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ABSTRACT  25 

Mafic magmas are common in subduction zone settings, yet their high density 26 

restricts their ascent to the surface. Once stalled in the crust, these magmas may differentiate, 27 

assimilate crust and other melts and mushes to produce hybridised intermediate magmas. The 28 

Soufriere Hills Volcano on Montserrat is a ‘type locality’ for these hybridisation processes 29 

and yet, just 3 km south of the crater, voluminous basalts have erupted from the South 30 

Soufriere Hills volcano within the same time period as the Soufriere Hills Volcano was 31 

erupting hybrid andesites (131 - 128 ka). Basaltic South Soufriere Hills magmas have 48 - 53 32 

wt% SiO2 and 4 - 6 wt% MgO. They were hot (970 - 1160 °C), volatile-rich (melt inclusions 33 

contain up to 6.2 wt% H2O) and were stored at 8 – 13 km prior to eruption (based on olivine 34 

and pyroxene-hosted melt inclusion volatile geochemistry). Melt inclusions do not preserve 35 

basaltic liquids: they are andesitic to rhyolitic in composition, related to one another by a line 36 

of descent controlled by simple closed-system fractionation. Whole rock compositions, 37 

however, are best described by a hybridisation model involving “back”-mixing of andesitic to 38 

rhyolitic melts with mafic crystal phases such as magnetite, olivine, orthopyroxene and 39 

clinopyroxene. Phenocryst zoning illustrates repeated mixing events between evolved melts 40 

and mafic phenocrysts, which, when coupled with the heterogeneity of crystal compositions, 41 

strongly suggests that although the bulk composition is basalt (containing Fo80 olivine), they 42 

were assembled from disparate ingredients, likely derived from mafic crystal mushes and 43 

more evolved melt lenses of variable composition. The mixing events occur days to weeks 44 

prior to eruption. We propose that the South Soufriere Hills basaltic magmas, with their 45 

higher bulk density over andesites from neighbouring volcanoes, ultimately may have been 46 

eruptible owing to both the transtensional tectonics imposed by offshore grabens (related to 47 

the oblique subduction of the Lesser Antilles) and to surface unloading caused by large scale 48 

edifice collapse. Our observations support the idea that compositional changes in arcs might 49 



reflect not only changes in source compositions, but also effects caused by patterns in crustal 50 

strain and tectonics.  51 

INTRODUCTION 52 

Intermediate magmas are generated by intensive crustal magmatic processing 53 

involving crystallisation, assimilation and mixing (Anderson, 1976; Eichelberger, 1978; 54 

Rudnick, 1995; Eichelberger et al. 2006; Reubi and Blundy, 2009; Kent et al., 2010; 55 

Melekhova et al., 2013).  Mafic magmas are implicated in these processes through recharging 56 

of magma bodies by mingling at the interface and by large-scale overturn in magma 57 

reservoirs (Pallister et al., 1992; Bateman, 1995).  These processes are well-illustrated by 58 

volcanoes in the Lesser Antilles arc where andesitic lavas containing mafic enclaves are 59 

commonly erupted. Andesites may erupt preferentially due to their relatively low density 60 

compared to the denser mafic lavas that are “trapped” at depth by a density filter mechanism 61 

(Plank and Langmuir, 1988). Rheological and lithological barriers may also inhibit the 62 

propagation of a basaltic melt (Eichelberger, 1978; Dufek and Begantz, 2005; Karlstrom et 63 

al., 2009; Kent et al., 2010). Indeed, intermediate to rhyolitic magma reservoirs can obstruct 64 

the passage of mafic magma, explaining why basaltic eruptions often only reach the surface 65 

on the periphery of silicic volcanoes (Hildreth, 1981). An interesting variant on this process is 66 

illustrated on Montserrat, where basalts were erupted from the South Soufrière Hills (SSH) 67 

volcano over the same broad time interval as crystal-rich andesites (with rhyolitic melts) were 68 

being erupted from the Soufrière Hills Volcano (SHV) located less than 3 km away.  This 69 

raises the question as to what mechanisms allow eruption of felsic and mafic volcanic rocks 70 

in such close proximity. 71 

More detailed study of the SSH is also of interest because, while there is strong 72 

evidence that andesites are generated largely by mixing of repeated injections of mafic 73 

magma into high level silicic magma chambers (Anderson, 1976; Eichelberger, 1978; 74 



Eichelberger et al. 2006; Reubi and Blundy, 2009; Kent et al., 2010), the petrogenesis and 75 

history of the mafic magmas is not well understood and may itself be complex. The density 76 

filter trap (Plank and Langmuir, 1988) means that mafic enclaves from SHV are the only 77 

evidence of deeper, mafic magmas that are available for petrologic analysis and in many 78 

cases these mafic inclusions have experienced varying degrees of intrusion, quenching and 79 

degassing that obscures their earlier characteristics.  Thus, a study of closely spaced (in 80 

distance and time) andesitic and basaltic volcanism at SHV and SSH has the potential to 81 

reveal more detail regarding the nature of basaltic magmas resident in the mid- to upper-82 

crust, and can provide insights into the relative importance of magma mixing and 83 

fractionation in controlling the composition of all arc volcanic rocks, and how this relates to 84 

processes of magma storage, hybridisation, eruption triggering and growth of the arc crust. 85 

In this paper we present new whole rock and melt inclusion analyses of basaltic to 86 

andesitic lavas erupted from the SHV. We compare their geochemical characteristics to the 87 

andesites erupted from SHV and  examine the geochemistry of individual phenocrysts phases 88 

to characterise compositional gradients related to normal crystal growth during cooling and 89 

also due to mixing. We assess whether their compositions could have been generated by 90 

simple processes of fractional crystallisation alone or whether mixing between disparate 91 

liquid and mush components is necessary. Mineral melt thermometry has been used (from 92 

two-pyroxenes and plagioclase-glass pairs) and barometry (using H2O-CO2 systematics of the 93 

melt inclusions) to estimate pre-eruptive storage conditions. We use the relaxed 94 

compositional steps across olivine crystals to infer pre-eruptive mixing timescales between 95 

felsic liquids and mafic crystals. Using all of the available petrological and geochemical data 96 

we develop a model for the generation of hybrid basalts on Montserrat and how they are 97 

assembled and speculate as to the possible reasons for extraction and eruption of higher 98 

density hybrid magmas relating to tectonics and unloading.  99 



 100 

Geological background 101 

The Lesser Antilles, like many arcs, comprises predominantly andesitic volcanic 102 

islands with relatively few basaltic centres.  For example, in the northern and central islands 103 

(Saba to St. Lucia) <10% of the erupted volcanic rocks are basaltic.  Where basaltic rocks are 104 

present, they generally occur as small-volume centres adjacent to much larger andesitic 105 

volcanoes (Westercamp and Mervoyer, 1976; Rea and Baker, 1980; Macdonald et al. 2000).  106 

This is exemplified on Montserrat (Fig. 1), where andesite lavas are predominant (Rea, 107 

1974), with a single isolated basaltic centre (SSH) in the southernmost part of the island.  108 

Apart from the SSH, basalt occurrences are restricted to mafic inclusions within andesites.  109 

There is abundant petrological evidence (particularly from the currently active SHV) to show 110 

that the erupted andesites are hybrids formed over long timescales (103 to 104 years) by 111 

multiple recharges of deeply-sourced mafic magmas into large reservoirs of crystal-rich 112 

andesite magmas prior to ascent to the surface (Murphy et al., 2000; Humphreys et al., 2009; 113 

Plail et al., 2014). 114 

The SSH basalts are, however, sufficiently geochemically distinct from the SHV 115 

basaltic enclaves suggesting that they reflect different magma sources and processes, such as 116 

increased relative contribution from slab fluids over subducted sediments (Zellmer et al., 117 

2003; Cassidy et al., 2012; 2014), and thus provide information regarding magmas forming 118 

within the arc that are not generally observed, at least in an identifiable form, at the surface.  119 

Indeed, the SSH volcanic rocks represent some of the most mafic lavas in the northern Lesser 120 

Antilles arc (47 wt% SiO2; 6 wt% MgO), with the exception of the high-Mg basalts in 121 

Martinique (Westercamp and Mervoyer, 1976).  These geochemical differences are not 122 

simply related to temporal evolution of the volcanism on Montserrat, because Ar-Ar dating 123 

and stratigraphic relationships clearly indicate that the SSH and the SHV were both active in 124 



the interval 130±5 ka (with SHV-type rocks forming the basal unit to the main SSH 125 

lithologies), and the predominant andesitic volcanic rocks of the island were emplaced before 126 

and after eruption of the SSH (Harford et al., 2002; Cassidy et al., 2012).  127 

The island of Montserrat is located in the northern part of the Lesser Antilles; a 750 128 

km long chain of volcanic islands formed as a result of the slow (2 cm yr-1) subduction of the 129 

North American plate beneath the Caribbean plate (Fig. 1) (Wadge, 1984; DeMets et al., 130 

2000).  The oblique nature of this subduction means that the northern part of the arc is 131 

influenced by transtensional forces that have led to intra-plate deformation (Feuillet, 2000; 132 

Feuillet et al., 2010).  Montserrat lies on crust ~30 km thick that sits on an asthenospheric 133 

mantle wedge that extends to ~130 km in depth (Wadge and Shepherd, 1984).  The island 134 

comprises four volcanic centres: Silver Hills (2600-1200 ka), Centre Hills (950-550 ka), SHV 135 

(282 ka to present) and SSH (131-128 ka) (Harford et al., 2002).  All these volcanic centres 136 

(except for the mafic-dominated SSH) are andesitic in composition, but their erupted 137 

products all contain abundant inclusions of mafic magma (Rea, 1974; Murphy et al., 2000; 138 

Zellmer et al., 2003; Barclay et al., 2010; Plail et al., 2014). 139 

The SHV centre has been studied in most detail and is comprised of phenocrysts of 140 

orthopyroxene, plagioclase and amphibole in a rhyolitic glass, with clear evidence for magma 141 

mixing and mingling (Murphy et al., 2000; Humphreys et al., 2009; Humphreys et al., 2013). 142 

Under-plating of the crystal-rich andesite by wet mafic magma causes instabilities to form at 143 

the interface, forming enclaves (Plail et al., 2014; Edmonds et al., 2014), interspersed with 144 

sporadic magma overturn events that thoroughly mix the magmas (Woods and Cowan, 2009), 145 

distributing widely dispersed mafic components (Fe-rich plagioclase microlites, K-rich glass; 146 

Humphreys et al., 2010) into the andesite body.  The petrography and geochemistry of the 147 

mafic enclaves of the SHV is also best explained by a mixing process between a mafic end 148 

member (which varies in composition with time owing to lower crustal cryptic amphibole 149 



fractionation) and variable amounts of rhyolitic melt hosting up to 20 vol% phenocrysts of 150 

plagioclase, amphibole and magnetite, although not in bulk rock proportions. 151 

While there have been a large number of studies on the andesites of Montserrat, 152 

petrological work on the SSH basalts is more limited.  Murphy et al. (2000) report that the 153 

mineral assemblage consists of plagioclase, olivine, clinopyroxene, and titanomagnetite.  The 154 

SSH exposures comprise a range of rock suites from lava flows, to scoria, to reworked 155 

volcaniclastic material (Cassidy et al., 2014), with some more mafic enclaves and some lava 156 

flows containing cumulate xenoliths of orthopyroxene and plagioclase, similar to those 157 

described by Kiddle et al. (2010).  The SSH exposures can be divided into two units on the 158 

basis of their distinct trace element and isotopic compositions: SSH Suite A has lower Sr/La 159 

and Sm/Zr ratios, but higher Zr/Er ratios and more radiogenic Pb isotope compositions than 160 

Suite B (Cassidy et al., 2014) 161 

 162 

METHODS 163 

Samples 164 

Samples of SSH rocks were collected along the south coast of Montserrat (Fig. 1; 165 

Table 1). Splits were crushed using an agate Mortar and powdered for whole rock analysis 166 

and thin sections were also cut for electron microprobe (EMPA) and scanning electron 167 

microscope (SEM) analysis.  Fractions of samples were crushed coarsely and crystals of 168 

enstatite, augite and olivine were picked from the 125-250 µm grain size fraction.  The 169 

crystals were ground and polished to expose melt inclusions and mounted in indium for 170 

secondary ion mass spectrometry (SIMS) analysis.  All the inclusions analysed were natural 171 

quenched, 40-200 µm in size and were not necked or breached by cracks. 172 

 173 

Whole rock analysis 174 



Major elements were analysed by X-ray Fluorescence (XRF) analysis of glass beads 175 

prepared by fusion of a mixture of 0.5 g subsamples and lithium tetraborate in a ratio of 1:10.  176 

Analyses were undertaken using a Philips Magix Pro WD-XRF at the National Oceanography 177 

Centre (NOC), Southampton, UK.  Error and external accuracy was generally <2%. 178 

 179 

Microanalysis (EMPA, SEM and SIMS) 180 

Concentrations of H2O and CO2 in glass were obtained by SIMS on a Cameca IMF 4f 181 

ion microprobe at the NERC microanalytical facility at the University of Edinburgh, using a 182 

15kV primary beam of O- ions (Hauri et al., 2002; Blundy and Cashman, 2008).  Positive 183 

secondary ions were accelerated to 4500 eV, with an offset of -75eV (for 1H and trace 184 

elements) and -50eV (for 12C) (± 20eV) to reduce transfer of molecular ions.  A 50 µm raster 185 

was performed for three minutes prior to the start of each analysis, and a primary beam 186 

current of 5-6 nA used with a non-rastered, oval-shaped beam covering a 15-20 µm area on 187 

single spots within the boundaries of the melt inclusions.  Peak positions were verified before 188 

each analysis.  The following elements were analysed by counting for 3 s in each of a 10 189 

cycle run: 1H, 25Mg, 30Si.  These counts were then normalised to 30Si and converted to 190 

concentrations using a calibration curve populated by glass standards.  The relative ion yield 191 

for H correlates with SiO2 content, such that plotting 1H/30Si versus H2O yields a single 192 

working curve for glasses of variable SiO2 content.  CO2 concentrations, however, require a 193 

correction for SiO2 content.   194 

Carbon was measured independently of 1H, using the same beam conditions, but with 195 

a 50 µm image field to improve transmission at moderate mass resolution, which was 196 

sufficient to resolve 24Mg2+ at the 12C peak position for background olivine measurements 197 

and inclusion analyses.  12C was analysed for 3 s in each of 20 cycle runs in which 24Mg2+, 198 

28Si2+ and 30Si were also measured. During data processing, the first 5 cycles of the 1H 199 



analyses and the first 10 cycles of the 12C data were discarded to avoid the effects of surface 200 

contamination on the samples which may have survived the cleaning process.  Instrumental 201 

backgrounds were minimized by allowing samples held in epoxy to outgas in a separate 202 

vacuum for at least ten hours prior to use in the SIMS instrument. The full list of glass 203 

standards used is shown in suppl. Table 1.  The accuracy and precision were monitored 204 

throughout the sessions by repeat analysis of the standards as unknowns: for H2O analyses 205 

these were <9% and <6% respectively; and for CO2 <11% and <8% respectively. The 206 

average CO2 and H2O backgrounds over seven sessions were 56 ppm and 0.03 wt% 207 

respectively. There is lack of variation between Al2O3 and MgO in melt inclusions 208 

compositions, suggests that they do not follow the vectors anticipated for post-entrapment 209 

crystallisation of the host mineral.  210 

The major element and volatile (S, Cl and F) compositions of the glasses, inclusions 211 

and phenocrysts were determined using the Cameca SX100 electron microprobe at the 212 

University of Cambridge.  Quantitative determinations of elements were made using the 213 

wavelength dispersive system with TAP, PET and LIF crystals.  A range of metal, oxide and 214 

silicate (e.g. jadeite, wollastonite) standards was used for calibration of the spectrometers.  215 

All analyses used an accelerating voltage of 15kV.  For olivine, pyroxene and plagioclase a 216 

spot size of 4 µm and a 100 nA beam current was used.  For glasses, a 10 µm spot was used 217 

with a beam current of 60 nA for Cl, F, S, P, Cr and Ni, and 4 nA for all other elements, with 218 

counting times of 50-200 s per analysis.  During glass measurements, Na peaks were counted 219 

first to avoid significant migration during the run.  In addition to calibration of each X-ray 220 

line, a series of secondary reference standards (olivines, pyroxenes, feldspars and glasses) 221 

were measured daily to check accuracy, precision and totals.  Standards used were periclase 222 

for Mg, jadeite for Na, fused Si for Si, rutile for Ti, fayalite for Fe, K-feldspar for K 223 

corundum for Al, apatite for P, and pure metals for Cr and Mn. Repeat analyses of standards 224 



were used to estimate the precision of An, Mg# and Fo measurements. Forsterite content of 225 

the St. John’s Island Olivine standard was determined with a precision of 2σ=0·46 mol % 226 

(n=33). Precision of Mg# of clinopyroxene was similar to the precision of forsterite content 227 

in olivine. Anorthite content in the Anorthite55 standard was determined with a precision of 228 

2σ=1·01 mol % (n=46).  229 

Accuracy was generally better than 5% for most elements, based on repeat analyses of 230 

EMPA secondary standard 2390-5 and by comparison with reference concentrations for the 231 

standard, with the exception of TiO2, K2O, P2O5 and Cl, which were better than 20-35 %.  232 

Detection limits for S, Cl and F were 40, 38 and 170 ppm, respectively, and precision was 233 

typically < 5% for all oxides, with the exception of MnO, P2O5 and F, which was better than 234 

20%. 235 

Backscattered SEM images were taken at the NOC, using a LEO 1450VP (variable 236 

pressure) SEM.  Carbon-coated samples were imaged at 15 kV, a working distance of 10 mm 237 

and a nominal probe current of 50–500 pA, using both secondary electron (SE) and 238 

backscattered electron (BSE) detectors. 239 

 240 

RESULTS 241 

The whole rock samples are black to grey in colour, and poorly to moderately 242 

vesicular (6-38%, average 20%).  The SSH samples have bulk rock compositions ranging 243 

from basalt to andesite (47-58% SiO2) (Table 1; Fig. 2).  Also shown in Figure 2 are the 244 

compositions of andesites and mafic enclaves erupted from the SHV during 1995-2010, 245 

together with previously published data from SSH (Murphy et al,. 1998, 2000; Horwell et al., 246 

2001; Zellmer et al., 2003; Humphreys et al., 2009, 2010; Cassidy et al., 2012).  Relative to 247 

the SSH, the SHV volcanic rocks are more silicic, ranging from basaltic andesite to dacite 248 



(53-68% SiO2), but the SHV contain mafic enclaves that range from basaltic to basaltic 249 

andesite (49-55% SiO2). 250 

The SSH lavas are highly crystalline, with 31-53 vol.% phenocrysts and 251 

microphenocrysts (>100 ) and 47-69% microlites.  Plagioclase is the most abundant 252 

crystal phase (up to 61 vol.% of the crystal assemblage), followed by orthopyroxene (15 253 

vol.%), olivine (11 vol.%) and clinopyroxene (10 vol.%), with titanomagnetite and rare 254 

amphibole in the basaltic andesite samples (SSH5B) comprising the remaining 3 vol.% (Fig. 255 

3).  The microlite crystal size fraction comprises a similar assemblage, however with less 256 

olivine present.  257 

Olivine petrography 258 

On average, olivines form the largest crystals (mean size 390  range ±10259 

and are often euhedral to subhedral.  They are commonly fractured and slightly altered 260 

(slightly reddened along cracks, visible in plane polarised light).  The forsterite contents 261 

(molar Fo% = Mg/(Mg+Fe) x 100) range from 56 to 80 mol. % (Figs. 4 and 5), with two 262 

main peaks in olivine core compositions (Fo72-80 in Group 1; Fo56-68 in Group 2) and two 263 

peaks in olivine rim compositions that are slightly less forsteritic than the cores.  Most of the 264 

olivines are normally zoned or unzoned, but some exhibit reverse zoning (Fig. 6; Fig. 7), 265 

suggesting multiple magma bodies which have experienced mixing.  The reverse-zoned 266 

olivines have core compositions of Fo71-80, compared to Fo56-80 in the normally-zoned 267 

olivines (Figs. 5 and 6c). There is a negative correlation between olivine forsterite contents 268 

and CaO and MnO concentrations, with generally higher Fo% and lower Ca and Mn contents 269 

in the cores (Fig. 5).  These correlations are significant at >95% confidence, with P-values 270 

<0.05. This correlation is especially strong between MnO and Fo% with a R2 value of 0.9, 271 

but this correlation is less apparent with CaO and Fo% (R2 of 0.36). The normally-zoned 272 

crystals show a trend of increasing Fo% from rim to core, mirrored by decreasing CaO and 273 



MnO profiles (Figs. 6a and 6b).  Figure 6d illustrates an olivine with reverse zoning towards 274 

the outer edge of the crystal, with a thin (<20 ) band of normal zoning at the rim and no 275 

visible overgrowth.  The core of this crystal has a constant forsterite composition of Fo72, 276 

except for the outer 50  The increase in forsterite content in the reverse zone is 277 

positively correlated with CaO, but negatively correlated with MnO content. 278 

Plagioclase petrography 279 

Plagioclase crystals range in size from microlites (<15 m) to phenocrysts (>500 280 

m), with the latter commonly showing both normal and oscillatory zoning, as well as sieve 281 

textures (Fig. 3).  Anorthite contents (An mol.% = Ca/(Ca+Na) x 100) range from 49-97% 282 

(Fig. 4).  The feldspars are commonly normally-zoned, but with rare reverse-zoned 283 

phenocrysts also present (Fig. 7), suggesting a complex set of magmatic processes have 284 

occurred.  The plagioclase crystals can be separated into two main groups based on their 285 

anorthite compositions.  The cores and reverse-zoned rims are anorthitic (An79-97), while the 286 

rims of the normally-zoned plagioclase are more albitic (An52-70) and are generally richer in 287 

MgO, FeO and TiO2 than the more anorthitic cores and rims (Fig.8). Complex dissolution 288 

and resorption is also seen in some crystals (Fig. 8b). 289 

Pyroxene petrography 290 

The average size of the orthopyroxene crystals is 142  100  are 291 

commonly zoned and often occur as overgrowths on olivine (e.g. Fig. 6c).  Magnesium 292 

number (Mg# = Mg/(Mg+Fe) x 100) ranges from 60-74 (Figs. 4 and 9), and all are enstatite 293 

in composition.  Enstatite TiO2 and Al2O3 contents generally decrease with decreasing Mg# 294 

(Fig. 9), but do not correlate significantly with Al/Ti ratios.  The enstatite shows common 295 

reverse zoning and some normal zoning, but rare unzoned crystals are also present (Fig. 7). 296 

Clinopyroxenes have an average crystal size of 176  ± 100  Mg# 297 

ranging from 58-80.  The majority of the clinopyroxenes are augite, but some cores are 298 



diopside .  The augites are commonly zoned, but rare unzoned crystals also exist.  Some of 299 

the clinopyroxene occurs as pigeonite overgrowths on the olivines (Figs. 6 and 10).  Plots of 300 

Mg# versus minor elements (Fig. 9) show that the clinopyroxenes contain higher 301 

concentrations of TiO2, Al2O3 and Al/Ti ratios than the enstatites.  A traverse of a normally-302 

zoned crystal shows complex saw tooth zoning (Fig. 10b) that is particularly oscillatory in the 303 

last 70  the rim, which occurs along with a sharp increase in Al2O3 and TiO2 and a 304 

decrease in both Mg# and Al/Ti ratios. 305 

Melt inclusion geochemistry 306 

The melt inclusions are pristine, up to 90  in diameter, with no vapour bubbles and 307 

no daughter crystal phases.  They span a range in compositions from andesitic to rhyolitic, 308 

with 58.2-72.6 wt.% SiO2, 0.45-2.6 wt.% K2O and 0.01-2.8 wt.% MgO (Fig. 2; Table 2).  309 

Their H2O contents range from 1.50-6.19 wt.%, with CO2 contents of 20-313 ppm (Fig. 11).  310 

CO2 and S concentrations decrease with increasing melt SiO2 contents, ranging from 395 311 

ppm S and 313 ppm CO2 at 58.2 wt.% SiO2, to 18 ppm S and 20 ppm CO2 at 72.6 wt.% SiO2.  312 

Cl shows a positive relationship with SiO2, ranging from 2500 ppm at 58.2 wt.% SiO2 to 313 

3610 ppm at 72.6 wt.% SiO2. 314 

 315 

DISCUSSION 316 

The range of compositions and textures in mineral, whole-rock and melt inclusion 317 

chemistry suggests that the SSH mafic magma petrogenesis was just as complex as that 318 

observed for the SHV andesitic volcanic system on Montserrat and involved the assembly of 319 

multiple components.  Here we discuss the origin of these components by considering the 320 

pressure-temperature conditions of magma storage, fractional crystallization and magma 321 

mixing that are reflected in the crystal and melt phases in the SSH erupted products, as well 322 

as the conditions required for the eruption of these products at the surface. 323 



Pre-eruptive temperature, pressure and volatile content 324 

Temperature estimates of the magma reservoir conditions are derived from the two-325 

pyroxene thermometry and plagioclase-whole rock equilibria after applying the equilibrium 326 

test (where KD = 1.09 ± 0.14 for pyroxene and 0.1 ± 0.11 for plagioclase) (Table 3; Putirka, 327 

2008).  The calculated temperature range of 970-1170 oC is hotter than the estimates of the 328 

temperature for the neighbouring SHV magma reservoir, which is thought to reside at 840 ± 329 

40 oC based on experimental studies and pyroxene thermometry, heated by mafic magmas 330 

with temperatures of 900 ± 100 oC (Devine et al., 1998; Barclay et al., 1998; Murphy et al. 331 

2000; Devine et al. 2003; Humphreys et al., 2009) (Table 3).  The SSH temperatures reported 332 

here were calculated on different samples and give a wide temperature range, which supports 333 

our argument that the erupted magma comprises components assembled from multiple 334 

magma bodies with differing storage conditions. 335 

The melt inclusion data were used to estimate equilibration pressures using 336 

Volatilecalc (Newman and Lowenstern, 2002; Table 4).  Most of the calculated pressures 337 

(using a temperature of 1000 oC) range from 194-267 MPa, which equates to depths of 8.4-338 

11.6 km (using an upper crustal density of 2300 kg/m3; Hautmann et al., 2013), with one 339 

sample yielding a pressure of 25 MPa and a depth of 1.2 km. By comparison the magma 340 

stored beneath SHV is thought to reside  in a dual reservoir system, one at 5-6 km depth, and 341 

the other at 10-12 km depth (Devine et al., 1998; Murphy et al., 1998; Barclay et al., 1998; 342 

Elsworth et al., 2008; Paulatto et al., 2010).  With the exception of the low H2O measurement 343 

(1.5 wt.%), which likely represents a melt inclusion that either equilibrated at shallow depth 344 

(1.2 km) or has lost H+ by diffusive equilibration (Gaetani et al., 2012), the H2O contents in 345 

the SSH melt inclusions lie at the upper range of H2O contents (1.0-6.3 wt.%) measured in 346 

SHV melt inclusions (Humphreys et al., 2009; Mann et al., 2013; Edmonds et al., 2014).  347 

Thus, the high anorthite contents in the cores of the SSH plagioclase crystals (up to An97) are 348 



most likely due to the high dissolved H2O contents (water contents exert a first order control 349 

on anorthite content and can elevate the anorthite contents to >An90; Figure 4 in Lange et al., 350 

2009). 351 

Melt inclusion chemistry 352 

With one exception, H2O contents are approximately constant over the entire range of 353 

K2O, SiO2 and MgO concentrations (Fig. 11). At depths of 8-12 km, the exsolved vapour is 354 

likely to be CO2-rich (Blundy et al., 2010), and the invariant water contents may thus reflect 355 

that the source of magmas hosting the phenocrysts erupted at SSH had similar primary H2O 356 

contents (Tables 2 and 4).  Cl concentrations are positively correlated with those of SiO2, 357 

consistent with Cl behaving incompatibly with little or no degassing.  Both CO2 and S 358 

contents decrease with increasing SiO2, indicating that these volatiles were progressively 359 

partitioned into a vapour phase as melts evolved.  This is consistent with experimental data 360 

that suggests that oxidised arc rhyolites are associated with high vapour-melt partition 361 

coefficients for sulphur (Clemente et al., 2004; Zajacz et al., 2012).  Similar melt inclusion 362 

trends have been observed in melt inclusion suites from Grenada which range from basalt to 363 

rhyolite and  thought to be related by fractional crystallisation (Devine, 1995), as well as 364 

other examples from Kermadec arc (Haase et al., 2006; 2011; Barker et al., 2013), South 365 

Sandwich islands (Pearce et al., 1995), Mt Shasta (Grove et al., 2003) and from experimental 366 

studies (Sisson et al., 2005). 367 

Figure 2 illustrates a comparison of melt inclusion and whole rock data from SSH and 368 

SHV with models of fractional crystallisation at pressures of 100-200 MPa under moderately 369 

oxidizing conditions using the AlphaMelts/RhyoliteMELTS model (Ghiorso and Sack 1995; 370 

Gualda et al., 2012).  Two different scenarios are considered, the first models fractional 371 

crystallisation from a mafic bulk rock starting composition, and the second starts the model 372 



from the most mafic melt inclusion composition.  In the first, the starting composition is 373 

defined by the most mafic of the SSH whole rocks (~47% SiO2).  The input parameters 374 

include a fixed pressure (100 or 200 MPa), a starting temperature of 1200oC (as defined by 375 

the two pyroxene thermometer above, and close to the calculated liquidus temperature from 376 

RhyoliteMELTS) and an oxygen fugacity, fO2, buffered at QFM+2 or NNO (Devine et al., 377 

1998; Murphy et al., 2000).  The melt was then cooled at 50 oC intervals to simulate isobaric 378 

fractional crystallization involving olivine, plagioclase, magnetite, augite, enstatite and 379 

amphibole (Table 2, Fig. 2).  380 

Regardless of the pressure or fO2, simple isobaric fractional crystallization predicts 381 

non-linear liquid lines of descent that fail to reproduce the simple linear trends defined by the 382 

majority of the whole rock data.  Hence, the range in whole rock data from both SSH and 383 

SHV are best described by a hybridization model in which the rocks are mixtures between 384 

andesitic to rhyolitic melts and mafic crystal phases, as observed in many other arc volcanic 385 

settings (Davidson et al., 2005; Reubi and Blundy, 2009; Kent et al, 2010; Cashman and 386 

Blundy, 2013; Humphreys et al., 2013; Cooper and Kent, 2014).  387 

In contrast, a fractional crystallisation history can explain most of the melt inclusions 388 

from SSH, and a significant proportion of those from SHV. These melt inclusions  do not lie 389 

on the linear trend defined by the whole rock data.  For the melt inclusions, the best fit to the 390 

AlphaMelts/RhyoliteMELTS model (Ghiorso and Sack 1995; Gualda et al., 2012) is provided 391 

by a scenario in which the starting composition is defined by the most mafic of the SSH melt 392 

inclusions (58.7% SiO2).  The input and cooling parameters are the same as for the first 393 

modelling scenario above and, again, the effects of pressure and fO2 do not yield major 394 

variation in the liquid line of descent (Fig. 2). 395 

To summarise, the melts are related to one another by fractionation crystallisation and 396 

likely evolve in closed systems in storage lenses in the crust. The bulk basaltic lavas are 397 



“assembled” by mixing liquids along this line of descent with mafic crystal mushes 398 

containing mixtures of plagioclase, olivine and clinopyroxene. The whole rocks therefore 399 

represent hybrids or mixtures between melts and mush components. In detail, it can be 400 

observed that most of the melt inclusion liquids are in equilibrium with their host crystals 401 

(Table 2), which means that at the time of melt entrapment, the crystal and its carrier liquid 402 

were in equilibrium. The crystals are strongly zoned however, and the melts are therefore not 403 

necessarily in equilibrium with other parts of the crystal, or with other crystals in the magma. 404 

The melt inclusions were trapped over a pressure range corresponding to depths of 405 

between 8 and 12 km (Table 4). We speculate that the more mafic liquids are sourced from 406 

the deeper parts of the magma reservoir system. In contrast to SHV, the crystal assemblage at 407 

SSH is markedly more mafic, likely derived from deeper in the crust. For the basalts of the 408 

SSH, the depths recorded from volatile solubilities in melt inclusions suggest that melt 409 

entrapment occurs at the deeper end of the range estimated for the SHV system Edmonds et 410 

al., (2014), thus preserving a greater range of melt inclusion compositions (from andesite to 411 

rhyolite), further suggesting that in general melts become more evolved upward through the 412 

crust. This is supported by a broad negative correlation in the melt inclusion data, between 413 

SiO2 and equilibration pressure (R2= 0.45), indicating that the least evolved compositions 414 

were generally formed at deeper depths.  415 

It is important to note that the record of pressures recorded by the melt inclusions is 416 

itself subject to bias. The depths of melt entrapment are probably governed not only by the 417 

physical dimensions of the reservoir but also and perhaps more importantly by the conditions 418 

under which melt inclusions form, which requires both high degrees of undercooling and a 419 

period of isothermal crystal growth (Kohut and Nielsen, 2004; Kent et al., 2008). Mafic 420 

phenocrysts may have not experienced sufficient undercooling, until mixing, by which time 421 



the compositions had been modified by time isothermal crystallisation occurs and melt 422 

inclusions become trapped (Koleszar et al., 2012).  423 

Mixing is well documented in other arc systems. A notable example of the mixing 424 

process described above is associated with the  Mount St Helens dacite, where temperature 425 

fluctuations of 20-40 °C were a consequence of incremental, or pulsed assembly of crustal 426 

magma bodies wherein each pulse interacts with ancestral, stored magmas, accounting for 427 

much of the plagioclase zoning and textural complexity seen in the erupted magmas 428 

(Cashman and Blundy, 2013). These authors suggest that magma storage systems under most 429 

arc volcanoes are dominated by similar processes, where crystal mushes are fed by hotter, 430 

slightly more mafic magma, coupled with episodes of magma ascent from one storage region 431 

to another.  The presence of common enclaves of cumulate material, such as gabbro and 432 

pyroxenite, in the SSH lavas (Cassidy et al., 2014) is also consistent with the remobilisation 433 

of plutonic material. The way in which the model we propose differs from this fundamental 434 

mixing scenario is that we propose “back-mixing” to generate mafic bulk compositions by 435 

mixing more evolved melts with mafic mushes, illustrating the importance of not only 436 

mushes, but also regions of andesitic to rhyolitic liquids in magma reservoirs for generating 437 

bulk compositions. 438 

Textural evidence for mixing  439 

The olivine, plagioclase and pyroxene phenocryst compositional profiles all record 440 

normal and reverse zoning, suggesting a combination of growth zoning and magma mixing 441 

(Figs. 6, 7, 8 and 11).  Major element mineral chemistry is modified during growth in 442 

response to cooling, melt compositional changes and magma reservoir conditions; including 443 

pressure, temperature, volatile content and fO2 (Housh & Luhr 1991; Nelson & Montana, 444 

1992; Sisson and Grove, 1993; Couch et al., 2003a, 2003b; Streck, 2008; Cashman and 445 

Blundy 2013).  Minor element concentrations are particularly useful for discriminating 446 



between magma mixing and growth zoning, as they are almost entirely a function of melt 447 

composition and are largely unaffected by changes in magma storage conditions (Ruprecht 448 

and Worner, 2007; Aigner-Torres et al., 2007). 449 

Zoning profiles in plagioclase crystals shows that anorthite contents are negatively 450 

correlated with Fe, Mg and Ti (Fig. 8), with magma crystallisation and differentiation 451 

yielding less An-rich compositions, and increases in magma temperature or water content 452 

raising An contents.  Although Fe partitioning in plagioclase strongly depends on crystal 453 

composition, and melt temperature and fO2 (Longhi et al., 1976; Sugawara, 2001; Aigner-454 

Torres et al., 2007), melt composition has the greatest effect on Fe plagioclase content 455 

(Ginibre et al., 2002).  By comparison, experimental data show a clear negative correlation 456 

between Ti and An% that is largely independent of temperature, and Mg partitioning depends 457 

weakly on An content (Bindeman et al., 1998) and temperature (Longhi et al., 1976; Aigner-458 

Torres et al 2007).  Therefore, changes in An content, temperature, fO2 alone cannot fully 459 

replicate the observed increases in Fe, Mg and Ti observed at the rim of the crystals (Fig. 8). 460 

Rather, these observations suggest that the increases in these elements must be due, at least in 461 

part, to disequilibrium crystallisation prior to eruption as a result of mixing with melts 462 

enriched in Fe, Mg and Ti.  This interpretation is supported by the kernel density plots of 463 

anorthite content (Fig. 4), where two populations of cores are evident, as well as a large range 464 

of anorthite values at the rims.  The population of cores with An76-95 likely represents deeper, 465 

more stable plagioclase crystallisation, but the cores with lower anorthite contents (An50-65) 466 

may represent plagioclase crystals that evolved in a shallower (lower PH2O), more evolved, 467 

magma body. Zoning profiles (Figure 8a) show cores with high anorthite contents (An86) and 468 

increasingly albitic rims (down to An56) with a corresponding increase in Fe, Mg and Ti 469 

contents.. This zoning profile is consistent with a plagioclase from a wet mafic mush being 470 

mixed into a more evolved melt at lower pressures. 471 



A history of mixing is supported by the presence of two distinct groups in olivine core 472 

compositions (Figs. 4 and 5): Group 1, Fo72-80 and Group 2, Fo56-68.  These groups suggest 473 

mixing between two distinct magma batches, or with the entrainment of more forsteritic 474 

olivines from a crystal mush into a more evolved crystal-rich magma. The olivine crystals 475 

(both Group 1 and Group 2) exhibit both normal (most common) and reverse zoning at the 476 

rim of the crystal (Figs. 5c, 6, 7 and 12a).  Many of the Group 1 olivines exhibit normal 477 

zoning at the rims, consistent with magma from a primitive mush entrained into a more 478 

evolved storage system. This hypothesis is illustrated by the zoning profile in Figure 6b, 479 

which contains shows a Group 1 olivine with a lower forsterite, but higher Ca and Mn rim. 480 

Simple fractional crystallisation would reduce the CaO content along with Fo content, but 481 

while Ca and Mn partitioning are not directly affected by melt fO2 and temperature (Dunn, 482 

1987; Libourel, 1999), Ca concentration of olivines is strongly dependent on the alkali 483 

composition of the melt (Jurewicz and Watson, 1988; Libourel, 1999).  Mixing of the Group 484 

1 olivines into an evolved melt with a higher alkali content may therefore explain the 485 

observed increased Ca content with decreasing Fo.  The reverse zoning observed in some of 486 

the Group 2 olivines is consistent with olivine from the partially crystalline andesite being 487 

exposed to more mafic compositions and hotter temperatures of the intruding magma.   488 

Pyroxene Mg# can change in response to changes in melt composition or fO2 (Streck 489 

et al., 2002).  Thus, the saw-tooth major element zoning in Figure 10 is likely related to a 490 

combination of open system fractionation and recharge (Ginibre et al., 2002; Ruprecht and 491 

Worner, 2007), while the relatively large increases in Mg# approaching the rims (the outer 40 492 

µm) of a fraction (~5%) of the pyroxenes are consistent with a change in the composition 493 

and/or temperature of the intruding mafic magma (Fig. 10).  Indeed, similar orthopyroxenes 494 

have been erupted at SHV eruption since May 1996, with well-developed reverse zoned rims 495 

(10–25 µm) (Murphy et al., 2000). 496 



Timing of mixing events 497 

The mixing of a phenocryst into a melt of a different composition would lead to a 498 

sharp step in the mineral composition crystallising at the rim, assuming that conditions for 499 

crystal growth are maintained and that the mixing event results in an instantaneous, rather 500 

than gradual, change in the composition of the host melt.   This sharp step then relaxes over 501 

time, via diffusion, as the interior of the crystal begins to equilibrate with its new host melt 502 

composition. The resulting diffusion profiles may be used to estimate the timescales between 503 

magma mixing and eruption, by assuming a particular temperature (Costa and Chakraborty, 504 

2004 Morgan et al., 2004; Costa and Dugan, 2005; Costa et al., 2008).  This diffusion 505 

chronometric approach has been applied to reverse zoning profiles in our SSH samples (we 506 

cannot apply it to normal zoning profiles, because it is difficult to distinguish mixing-driven 507 

disequilibrium from fractionation-dependent growth zoning in this case).  We use the DIPRA 508 

model (Girona and Costa, 2013) for both forsterite and Mn zoning, at 1000°C.  The shapes of 509 

the compositional profiles in the reverse zones at the rims of two olivines (Fig. 5b) are 510 

consistent with relaxation of an initial compositional step over 10 to 60 days (Supplementary 511 

figures 1 and 2).  This timescale is similar to that estimated from compositional profiles in 512 

Fe-Ti oxides induced by heating in SHV lavas, where andesite remobilisation by mafic 513 

intrusions occurred days to weeks prior to eruptions (Devine et al., 2003). A timescale of 514 

days to weeks between mixing and eruption is comparable to the short pre-eruptive mixing 515 

timescales calculated at Ceboruco, Quizapu, Nea Kamini and Mount Unzen volcanoes (days 516 

to months; Nakamura, 1995; Chertkoff and Gardner, 2004; Ruprecht and Cooper, 2012; 517 

Martin et al., 2008). Other mixed systems at Trident, Taupo and Volcan San Pedro, give 518 

longer timescales (months to decades; Coombs et al. 2000; Costa and Chakraborty, 2004; 519 

Millet et al., 2014). Our results imply a relatively short period between the assembly of the 520 

SSH magmas and their ascent and eruption at the surface. 521 



Formation of basaltic magmas at the SSH 522 

 Basalts are often thought to represent relatively unmodified primary melts from the 523 

mantle. However observations in this study from whole rock trends, melt inclusions, 524 

fractional crystallisation modelling and phenocryst zoning attest to a hybridisation model 525 

similar to that previously inferred for the formation of andesites at many intermediate 526 

systems. Magma mixing commonly occurs between mafic and felsic melts to form andesitic 527 

compositions, following the recharge filtering model of Kent et al. (2010). However, the 528 

basaltic whole rock compositions of SSH are generated mixing components from multiple 529 

magma bodies, comprising andesitic to rhyolitic melt compositions and mafic mineral phases. 530 

The SSH preserves a wide range of melt inclusion compositions unlike the SHV which 531 

comprises only limited range of evolved rhyolitic melt inclusions. This is likely a 532 

consequence of the deeper mixing of multiple different magma bodies and the lack of a 533 

further shallow crystallisation stage, which would otherwise increase the likelihood of 534 

preserving silicic melt inclusions through the incorporation of crystals derived from a shallow 535 

crystal mush.  536 

Tectonic control for the eruption of basalts 537 

While many of the observations relating to magma mixing as a control over whole 538 

rock and melt inclusion compositions have been well-documented in arc volcanic rocks 539 

(Reubi and Blundy, 2009), they do not explain the closely-spaced and near coeval eruption of 540 

basaltic and andesite lavas at SSH and SHV ~130 ka.  In this context, it is noteworthy that the 541 

volatile contents of melt inclusions and geophysical investigations of SHV support the 542 

existence of two upper crustal magma chambers; one at 10-12 km that feed into a shallower 543 

chamber at 5-6 km depth that serves as the source of the erupted material (Devine et al., 544 

1998; Barclay et al., 1998; Elsworth et al., 2008; Humphreys et al., 2009; Paulatto et al., 545 

2010; Mann et al., 2013; Edmonds et al., 2014).  We hypothesise that the eruption of more 546 



mafic rocks at SSH was because these lavas were assembled directly from a magma chamber 547 

of similar depth (8-12 km) to the deeper of the two chambers below SHV, but without 548 

passing through the shallower chamber.  But what allows the SSH basalts to bypass this 549 

shallow density filter? 550 

In general, eruption of basaltic compositions in dominantly andesitic settings requires 551 

a favourable stress field (Hildreth, 1981). Indeed, density is not the only factor which limits 552 

the ascent of mafic magmas; structural controls imposed by lithology and rheological 553 

boundaries within the crust can also act to slow and sometimes stall magma ascent 554 

(Eichelberger, 1978; Dufek and Bergantz, 2005; Karlstrom et al 2009; Kent et al., 2010). 555 

Faulting systems may promote the ascent of denser magmas, particularly within an 556 

extensional and therefore decompressional regime. Volcanoes are also commonly found 557 

along major strike-slip faults, such as the great Sumatran fault zone, the Sulawesi fault and 558 

the Liquiñe–Ofqui fault zone (LOFZ) in Chile (Bellier and Sébrier, 1994; Lécuyer et al., 559 

1997; Cembrano and Lara, 2009).  In these areas, local extensional features are associated 560 

with individual volcanoes, and it is suggested that a causal relationship exists between 561 

extension and volcanism or intrusion (Moore, 1979; Aydin and Nur, 1982; Hutton and 562 

Reavey, 1992; Tibaldi, 1992; Milia and Torrente, 2003; Spinks et al. 2005; Brogi et al. 2010; 563 

Davis et al. 2010).  In addition, there is evidence that tectonics can strongly control the 564 

composition of magmas. For instance, at the Taupo volcanic zone basaltic volcanism occurs 565 

at the intersection between major faults and caldera boundaries (Cole et al., 1990; Millet et al. 566 

2014) whereas, more intermediate magmatism occurs in areas which have experienced less 567 

crustal extension (Allan et al. 2013 ; Millet et al. 2014), following the recharge filtering 568 

process. Transtensional faults in the neighbouring island to Montserrat, Guadeloupe, which 569 

lies along the same en echelon fault system, are thought to control the location of volcanism 570 

and may be the cause for the frequent sector collapses on the island (Mathieu et al., 2011).  571 



Transtensional tectonics in this region may not only control the source of these magmas 572 

(Cassidy et al., 2012), but may also lead to localised faulting that thus provides a pathway for 573 

these higher density mafic magmas, that would otherwise be trapped within the crust (Fig. 574 

12).  Over time, however, the crust in these areas may impose lithostatic control as the 575 

eruption of the basalts thickens the crust.  As a result, later magmas would be required to 576 

undergo differentiation by crystal segregation to become buoyant enough to erupt at the 577 

surface (Plank and Langmuir, 1988; Devine, 1995), thus increasing the likelihood of 578 

generating more evolved andesites. This is supported by numerical modelling from Pinel and 579 

Jaupart (2000), which predicts that as the edifice grows the ascension of lower density 580 

magma is favoured, thus promoting stalling in the crust and magma differentiation. Hence, 581 

the eruption of basaltic lavas may be characteristic of the early products of new eruption 582 

centres where extensional tectonics are operative in arc settings.  This may be the case for 583 

many volcanic regions which comprise early phases of basaltic activity before evolving into 584 

mature andesitic systems, including northern Japan (Katsui et al., 1978; 1979); central south 585 

Chile (Lopez-Escobar et al., 1977), New Zealand (Price et al., 2005), the Aleutians and 586 

Alaska (Marsh, 1980; Myers and Marsh, 1981). The role of transtensional tectonics is 587 

strengthened by the observation that both Redonda and Kahouanne, two adjacent islands to 588 

Montserrat which lie on the same transtensional fault systems (Fig. 1), also produce mafic 589 

volcanism.  These seamounts represent the emergence of new volcanism in the Lesser 590 

Antilles, and again suggest that early arc volcanism in this region may be controlled by 591 

tectonics, until further growth of the edifice inhibits the ascent of high density mafic magmas, 592 

producing the commonly observed andesitic volcanoes. Although fault structures thus 593 

provide a possible mechanism for promoting the ascent of the SSH magmas, this alone does 594 

not explain the timing of SSH basaltic magmatism. Basaltic eruptions have not been 595 

identified at other periods in Montserrat’s history. The conditions favourable to basaltic 596 



eruptions at SSH thus appear to have been transient, and are unique in the currently identified 597 

history of Montserrat. The SSH doesn’t clearly correspond to an initial phase of volcanism, in 598 

the sense of the birth of a new volcanic centre, since the event is bracketed by andesite 599 

eruptions at the adjacent SHV, and there have been no subsequent eruptions (since 130 ka) at 600 

SSH. We know of no reasons why fault activity at the time of SSH volcanism would have 601 

been enhanced relative to other periods in Montserrat’s history. Thus, although fault 602 

structures may have promoted ascent of dense mafic magmas at this location, this alone does 603 

not provide a satisfactory explanation for the timing of the SSH episode of basaltic 604 

volcanism. Other processes affecting crustal stress conditions, such as collapse of the 605 

volcanic edifice, may help explain the precise timing of SSH volcanism. 606 

 607 

CONCLUSIONS  608 

 609 

There is now abundant evidence that arc andesites are generated by hybridisation 610 

processes, involving the mixing of felsic melts and abundant crystal phases, for instance at 611 

the SHV on Montserrat, Mt St Helens and at Mount Hood (USA). Arc basalts, on the other 612 

hand, are commonly attributed to simple closed-system fractionation. Our study of the SSH, 613 

shows that olivine-bearing basalt petrogenesis can be just as complex as the generation of 614 

andesites at the SHV, implying that basalts in arcs may have a less simple history than is 615 

commonly assumed on account of the hybridisation processes explored in this study.  616 

This study also shows how two volcanoes active at similar times and located very 617 

close to each other can erupt different bulk compositions. Basalts erupted from the SSH in 618 

Montserrat were stored under different magmatic conditions to the andesites of the SHV, yet 619 

underwent similar magmatic processes of mixing, recharge and cumulate entrainment prior to 620 

eruption. The range of magmatic temperature estimates (970 - 1160˚C), reservoir depth 621 



estimates (8-12 km), coupled with crystal and whole rock compositions, strongly indicates 622 

the presence of multiple magma bodies, which interact and feed basaltic eruptions. Melt 623 

inclusion data, phenocryst chemistry and fractional crystallisation modelling suggests that 624 

mixing and crystal entrainment were involved in the petrogenesis of the SSH mafic magmas. 625 

The SSH magmatic system seems to match the deeper mafic-proposed SHV magma 626 

reservoir, but geophysical and petrological studies suggest that this deeper SHV system is 627 

much larger in volume than the shallow SHV reservoir. This is in contrast with the SSH, the 628 

results here show evidence for small, discrete pockets of crystal mushes with melt batches, 629 

which might appear in geophysical surveys as one large reservoir. We suggest that ascent of 630 

mafic magmas can be promoted by tectonics, which may ascend along faults or under 631 

specific stress conditions (i.e. post collapse).  632 
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