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Abstract—This paper presents a numerical study of the im-
pact of process-induced variations on the achievable motional
resistance Rx of one-dimensional, two-dimensional, cyclic and
cross-coupled architectures of weakly coupled, electrostatically
transduced MEMS resonators operating in the 250 kHz range.
We use modal analysis to find the Rx of such coupled arrays and
express it as a function of the eigenvectors of the specific mode of
vibration. Monte Carlo numerical simulations, which accounted
for up to 0.75% variation in critical resonator feature sizes, were
initiated for different array sizes and coupling strengths, for the
four distinct coupling architectures. Improvements in the mean
and standard deviation of the generated Rx distributions are
reported when the resonators are implemented in a cross-coupled
scheme, as opposed to the traditional one-dimensional chain. The
two-dimensional coupling scheme proves to be a practical and
scalable alternative to weakly coupled one-dimensional chains to
improve the immunity to process variations. It is shown that a
75% reduction in both the mean and standard deviation of the
Rx is achieved as compared to the traditional one-dimensional
chain for a normalized internal coupling κ > 10−2.

Keywords—Mechanical coupling, motional resistance, vibration
localization, mode localization, MEMS resonators.

I. INTRODUCTION

The demand for high performance and reduced size wireless
communication devices has pushed research interests towards
the design and development of low power, small footprint and
single chip CMOS integrated wireless-transceiver solutions.
The potential of Micro Electro Mechanical Systems (MEMS)
technology to meet some of these requirements has led to
the recent development and adoption of miniaturized, silicon
micro-machined mechanical resonators for operation as timing
references [1]. Such micro-resonators, unlike their traditional
quartz crystal counterparts, are manufactured using silicon
micro-fabrication techniques and offer considerably smaller
form factor as well as shorter lead time. Electrostatically
transduced silicon MEMS resonators have also been shown
to provide a number of advantages including - high me-
chanical quality factors (Q), low static power dissipation and
CMOS manufacturing compatibility, making them attractive
alternatives to quartz based timing references. However, such
silicon micro-resonators are still limited by their high motional
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resistance (Rx) that consequently hinders direct deployment in
RF front-end applications.

One-dimensional (1D-κ) mechanical coupling of micro-
resonators (see discrete element model in Fig. 1a) has been
suggested as a potential route to reduce the Rx of such devices
[2][3]. At high frequencies, coupling beams designed to be
integer number of half-wavelengths can be used to implement
very strong coupling between resonators. However, for VLF-
MF flexural mode resonators, it can become impractical to
implement strong extensional or flexural mode coupling beams
due to size constraints (e.g. such λ

2 couplers would require
hundreds of microns long beams at the operating frequencies
of hundreds of kHz).

Weakly coupled micro-mechanical resonators are highly
prone to structural asymmetries induced by manufacturing
tolerances. The presence of small imperfections in an array
of identically designed resonators leads to a distortion in the
vibration mode shape from the case of a structurally symmetric
system [4]. The vibration energy becomes spatially localized
and does not extend uniformly throughout the structure [5].
This effect often results in non-uniform reductions in Rx from
the case of perfect symmetry [6]. While it is possible to tune
the structural symmetry and consequently improve conformity
in Rx reduction [3][6], this method still remains impractical
for larger 1D-κ arrays.

Alternative design methodologies have been investigated to
help improve the immunity of such coupled arrays to the
impact of manufacturing tolerances in the context of their ap-
plication to micro-electro-mechanical filters. More specifically,
two-dimensional coupling [7] [8] [9] and [10], higher order
[11] as well as cyclic coupling architectures [12] and [13]
have been shown experimentally and numerically to provide
improved insertion loss and ripple characteristics, indicating
an enhancement in robustness against vibration localization
effects relative to their 1D-κ counterparts. Similarly a cross
coupled topology [14] has been shown to improve the robust-
ness of the Rx to external stiffness perturbations compared to
the traditional 1D-κ chain.

In an attempt to obtain a better scalability and more pre-
dictable Rx reduction of such weakly coupled arrays, this
paper presents a numerical study of the impact of manufac-
turing tolerances on the achievable Rx for different classes
of mechanical coupling topologies: one-dimensional coupling
(1D-κ, Fig. 1a), two-dimensional coupling (2D-κ, Fig. 1b),
cyclic-coupling (C-κ, Fig. 1c) and cross-coupling (X-κ, Fig.
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Fig. 1. Schematics of the equivalent mechanical models of the a) 1D-κ
one dimensional coupled chain, b) 2D-κ coupling, c) C-κ cyclic-coupling and
d) X-κ coupled configuration, respectively, for the special case of N = 4
resonators.

1d). The numerical study is based on a flexural mode Si MEMS
double-ended-tuning fork (DETF) resonator operating at 250
kHz as described in [15] where the normalized inter-resonator
spring coupling is experimentally quantified to be κ = kc/k
= 5x10−3. In order to assess the robustness against process-
induced variations, Monte Carlo numerical simulations, which
accounted for up to ± 0.75 % random variations in resonator
beam widths (with nominal value of 6 µm), were initiated to
produce Rx estimates of the different coupling schemes. The
coupling strength κ was varied over five orders of magnitude
(κ = 10−5 to κ = 1) for up to N = 40 coupled resonators.
These results demonstrated that even small process variations
can result in significant deviation from expectation.

II. THEORY

A. System modeling

The degree of vibration energy confinement in a mechani-
cally coupled array depends on the magnitude of the structural
perturbations [4] as well as the strength of the internal coupling
spring constant κ [16]. One possible approach to improving
device immunity to structural perturbations is to increase the
number of paths for the vibration energy to propagate within
the system. To investigate this, we consider four classes of
mechanical coupling topologies:

1) The traditional one dimensional chain (1D-κ) as shown
in Fig. 1a with adjacent coupling kc and free-ends at
the edges

2) Two-dimensional square arrays (2D-κ) as shown in Fig.
1b with horizontal coupling kc and vertical coupling kx

3) Cyclic-coupling (C-κ) as shown in Fig. 1c, with adja-
cent coupling kc throughout the array

4) Cross-coupling (X-κ) as shown in Fig. 1d with adjacent
coupling kc and non adjacent coupling kx

Fig. 2. Schematics of possible implementations of the a) 1D-κ one
dimensional coupled chain, b) 2D-κ coupling, c) C-κ cyclic-coupling and d)
X-κ coupled configuration, respectively, using flexural mode clamped-clamped
beam resonators.

These four distinct mechanical coupling schemes investi-
gated in this paper differ from each other by their stiffness
matrices K1D, KC−κ, K2D and KX−κ for the 1D-κ, C-κ,
2D-κ and X-κ topologies, respectively.

Figure 2 shows schematics of possible implementations
of the a) 1D-κ one dimensional coupled chain, b) 2D-κ
coupling, c) C-κ cyclic-coupling and d) X-κ coupled con-
figuration, respectively, using flexural mode clamped-clamped
beam resonators. The topology of Fig. 2d has been practically
implemented in [14] using a DETF configuration. Additional
coupling paths can be implemented by using resonators cou-
pled to a common base as it is the case in Fig. 2d. As the
number of resonators is scaled up, the non-adjacent coupling
terms vanish leading to a C-κ scheme described in Fig. 2c.
The 2D-κ scheme on the other hand is scalable and is most
suitable for alternative resonator designs (e.g. BAW squares,
rings, etc.).

B. Modal analysis

We consider N mechanically coupled resonators (N2 in the
case of the 2D-κ architecture) each represented by a single-
degree-of-freedom system with nominal mass m0, stiffness
k and damping coefficient c. In the case of electrostatically
transduced MEMS resonators, we define the forcing vector fm
having zeros for all entries except the mth, which has harmonic
forcing fmejωt where fm = C0

g VDCvac [15]. While we choose
to treat the specific case of electrostatic transduction of the
micro-resonators, the same analysis and modal approach pre-
sented in this section can be applied to any coupled resonator
array regardless of the transduction scheme.

A discrete system with N degrees of freedom executing
linear vibration behavior about a position of stable equilibrium
and with damping governed by a dissipation matrix obeys the
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governing equations

Mÿm + Cẏm + Kym = fm (1)

The complex valued amplitude response vector ym of the
system can be computed as

ym(jω) = [−ω2M + jωC + K]−1fm (2)

The transfer function of (2) has been used in [15] to obtain Rx
distributions for different coupling topologies. In order to eval-
uate the total motional current at a resonance mode, a separate
numerical frequency sweep is required to locate the exact peak
amplitude distribution of ym(jω). The N motional currents are
then added together and the Rx is found. For large array sizes,
this numerical method does not scale well and simulation time
can become very lengthy. For such situations, modal analysis
can be used to enable faster numerical simulation to provide
more insight on the impact of array scaling. We demonstrate
that the Rx expression is dependent on the eigenvector (i.e.
mode shape) of the mode of vibration. In order to formulate
the modal analysis, we follow the results obtained in [17] for
the general case of coupled resonators.

The undamped natural frequencies ωn and corresponding
mode shape vectors u(n) of (1) can be found by solving:

Ku(n) = ω2
nMu(n), n = 1, ..., N (3)

where the real-valued eigenvectors are mass-normalized as

u(n)tMu(n) = 1, n = 1, ..., N (4)

We then define the projected damping matrix as

C’ = [u(1)...u(N)]tC[u(1)...u(N)] (5)

The displacement vector ym for the damped case can be
written as a linear combination of the eigenvectors

ym =

N∑
k=1

qk,mu(k)ejωt (6)

Substituting (6) into (1) and simplifying gives

[A + jωC”]qm = Qm (7)

where

A = diag[ω2
k + jωC

′

kk − ω2], k = 1, ..., N (8)

qm = [q1,m...qN,m]t (9)

Qm = fm[u(1)
m u(2)

m ...]t (10)

and C” is C’ with the diagonal elements deleted. From the
standard expansion

(A + jωC”)−1 ≈ A−1 − jωA−1C′′A−1 (11)

we can evaluate the qk,m coefficients as

qk,m ≈
fmu

(k)
m

(ω2
k + jωC ′kk − ω2)

− jω
∑
i6=k

fmC
′

kiu
(i)
m

(ω2
k + jωC

′
kk − ω2)(ω2

i + jωC
′
ii − ω2)

(12)

To use the mechanically coupled resonators as a single entity,
all of the N masses are actuated together. We therefore write
the net forcing vector F as

F =
∑
m

fm, m = 1, ..., N (13)

The total displacement response Y is then

Y = [Y1...YN ]t =
∑
m

ym

=
∑
m

∑
k

qk,mu(k)ejωt

= ejωt
∑
k

u(k)

(∑
m

qk,m

) (14)

C. Motional Resistance Rx
Now that we have obtained an expression of the dis-

placements within the array using (14), we can evaluate the
estimated Rx for two particular modes of vibration located
at the band edges: the lowest and highest eigenfrequencies. In
this analysis we assume that the sensing and driving electrodes
are located at the maximum displacement amplitude loci of
the resonator and identical for all N . For other resonator
topologies and more complex modes of vibration, a surface
integration of the mode-shape is required in order to formulate
the true generated motional current [18], which will not change
the impact of vibration localization on the motional resistance.

Furthermore, the subsequent analysis assumes that all the
eigenmodes have equal modal Q and identical damping ma-
trices.

1) Operating at the lowest eigenfrequency: Suppose that we
operate the coupled resonators in the first eigenmode (i.e. ω =
ω1). The forcing vector is written as

F = f [1...1]t (15)

In the case of electrostatically transduced MEMS resonators,
we define the total current Iout generated by the N time-
varying capacitances as

Iout = jω1
C0

g
VDC

∑
m

Ym (16)

Assuming low modal overlap due to the high Q of MEMS
resonators, the displacement vector ym of (6) simplifies to

ym ≈ q1,mu(1)ejω1t (17)

where

q1,m ≈
fu

(1)
m

(ω2
1 + jω1C ′11 − ω2

1)
=

fu
(1)
m

(jω1C ′11)
(18)

This leads to a total displacement vector

Y = u(1)ejω1t
∑
m

q1,m = u(1)ejω1t
f

(jω1C ′11)

∑
m

u(1)
m (19)
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and the total motional current resulting

Iout = jω1

(
C0

g
VDC

)2
1

(jω1C ′11)

(∑
m

u(1)
m

)2

vace
jω1t

=
1

C ′11

(
C0

g
VDC

)2
(∑

m

u(1)
m

)2

vace
jω1t

(20)

The motional resistance Rx is then defined as

Rx =
vac
|Iout|

=
C ′11(

C0

g VDC

)2 (∑
m u

(1)
m

)2 (21)

As perturbations are introduced in the coupled system, the
mode shape begins to exhibit spatial localization. From (21),
we see that the Rx of the coupled system is closely dependent

on the degree of vibration localization through
(∑

m u
(1)
m

)2

.
It can be shown using the Cauchy-Schwarz inequality that this
sum is maximized when the normalized mode shape is found as
ū

(1)
m = 1√

N
for all m. For the first eigenmode, this maximum

is achievable and occurs when the system is structurally
symmetric. Any deviation from structural symmetry results in
a degradation in Rx.

2) Operating at the highest eigenfrequency: We now operate
the coupled structure at the highest eigenfrequency (i.e. when
ω = ωN ). To trigger this mode, the force vector is defined as:

F = f
[
1..(−1)i+1..(−1)N+1

]t
(22)

Assuming again high Q and low modal overlap, we can re-
write (6) as

ym ≈ qN,mu(N)ejωN t (23)

where

qN,m ≈ (−1)m+1f
u

(N)
m

(jωNC ′NN )
(24)

This results in a total displacement vector Y

Y = u(N)ejωN t
f

(jωNC ′NN )

∑
m

(−1)
m+1

uNm (25)

In order to add all the motional currents in phase, the individual
biasing electrodes of the resonators are chosen such that

Iout = jωN
C0

g
VDC

∑
i

(−1)
i+1

Yi

=
1

C ′NN

(
C0

g
VDC

)2
(∑

i

(−1)
i+1

uNi

)2

vace
jωN t

(26)

Because of the nature of the highest eigenfrequency,∑
i

(−1)
i+1

uNi =
∑
i

|uNi | (27)

The sum of (27) is also maximized when all the individual
components of the eigenvector u(N) are equal.However, be-
cause of the coupling spring, this particular mode intrinsically

Fig. 3. Optical micrograph of two identically designed mechanically coupled
DETF resonators used as a building block of the numerical simulations.

exhibits a localization of the vibration distribution. The abso-
lute amplitude of vibration is minimal on the edges of the chain
and gradually increases to a maximum value at the centre of
the structure [10]. Therefore the normalized eigenvector of the
highest eigenfrequency cannot achieve:

ū(N) =
1√
N

[
1.. (−1)

i+1
.. (−1)

N+1
]t
, N > 2 (28)

The Rx of the coupled system when operated at ωN is there-
fore not minimized when the system is structurally symmetric.
In the case of composite-array resonators the lowest eigenfre-
quency appears to be the best choice in order to minimize the
Rx of coupled MEMS resonators. All the following results
will assume operation at ω = ω1.

III. NUMERICAL SIMULATIONS

In order to quantify the robustness of the distinct coupling
schemes in the face of process-induced variations, numerical
simulations were based on electrostatically transduced (trans-
duction gap of 2µm) double-ended-tuning-fork resonators
(DETF) presented in [6] operating at the fundamental in-
phase tuning fork mode at 250 kHz and achieving a Q of
30000 in vacuum conditions. An optical micrograph of two
mechanically coupled DETF resonators is shown in Fig. 3.
The dimensional details of the particular mechanically coupled
DETF design are summarized in Table I. The value of the
mechanical coupling spring κ was experimentally quantified
using the curve-veering phenomenon [16] by electrostatically
tuning the mechanical stiffness of one of the resonators, while
keeping all other structural parameters constant [15].

Monte Carlo numerical simulations, which accounted for up
to 0.75 % random variations in resonator beam widths, were
initiated to produce Rx estimates of the four coupling schemes
for up to N = 40 resonators. These random variations were
achieved numerically by setting the beam width bi of the ith
resonator as
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TABLE I. DESIGN PARAMETERS

DETF tine width wT 6 µm

DETF tine length LT 300 µm

DETF separation gT 6 µm

Base width wB 24 µm

Base length LB 50 µm

Stub width wS 12 µm

Stub length LS 20 µm

Anchor width wA 34 µm

Anchor length LA 70 µm

Coupling beam width wC 5 µm

Coupling beam length LC 145 µm

Plate width wP 40 µm

Plate length LP 40 µm

Electrode width wE 6 µm

Electrode length LE 260 µm

Electrostatic gap gE 2 µm

Device thickness 25 µm

bi = b0 (1 +N (0, σ)) (29)

where b0 is the nominal value of the beam width, N (0, σ) is
the normal distribution with zero mean and standard deviation
3σ = 7.5x10−3 (i.e. 99.7 % of the random beam widths
generated are within 45 nm from their nominal value b0 =
6 µm).

Choosing these values allows for 2.25 % of random vari-
ations in the resonator stiffness k which can considerably
affect the vibration dynamics of such high-Q, weakly coupled
resonator systems. Randomly modifying the beam widths of
the DETF tines allows us to simulate breaks in structural
symmetry due to both mass and stiffness perturbations. The
DETF frequency follows a normal distribution with a mean
of 247.6 kHz and standard deviation σ = 770 Hz (i.e. 3100
ppm variation). In order to return motional resistance values
expected from experimental measurements while allowing for
the resonators to operate in the linear region, a polarization
voltage VDC = 10V is specified.

IV. RESULTS

In order to understand the importance of the coupling
strength and array size, we generate contour plots of the mean
(µ) and standard deviation (σ) of the Rx (kΩ) distributions
for different combinations of array sizes (N ) and normalized
coupling strengths (κ). For each (Ni;κi) position in the plot,
we evaluate the Rx distribution over Nrandom ≥ 1000 cases
and return the required performance measures. In this section
we use the full expression of the qk,m linear coefficients found
in (12) to obtain the Rx of the arrays.

A. Contour plots: 1D-κ scheme
Figures 4a and Fig. 4b show the contour plots of the mean

and standard deviation of the Rx, respectively, in the case of
the 1D-κ topology.

From Fig. 4a we see that for a given κ, increasing N im-
proves µ, with the fastest reduction occurring when κ ≥ 10−2.

For the particular case κ = 5x10−3, we see that when
N ≥ 10 the mean Rx levels off, indicating that at one point
the chain becomes large enough so that only a small number of
resonators (Nactive), vibrate out of the total N . The remaining
ones have vibration amplitudes close to null and therefore
do not contribute to the generation of motional current and
overall decrease in Rx. For this particular resonator topology
and coupling strength, having more than 10 coupled resonators
is not beneficial towards decreasing the Rx.

For a given chain length N , the mean can be improved
by using larger κ values. This is to be expected since the
variations in the eigenstates (δun) resulting from normalized
stiffness perturbations

(
δk = ∆ki

k

)
are inversely proportional

to κ [16] as shown in the case of two coupled resonators∣∣∣∣δunun
∣∣∣∣ ∝ δk

4κ
(30)

Such variations δun will modify the sum
(∑

m u
(1)
m

)2

and
consequently affect the Rx of the array-composite resonator.

For κ ≤ 10−3, there is no clear advantage in coupling more
resonators towards a decrease of the mean Rx.

In the case of the spread in Rx at κ = 5x10−3, we see
from Fig. 4b that the largest σ occurs for chains of 5-10
resonators. From that point on, the standard deviation slowly
decreases as the number of resonators increases. This can be
explained by the fact that for larger array sizes, since only
Nactive resonators are vibrating, the spread in the overall Rx
will be dictated by the spread of the active resonators - those
that are not vibrating will not contribute anymore to the overall
spread. As N becomes very large, the number of participating
resonators drops even further and the σ approaches that of a
single resonator.

From Fig. 4b we see that the smallest σ values appear in
clearly defined regions of the (Ni;κi) space. The region of
large σ occurs for values of κ close to 10−3 and therefore
from (30), changes in eigenvectors become significant when
δk ≈ 4κ. For this particular topology, Monte Carlo simulations
allow for up to 2.25 % variations in k of a given resonator
(from the nominal case) - the largest σ values can therefore
be expected in the vicinity of κ = 10−3 − 10−2.

B. Contour plots: C-κ scheme

Figures 4c and Fig. 4d show the contour plots of the mean
and standard deviation of the Rx, respectively, in the case
of the C-κ topology. Comparing Fig. 4a and Fig. 4c, we
notice that the µ distributions are similar for both coupling
schemes. The C-κ has a slightly shifted contour plot towards
lower κ values indicating a decrease in vibration localization
as compared to the 1D-κ for a given coupling strength.

From Fig. 4d we see an improvement in the standard
deviation plots as the width of large σ zones are slightly
smaller than those for the 1D-κ case. This suggest an improved
immunity of this coupling scheme to external perturbations.
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Fig. 4. Contour plots of the a) Mean (µ) and b) Standard deviation (σ) of the Rx (kΩ) for the 1D-κ case. Contour plots of the c) µ and d) σ for the C-κ case.

C. Contour plots: X-κ with κx = κ
10

Figures 5a and Fig. 5b show the contour plots of the mean
and standard deviation of the Rx, respectively, of the X-
κ topology for the particular case where the non-adjacent
coupling is κx = κ

10 . The X-κ is a useful numerical coupling
topology to investigate the importance of the additional non-
adjacent coupling on the overall performance. It also exhibits
a different behavior in the µ variations as N is increased,
compared to 1D-κ and C-κ schemes. We see from Fig. 5a
that the width of large µ zones shrinks as N gets large. This
behavior is similar for the σ contours (Fig. 5b). Therefore,
this coupling scheme offers improved immunity to process
variations in terms of Rx scaling.

D. Contour plots: 2D-κ with κx = κ

While the X-κ scheme is useful for numerical studies, it
remains challenging to implement this scheme for large N . A
scheme in which additional adjacent and non-adjacent coupling
can be implemented is the 2D array scheme. In this case
we consider square arrays of dimension NxN and assume
a horizontal coupling κ and vertical coupling κx = κ (as
found in Fig. 1b. Figures 5c and Fig. 5d plot the contours

for the µ and σ respectively. Compared to the 1D-κ and C-
κ cases, there is a clear shift of the contour plots towards
lower κ values for both the µ and σ. However, the maximum
spread is significantly larger compared to the other schemes.
Furthermore from Fig. 5d, when κ ≥ 10−2, increasing N does
not lead to a significant increase in σ as reported in the 1D-
κ and C-κ schemes. There is a critical value of κ for which
the system because quasi-immune to external perturbations in
terms of the Rx variation. One can use these contour plots
to estimate the critical coupling factors required to obtain
process-tolerant coupled resonators.

Table II summarizes some extracted Rx means and standard
deviations achieved by the different coupling schemes for N =
25 total number of resonators (i.e. 5x5 array in the 2D-κ case).
From Table II it can be seen that the 2D-κ scheme is not the
most optimal one in terms of reducing the variation in Rx as
compared to the traditional 1D-κ in low κ regimes (i.e. κ <
10−2). However, as soon as κ ≥ 10−2, the mean and spread is
reduced by 75 % as compared to the 1D-κ scheme. In the very
weak coupling regimes, the C-κ achieves a 20 % reduction in
spread compared to the 1D-κ at identical mean values of Rx.
Thus, the contour plots can effectively inform the optimization
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Fig. 5. Contour plots of the a) Mean (µ) and b) Standard deviation (σ) of the Rx (kΩ) for the X-κ case. Contour plots of the c) µ and d) σ for the 2D-κ case.

TABLE II. MEAN AND STANDARD DEVIATION OF THE Rx FOR N= 25
TOTAL NUMBER OF RESONATORS

κ 10−5 10−4 10−3 10−2 10−1 1

1D-κ
µ (kΩ)

σ (kΩ)

135.61

8.74

130.53

9.78

96.36

17.43

26.74

11.48

7.78

2.09

5.64

0.062

C-κ
µ (kΩ)

σ (kΩ)

135.96

6.97

130.49

9.24

93.63

18.21

20.78

6.34

5.88

0.41

5.39

0.007

2D-κ
µ (kΩ)

σ (kΩ)

128.84

14.34

103.00

31.83

57.52

29.77

6.590

2.89

3.91

0.029

3.89

0.003

X-κ
µ (kΩ)

σ (kΩ)

135.11

8.00

123.34

11.54

44.65

19.81

5.79

0.086

5.62

0.005

5.62

0.004

procedure for coupled resonator architectures by identifying
the critical coupling strength values and arrays sizes which
directly improve the robustness of the Rx to manufacturing
variations.

E. Frequency variations
From the previous sections we see that higher order cou-

pling schemes improve the variation in Rx. Similarly we can

investigate the robustness of the series resonance frequency of
such array-composites. Figure 6 plots the standard deviation
of the frequency variation σf defined as

(
fi−f0
f0

)
in ppm for

the a) 1D-κ, b) C-κ, c) X-κ (with kx = kc/10) and d) 2D-κ
(with kx = kc) topologies, as a function of the array size and
coupling strength κ. From Figure 6 we see that the maximum
frequency variation is 2200-3000 ppm and occurs for small
array sizes. These values are consistent with the Monte Carlo
simulation scheme used which allows up to roughly 0.3 %
variation in natural frequency for a single resonator. From these
plots we observe that as we go from the 1D-κ to the X-κ
topology, the large σf domains are skewed to lower κ values,
that is, for a given array size, the frequency variation improves
as the coupling coefficient is increased. For a given coupling
strength, using larger array sizes diminishes the variations in
the frequencies. These results are consistent with what we
would expect and what has been reported in the field [10], [19]
and [9]. Furthermore once again, the 2D-κ is the most practical
implementation to actively reduce the frequency variations to
external perturbations.
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Fig. 6. Contour plots of the standard deviation σf of the frequency variation
(
fi−f0

f0

)
in ppm for the a) 1D-κ, b) C-κ, c) X-κ (with kx = kc/10) and d)

2D-κ (with kx = kc) case.

V. CONCLUSION

This paper presents the study of the impact of process and
structural variations on the motional resistance of four distinct
mechanical coupling topologies of MEMS resonators. The
achievable Rx of mechanically coupled MEMS resonators is
largely dependent on the chosen resonator topology, coupling
scheme, coupling strength, array size and magnitude of struc-
tural perturbations. From the modal analysis of mechanically
coupled resonators, we derive the dependence of the overall
Rx measure to the vibratory mode-shape. In the presence
of process variations, these mode-shapes deviate from the
case of structurally symmetric solutions and induce vibration
localization, which has a detrimental effect on the Rx. It is
possible however to minimize these effects even in the case of
weakly coupled structures by employing alternative coupling
topologies.

The numerical trends, based on Monte Carlo simulation
methods and relatively large Q such that modal-overlap re-
mains low, suggest an improvement in the mean and spread of
Rx as the number of coupled resonators N is increased for the
X-κ scheme as opposed to the traditional 1D-κ linear chain

and the cyclic C-κ configuration. The 2D-κ topology appears
to be a good candidate as it is a relatively simple and practical
coupling scheme which is able to achieve more predictable Rx
reductions than the standard 1D chain.

The numerical method developed in this paper provides a
quick and simple design procedure to evaluate the structural
immunity to process variations for a given set of performance
metrics (in this case the overall Rx) of coupled MEMS
resonators. Since the simulations rely on a traditional modal
analysis, more complex resonator topologies and mode shapes
can be investigated in terms of Rx and frequency distributions
in face of process variations. These numerical results motivate
in-depth studies of alternative coupling topologies, in the
case of weakly coupled resonators, towards designing process
tolerant, highly scalable array-composite resonators.

For a given resonator topology and coupling scheme, these
simulation plots based on modal-analysis can be used to predict
the behavior of large arrays and provide design guidelines to
select the appropriate κ and N values to achieve the required
Rx even when process variations are significant.
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