
Reconfigurable Predictive Control for Redundantly Actuated Systems with
Parameterised Input Constraints

Edward N. Hartleya,∗, Jan M. Maciejowskia

aUniversity of Cambridge, Department of Engineering, Trumpington Street, Cambridge. CB2 1PZ. United Kingdom.

Abstract

A method is proposed for on-line reconfiguration of the terminal constraint used to provide theoretical nominal stability
guarantees in linear model predictive control (MPC). By parameterising the terminal constraint, its complete reconstruc-
tion is avoided when input constraints are modified to accommodate faults. To enlarge the region of feasibility of the
terminal control law for a certain class of input faults with redundantly actuated plants, the linear terminal controller
is defined in terms of virtual commands. A suitable terminal cost weighting for the reconfigurable MPC is obtained by
means of an upper bound on the cost for all feasible realisations of the virtual commands from the terminal controller.
Conditions are proposed that guarantee feasibility recovery for a defined subset of faults. The proposed method is
demonstrated by means of a numerical example.

Keywords: model predictive control, reconfigurable control, fault-tolerant control

1. Introduction

It has long been advocated that model predictive con-
trol (MPC) has advantages in the field of reconfigurable
and fault tolerant control [1–10]. In MPC, at each time
step, the control input applied to the plant is obtained by
solution of an optimisation problem [11, 12], which min-
imises a function of future inputs and states over a finite
horizon, subject to physical and operational constraints.
The first part of the computed input trajectory is applied
to the plant, and at the next time step the process is re-
peated using new measurements. Since the optimisation
problem can be modified given knowledge about a fault,
physical and analytical redundancy within plant can be
exploited to recover an acceptable level of performance.

For many applications, theoretical guarantees of recur-
sive feasibility and stability can assist in acceptance and
clearance procedures. One way to enforce recursive feasi-
bility and stability by design is through employment of an
appropriate terminal control law, terminal cost and termi-
nal constraint [13]. A special case of this setup employs
a terminal equality constraint. Here, the terminal cost is
zero, and no terminal control law is used, but when the pre-
diction horizon is short, this limits the region of feasibility
of the controller, and leads to aggressive performance.

Whilst this methodology is sufficient (rather than nec-
essary) for stability, its application is commonplace in con-
temporary literature. For example, in [4, 5], a reconfig-
urable linear MPC design is proposed for aircraft control.

∗Corresponding author
Email addresses: enh20@eng.cam.ac.uk (Edward N. Hartley),

jmm@eng.cam.ac.uk (Jan M. Maciejowski)

The predictions are pre-stabilised as in [14], and a terminal
cost is used. It is indicated that the maximum admissi-
ble set (MAS) for the closed-loop system with just the
pre-stabilising controller is large, but no explicit form for
the constraint is presented. More recently, [7, 9] proposes a
fault-tolerant MPC controller for flight control, with an ex-
plicit stabilising terminal constraint, corresponding to the
MAS for a precomputed LTI controller around a steady-
state set-point. The MAS is parameterised by augmenting
the state vector with the target equilibrium state and in-
put setpoints (as also in [15–17]). The authors of [7, 9]
propose to pre-compute the MAS offline for each combi-
nation of input faults. The number of possible combina-
tions grows combinatorially with the number of failures
accounted for simultaneously, and these sets must be com-
puted for every applicable trim condition, a large number
of sets could be required. Moreover, if it is possible for an
input to jam at any value and not just zero, then the issue
of pre-computing terminal sets is even more problematic.

On-line re-calculation of an appropriate admissible set
for a change in constraints, terminal control law or plant
model would be computationally costly, and would sub-
stantially complicate an embedded implementation. Al-
ternatively, post-fault, the terminal set could be replaced
with an equality constraint, but then there is the risk of
unnecessary infeasibility if the required (or even the closest
[9, 15–17]) equilibrium point cannot be reached within the
prediction horizon. Performance on channels unaffected
by the fault would also suffer.

These issues motivate the contribution of the present
paper. A certain class of input faults can be accommo-
dated by an MPC controller by modelling them as a change

Preprint submitted to Elsevier November 27, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/42338527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in the input constraints. A change in input range (e.g. a
stuck actuator) can be modelled by adjusting the input
constraints. A constraint bounding the (weighted) differ-
ence between two inputs can be tightened to represent ac-
tuators locking together, whilst a constraint bounding the
(weighted) sum of inputs could be tightened to represent
an energy deficit. Since the MAS depends on the input
constraints, it is proposed to extend the methods proposed
in the aforementioned references to parameterise an inner
approximation of the MAS for the terminal control law in
terms of the input inequality constraints.

Whilst the finite-horizon MPC problem will be spec-
ified in terms of the actual plant inputs, to increase the
admissible region for the terminal control law in the event
of a faulty plant input, this is specified in terms of “virtual
commands”. A “virtual command” describes the effect of
a non-zero input on the system rather than the specific
realisation: in a redundantly actuated system (e.g. an
aircraft with multiple ailerons and multiple elevators) the
same “virtual command” can be delivered by different in-
put realisations. The terminal control law is a theoretical
construct and never actually applied to the plant, so the
control allocation mapping the it to an input realisation
is also never implemented online. Nevertheless, an upper
bound on the worst-case cost incurred must be obtained
to design a suitable terminal cost.

A summary of the paper is presented thus: Section 2
develops the constraint-parameterised MPC for linear time
invariant (LTI) systems, with nominal stability guarantees
assuming initial feasibility; Section 3 proposes conditions
which guarantee that feasibility can be recovered during
the transition from a nominal to plant to a class of faulty
plant; Section 4 summarises the computation of setpoint
targets; Section 5 presents a simple numerical example;
and Section 6 concludes.

2. Reconfigurable MPC

Assumption 1. The plant is described by the discrete-
time linear time invariant state space model

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) (1)

where state x(k) ∈ Rnx , input u(k) ∈ Rnu , controlled
output y(k) ∈ Rny , A ∈ Rnx×nx , B ∈ Rnx×nu , k ∈ Z,
nu ≥ nx ∈ Z, the pair (A,B) is stabilisable and all states
are measurable. (A− I) is invertible.

Assumption 2. Let X ⊆ Rnx , U ⊆ Rnu , T ⊆ X be convex,
closed polytopic sets, specified in the form: X , {x : Gxx ≤
gx}, U , {u : Guu ≤ gu}, T , {x : Gtx ≤ gt}.

Assumption 3. Let xs ∈ int(T) and us ∈ int(U) be a
state/input pair satisfying (A− I)xs +Bus = 0.

Let xi(k) and ui(k) denote the state and input predic-
tions i time steps into the future from the current time
step k, up to prediction horizon N . Define ‖ • ‖2P , •TP•,

δx = (x − xs), δu = (u − us), u = (u0, . . . , uN−1), x =
(x0, . . . , xN) and cost function

J(x,u) = ‖δxN‖2P +
∑N−1
i=0

(
‖δxi‖2Q + ‖δui‖2R

)
(2)

for matrices Q ∈ Rnx×nx > 0, R ∈ Rnu×nu > 0 and
P ∈ Rnx×nx . Letting •∗ indicate an optimal value, at
every time step k, an MPC controller solves Problem 1
and applies u(k) = u∗0(x(k)) to the plant:

Problem 1.

(u∗(x),x∗(x)) = arg min(u,x) J(x,u) (3a)
s.t. x0 = x (3b)

xi+1 = Axi +Bui, ∀i ∈ {0, . . . , N − 1} (3c)
xi ∈ X, ∀i ∈ {0, . . . , N − 1} (3d)
ui ∈ U, ∀i ∈ {0, . . . , N − 1} (3e)
xN ∈ T. (3f)

Let SN (X,U,T) be the set of all x(k) such that there
exists u(x(k)) satisfying constraints (3b) to (3f). A well-
known set of sufficient additional conditions that guaran-
tees nominal stability and recursive feasibility if x(k) ∈
SN (X,U,T), requires the terminal cost weighting matrix
P and the terminal constraint set T to have specific prop-
erties [13]. Sufficient conditions for recursive feasibility are
presented in a linear setting in Assumptions 4 and 5.

Assumption 4. An unconstrained state feedback controller
u(k) = KNx(k) exists that renders the matrix (A+BKN)
Schur (i.e. |ρ(A+BKN)| < 1).

Assumption 5. T is positively invariant with respect to
the closed-loop system comprised of (1) with the controller
u(k) = KNδx(k) + us and the state and input constraints
X and U, i.e. x ∈ T =⇒ x ∈ X, KNδx + us ∈ U and
Ax+B(KNδx+ us) ∈ T.

Given recursive feasibility, the additional conditions
sufficient for J∗(x(k)) = J(x(k),u∗(x(k))) to be a Con-
trol Lyapunov Function about the equilibrium (xs, us) for
the closed-loop system comprised of (1) and controller
u(k) = u∗0(k) are summarised in Assumption 6.

Assumption 6. The terminal cost P is chosen so that:
−‖δxN‖2P + ‖δxN‖2Q + ‖KNδxN‖2R + ‖(A+ BKN)δxN‖2P
for all xN ∈ Tg(gu). This holds if (A + BKN)TP (A +
BKN)− P +Q+KT

NRKN ≤ 0.

2.1. Implications of reconfiguration
Since the subsequent developments consider changing

constraints, a simple parameterisation of the set U is in-
troduced in terms of the vector gu. Let U = Ug(gu) ,
{u : Guu ≤ gu}. Suppose that under normal operating
conditions, gu = g

(0)
u . Following a fault (assumed to be in-

stantly detected), the value of gu changes to g(1)
u to enable

2

the MPC to redirect commands to the remaining degrees
of freedom (possibly with reduced performance).

The realisation of T satisfying Assumption 5 is depen-
dent on U, and U = Ug(gu) is parameterised by gu, so it
follows that for a given (xs, us), T should also a function
of gu: T = Tg(gu). A difficulty here is that the termi-
nal control law u = KNδx + us may not be admissible
with respect to the modified input constraint set Ug(g(1)

u)
within a set T(g(0)

u) computed to satisfy Assumption 5 for
U = Ug(g(0)

u). Computing a set satisfying Assumption 5
can be a demanding process involving the solution of a
large number of linear programs, and is therefore usually
computed off-line. Since gu is continuously valued, it is not
possible to pre-compute a set of discrete T(g(i)

u) offline.
The second difficulty is that the set of x on which

u = KNx is admissible with respect to Ug(gu) can be-
come small, and in some cases unnecessarily so, limiting
the size of Tg(gu), despite for some plants the same control
“effect” B(KNδx+us) being achievable through a different
value of u due to redundancy.

Assumption 7. The matrix B can be naturally decom-
posed into two parts B = B̂M , i.e.

x(k + 1) = Ax(k) + B̂v(k) v(k) = Mu(k). (4)

The columns of B̂ ∈ Rnv are formed by orthogonal basis
vectors defined by the column space of B, nv = Rank(B)
and the matrix M ∈ Rnv×nu , and the signal v(k) = Mu(k)
is termed a “virtual command”.

This parameterisation of the state space model is par-
ticularly intuitive in cases where the virtual commands
correspond to (for example) accelerations, or angular ac-
celerations, and the matrix M defines the effects of the real
system inputs in terms of these virtual commands. One
approach is for the whole control system to be designed in
terms of these virtual commands, and for a control alloca-
tion algorithm to then map these back to real inputs [18].
In the present work it is assumed that one wishes to design
an MPC controller that considers all physical inputs, and
thus the control and allocation tasks are combined.

2.2. Virtual terminal control law
To obtain a terminal control law that can be feasible in

the presence of a number of constraint-restricting faults,
we propose to specify it in terms of virtual commands.

Assumption 8 (Relaxes Assumption 5). T is positively
invariant with respect to the closed-loop system (4) with
the virtual controller v(k) = M(KNδx(k) + us), and the
state constraints X and virtual control constraints V, where
V , {v : ∃u ∈ U, s.t v = Mu}. In other words x ∈ T =⇒
x ∈ X, M(KNδx+us) ∈ V and Ax+B̂M(KNδx+us) ∈ T.

Lemma 1. The set of all feasible virtual commands Vg(gu) ,
{v = Mu : Guu ≤ gu} is affine in gu.

Proof. By replacing the equality by back-to-back inequal-
ities, the sets Ug(gu) and Vg(gu) can be related as: Gu 0 −I

M I 0
−M −I 0

 uv
gu

 ≤
0

0
0

 . (5)

By projection (e.g. Fourier-Motzkin elimination), a set V̂
can be computed, containing all v and gu such that there
exists a feasible corresponding u ∈ Ug(gu):

V̂ ,
{[
vT gTu

]T : ∃u s.t. v = Mu, Guu ≤ gu
}
. (6)

V̂ can be expressed in the form:
[
Vgv Vgg

] [
vT gTu

]T ≤
vg. By substituting in a value of parameter gu, the set of
feasible virtual commands is:

Vg(gu) = {v : Vgvv ≤ vg − Vgggu}. (7)

Assumption 9. Let the elements of v ,
[
v{1}, . . . , v{nv}

]T .
Deviations ±ε̃i, i ∈ {1, . . . , nv} in virtual commands from
the equilibrium must always be feasible, where

ε̃i ,
{
v ∈ Rnv : x{j} = εi if j = i, v{j} = 0 if j 6= i

}
.

The values εi > 0 may be chosen as the minimum in-
dependent virtual command deviations from equilibrium
required for realistic operation of the plant.

Lemma 2. Defining

Gε =

II
...

 , gε =

vg − Vgg ε̃1vg + Vgg ε̃1
...

 , (8)

the condition required by Assumption 9 can be expressed
as a constraint on allowable values of gu in the (possibly
not irredundant) form GεVgggu ≤ gε.

Proof. For a given ε̃i, to be inside the set (7) for a given gu
it is necessary by definition that Vgv ε̃i ≤ vg − Vgggu. This
can be re-written as Vgggu ≤ vg − Vgv ε̃i. The proposition
follows by imposing this for each i ∈ {1, . . . , nv}.

Consider a virtual control allocator C(v) : Vg(gu) →
Ug(gu), that for any v ∈ Vg(gu) computes u ∈ Ug(gu),
such that v = Mu. By allowing control reallocation for
a terminal control law, the set of states for which a the
control law is admissible for a given gu does not shrink, and
is enlarged if there is sufficient redundancy in the system.

Proposition 1. Following Assumptions 1 and 3, the equi-
librium state can be expressed as a function of the equi-
librium input or virtual input: xs = −(A − I)−1Bus =
−(A− I)−1B̂vs.

3

Lemma 3. Define

Xu(gu, us) = {x : x ∈ X, KNδx+ us ∈ Ug(gu)}
Xv(gu, vs) = {x : x ∈ X, MKNδx+ vs ∈ V(gv)} .

The set Xv(gu,Mus) ⊇ Xu(gu, us) for given admissible
values of xs, us and gu.

Proof. x ∈ Xu(gu) =⇒ KNδx + us ∈ Ug(gu). From the
definition of Vg(gu), KNδx+us ∈ Ug(gu) =⇒ M(KNδx+
us) ∈ V(gu).

In [7, 15, 16], a positively invariant set, admissible with
respect to X and U, parameterised by a basis for the tar-
get equilibrium pair (xs, us) was proposed. The following
extends this concept with a positively invariant set for a
re-allocatable terminal control law, that is also parame-
terised by the input constraint gu. Recall that B = B̂M .

Lemma 4. An admissible positively invariant set for the
virtual control law v = MKNδx+ vs ∈ Vg(gu), i.e.

Tg(gu, vs) , {x : x ∈ Xv(gu, vs),
Ax+BKNδx+ vs) ∈ Tg(gu, vs)} (10)

can be computed that is affine in terms of gu, xs and us.

Proof. First consider the dynamics of δx:

δx(k + 1) = Ax(k) + B̂MKNδx(k) + B̂vs − xs
= (A+BKN)δx(k).

Consider an augmented autonomous state space system:δx(k + 1)
vs(k + 1)
gu(k + 1)

 =

(A+BKN) 0 0
0 I 0
0 0 I

δx(k)
vs(k)
gu(k)

 (12)

Let Γ = (I − A)−1B̂. Constraints that must hold ∀k ∈
{0, . . . ,∞} are:

VgvMKN Vgv Vgg
Gx GxΓ 0
0 GεVgv GεVgg
0 α−1GxΓ 0


δx(k)
vs(k)
gu(k)

 ≤

vg
gx
gε
gx

 . (13)

The first row of (13) constrains the virtual command from
the terminal control law. The second row is the constraint
on state x = xs+δx. The third row enforces Assumption 9,
and also helps ensure finite-determination of the positive
invariant set [19], since gu(k) is a marginally stable state.
The value α ∈ (0, 1) is a constant, again to ensure finite-
determination [15, 19]. The MAS can be computed for
system (12) with constraints (13) using algorithms from
e.g. [19, 20]. By re-ordering the rows of the computed set,
and performing a coordinate transformation x = δx+ xs,
the admissible invariant set for the augmented system can
be expressed in the form:Txx Txv1 Tg1

0 Txv2 Tg2
0 0 Tg3

 [xT gTu vTs
]T ≤

t1t2
t3

 . (14)

From this, two affinely parameterised sets are obtained.
The first is the the parameterised MAS for the plant with
virtual terminal control law, parameterised constraints,
and parameterised setpoint:

Tg(gu, vs) =
{
x : Txxx ≤ t1 − Tg1gu − Txv1vs

}
. (15)

The second is a set of admissible target virtual inputs pairs
for which Tg(gu, vs) is defined

Vs(gu) = {vs : Txv2vs ≤ t2 − Tg2gu} . (16)

Finally, the set of gu for which the parameterisation applies
is given by Tg3gu ≤ t3.

Following Lemma 3, for a given gu, Tg(gu,Mus) is ei-
ther equal to or a superset of an invariant set computed
instead using Xu(gu, us). A larger terminal set enables a
larger domain of feasibility for Problem 1. Note that the
control allocator for the terminal control law is not imple-
mented online (although computation of the target us is)
— the subsequent analysis only relies upon its feasibility.

Lemma 5. If x(k) ∈ SN (X,Ug(gu),Tg(gu,Mus)), gu is
constant, and (xs, us) are constant and satisfy Assump-
tion 3, then the control law u(k) = u0(k) is recursively
feasible.

Proof. Feasibility at time k+1 can be shown by construct-
ing a candidate solution (ũ(k+1), x̃(k+1)) by truncating
and extending the solution from time k:

ũ(k + 1) =
(
u∗1(k) · · ·u∗N−1(k), C(M(KNδx

∗
N (k) + us))

)
x̃(k + 1) =

(
x∗1(k), · · · , x∗N (k), (A+BKN)δx∗N (k)

)
This candidate solution satisfies (3b), (3c), (3d), and (3e)
trivially, and (3f) following from definition of Tg(gu, vs) in
(10). The theorem therefore holds by induction.

2.3. Stabilising terminal cost
Theorem 1. If for constant gu, us and xs, it holds that
x(k) ∈ SN (X,Ug(gu),Tg(gu,Mus)) then a sufficient con-
dition for J∗(x(k)) to be a Control Lyapunov function
for the closed-loop system x(k + 1) = Ax(k) + Bu∗0(k)
with u∗0(k) satisfying Problem 1 is that −‖δx∗N (k)‖2P +
‖δx∗N (k)‖2Q + ‖C(MKNδx

∗
N (k))‖2R

+‖(A+BC(MKNδx
∗
N (k)))‖2P ≤ 0.

Proof. J∗(x(k)) = 0 if x(k) = 0 and J∗(x(k)) > 0 if x(k) 6=
0. Considering the same feasible candidate solution as in
the proof of Lemma 5, for x(k) 6= 0,

J(x(k+1), ũ(k+1)) = J∗(x(k))−‖δx∗0(k)‖2Q−‖δu∗0(k)‖2R
− ‖δx∗N (k)‖2P + ‖δx∗N (k)‖2Q

+ ‖C(MKNδx
∗
N (k))‖2R + ‖(A+BC(MKNδx

∗
N (k)))‖2P

So, J∗(x(k + 1)) ≤ J(x(k + 1), ũ(k + 1)) ≤ J∗(x(k)) −
‖δx∗0(k)‖2Q − ‖δu∗0(k)‖2R, if the stated conditions hold.

4

Proposition 2. The condition of Theorem 1 will be sat-
isfied if P is chosen to satisfy (A+BKN)TP (A+BKN)−
P ≤ −Q−Z, and Z satisfies ‖δxN‖2Z ≥ ‖C(MKNδxN)‖2R
∀xN ∈ Tg(gu) for all admissible gu.

One method is proposed here to find such a Z (for all
gu). Initially, assume that the virtual control allocator
chooses uN as [18]:

C(MKNxN) = arg min
uN

uTNRuN (17a)

s.t. GuuN ≤ gu, MuN = MKNxN . (17b)

C(MKNxN) is a piecewise-affine function of xN and gu,
and the optimal cost is piecewise quadratic [21] in xN and
gu. The value of uTNRuN in terms of xN can be found
by computing the explicit solution of (17) with the vec-
tor [xTN , g

T
u]T as a parameter, using multi-parametric pro-

gramming [22], e.g. using the MPT Toolbox [23]. The
solution to the mp-QP control allocator partitions the pa-
rameter space into Mp polyhedral regions Pi, each with a
local quadratic value function:[

xN
gu

]T [Ai,11 Ai,12
Ai,21 Ai,22

] [
xN
gu

]
+ Bi

[
xN
gu

]
+ Ci. (18)

For the problem of form (17) it turns out that Bi and
Ci are zero. Since gu only parameterises inequality con-
straints, an upper bound on the cost of the allocated ter-
minal control input of the form xTNZxN where Z ∈ Rnx

can be computed by considering the marginal cost with re-
spect to the state in each region of the convex, continuous,
piecewise-quadratic value function from the mp-QP:

minZ Trace(Z) s.t. Z ≥ Ai,11, i ∈ {1, . . . ,Mp}. (19)

This convex semi-definite program [24] can be solved using
widely available tools (e.g. SDPT3 [25] or SeDuMi [26]).

3. Feasibility recovery for piecewise constant gu

If a fault event happens at time kf , gu is piecewise con-
stant and the target may need to change in reaction even
if the reference r remains constant: gu = g

(i)
u , us = u

(i)
s ,

where i = 0 if k < kf and i = 1 if k ≥ kf . Lemma 5 only
guarantees recursive feasibility for constant gu. Therefore,
recursive feasibility is guaranteed before the transition. It
is also guaranteed after the transition if the transition is
feasible but feasibility of the transition at time kf is not
guaranteed. Since us (and thus xs and vs) may change, we
propose conditions such that there exists a feasible (xs, us)
at time kf . (It is unreasonable to guarantee feasibility for
all values of gu — i.e. up until complete input loss.)

Assumption 10. Define V0 = {v : Vg0v ≤ vg0} as a set
of virtual commands, such that if Vg(gu) ⊇ V0 feasibility
should be recoverable when gu changes.

Note that this contrasts to Assumption 9, which defines
instead a guaranteed “margin” between the steady state
virtual command and the boundary of Vg(gu). Define X0

as the set of original state constraints stemming from a
basic MPC design. Consider the set

XV0(vs) , {x ∈ X0 : MKNδx+ vs ∈ V0} (20)

Proposition 3. A set

T0(vs) =
{
x ∈ XV0(vs) : Ax+ B̂(KNδx+ vs) ∈ T0(vs)

}
(21)

can be computed by considering the MAS for system[
δx(k + 1)
vs(k + 1)

]
=
[
(A+BKN) 0

0 I

] [
δx(k)
vs(k)

]
(22)

with constraints
Vg0MKN Vg0
Gx0 Gx0Γ

0 GεVg0
0 α−1Gx0Γ

[δx(k)
vs(k)

]
≤


vg0
gx
gε
gx

 (23)

and performing the change of variables x = Γvs + δx and
expressed in the form[

T0x T0v

] [
xT vTs

]T ≤ t0. (24)

The projection of (24) onto x defines a set of states for
which a ṽs exists such that x ∈ T0(ṽs):

XT0 , {x : ∃vs s.t. (24) holds} . (25)

Express this as Gxtx ≤ gxt. Define the m-step virtual
controllable set

SV
m(X,V,E) , {x0 : ∃vi ∈ V s.t. xi ∈ X for

xi+1 = Axi + B̂vi, i ∈ {0, . . . ,m− 1}, xm ∈ E}. (26)

Proposition 4. Let X = SV
m(X0,V0,XT0) for some m <

N . This ensures that there is a feasible vs corresponding
to a feasible equilibrium, reachable by an m-step input se-
quence that is admissible with respect to V0.

The difficulty with Proposition 4 is that since Tg(gu, vs)
is now computed using more stringent state constraints
than T0(vs). Therefore, there may exist g(i)

u , i = {0, 1}
satisfying Vg(g(i)

u) ⊇ V0 for which the initial state x0 ∈
SN (X,Ug(g(0)

u),Tg(g(0)
u , v

(0)
s)) 6=⇒ ∃v(1)

s such that x0 ∈
SN (X,Ug(g(1)

u),Tg(g(1)
u , v

(1)
s)). We propose a condition that

can be tested a posteriori by computing a set analogous
to that described in Proposition 3 for the constraint set
X = SV

m(X0,V0,XT0) instead of X = X0.
Define XSV0

, {x ∈ X : MKNδx+ vs ∈ V0} and TS0 ,

{x ∈ XSV0
(vs) : Ax + B̂(KNδx + vs) ∈ TS0 (vs)}, and the

projection of this only x: XST0

5

Theorem 2. Let q ≤ N −m. If SV
q (X,V0,XST0

) ⊇ XT0 for

Vg(gu) ⊇ V0, then x0 ∈ SN (X,Ug(g(0)
u),Tg(g(0)

u , v
(0)
s)) =⇒

∃v(1)
s s.t.x0 ∈ SN (X,Ug(g(1)

u),Tg(g(1)
u , v

(1)
s)).

Proof. x0 ∈ X implies x0 ∈ SV
m(X0,V0,XT0). The set XT0

is control invariant, so SV
m−1(X0,V0,XT0) ⊆ SV

m(X0,V0,XT0),
therefore, x0 ∈ SV

m(X,V0,XT0). If the proposed test con-
dition holds then this means that

x0 ∈ SN (X,Ug(g(0)
u),Tg(g(0)

u , v(0)
s)) =⇒ x0 ∈ X

=⇒ x0 ∈ SV
m(X,V0,SV

q (X,V0,XST0
)) (27a)

=⇒ x0 ∈ SV
m+q(X,V0,XST0

) (27b)

=⇒ x0 ∈ SV
N (X,Vg(gu),XST0

)∀gu : Vg(gu) ⊇ V0 (27c)

=⇒ x0 ∈ SN (X,Ug(gu),XST0
)∀gu : Vg(gu) ⊇ V0 (27d)

=⇒ ∃v(1)
s s.t.x0 ∈ SN (X,Ug(g(1)

u),Tg(g(1)
u , v(1)

s)). (27e)

4. Target computation

To track a reference setpoint, the steady state target
(xs, us) should be chosen to minimise function of ‖Cxs −
r‖, where Cxs is the controlled output and r is the (piece-
wise constant) reference setpoint [9, 27]. A suitable target
calculator may for example compute:

Problem 2.

min
xs,us

‖F0(CΓMus − r)‖1 + ‖us‖2F1
+ ‖xs‖2F2

(28a)

subject to: us ∈ Ug(gu),Mus ∈ Vs(gu), xs = ΓMus
(28b)

x(k) ∈ SN (X,Ug(ug),Tg(gu, vs)). (28c)

The objective (28a) is for the target output to be close
to the reference and for preferred inputs to be used if pos-
sible. Matrices F0, F1, F2 are weights chosen by the de-
signer, with F0 � F1 and F2. Constraint (28c) ensures
feasibility of Problem 1 (implemented with slack variables
rather than projections if required). Problem 2 is a para-
metric QP in terms of r and gu since Vs and SN are affine
in gu. Feasibility recovery for changing gu is accommo-
dated by choosing X as shown in Section 3. Target calcu-
lation can alternatively be performed simultaneously with
Problem 1 [15–17].

5. Example

The proposed method is demonstrated on a simple
state space system with 4 states, and 4 inputs:

[A|B̂] =


1.010 0.180 0 0 0.019 0
0.001 0.840 0 0 0.183 0

0 0 1.010 0.190 0 0.019
0 0 0.001 0.880 0 0.187


(29a)

M =
[
−0.10 0.10 −0.03 0.03
−0.02 −0.02 −0.12 −0.12

]
(29b)

Asymmetric use of inputs (1,2) and (3,4) controls states
(1,2), whilst symmetric use of inputs (1,2) and (3,4) con-
trols states (3,4). However, inputs (1,2) have a larger mag-
nitude of effect on states (1,2) and inputs (3,4) have a
larger magnitude effect on states (3,4). This setup is rep-
resentative of longitudinal and lateral dynamics of an air-
craft with two elevators (normally used in common mode,
mostly affecting the former with slight effect on the lat-
ter) and two ailerons (normally used differentially, mostly
affecting the latter). The eigenvalues of A are slightly out-
side the unit disc. A candidate stabilising terminal con-
trollerKN is designed as the unconstrained infinite horizon
LQR for the plant (A,B) with weighting matrices: Q =
diag(0.2, 0.0001, 0.2, 0.0001) and R = diag(1, 1, 1, 1):

KN =


0.9959 0.9870 0.1373 0.1782
−0.9959 −0.9870 0.1373 0.1782
0.2988 0.2961 0.8238 1.0693
−0.2988 −0.2961 0.8238 1.0693

 (30)

and places the eigenvalues of (A + BK) on the real axis
at 0.9761, 0.8304, 0.9686 and 0.8682. (Recall, that whilst
we have specified this in the form, u = KNx, we may
realise this with any u such that v = MKNx). The input
constraints are described by the matrix Gu = [I,−I]T ∈
R8×4, and the parameter gu ∈ R8×1. The “fourier” solver
from [23] is used to project (5) onto [vT , uTg]T to obtain
Vg(gu) (7). Candidate state constraints X0 of −1.5 ≤
x1 ≤ 1.5, −0.3 ≤ x2 ≤ 0.3, −1.5 ≤ x3 ≤ 1.5 and −0.3 ≤
x4 ≤ 0.3, are considered.

We define the “minimum service level” on the virtual
inputs for which feasibility should be guaranteed recov-
erable V0 by the vertices (0.05, 0), (−0.05, 0), (0, 0.12),
(0,−0.12). Together with the state constraints and param-
eters α = 0.90 and εi = 0.01, this enables computation of
T0(vs) (21) and hence XT0 (25) and X from Proposition 4,
for m = 10. The condition of Theorem 2 is satisfied for
q = 0 for this example! The parameterised set Tg(gu, vs)
is then computed. Tg(gu, vs) is parameterised by 80 lin-
ear inequalities, and Vs(gu) by 12. A further 4 constraints
only apply to gu.

To reiterate the advantage of a terminal set in compar-
ison to a terminal equality, slices of Tg(gu, 0) with x3 =
x4 = 0 are presented in Figure 1 for nominal conditions
g
(0)
u = [1, 1, 1, 1, 1, 1, 1, 1]T , the first input pair blocked

out, g(1)
u = [0, 0, 1, 1, 0, 0, 1, 1] in addition to slices of the

“minimum service level” terminal set TS0 (0). These are
compared with slices of the 25, 20, 15, 10, 5 and 2-step
backwards reach sets from the origin under the same con-
straints. From the figure, it is evident that a constrained
MPC with a terminal equality constraint will require a
long horizon to achieve a useful region of feasibility. More-
over, the benefit of terminal control law reallocation is
emphasised, since for g(1)

u , without allowing terminal con-
trol re-allocation, the terminal set for the original terminal

6

−0.2 −0.1 0 0.1 0.2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

v
1

v
2

Virtual control authority

Nominal

Fault

Minimum

(a) Virtual control limits (b) g
(0)
u = [1, 1, 1, 1, 1, 1, 1, 1]

−0.5 0 0.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x
1

x
2

First input fault

MAS

Reach sets

(c) g
(1)
u = [0, 0, 1, 1, 0, 0, 1, 1]

−0.5 0 0.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x
1

x
2

Minimum Service Level

MAS

Reach sets

(d) TS0

Figure 1: Admissible Tg(gu, 0) and reach sets of the origin

control law would by necessity be the origin, whereas the
computed terminal set with re-allocation is larger than the
25-step backwards reach set.

The parameterised terminal set is comprised of 80 half-
space constraints. At each stage in the MPC prediction
horizon, 8 state and 8 input half space constraints are im-
posed. Therefore, the terminal constraint has an overhead
in terms of constraints in the optimisation problem of 5
prediction horizon steps. Yet the set itself is greater than
the region of feasibility of a 25 step MPC with a terminal
equality constraint for g(1)

u . For g(0)
u the feasibility recov-

erability constraint X = SV
m(X0,V0,XT0) dominates.

The quadratic weighting matrices for the MPC con-
troller are chosen as: Q = Diag(20, 0.01, 20, 0.01), and
R = Diag(1, 1, 1, 1). The upper bound Z on the worst-
case marginal cost contributions from the inputs applied
by the terminal controller, and the corresponding upper
bound on the cost-to-go, P are computed using MPT [23]
and YALMIP [28] as:

Z =


26.1858 25.9515 0.0000 0.0000
25.9515 25.7193 0.0000 0.0000
0.0000 0.0000 51.6101 66.9908
0.0000 0.0000 66.9908 86.9553

 (31a)

P =


1.1199 1.0070 0.0000 0.0000
1.0070 0.9584 0.0000 0.0000
0.0000 0.0000 1.3396 1.5918
0.0000 0.0000 1.5918 2.0067

× 103. (31b)

To analyse the potential change in closed-loop performance,
the unconstrained infinite horizon cost with respect to Q,
R is computed for three controllers: the infinite horizon
LQR, and unconstrained MPC with N = 10 firstly for P
satisfying (A+BKN)TP (A+BKN)−P−KT

NRKN−Q = 0,

0 10 20 30 40 50
−0.5

0

0.5

Time step

x
1

0 10 20 30 40 50
−0.5

0

0.5

Time step

x
3

No fault

Fault, no reconfiguration

fault, reconfiguration

0 10 20 30 40 50
−1

−0.5

0

0.5

1

Time step

u
1

0 10 20 30 40 50
−1

−0.5

0

0.5

1

Time step

u
3

0 10 20 30 40 50
−1

−0.5

0

0.5

1

Time step

u
2

0 10 20 30 40 50
−1

−0.5

0

0.5

1

Time step

u
4

Figure 2: Simulation trajectories with faults on u1 and u2

and then with above conservative terminal cost P . Denote
these xTPlqrx, xTPKN

x and xTPZx respectively. Let-
ting λmax(.) and λmin(.) denote the maximal and minimal
eigenvalue respectively, λmax(PKN

− Plqr)/λmin(Plqr) =
0.0409, and λmax(PZ − Plqr)/λmin(Plqr) = 0.0698. The
conservative terminal cost is anticipated therefore to not
significantly modify closed-loop performance.

Using YALMIP [28], MPC solving Problem 1 and tar-
get calculator solving Problem 2 are implemented for N =
10 with the costs and constraints specified in this sec-
tion. The key point, and contribution of this paper is
that to reconfigure the terminal set, the only recomputa-
tion needed is the calculation of t1 − Tg1gu − Txv1vS and
t2 − Tg2gu (where vs = Mus). Back-to-back inequality
constraints may be present which can lead to numerical
difficulties with some interior-point QP solvers, but this
can be mitigated by using active set methods or by using
a pre-solver to transform these linearly dependent inequal-
ity constraints into equality constraints.

Figure 2 shows closed loop trajectories for the con-
trolled system, starting from x(0) = [0.3, 0, 0, 0]T con-
trolled to a new setpoint [0, 0, 0.3, 0]T . The dashed line
shows the system with no fault. Also considered is a fault
on control pairs 1 and 2 during the transient. When u1

falls below 0.4, it jams. When u2 rises above −0.1 it also
jams. The dotted line shows the behaviour without recon-
figuration. The solid line shows the behaviour when it is
assumed that these faults can be detected instantaneously
and used to reconfigure gu. Without parameterisation, to
work within this setting for enforcing stability, it would
have been necessary to have computed a separate termi-
nal set for the particular values of gu used (and separately
for all other possible values of gu).

6. Conclusions

A method has been proposed for a stabilising predic-
tive controller for LTI plants with redundant inputs, and

7

parameterised input constraints. To guarantee stability,
even in the case of certain classes of fault, the terminal
constraint is parameterised by the input constraints to en-
able on-line reconfiguration in case of fault. By construct-
ing the terminal set in this way, it is not necessary to
construct a separate terminal set a priori for every com-
bination of input failures. The formulation is extended to
accommodate non-zero input faults, such as being stuck at
a constant value, or the inability to decrease below a pos-
itive threshold. The efforts of the terminal controller that
is used to guarantee the existence of a feasible solution
at each time step, are implicitly re-distributable between
the remaining degrees of freedom when a fault occurs. A
method is proposed for obtaining an upper bound in the
stage cost that would be incurred, even when an unusual
combination of inputs is required to deliver the desired
control effect. This is then used to compute a suitable sta-
bilising terminal cost for the MPC. Additional constraints
are imposed to guarantee existence of a feasible solution
given a minimum level of input availability. The effec-
tiveness of the method is demonstrated with a numerical
example.

This stabilising terminal set parameterisation could also
be used to complement the constraint-parameterised ex-
plicit MPC of [29]. The integration of the proposed re-
configuration methodology with robust MPC techniques
that maintain guarantees of recursive feasibility and con-
vergence over some region of the state space in presence of
disturbances, even in fault scenarios remains a topic for fu-
ture investigation, as does integration with fault detection
methods.

Acknowledgements

The research leading to these results has received function
from the European Union Seventh Framework Programme
FP7/2007–2013 under grant agreement no. 314 544.

References

[1] J. M. Maciejowski, Reconfigurable control using constrained op-
timization, in: Proc. European Control Conf., Brussels, 1997.

[2] J. M. Maciejowski, The implicit daisy-chaining property of con-
strained predictive control., Applied Mathematics and Com-
puter Science 8 (4) (1998) 101–117.

[3] J. M. Maciejowski, C. N. Jones, MPC fault-tolerant flight con-
trol case study: Flight 1862, in: IFAC Safeprocess Conf., 2003.

[4] M. M. Kale, A. J. Chipperfield, Robust and stabilized MPC
formulations for fault tolerant and reconfigurable flight control,
in: Proc. IEEE Int. Symp. Intelligent Control, Taipei, Taiwan,
2004, pp. 222–227.

[5] M. M. Kale, A. J. Chipperfield, Stabilized MPC formulations for
robust reconfigurable flight control, Control Eng. Pract. 13 (6)
(2005) 771–788.

[6] Y. Zhang, J. Jiang, Bibliographical review on reconfigurable
fault-tolerant control systems, Annual Reviews in Control 32 (2)
(2008) 229–252. doi:10.1016/j.arcontrol.2008.03.008.

[7] F. A. De Almeida, D. Leißling, Fault-tolerant model predictive
control with flight-test results, J. Guidance, Control, and Dy-
namics 33 (2) (2010) 363–375.

[8] E. Camacho, T. Alamo, D. de la Pena, Fault-tolerant
model predictive control, in: Proc. IEEE Conf. Emerg-
ing Technologies and Factory Automation, 2010, pp. 1–8.
doi:10.1109/ETFA.2010.5641226.

[9] F. A. De Almeida, Reference management for fault-tolerant
model predictive control, J. Guidance, Control, and Dynamics
34 (1) (2011) 44–56. doi:10.2514/1.50938.

[10] A. Yetendje, M. M. Seron, J. De Doná, Robust mul-
tiactuator fault-tolerant MPC design for constrained sys-
tems, International Journal of Robust and Nonlinear Con-
troldoi:10.1002/rnc.2854.

[11] J. M. Maciejowski, Predictive Control with Constraints, Pear-
son Education, 2002.

[12] J. B. Rawlings, D. Q. Mayne, Model predictive control: Theory
and design, Nob Hill Publishing, 2009.

[13] D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert,
Constrained model predictive control: Stability and optimal-
ity, Automatica 36 (6) (2000) 789–814. doi:10.1016/S0005-
1098(99)00214-9.

[14] J. A. Rossiter, B. Kouvaritakis, M. J. Rice, A numerically ro-
bust state-space approach to stable-predictive control strate-
gies, Automatica 34 (1) (1998) 65–73. doi:10.1016/S0005-
1098(97)00171-4.

[15] D. Limon, I. Alvarado, T. Alamo, E. F. Camacho,
MPC for tracking piecewise constant references for con-
strained linear systems, Automatica 44 (9) (2008) 2382–2387.
doi:10.1016/j.automatica.2008.01.023.

[16] A. Ferramosca, D. Limon, I. Alvarado, T. Alamo,
E. F. Camacho, MPC for tracking with optimal closed-
loop performance, Automatica 45 (8) (2009) 1975–1978.
doi:10.1016/j.automatica.2009.04.007.

[17] M. Zeilinger, C. Jones, M. Morari, Robust stability proper-
ties of soft constrained MPC, in: Proc. 49th IEEE Conf.
Decision and Control, Atlanta, GA, 2011, pp. 5276–5282.
doi:10.1109/CDC.2010.5717488.

[18] M. Bodson, Evaluation of optimization methods for control al-
location, J. Guidance, Control, and Dynamics 25 (4) (2002)
703–711. doi:10.2514/2.4937.

[19] E. G. Gilbert, K. T. Tan, Linear systems with state and con-
trol constraints: the theory and application of maximal out-
put admissible sets, IEEE Trans. Autom. Control 36 (9) (1991)
1008–1020. doi:10.1109/9.83532.

[20] E. C. Kerrigan, Matlab invariant set toolbox 0.10.5 (2005).
[21] A. Bemporad, M. Morari, V. Dua, E. N. Pistikopoulos, The

explicit linear quadratic regulator for constrained systems, Au-
tomatica 38 (2002) 3–20. doi:10.1016/S0005-1098(01)00174-1.

[22] T. Johansen, T. Fossen, F. Tøndel, Efficient optimal con-
strained control allocation via multiparametric programming,
J. Guidance, Control, and Dynamics 28 (3) (2005) 506–515.
doi:10.2514/1.10780.

[23] M. Kvasnica, P. Grieder, M. Baotić, Multi-Parametric Toolbox
(MPT) (2004).

[24] S. Boyd, L. E. Ghaoui, E. Feron, V. Balakrishnan, Linear Ma-
trix Inequalities in System and Control Theory, SIAM, 1994.

[25] K. C. Toh, R. H. Tütüncü, M. J. Todd, On the implemen-
tation and usage of SDPT3 – a MATLAB software package
for semidefinite-quadratic-linear programming, version 4.0 (Jul.
2006).

[26] D. Peaucelle, D. Henrion, Y. Labit, K. Taitz, User’s Guide for
SeDuMi Interface (2002).

[27] K. R. Muske, J. B. Rawlings, Model predictive control with
linear models, AIChE J. 39 (2) (1993) 262–287.

[28] J. Löfberg, YALMIP: A toolbox for modeling and optimization
in MATLAB, in: Proc. CACSD Conference, Taipei, Taiwan,
2004.

[29] V. Puig, A. Roisch, C. Ocampo-Martinez, R. Sarrate, Fault-
tolerant explicit MPC of PEM fuel cells, in: Proc. 46th IEEE
Conf. Decision and Control, New Orleans, LA, 2007, pp. 2657–
2662. doi:10.1109/CDC.2007.4434655.

8

