − 1), 0 ≤ βi < 1,

in which ξ(k−1) denotes the value of the supply rate ξ(ui, xi)
at the time step k − 1. The constraint (6) will be imposed on
the decentralized MPC optimization of each subsystem as an
enforced stability constraint. (6) is convex if Ri ≻ 0.

In QMPC, the closed-loop global system is input-to-power-
and-state stable (IpSS). IpSS is an extension to ISS and defined
as follows: Σ is input-to-power-and-state stabilizable (IpSS)
if there are two functions α1 and α2 of class KL, and there
exists a function γ of class K, such that for each bounded
control u and disturbance d, each initial state x0 ∈ X and



initial supply rate ξ(ui(0), xi(0)), the solution exists for each
k ≥ 0, and furthermore, it satisfies

∥x(k)∥2 ≤ α1(∥x0∥2 , k)+α2(|ξ0|, k− 1)+γ(∥dk−1∥2). (7)

IpSS has been defined locally to ensure that the solution does
practically exist. This is inferred from the fact that V (x) (and
thus ∥x(k)∥2 ) may diverge during certain time intervals when
the term α2(|ξ0|, k − 1) – a second KL function, is included
in the inequality (7) of IpSS.

The next theorem states the sufficient stability condition
for the interconnected system Σ. The LMI in this theorem is
derived from the well known dissipation inequality [20].

Theorem 1: [6] Let 0 < σ < 1. Denote AΣ := A+EHF .
Any controls ui(k), i = 1, 2, . . . , h, satisfying the stability
constraint (6) that have the multiplier matrices Qi, Si, Ri

given by the following LMI optimization, for x0 = x(0):

min
P≻0,Q,S,R,γ

xT0 Px0 (8)

s.t.


P PAΣ PB PL
∗ σP +Q S 0
∗ ∗ R 0
∗ ∗ ∗ (1− γ)I

 < 0, 0 < γ < 1,

for Q := diag[Qi]
h
1 , R := diag[Ri]

h
1 , S := diag[Si]

h
1 ;

stabilize Σ in IpSS sense. �
The objective function xT0 Px0 is employed in (8) to

maintain the global performance of
∑+∞

0 xT(j)Px(j). For the
recursive feasibility of the constrained state vector (3), the so-
called feasibility constraint delineated in the next section will
also be added to the MPC optimization.

D. Recursive Feasibility Constraint
The following inequality, called feasibility constraint, is

considered in this paper:

ui
TBT

i Biui + xTi A
T
i Biui ≤ πi, (9)

where πi := ρi

3 − xTi A
T
i Aixi − θi∥ET

i Ei∥
2
− δi∥LT

i Li∥
2
.

The feasibility constraint (9) has a solution when πi is non-
negative, for example, ui = 0. For πi being negative, a bound
on the known state vector xi(k) is required. The following
LMI-based condition renders the maximal 1-step controllable
criterion [6]: argmax(µi) ≤ πi

subject to
[
BT

i Bi + λiImi BT
i Aixi

xTi A
T
i Bi −λiηi − µi

]
< 0, λi > 0.

For systems having control and state constraints, it is
necessary to make some assumptions on the invariance of the
constraint sets [19], in order for the problem to be feasible.

Definition 1: A set Xi ⊂ Rni is called a robustly con-
strained control invariant with respect to Ui, Vi and ∥di∥22 ≤ δi
of system Si if for each xi(k) ∈ Xi, ∃ui(k) ∈ Ui, such that
xi(k+1) ∈ Xi for all vi ∈ Vi and all bounded di, ∥di∥22 ≤ δi .

Assumption 1: Xi ⊂ Rni is a robustly constrained control
invariant set with respect to Ui, Vi and ∥di∥2

2
≤ δi for the

subsystem Si.

E. Quadratically-constrained MPC (QMPC)

The MPC computation procedure for each subsystem Si is
detailed in the following pseudo-algorithm:

Algorithm 1: QMPC for interconnected systems
1) The storage function matrix P and h sets of Qi, Si, Ri

are computed off-line from the LMI optimization (8) in
Theorem 1.

2) At every updating step k,
a) Verify ξi(k−1) ≥ 0 and ψi < 0. If true,

i) The MPC optimization for the stand-alone Si

(1) with vi ≡ 0, imposed with (6) and (9), is
formed;

ii) Otherwise, exclude the stability constraint (9)
from the MPC optimization formulation.

b) The MPC optimization is subsequently solved for
the optimal control sequence û∗

i (xi). Only the first
vector u∗i (0, xi) of û∗

i (xi) is applied to control Si.
c) Return to 2.a).

This algorithm only uses the multiplier matrices Qi, Si, Ri

computed off-line, as in Step 1. The on-line updating algorithm
for these Qi, Si, Ri matrices that help alleviate the conserva-
tiveness of (6) is presented in [6]. Both off-line and on-line
updated multiplier matrices will be deployed for simulations
in Section IV. To demonstrate the efficacy of QMPC, a static
state feedback strategy is developed in the next section.

III. DECENTRALIZED CONSTRAINED-STATE FEEDBACK

For the static state feedback strategy, the control constraint
(2) is not considered in this development. The decentralized
control law has the state feedback form of ui = Kixi. The
feedback gain Ki is used in the closed-loop derivations for the
constraints (6), (9) and the dissipative condition (8) herein. It
is necessary to consider the quadratic supply rate of

ξ(xi, vi) := viRiv
T
i + 2xTi S

T
i vi + xTi Qixi. (10)

The quadratic dissipativity constraint is then

ξ(xi(k+1), vi(k+1)) ≤ βiξ(xi(k), vi(k)), 0 ≤ βi < 1. (11)

The following LMIs are derived from (11), (9), and the
dissipation inequality for Σ of the form xT+Px+ − σxPx ≤∑n

1 ξ(xi, vi). They are obtained by substituting the model of
Σ or Si into the corresponding inequalities, rearranging them,
and adequately applying the Schur complement:P̌ KTBT +AT

Σ LT

∗ σP̌ + Y 0
∗ ∗ (1− γ)I

 < 0, (12)

[
3ρiI KT

i B
T
i +AT

i

∗ (ρi − νi)I

]
< 0, i = 1, . . . , n, (13)[

M̌ KTBT +AT
Σ

∗ βM

]
< 0, P ≻ 0, 0 < γ < 1, (14)

where M := Q+ SHF + FTHTST + FTHTRHF ,

K := diag[Ki]
n
1 , β := min

i
βi, P := diag[Pi]

n
1 ,



Q := diag[Qi]
n
1 , S := diag[Si]

n
1 , R := diag[Ri]

n
1 ,

νi := θi∥ET
i Ei∥2 + δi∥LT

i Li∥2, M = PY P , M̌ =M−1.

The computation for Ki is then as follows: Firstly, the
matrices P,M and K are found from the solution to (12),
(13), by the optimization of

min
P≻0,M≻0,K

xT0 Px0 s.t. (12), (13). (15)

Then assume KT
i = P−1

i XT
i and M = ZP . Thus, Xi,

γ and Z are known with the resultant P from the above
computation. Subsequently, Pi is re-computed by solving the
equivalent LMIs of (12), (13), (14) for the minimum of γ with
0 < γ < 1. The equivalent LMIs are provided below, for
X := diag[Xi]

n
1 .P̌ P̌XTBT +AT

Σ LT

∗ σP̌ + P̌Z 0
∗ ∗ (1− γ)I

 < 0, (16)

[
3ρiI P̌iX

T
i B

T
i +AT

i

∗ (ρi − νi)I

]
< 0, i = 1, . . . , n, (17)

[
P̌Z−1 P̌XTBT +AT

Σ

∗ βP̌Z

]
< 0, P̌ ≻ 0, 0 < γ < 1. (18)

And the LMI optimization of

min
Pi,γ

γ s.t. (16), (17), (18), (19)

will be solved for Pi and γ. The feedback gain computation
is summarized below.

Algorithm 2: Static State-Feedback Gain Computation
1) Solve (15) for P , M and K.
2) Obtain Xi = KiPi and Z =MP−1.
3) Solve (19) for a new P .
4) Obtain Ki = P−1

i XT .
Simulations with small-signal power system models in

Section IV will show the input and state trajectories from
using Ki = P−1

i Xi, as a result of Algorithm 2, and those
from Algorithm 1 of QMPC.

IV. NUMERICAL SIMULATIONS

Two multiple-area power systems with tie-lies and an
isolated hybrid wind-diesel power system are studied in this
section.

A. Supplement Load Frequency Control

Fig. 2. A three-area power system with tie-lines for load frequency control.

The small-signal linearized model in this simulation study
is of a three-area power system with tie-lines (see Figure 2) for
decentralized load frequency supplement control that includes
a pre-designed PI gains, borrowed from [2], [21], as follows:

Ai =


− 1

TPi

KP1
TPi

0 0 −
KPi

2πTPi

∑
j Ksij

0 − 1
TTi

− 1
TGi

− 1
TGi

0

− 1
RiTGi

0 −14.468 −14.468 0

KEi
KBi

0 0 0 KEi

∑
j Ksij

2π 0 0 0 0



Bi =


0
0

− 1
TGi

0
0

 , Li =


−

KPi
TPi

0
0
0
0

 , Ei[j] =


KPi

2πTPi
Ksij

0
0

−
KEi
2π

Ksij

0


The detailed model parameters from [2] are as follows:

A1 =


−0.05 6 0 0 −0.955

0 −3.472 3.472 0 0
−5.878 0 −13.021 −13.021 0

4 0 0 0 1.592
6.283 0 0 0 0

 ,

B1 =


0
0

13.021
0
0

 , L1 =


−6
0
0
0
0

 , FT
1 =


0
0
0
0
1

 , E1 =


.478 .478
0 0
0 0

−.796 −.796
0 0



A2 =


−0.04 4.5 0 0 −0.716

0 −3.157 3.157 0 0
−5.805 0 −14.468 −14.468 0

4 0 0 0 1.592
6.283 0 0 0 0

 ,

B2 =


0
0

14.468
0
0

 , L2 =


−4.5
0
0
0
0

 , FT
2 =


0
0
0
0
1

 , E2 =


.358 .358
0 0
0 0

−.796 −.796
0 0



A3 =


−0.05 5.75 0 0 −0.915

0 −2.976 2.976 0 0
−6.448 0 −14.881 −14.881 0

4 0 0 0 1.592
6.283 0 0 0 0

 ,

B3 =


0
0

14.881
0
0

 , L3 =


−5.75

0
0
0
0

 , FT
3 =


0
0
0
0
1

 , E3 =


.458 .458
0 0
0 0

−.796 −.796
0 0



H =


0 1 0
0 0 1
1 0 0
0 0 1
1 0 0
0 1 0

 .

The block diagram of the ith area is shown in Figure 3.
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Fig. 3. Block diagram of the ith area control system [2].



The elements of the state vector xi =
[∆fi ∆Pgi ∆Xgi ∆Ei ∆δi]

T are labeled along the
signal lines in Figure 3. When the updating time is chosen
at τs = 0.0225 and the initial state vector is set up with
x(0) = 10−6× [6.3 6.9 −8.4 −0.6 1.2 5.6 8.8 −7.1 −1.2
0.9 12.2 11.8−9.4 −0.2 0.9]T , the computed state feedback
gains are given below.

K1 =

−26.7724
−31.1379
−24.6646
−44.8689

 K2 =

 12.4068
−1.5664
0.5280

−249.5194

 K3 =

 29.4551
−1.1757
−1.5268

−499.5028


In this simulation, we have selected β = 0.999. The control

and state trends are shown in Figures 4 and 5 for state feedback
control and QMPC by Algorithm 1, respectively. The state
response using the above decentralized state-feedback gains in
Figure 4 shows a stabilized system. The decentralized QMPC
is not only stabilized the system with a predictive horizon of 15
steps, but also improved the settling time and peaks. This can
be seen clearly from the trends in Figure 5 relatively to Figure
4. It has been found in this example that the re-computation
of multiplier matrices is not effective in this example.

0 200 400
-0.02

0

0.02

0.04

0.06

0.08

0.1

Time
0 200 400
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0.01
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0.04

0.05

0.06

Time

Fig. 4. Control and state trends from decentralized state feedback control.
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Fig. 5. Control and state trends from decentralized QMPC.

B. Power Flow Control

Figure 6 shows the block diagram of a four-area power
system with tie-lines for the power flow control problem. This
is also called automatic generation control (AGC) problem.
The differential equations for an area is given below [10], [22].

Control 
Area 1

Control 
Area 2

Control 
Area 3

Control 
Area 4

Ptie
12 Ptie

23 Ptie
34

Pref
1 Pref

2 Pref
3 Pref

4

∆ω1 ∆ω2 ∆ω3 ∆ω4

Ptie
41

Fig. 6. A four-area power system with tie-lines for power flow control.

d∆ωi

dt
+

1

Ma
i

Di∆ωi +
1

Ma
i

∆Ptieij −
1

Ma
i

∆Pmechi
= −

1

Ma
i

∆PLi
,

d∆Pmechi

dt
+

1

Tchi

∆Pmechi
−

1

Tchi

∆Zvi = 0,

d∆Zvi

dt
+

1

TGi

∆Zvi −
1

TGi

∆Prefi +
1

Rf
i TGi

∆ωi = 0,

d∆Ptieij

dt
= Tij(∆ωi −∆ωj),

∆Ptieij = −∆Ptieij .

Nomenclature:

• ω : Angular frequency of rotating mass
• Ma : Angular momentum
• D : percentage change in load

percentage change in frequency
• Pmech : Mechanical power,
• PL : Non-frequency sensitive load
• Tch : Charging time constant of the prime mover
• Zv : Steam valve position
• Pref : Load reference set point
• Rf : percentage change in frequency

percentage change in unit output
• TG : Governor time constant
• Ptieij : Tie-line power flow between areas i and j
• Tij : Tie-line stiffness coefficient

Based on the model parameters from [10], we obtained the
state realization matrices in the following:

A1 =

 −0.75 −0.25 0.25 0
2.19 0 0 0
0 0 −0.02 0.02

−0.833 0 0 −0.25

 ,

B1 =

 0
0
0

0.025

 , FT
1 =

100
0

 , E1 =

 0
−1.96

0
0



A2 =

−0.6875 −0.25 0.25 0
2.54 0 0 0
0 0 −0.1 0.1

−0.5714 0 0 −0.04

 ,

B2 =

 0
0
0

0.04

 , FT
2 =

100
0

 , E2 =

 0
−2.45

0
0



A3 =

−0.275 −0.1 0.1 0
1.8 0 0 0
0 0 −0.1 0.1

−0.667 0 0 −0.02

 ,

B3 =

 0
0
0

0.02

 , FT
3 =

100
0

 , E3 =

 0
−1.45

0
0





A4 =

−0.571 −0.286 0.286 0
2.5 0 0 0
0 0 −0.05 0.05

−1.776 0 0 −0.068

 ,

B4 =

 0
0
0

0.068

 , FT
4 =

100
0

 , E4 =

 0
−2.46

0
0



H =

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

The state vector of area ith consists of four elements,
xi = [∆wi ∆Ptieij ∆Pmechi ∆Zvi ]

T . When the updating
time is chosen at τs = 0.1, and the initial state vector is set
up with x0 = 10−3 × [4.5 5.2− 6.8− 7 4.6 7.1− 8.2− 0.9
10.2 10.5 − 10 − 1 10.2 10.5 − 10 − 1]T , the computed
feedback gains are as follows:

K1 =

−26.7724
−31.1379
−24.6646
−44.8689

 K2 =

 12.4068
−1.5664
0.5280

−249.5194


K3 =

 29.4551
−1.1757
−1.5268

−499.5028

 K4 =

 23.5298
−0.4554
0.0524

−146.5596

.
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Fig. 7. Control and state trends from decentralized state feedback control.
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Fig. 8. Control and state trends from decentralized QMPC.

β = 0.9999 has also been selected in this simulation. Figure
7 shows the state and control trajectories using the above
decentralized feedback gains. Similarly to first example above,
the decentralized QMPC by Algorithm 1 is not only stabilized
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Fig. 9. Control and state trends from decentralized QMPC with re-computed
multiplier matrices.

the system, but also improved the control performance in terms
of settling time, compared to the state feedback control. The
predictive horizon of Ni = 6 have been used for all four
local MPCs in the simulations. The control constraints of
ηi = 0.4, i = 1, 2, 3, 4 are imposed on respective subsystems.
The weighting matrices of Q1 = diag{2, 1, 1, 1}, Q2 =
diag{1, 1, 2, 1}, Q3 = diag{1, 2, 1, 1}, Q4 = diag{1, 1, 1, 2},
R1 = R2 = R3 = R4 = = diag{0.25} are set up for the
MPC cost functions.

When the updating time is chosen at τs = 1.15, and the
initial state vector is selected as x0 = 10−2× [0.5 −2 8 −1.7
0.1 − 1 − 0.2 − 1.9 0.2 − 1.5 1 − 1 0.2 − 0.5 1 − 1]T ,
the resulting control and state trends are depicted by Figures
8 and 9 for the QMPC with Algorithm 1, and the QMPC with
dynamic multiplier matrices in [6], respectively. The control
trajectories in Figure 9 are smoother than those in Figure 8,
trading off for a much higher online computational cost.

C. Isolated hybrid power system

The small-signal linearized model of an isolated wind-
diesel power system with local PI controllers, borrowed from
[11], has been been used in this numerical example. Interested
readers may refer to [12] for a nonlinear model of the isolated
wind-diesel power system.

IG

SGDE

���
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��

Load
Sync. Gen

Induc. Gen

Fig. 10. Isolated wind-diesel power system.

This wind-diesel power system consists of a wind generator
and a diesel generator connecting to a common bus bar. The
wind generator has a wind turbine, an induction generator and
the converter/inverter with its own voltage regulator. The diesel



generator has a diesel engine with governor and a synchronous
generator with AVR (automatic voltage regulator), as sketched
out by Figure 10.

Details of the control system transfer function block dia-
gram is given in Figure 11. The supplement load frequency
control here is to stabilize the system frequency and diesel
generator power in the events of small load changes or wind
power variations. The two states of interest are the deviations
of system frequency and diesel power, which are the first and
second elements in the state vector, respectively.

�

�
�

�
�

�

�
�

�
�

�
�

����������

����������������

�

������

�����������

����

��

��

���

�	

����	

�

����


���

���

�	�

����	�

�	�

����	�

�����������

�����

�	
�

�����
����

����

�

�

�	��

�	��

�	������

�	
�

�	�

�

���

�	��

Fig. 11. Control system block diagram of an isolated wind-diesel power
system [11].

A =



− 1+KIGKP
TP

KP
TP

0 0

0 − 1
TD4

1
TD4

1
TD4

− KD(TD2−TD1)
RDTD2(TD2−TD3)

0 − 1
TD2

0

− KD(TD3−TD1)
RDTD3(TD3−TD2)

0 0 − 1
TD3

KIGKP
TW

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

KIGKP
TP

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

− (1−KTP+KIG)
Tw

1
TW

0 0

0 −1 KP3KPCKP1
TP3

KP3KPCKP1TP1
TP3

0 0 −1 1− TP1

0 0 0 − 1
TP2



=



−7.4 5 0 0 7.47 0 0 0
0 −.333 .333 .333 0 0 0 0

−.02 0 −.5 0 0 0 0 0
−1.58 0 0 −40.0 0 0 0 0
.374 0 0 0 −.623 .25 0 0
0 0 0 0 0 −1 .14 .084
0 0 0 0 0 0 −1 .4
0 0 0 0 0 0 0 −24.39



B =



0 0
0 0

KD(TD2−TD1)
TD2(TD2−TD3)

0
KD(TD3−TD1)
TD3(TD3−TD2)

0

0 0
0 0
0 0

0
KP2
TP2


=



0 0
0 0

.1013 0
7.8987 0

0 0
0 0
0 0
0 24.3903


L =



5 0
0 0
0 0
0 0
0 .25
0 0
0 0
0 0


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Fig. 12. Control and state trends from state feedback control.
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Fig. 13. Control and state trends from QMPC.

The updating time is chosen at τs = 0.1.
The initial state vector is set up with x(0) =
10−2 × [24.5 15.7 − 16.3 − 8.7 11 − 10 11 − 14]T .
β = 0.999. The computed feedback gains are as follows:

K = −10−2×
[
141 91 101 104 138 138 118 511
−792 74 206 422 −245 59 326 −18

]T
The state response using the above state feedback gain

in the control law shows a stabilized system. The QMPC
by Algorithm 1 with a predictive horizon of N = 6 is
not only stabilized the system, but also improved the control
performance, in terms of settling time. The control and state
trends are depicted by Figures 12 and 13 for state feedback
control and QMPC, respectively. The control moves with
QMPC are smaller and smoother than those with the state
feedback.

The simulation studies in this section have demonstrated the
effectiveness of QMPC, relatively to the static state-feedback
control law, especially for decentralized control of power
systems. The off-line computed multiplier matrices have also
been found suitable for interconnected power systems, wherein
the interactions between subsystems are quite moderate.

V. CONCLUSION

Simulation studies for QMPC using linearized models of
two multiple-area power systems with tie-lines and of an
isolated hybrid power system have demonstrated the suitability
of QMPC for linear systems. Simulation studies for the non-
linear input-affine model of wind-diesel power systems and



for the large-signal power systems having nominal-linear plus
nonlinear-coupling models are presented elsewhere.
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