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Abstract

We study a contract design setting in which the contracting parties cannot com-

mit not to renegotiate previous contract agreements. In particular, we characterize

the outcome functions that are implementable for an uninformed principal and an

informed agent if, having observed the agent’s contract choice, the principal can offer

a new menu of contracts in its place. An outcome function can be implemented in

this setting if and only if it is optimal for the principal for some belief over agent

types which is more pessimistic, in the sense of the likelihood ratio order, than the

prior. Furthermore, the outcome function cannot be too sensitive to variations in

the agent’s type. We show that the direct revelation mechanism which implements

such a function when renegotiation can be prevented will also implement it in any

equilibrium when it cannot, so the standard contract is robust to renegotiation.

Keywords: Renegotiation, Mechanism Design, Contract, Commitment.

JEL Codes: D820, D860.

1Corresponding Author. University of Cambridge and St John’s College, Cambridge, UK. Ad-
dress: Faculty of Economics, University of Cambridge, Sidgwick Avenue, Cambridge, CB3 9DD,
UK; robert.evans@econ.cam.ac.uk; +44 (0)1223 338784.

2University of Cambridge, UK, and Toulouse School of Economics (CNRS,GREMAQ); Address:
Faculty of Economics, University of Cambridge, Sidgwick Avenue, CB3 9DD, UK; skr29@cam.ac.uk.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/42338439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

One of the main messages of the literature on contract renegotiation is that an

inability of contracting parties to commit themselves not to renegotiate hurts those

parties because it limits the use of ex ante contracts and prevents desirable outcomes

from being implementable.

A leading example is the hold-up problem, in which investment that increases the

expected benefit of a relationship is not undertaken because the investing party fears

expropriation of the investment benefits by its partner. An ex ante contract specifying

the division of ex post surplus between contracting parties can serve to alleviate this

problem but its renegotiation will ultimately affect this division and hence damage

investment incentives. This problem has been studied in various settings (for example,

with symmetric information, asymmetric information, selfish investment, cooperative

investment) and has been shown in most cases to limit the scope of contracting and

decrease the level of investment; see for instance Segal (1999), Maskin and Moore

(1999), Che and Hausch (1999), Reiche (2006) and Goltsman (2011).

Renegotiation can also be harmful in situations in which a trading opportunity is

repeated several times and in which parties cannot commit not to renegotiate future

trade agreements; see for instance Dewatripont and Maskin(1990), Hart and Tirole

(1988) and Laffont and Tirole (1988, 1990). In this context, the ratchet effect implies

that parties tend to understate the value of trade in order to avoid more demanding

schedules (for example, a higher price) in the future. Spot contracts or long-term

contracts which are vulnerable to renegotiation tend to be less efficient in solving the

asymmetric information problem between trading partners than long-term contracts

which cannot be renegotiated.

We consider a standard contracting problem between an uninformed principal

and a privately informed agent, and ask which outcome functions (mappings from

the agent’s private information into some action and transfer payment) can be imple-

mented when parties cannot commit not to renegotiate their contract. More precisely,

we suppose that after the agent has played the initial mechanism, determining a de-
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fault outcome, the principal can offer a second-stage mechanism which, if the agent

accepts it, determines the actual outcome. This second mechanism will of course

depend on what the principal has learned from her interaction with the agent in

the initial mechanism and we can consequently not assume that the agent’s initial

message fully reveals his type. That is, the standard revelation principle does not

apply.

Most of the literature on contract renegotiation is concerned only with implement-

ing the outcome function which is optimal for the principal at the stage when the

mechanism is played (see, for example, Skreta (2006) or Bester and Strausz (2001)).

In our setting this outcome function is simple to implement, as is the ex post efficient

one. However, in many contexts (such as the hold-up context mentioned above) this

is not the best outcome function to implement. Our aim is to characterize all outcome

functions that can be implemented subject only to the agent’s incentive and partic-

ipation constraints and the constraint of subsequent renegotiation. What outcome

functions are optimal will depend on the particular circumstances; for instance, it will

depend on who designs the initial mechanism, whether the principal or an outside

agency such as a social planner.

If the designer is the principal she might, as in the hold-up problem, want to pro-

pose ex ante a mechanism to improve investment incentives. This will not, in general,

be the same as the one which is optimal for her once investment is undertaken and

the state of the world is realized. At this point the initial purpose of the mechanism

is served and the parties will have an incentive to renegotiate the existing contract.

In the next Section we outline our results in the context of a specific example of this

kind. Alternatively, the principal might want to propose a mechanism to attract a

specific pool of agents, so that the initial mechanism has to satisfy some particular

set of participation constraints. If, once an agent is locked in with the principal,

those participation constraints have changed, the principal has an incentive to offer a

different contract at the second stage. In both cases, the principal’s optimal ex ante

mechanism taking these considerations into account may not be the same one which

she would wish to offer ex post.
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If the designer is an outside agency he may be, for example, a regulator, or a higher

level of authority in the organization to which the principal belongs, or the designer

of a trading platform or a market where sellers (principals) and buyers (agents) who

do not know each other are matched. In each of these cases, the designer may have

an objective function which differs from those of the players, though the arguments

of the function may include the principal’s expected payoff and/or the distribution of

utilities and decisions across the various types of agent.

The above considerations imply that it is desirable to know which outcome func-

tions can be implemented when renegotiation is taken into account. Our first re-

sult says that any r-implementable (i.e., implementable with renegotiation) outcome

function must satisfy a simple renegotiation-invariance property, which can be in-

terpreted as a modification of the revelation principle. Namely, if an outcome is

r-implementable with some initial mechanism it can also be achieved by giving the

parties, at the outset, the same direct revelation mechanism which would implement

it in the no-renegotiation case. Moreover, after each announcement by the agent, the

principal, in equilibrium, offers the same direct revelation mechanism again. In the

no-renegotiation case, the agent would tell the truth in this initial mechanism but,

because of the ratchet effect, this is not so in the renegotiation case. Instead, the

agent will understate his type, i.e., randomize over announcements of types below his

true type. The principal, after a particular announcement θ̂, say, will therefore have

post-announcement beliefs that are distributed over types θ̂ and above, and these

beliefs are such that the initial direct revelation mechanism now becomes optimal for

her. In this second stage mechanism the agent will then tell the truth and obtain the

outcome intended for his type. We also show that this equilibrium is unique.

Because the agent always understates his true type in the initial mechanism, the

principal’s possible beliefs at the renegotiation stage are, in a particular sense, more

pessimistic than her prior beliefs. Our second main result says that an outcome

function is r-implementable if and only if it is optimal, for the principal, for some

distribution which is lower than her prior in the likelihood ratio order.

Since the principal’s beliefs are related to the outcome function through the first-
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order condition of her maximization problem at renegotiation, we can express this

result in terms of the slope of the decision function. Since we assume supermodularity

of the agent’s payoff function, the decision function, as in the no-renegotiation case,

cannot be decreasing. We show that, in addition, it cannot be too steep: our third

main result is that an outcome function is r-implementable if and only if it does

not vary too much with the agent’s type, in the sense that the slope of the decision

function must be below a certain bound.

In summary, for a large class of decision rules, the standard incentive-compatible

mechanism has a strong renegotiation-invariance property - after any message, the

principal always wants to offer the initial mechanism again. The designer does not

have to be concerned about whether renegotiation might be possible - the same mech-

anism delivers the desired outcome for every type whether it is possible or not. Our

third result can easily be used to verify whether or not, in a particular applied setting,

renegotiation poses a problem because the desired decision rule falls outside the above

class. Another appealing feature is that an outside designer wishing to implement a

particular outcome function does not need to know the principal’s prior distribution

over the agent’s types, only that this distribution is above a certain lower bound in

the likelihood ratio order.

The results apply in addition to the case of interim, as opposed to ex post, renego-

tiation and also to a model in which the renegotiation has finitely many stages. Our

analysis does assume that the renegotiation bargaining game is finite. This could

be because there is an exogenous deadline such as may arise in many contexts (see,

e.g., Fuchs and Skrzypacz (2013)): for example, in a buyer-seller model, the good

might be perishable or needed as an input into a production process which cannot be

delayed. Alternatively, the agent may face financial constraints which vary over time.

Another possibility is that a third party designs the mechanism and, while the princi-

pal is able to commit to a mechanism (as is generally assumed in the principal-agent

literature) the designer cannot fully commit the principal. We also briefly discuss in

subsection 4.5 below possible extensions to a model of infinite-horizon renegotiation

with discounting.
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Literature

Ex post renegotiation has been studied by Green and Laffont (1987), Forges

(1994), and Neeman and Pavlov (2013). In these contributions the concepts employed

are variations on the principle that a mechanism is (ex post) renegotiation-proof if,

for any outcome x of the mechanism and any alternative outcome y, the players would

not vote unanimously for y in preference to x if a neutral third party were to propose

it to them. Such definitions of renegotiation-proofness have the merit that, if a given

mechanism satisfies it, the mechanism is robust against all possible alternative out-

comes. However, it also has the drawback that the implied renegotiation process does

not have a non-cooperative character. In contrast, we assume that the renegotiation

process is given by an explicit ex post bargaining game, a simple take-it-or-leave it

offer by the uninformed party. This one-shot model of renegotiation is close to the

one generally used for mechanism design with complete information (Maskin and

Moore (1999), Segal and Whinston (2002)), in which, for any inefficient outcome of

the mechanism, there is a single renegotiation outcome, which can be predicted by

the players.3

A recent strand of the literature on the Coase Conjecture (see Strulovici (2014)

and Maestri (2013)) is concerned with contract negotiations with limited commitment

in which contracts are (re)negotiated using infinite-horizon protocols with frictions.

As those frictions vanish the essentially unique equilibrium involves only efficient

contracts (see also Beaudry and Poitevin (1995) and Goltsman (2011)). Our focus

is different in that we are concerned with what can be achieved when there are non-

negligible frictions. Our results concern the case in which there is an exogenous

deadline, but, as we discuss in subsection 4.5, we conjecture that a version of our

results would apply in an infinite-horizon model with (non-negligible) discounting.

None of the contributions in the literature, to our knowledge, has shown the

renegotiation-invariance property of standard incentive-compatible mechanisms, or

derived our results about the relation between the prior and the possible post-renegotiation

3Rubinstein and Wolinsky (1992) model renegotiation as costly because it involves delay and
show that the set of implementable outcomes in a complete information buyer-seller model is larger
than those of the standard model of implementation with renegotiation.
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beliefs.

Finally, our analysis is indirectly related to the literature on incomplete informa-

tion bargaining beginning with Fudenberg and Tirole (1983). One interpretation of

a mechanism is that it is a device for understanding what can be achieved by non-

cooperative bargaining games; see for instance Ausubel and Deneckere (1989a) and

(1989b). In contrast to these papers, we consider what a mechanism can achieve when

it is played before parties enter into such a bargaining game. In addition, we con-

sider general revelation mechanisms and not simply price offers. It is also related to

recent work on organizational theory, stemming from Crawford and Sobel (1982). In

Krishna and Morgan (2008) the uninformed decision maker can commit to a contract

which pays the informed sender a monetary transfer which depends on the message

sent, but cannot commit to the action which she then takes. In our setting the sender

is the agent and the decision maker is the principal, who can only partially commit

to her action (the renegotiation mechanism). See also Ottaviani (2000) for a model

with informed senders, monetary transfers and lack of commitment by the receiver.

Outline

Section 2 contains several examples to motivate and demonstrate our analysis.

Section 3 sets out the model formally. Section 4 contains the analysis and results. Sub-

section 4.1 proves the renegotiation-invariance principle, which is helpful in deriving

the necessary and sufficient conditions. Subsection 4.2 derives necessary conditions

for implementation. Subsection 4.3 provides sufficient conditions and a discussion

of the strong implementation (uniqueness) result. Subsection 4.4 discusses the spe-

cial case in which utility is linear. Subsection 4.5 contains a discussion of several

applications and our main assumptions. Some of the proofs are in the Appendix.

2 Examples

In this section we outline one setting to which our analysis applies and use some

simple examples to illustrate our main arguments and results. The setting features ex
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ante investment and ex post hold-up. The principal is S, the seller of a good, and the

agent is B, a potential buyer with ex ante uncertain valuation. B can undertake an

unobservable investment that raises his expected valuation but, without an ex ante

contract, he will fail to do so because of the hold-up threat.

B’s investment costs I. If he does not invest his type is distributed according to

F 0 on Θ0 = [θ0, θ
0
], and, if he does, it is distributed according to F 1 on Θ1 = [θ1, θ

1
],

where θ0 ≤ θ1 ≤ θ
0 ≤ θ

1
and F 1 first-order stochastically dominates F 0. Both

distributions satisfy the increasing hazard rate condition. If B is of type θ and buys

x units of the good for payment t then his payoff is θu(x) − t and S’s payoff is

t − cx, where u′ > 0, u′′ < 0, and limx→0 u
′(x) = ∞. θ, once realized, is B’s private

information.

Contracting Ex Post

Assume first that there is no ex ante contract. Then S offers an incentive com-

patible and individually rational mechanism ex post (i.e., after B’s type is realized)

that maximizes her expected payoff, where her expectation depends on whether she

believes B to have invested or not. If S believes that B has invested she will offer a

quantity schedule xF 1
(·) that pointwise maximizes the virtual surplus(

θ − 1− F 1(θ)

f 1(θ)

)
u(x(θ))− cx(θ), (1)

together with associated utilities U1(θ) =
∫ θ

θ1
u(xF 1

(s))ds. Of course, B will only

invest if his expected utility gain from investment justifies the investment cost.

Contracting Ex Ante

If the investment cost is higher than B’s expected gain, given the ex-post contract,

and if S wants B to invest, then she will need to design an ex ante contract which

takes investment incentives into account. We assume initially that S can commit

not to renegotiate. Then she will offer, before the investment stage, an incentive-
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compatible and interim individually rational contract,4 (xI(·), U I(·)), that maximizes

S’s expected payoff (for belief F 1) subject to the investment constraint

∫ θ
1

θ1
U(θ)(dF 1 − dF 0) ≥ I. (2)

One can show that xI(·) pointwise maximizes “investment adjusted” virtual sur-

plus (
θ − 1− F 1(θ)

f 1(θ)
+ µ

F 0(θ)− F 1(θ)

f 1(θ)

)
u(x(θ))− cx(θ), (3)

where µ ≥ 0 is the Lagrange multiplier associated with (2). Since F 1 first-order

stochastically dominates F 0, the term multiplying µ is positive, so xI(θ) ≥ xF 1
(θ).

Example A Suppose that u(x) =
√
x, c = 1

2
, F 0 is uniform on Θ0 = [1, 3], and

F 1 is uniform on Θ1 = [2, 3]. The first-best is x∗(θ) = θ2.

Then xF 1
(θ) = (2θ − 3)2 and U1(θ) = θ2 − 3θ + 2. Since

∫ θ
1

θ1
U1(θ)(dF 1 − dF 0) =

5/12, if I > 5/12 B will not invest without an ex ante contract. Assume that I = 0.5.

Then, using (3) and the binding investment constraint (2),

xI(θ) =
9

4
(θ − 1)2. (4)

This is illustrated in Figure 1 below. It can be checked that inducing investment

is optimal for S.

The above shows that there exist contexts in which the principal would like to im-

plement an outcome function which is neither efficient nor ex post optimal (in Section

4.5 we discuss other possible contexts for which this is the case). Furthermore she

would like to commit herself at an early stage to a contract which might subsequently

not be optimal. Our main focus, however, is on the case in which such commitment

is not possible.

4We maintain the assumption that the ex ante mechanism has to satisfy the participation con-
straint for each type of B: S cannot insist that B accepts the mechanism before learning his type,
for example because she is facing a population of anonymous buyers or because she cannot observe
the timing of the realization of B’s type.
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Renegotiation

Suppose that S has publicly announced, ex ante, the contract associated with

(xI , U I) for Example A with I = 0.5 (a menu of quantity-transfer pairs {(x, t)} which

we can take to be equivalent to a direct revelation mechanism) and the investment

stage has passed. If B now places an order (x, t) this defines the guaranteed reserva-

tion outcome. However, in the light of what S has learned about B from his order,

S may now prefer a different outcome, which B may also prefer. In that case we

would expect some renegotiation to take place. Suppose then that S, after5 seeing

B’s choice, can offer a new contract (mechanism) and B can either choose to play

the new mechanism or else stick with the reservation outcome (x, t). The question is:

what initial contract should S propose if she wants to implement (xI , U I), bearing in

mind that she should expect the contract to be renegotiated?

We show in the following sections that this three-stage game of incomplete infor-

mation, beginning just before B sends a message in the ex ante mechanism (xI , U I),

has a unique equilibrium outcome. Each type of B initially randomizes over all mes-

sages up to and including his true type; after any message S offers the initial (ex

ante) mechanism again; and B accepts the second mechanism and tells the truth. In

other words, B’s initial randomization has the effect that S’s beliefs always change

in such a way that her ex ante contract becomes ex post optimal. Therefore S does

not need to be concerned with the fact that renegotiation will take place - she can

design the initial contract exactly as if she could commit to it.

The equilibrium works as follows in Example A. Type θ ∈ [θ, θ̄] puts probability

(3 − θ)(3 − θ̂)−1 on messages in the interval [2, θ̂] (and zero probability on messages

θ̂ > θ), for any θ̂ ≤ θ. This implies that, given a message θ̂, S knows that B’s type is

θ̂ or higher and her belief about such types, Gθ̂(θ), has, by Bayes’ Rule, a density of

the form h(θ̂)(3 − θ). Therefore these conditional densities (varying the message θ̂)

5Our main focus below is on ex post renegotiation. Renegotiation could alternatively take place
at the interim stage, i.e. before B plays the pre-announced mechanism but after the type is realized,
S could offer a new mechanism to B. As we discuss below (Corollary 1), our results would also
apply to this case.
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are all scaled versions of each other, the scalar being h(θ̂). Moreover, for any θ̂ ≤ θ,

1−Gθ̂(θ)

gθ̂(θ)
=

∫ 3

θ
h(θ̂)(3− u)du

h(θ̂)(3− θ)
=

(3− θ)

2
. (5)

This in turn implies, using (1), that if S has belief Gθ̂(θ) her optimal quantity schedule

is xI = (9/4)(θ− 1)2. Furthermore, she will want to give utility U I(θ̂) to type θ̂ since

she regards this type as the lowest possible one, and U I(θ̂) is its reservation utility

after announcing θ̂ (telling the truth) in the original mechanism. This shows that,

after any message, the optimal ex post contract6 for S is (xI , U I). After sending

an initial message θ̂ < θ, type θ will then, in the second mechanism, recontract to

(xI(θ), tI(θ)). Finally, B is happy to mix in the way described because he is indifferent

between all messages.

In Example A, therefore, S’s optimal ex ante contract can be implemented despite

renegotiation. This is not always the case. If a contract can be implemented in our

setting then, without loss of generality, B stochastically understates his type and the

ex ante mechanism must be optimal for S after any message (Proposition 1). This

implies that S’s post-initial-message belief must be smaller than her prior F 1 in the

likelihood-ratio order (Proposition 2). Consequently, there is an upper bound on the

rate at which the quantity schedule x can increase (Proposition 3). The intuition for

this is as follows. S’s post-message belief must be invariant to the message, up to

scaling, so each type of S must randomize in a proportionally similar way (i.e. two

types who both send messages θ̂ and θ̂′ must both weight them in the same ratio,

(3 − θ̂′)2(3 − θ̂)−2 in our example). This means that, given any message θ̂, and a

uniform prior, S’s posterior density must be declining; she places more weight on low

types than on high ones because high ones randomize over a larger set of messages. In

this sense, B is conditionally pessimistic: although a given message implies that B’s

type is above a certain threshold, above that threshold her belief is shifted downwards

compared with the uniform prior. Therefore the slope of S’s optimal quantity schedule

is reduced: essentially, if low types are relatively more likely, she will want to induce a

6There is no loss of generality in assuming that S offers the whole mechanism, including those
outcomes intended for types below θ̂. See footnote 11 below.
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relatively lower degree of inefficiency for those types (higher x) compared with types

just above.

Example B For an example in which S’s ex ante optimal contract cannot be

implemented with renegotiation, suppose that everything is as in Example A except

that F 0 is some cumulative distribution with support Θ0 = [2, 3], and is first-order

stochastically dominated by F 1, which, as before, is uniform on Θ1 = [2, 3]. Since

F 0(2) = F 1(2), (3) implies that xI(2) = xF 1
(2). For some higher values of θ the

ex ante optimal schedule xI will be strictly greater than xF 1
, the optimum for belief

F 1. However, this implies that xI must somewhere increase faster than xF 1
which,

as just argued, is incompatible with the form of our equilibrium. Hence xI cannot be

implemented with renegotiation.

In summary, an ex ante contract can be implemented with renegotiation if and

only if it is optimal for some possible post-message beliefs of S. However, because

B always understates his true value the possible post-message beliefs of S are those

which are more pessimistic, that is, lower in the likelihood ratio order, than the prior

(see Corollary 2). Fig. 1 shows x∗, xF 1
and xI (labelled xIA and xIB respectively for

Examples A and B).

12



Figure 1

-

6

1

2

3

4

5

6

7

8

9

2 2.2 2.4 2.6 2.8 3

xF 1
x∗

xIA

xIB

θ

x(θ)

3 The Model

A principal (P ) and an agent (A) must choose a decision x from the set [x, x̄] ⊆ ℜ+,

and a money transfer t. The agent has a privately known type θ which follows a

distribution F , with differentiable density f > 0, on the interval Θ = [θ, θ̄], where

θ > 0. In addition, F satisfies the increasing-hazard-rate condition. Both players are

expected utility maximizers and have quasi-linear utility for money. If the decision

is x and A transfers t to P , then P ’s payoff is t − cx, where c > 0, and A’s payoff

is u(x, θ) − t, where u is a thrice-differentiable function satisfying the conditions

ux > 0, uxx < 0, uxθ > 0, with subscripts denoting derivatives. We make two further

assumptions, (a) either uxxθ ≥ 0 or u(x, θ) = θu(x), and (b) ∂(uθxx/uθx)/∂θ ≥ 0.

Assumption (a) together with the increasing-hazard rate condition for F guarantee
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that the second-best decision rule xF is unique and non decreasing.7 We discuss the

use of Assumption (b) at the end of this section. Finally, we make the assumption

that ux(x, θ) > c > ux(x̄, θ̄), which guarantees that, for each type, the ex post efficient

decision is interior.

The choice of decision and transfer is governed by a mechanism γ, i.e., a triple

(M,xM , tM) consisting of a set of messages M , where M is a metric space, and a pair

of functions xM : M → [x, x̄] and tM : M → ℜ. A chooses a message m ∈ M . When

message m is sent, xM(m) is the contracted decision and tM(m) is the contracted

payment to be paid by A to P . We assume throughout that communication is direct

(there is no mediator).8 Denote the set of possible mechanisms by Γ. The mechanism

might be chosen either by P as in our hold-up example or by a third party. In

Section 4.5 we discuss applications involving third parties to which our analysis can

be applied. The reservation utility for each type of A is zero. In the case where there

is a third party who designs the initial mechanism we do not model the contracting

game and we therefore do not consider P ’s reservation utility explicitly. Such an

analysis would have to include this as an additional constraint.

The parties are not able to commit not to renegotiate the mechanism. We assume

that at the renegotiation stage, after the play of the mechanism, all of the bargaining

power lies with the principal, the uninformed party.9 In other words, once the outcome

of the initial mechanism, (x, t), is known, the principal chooses a mechanism to offer

to the agent. A can either play this new mechanism or obtain the outcome (x, t). Our

aim is to characterize the set of outcome functions and corresponding utility schedules

which can be implemented by some mechanism taking into account the fact that the

mechanism can be renegotiated ex post.

We restrict attention to non-stochastic mechanisms throughout. Assumptions

(a) and (b) are sufficient for P ’s optimal contract offer at renegotiation to be non-

stochastic (see Proposition 8 of Jullien (2000)). They also imply that the optimal

7See for instance Fudenberg and Tirole (1991), p.263.
8For an analysis of contracting with renegotiation and mediated communication, see Goltsman

(2011) and Bester and Strausz (2007)
9If the agent had the bargaining power results analogous to ours would trivially hold.
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ex ante contract in the no-renegotiation case is deterministic in our hold-up example

above. There exist mechanism design problems10 for which the optimal contract is

stochastic; however, we do not consider these.

Strategies and Equilibrium

An initial mechanism (M,xM , tM) and the post-mechanism stage together define

a three-stage game of incomplete information: A sends a message; then P , after ob-

serving the message, offers a new mechanism; finally A plays the second mechanism or

chooses the default outcome resulting from his message. Call this game Φ(M,xM , tM).

We will consider the perfect Bayesian equilibria of this game.

Given an outcome (x, t) of the initial mechanism, and a mechanism γ ∈ Γ offered

by P , A either chooses the default outcome (x, t) or plays the mechanism γ. In a

perfect Bayesian equilibrium A will choose optimally given his type, i.e., will either

play the mechanism optimally or, if the default gives a higher payoff, choose the latter.

Given her belief, P will, at the preceding stage (i.e., after an initial message), choose

a mechanism to offer to A which is optimal for P . We impose a regularity condition

on the possible equilibrium post-message beliefs of P : they must lie in ∆1(Θ), the set

of distribution functions on Θ which have density functions except possibly at a finite

set of jump points (to our knowledge, the literature has not established the nature of

the optimal contract for other distributions).

Let DIC(x, t) be the set of incentive-compatible direct revelation mechanisms

which dominate the default outcome (x, t) for all types, i.e., mechanisms (Θ, xΘ, tΘ) ∈
Γ such that, for all θ, θ′ ∈ Θ,

u(xΘ(θ), θ)− tΘ(θ) ≥ u(xΘ(θ
′), θ)− tΘ(θ

′)

and

u(xΘ(θ), θ)− tΘ(θ) ≥ u(x, θ)− t.

It is straightforward to show, by a revelation principle argument, that we can

10See for example Maskin and Riley (1984) and Strausz (2006).
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assume without loss of generality that P chooses a mechanism in DIC(x, t) and that,

for all θ ∈ Θ, type θ of A accepts the mechanism and tells the truth.11

Given the above, we can take a pure strategy for P in Φ(M,xM , tM) to be a

function sP : M → Γ such that, for m ∈ M , sP (m) ∈ DIC(xM(m), tM(m)). We only

consider equilibria in which P ’s strategy is pure.12

Similarly, we can take a pure strategy for A in Φ(M,xM , tM) to be a function

which maps Θ to M . We take a mixed strategy for A to specify a mixed strategy

for each type of A, where a mixed strategy13 for type θ of A is a probability measure

sA(.|θ) on M .

If P ’s strategy is sP and A is type θ ∈ Θ and sends m ∈ M , let the post-

renegotiation decision and transfer be denoted by x(m, sP , θ) and t(m, sP , θ); that is,

the mechanism sP (m) gives this outcome when the agent tells the truth.

Definition 1: A renegotiation equilibrium (or r-equilibrium) of Φ(M,xM , tM) is

a profile of strategies (sA, sP ), and, for each m ∈ M , a belief Gm ∈ ∆1(Θ), such that

(i) for each θ ∈ Θ, sA(·|θ) puts probability 1 on messages m which maximize

u(x(m, sP , θ), θ)− t(m, sP , θ);

(ii) for each m ∈ M , sP (m) solves

max(Θ,xΘ,tΘ)∈DIC(x(m),t(m))

∫ θ̄

θ

tΘ(θ)− cxΘ(θ)dGm(θ);

11The standard argument would imply that P can offer a mechanism in DIC(x, t), but restricted
to types in the support of her belief. If instead she offers this kind of mechanism for the entire type
space, then types in the support of her belief will not want to choose any of the “extra” options, so
this makes no difference to her. It is convenient to assume that she offers a mechanism defined on
all types in Θ because, as we show below, this implies that in equilibrium she will offer the original
mechanism again, rather than offering the original mechanism with gaps in the type space.

12Assumptions (a) and (b) imply that P ’s optimal quantity schedule is unique (see Theorem
4 of Jullien (2000)), and so P never wants to mix over different direct revelation mechanisms at
renegotiation.

13It is possible to define a continuum of mixed strategies over M via a distributional strategy
as in Milgrom and Weber (1985), i.e., a joint distribution on M × Θ for which the marginal on Θ
corresponds to the prior F . sA(.|θ) is then the measure on M conditional on θ. See also Crawford
and Sobel (1982).
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(iii) for each m ∈ supp(sA) ≡
∪

θ∈Θ supp(sA(.|θ)), Gm is consistent with Bayes’

Rule, given prior belief F and strategy sA.

Slightly abusing notation, we denote by (x(sA, sP , θ), t(sA, sP , θ)) the final out-

come, given θ, if the strategy profile is (sA, sP ). This may be stochastic if sA is

mixed.

Definition 2: (a) A function (X,T ) : Θ → [x, x̄] × ℜ is a r-implementable

outcome function if (i) U(θ) ≡ u(X(θ), θ) − T (θ) ≥ 0 for all θ ∈ Θ, and (ii) there

exists a mechanism (M,xM , tM) such that, for all θ ∈ Θ, x(sA, sP , θ) = X(θ) and

t(sA, sP , θ) = T (θ) with probability 1 for some r-equilibrium (sA, sP , {Gm}m∈M) of

Φ(M,xM , tM).

(b) (X,T ) is strongly r-implementable if, in addition, (X,T ) is the outcome of all

r-equilibria of Φ(M,xM , tM).

A utility schedule U : Θ → ℜ is (strongly) r-implementable if U(θ) = u(X(θ), θ)−
T (θ) for some (strongly) r-implementable (X,T ). The fact that the utility schedule

U must be non-negative reflects the fact that A’s outside utility has been normalized

to zero and we allow him not to participate in the mechanism.

We refer to an outcome function (and associated utility schedule) as c-implementable

if it can be implemented in the case in which the players can be committed not to rene-

gotiate the mechanism. By standard results (see Fudenberg and Tirole (1991), Mil-

grom and Segal (2002)) (X,T ) is c-implementable if and only if X is non-decreasing,

and for all θ ∈ Θ, U(θ)− U(θ) =
∫ θ

θ
uθ(X(θ̃), θ̃)dθ̃, and U(θ) ≥ 0.14

Remark It is easy to show, using revelation principle arguments, that if (X,T )

(resp. U ) is r-implementable then (X,T ) (resp. U) is c-implementable.

The first-best decision for θ solves the problem maxx∈[x,x̄]u(x, θ) − cx. By our

assumptions this has a unique solution which we denote by x∗(θ). Furthermore, x∗

is strictly increasing in θ. We assume that u(x∗(θ), θ) − cx∗(θ) > 0 for all θ so that

14A c-implementable U is absolutely continuous and a.e. differentiable.
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there is strictly positive surplus for each type.

For future reference, we include two standard definitions of orderings of probability

distributions (see Shaked and Shanthikumar (1994)).

Definition 3: Given two distribution functions F and G, with density functions

f and g respectively, G is smaller than F in the likelihood ratio ordering, denoted

G ≼LR F , if, for all θ1 ≤ θ2,

g(θ2)f(θ1) ≤ g(θ1)f(θ2).

In the case in which f and g are both differentiable and f, g > 0, this corresponds to

the condition that, for all θ,
g′(θ)

g(θ)
≤ f ′(θ)

f(θ)
,

i.e., that the proportional rate of growth of g is always less than that of f .

Definition 4: Given two distribution functions F and G, with density functions

f > 0 and g > 0 respectively, G is smaller than F in the hazard rate ordering, denoted

G ≼HR F , if
1−G(θ)

g(θ)
≤ 1− F (θ)

f(θ)

for all θ.

4 Analysis

4.1 Renegotiation Invariance

It is straightforward to show that the ex post efficient decision schedule x∗ is

r-implementable. Take an incentive-compatible direct revelation mechanism (x∗, t∗)

which would implement it in the no-renegotiation case. There is an equilibrium in

which each type tells the truth in this mechanism and, after any message θ, the

principal offers (x∗, t∗). This is an optimal offer because A’s type is now common
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knowledge and so the default, (x∗(θ), t∗(θ)), is known to be efficient. Equally, it is

easy to implement P ’s optimal mechanism given belief F , denoted by (Θ, xF , tF ),

using a null initial mechanism - at the second stage P will choose (Θ, xF , tF ). The

questions we ask are: what other schedules are r-implementable, and how can they be

implemented? For examples of situations in which such a schedule would be desirable,

see the hold-up example in Section 2, or the discussion in Subsection 4.5. Henceforth

(X,T ) will refer to an outcome schedule other than the two described above.

Consider P ’s optimal decision given belief G ∈ ∆1(Θ) and default outcome (x, t).

Denote the minimum and maximum of supp(G) (the support of G) by θ(G) and

θ̄(G) respectively. It is straightforward to show that if an incentive-compatible direct

revelation mechanism (Θ, xΘ, tΘ) satisfies

u(xΘ(θ(G)), θ(G))− tΘ(θ(G)) ≥ u(x, θ(G))− t

then, for all θ > θ(G),

u(xΘ(θ), θ)− tΘ(θ) ≥ u(x, θ)− t.

It follows that choosing P ’s optimal (Θ, xΘ, tΘ) ∈ DIC(x, t) is payoff-equivalent to

choosing P ’s optimal incentive-compatible direct revelation mechanism for type space

supp(G) subject to the constraint that the payoff of type θ(G) is at least u(x, θ(G))−t.

Therefore, by standard results, an optimal mechanism (Θ, xΘ, tΘ) satisfies

xΘ(θ̄(G)) = x∗(θ̄(G)),

xΘ(θ) ≤ x∗(θ) ∀θ ∈ supp(G),

and

u(xΘ(θ(G)), θ(G))− tΘ(θ(G)) = u(x, θ(G))− t.

Furthermore, the downward incentive constraints bind. Therefore, if θ ∈ supp(G)

and θ′ ∈ supp(G) for θ′ > θ but (θ, θ′) ⊆ (supp(G))C then u(xΘ(θ
′), θ′) − tΘ(θ

′) =

u(xΘ(θ), θ
′)− tΘ(θ).

19



The Lemma below establishes that, in any r-equilibrium of any mechanism, the

final (post-renegotiation) decisions satisfy the usual monotonicity property (message

by message). This is because the final outcome schedule is incentive-compatible and

the utility functions are supermodular. It also establishes that the decisions are less

than or equal to the efficient decisions and (in part (iii)), using these two properties,

that decisions are deterministic - although a given type of A may randomize over

messages, each message in the support of his strategy will lead to the same final

decision (and transfer). This Lemma, and all subsequent Lemmas and Propositions,

are to be understood as referring to almost all θ.

Lemma 1 Suppose that (sA, sP , {Gm}m∈M) is a r-equilibrium of Φ(M,xM , tM),

where (M,xM , tM) ∈ Γ.

(i) For any θ and θ′ > θ, if m ∈ supp(sA(.|θ)) and m′ ∈ supp(sA(.|θ′)) then

x(m, sP , θ) ≤ x(m′, sP , θ
′);

(ii) x(sA, sP , θ) ≤ x∗(θ) w.pr.1;

(iii) Suppose m and m′ are both in supp(sA(.|θ)). Then x(m, sP , θ) = x(m′, sP , θ)

and t(m, sP , θ) = t(m′, sP , θ).

To see why part (iii) of the Lemma is true, suppose that x(m, sP , θ) > x(m′, sP , θ).

In that case, x(m′, sP , θ) must be less than the efficient quantity for θ. This implies

that some higher types must also send message m′, otherwise, after m′, θ would be

the top type and so would get an efficient quantity. This however, is incompatible

with monotonicity: some of these higher types would prefer to send m and obtain

x(m, sP , θ).

Fix a mechanism (M,xM , tM) and a r-equilibrium (sA, sP , {Gm}m∈M) of

Φ(M,xM , tM). Lemma 1 implies that for each θ this equilibrium has a determin-

istic final outcome (x(sA, sP , θ), t(sA, sP , θ)). Define an outcome schedule (X,T )

by X(θ) = x(sA, sP , θ) and T (θ) = t(sA, sP , θ), for θ ∈ Θ. This is an incentive-

compatible schedule, otherwise some type could profitably deviate by imitating an-

other type over the three-stage game. Furthermore, after anym, the outcome schedule

which P proposes in sP (m) coincides with (X,T ) for types in supp(Gm).
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The next proposition gives a modified revelation principle. It shows that the same

outcome as is achieved in the given equilibrium (namely (X,T )) can also be achieved

by giving the parties, at the outset, the direct revelation mechanism (Θ, X, T ).

Proposition 1 (Renegotiation Invariance) Suppose the outcome function (X,T )

is r-implementable. Then (X,T ) can be implemented by using as the initial mecha-

nism the direct revelation mechanism (Θ, X, T ) whose outcomes coincide with those

specified by the function (X,T ). In the equilibrium of the game beginning with this

mechanism in place, each type θ mixes over a subset of [θ, θ], and, after observing

any message in Θ, P offers the same mechanism, (Θ, X, T ), but this time the agent

reports truthfully.

In the equilibrium of Proposition 1, Amust randomize over messages in such a way

that P ’s optimal mechanism is always (Θ, X, T ), no matter what message A sends.

This renegotiation-invariance property is distinct from the renegotiation-proofness

principle. In our setting the latter would say that our three-stage game can be

regarded as a single mechanism which is not renegotiated. By contrast, renegotiation-

invariance means that the outcome of the initial mechanism is in fact renegotiated in

equilibrium, but the final outcome is the same as if renegotiation were not possible.

We have assumed that renegotiation takes place ex post. What if P , instead of

proposing a new mechanism after the initial one is played, may propose to replace

the latter with a new one before it is played but after A has learned his type? Then

it follows from Proposition 1 that in equilibrium, given mechanism (Θ, X, T ), she will

refrain from renegotiation:

Corollary 1 If (X,T) is r-implementable then (X,T) is interim renegotiation-

proof.

Proof In the Appendix.

It remains to discover which outcome functions (X,T ) are r-implementable. We

examine this question in the following subsections.
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4.2 Necessary Conditions for r-implementability

Proposition 1 enables us to establish conditions which r-implementable decision

(and hence utility) schedules must satisfy, since the form of the equilibrium described

in the Proposition restricts the possible second-stage beliefs.

Together with Lemma 1, Proposition 1 implies that if (X,T ) is r-implementable

then X(θ̄) = x∗(θ̄) and X(θ) ≤ x∗(θ) for all θ ∈ Θ. Furthermore, since (X,T )

must be incentive-compatible X must be non-decreasing. We maintain henceforth

the following assumption about X.

Assumption 1 X : Θ → [x, x̄] satisfies X(θ) < x∗(θ) for all θ < θ̄ and X(θ̄) =

x∗(θ̄).

The first part of Assumption 1 is made to simplify the exposition and we discuss

its relaxation below. In this subsection we also require strict monotonicity:

Assumption 2 X : Θ → [x, x̄] is strictly increasing.

We relax this requirement in Proposition 5 in the next subsection, on sufficient

conditions for r-implementability, to allow non-decreasing functions which have flat

sections.

The next Lemma shows that, for (X,T ) such that X satisfies these two assump-

tions, any message θ̂ which is sent in the equilibrium described in Proposition 1 is

sent by all types above θ̂.

Lemma 2 Suppose (X,T ) is r-implementable and X satisfies Assumptions 1 and

2. Then (X,T ) is r-implemented by an equilibrium (sA, sP , {Gθ}θ∈Θ) of Φ(Θ, X, T )

in which, for all θ̂ ∈ supp(sA), supp(Gθ̂) = [θ̂, θ̄].

Proof In the equilibrium described in Proposition 1, after message θ̂, P will opti-

mally offer a mechanism which gives the efficient outcome for θ̄(Gθ̂) = max(supp(Gθ̂)),

by efficiency at the top. If θ̄(Gθ̂) < θ̄ this implies that she doesn’t offer (Θ, X, T ).

Contradiction. Therefore θ̄(Gθ̂) = θ̄ for any message θ̂ in the support of sA.
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Assume that the lowest type sending message θ̂ (i.e., θ(Gθ̂)) is θ > θ̂. Then, type θ

would get zero renegotiation surplus, hence would get payoff u(X(θ̂), θ)− T (θ̂). But,

since X is strictly increasing and (X,T ) is incentive-compatible, type θ could get

a higher utility by announcing θ and then declining to renegotiate, a contradiction.

Therefore, θ(Gθ̂) = θ̂ for any message θ̂ in the support of sA.

Suppose that θ1 ∈ supp(Gθ̂), θ2 ∈ supp(Gθ̂), where θ2 > θ1 but (θ1, θ2) ∩
supp(Gθ̂) = ∅. Then, since downward incentive constraints bind in sP (θ̂), type θ2

is indifferent between (X(θ1), T (θ1)) and (X(θ2), T (θ2)). But this contradicts the fact

that (X,T ) is incentive-compatible for the type set Θ and X is strictly increasing.

Hence, the support of P ’s posterior belief is an interval. QED

Consider a schedule (X,T ) which satisfies the conditions in Lemma 2. (Θ, X, T )

r-implements this outcome by means of an equilibrium (sA, sP , {Gθ}θ∈Θ), as in Propo-

sition 1. Since no type puts positive probability on messages above their true type θ

is in the support of A’s strategy sA. Let G denote P ’s belief after message θ. Lemma

2 implies that supp(G) = Θ. Furthermore, (X,T ) is optimal for P given belief G,

so (see Myerson (1981), Fudenberg and Tirole (1991)) X must point-wise maximize

virtual surplus

u(X(θ), θ)− 1−G(θ)

g(θ)
uθ(X(θ), θ)− cX(θ),

where g is the density of G. This expression is well-defined because G is continuous

and has a strictly positive density for all θ < θ̄. If it had a mass point then the

optimal schedule X would be constant to its right;15 it would also be constant on any

interval on which the density were zero. In either case, contrary to our assumption,

X could not be strictly increasing. Therefore, for all θ ∈ [θ, θ̄),

1−G(θ)

g(θ)
=

(ux(X(θ), θ)− c)

uxθ(X(θ), θ)
. (6)

For future reference, note that the RHS of this expression is decreasing in X(θ) if

X(θ) < x∗(θ).

15See Bergemann and Pesendorfer (2001) for an analysis of mechanism design for the case of type
distributions with both densities and mass points (only in the working paper version).
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Furthermore, take any other message θ̂ in the support of A’s strategy. From

Lemma 2, the support of P ’s belief Gθ̂ is [θ̂, θ̄]. Then it is again optimal for P to offer

(Θ, X, T ), so for θ ∈ [θ̂, θ̄],
1−Gθ̂(θ)

gθ̂(θ)
=

1−G(θ)

g(θ)
. (7)

Moreover, Gθ̂ must be the same as G, scaled to the support [θ̂, θ̄], i.e.,

Gθ̂(θ) =
G(θ)−G(θ̂)

1−G(θ̂)
. (8)

As Lemma 3 below shows, (7) and (8), combined with the fact that each type

only sends messages below his true type, imply that the distribution G is smaller

than the distribution F in the likelihood ratio ordering and, therefore, in the hazard

rate ordering.

Lemma 3 (i) G ≼LR F ; (ii) G ≼HR F ; (iii) g is continuous.

The intuition for parts (i) and (ii) of Lemma 3 is given in Section 2 above. The

Lemma is key to deriving necessary and sufficient conditions for r-implementability

of an outcome schedule (X,T ). We provide two kinds of characterization. One is

in terms of the type distribution for which the outcome function would be optimal

for the principal. This is given in Propositions 2 and 4 and Corollary 2. The other,

given in Propositions 3 and 5 and Corollary 3, is in terms of properties of the decision

function X, in particular that the slope of X must not be too high. Recall that xF

is P ’s optimal decision schedule given belief F . Given G ∈ ∆1(Θ) and V ∈ ℜ, we
denote by ΓP (G, V ) ⊆ Γ the set of incentive-compatible direct revelation mechanisms

which are optimal for P if her belief about types is G and A’s reservation utility is

V .

Proposition 2 Suppose that (X,T ), with associated utility schedule U , is r-

implementable and X satisfies Assumptions 1 and 2. Then (i) (Θ, X, T ) ∈ ΓP (G,U(θ))

for some G such that G ≼LR F ; (ii) X(θ) ≥ xF (θ) for all θ; and (iii) X is continu-
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ous.

Proof (i) follows from Lemma 3(i) since (X,T ) is optimal for type distribution

G.

(ii) follows from Lemma 3(ii), (6), the corresponding equation for F , i.e.,

1− F (θ)

f(θ)
=

ux(x
F (θ), θ)− c

uxθ(xF (θ), θ)

and the fact that the RHS of (6) is decreasing in X.

(iii) follows from Lemma 3(iii) and (6). QED

In the case in which X is differentiable, we can identify restrictions which r-

implementability places on the rate at which X can increase.

Proposition 3 Suppose that (X,T ) is r-implementable and X satisfies Assump-

tions 1 and 2 and is differentiable. Then

f ′(θ)

f(θ)
+ A(X(θ), θ) +X ′(θ)B(X(θ), θ) ≥ 0 (9)

for all θ ∈ [θ, θ̄), where

A(x, θ) =
2uxθ(x, θ)

(ux(x, θ)− c)
− uxθθ(x, θ)

uxθ(x, θ)

and

B(x, θ) =
uxx(x, θ)

(ux(x, θ)− c)
− uxxθ(x, θ)

uxθ(x, θ)
.

Proof (i) By (6), if X is differentiable then g is differentiable. By Lemma 3(i),

f ′(θ)

f(θ)
−

g′(θ)

g(θ)
≥ 0

for all θ ∈ [θ, θ̄), f ′ and g′ being understood as the right-hand derivative at the lower
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bound. Since

g′(θ)

g(θ)
= −

g(θ)

1−G(θ)
−

d
dθ
(1−G(θ)

g(θ)
)

1−G(θ)
g(θ)

(10)

it follows, using (6), that

g′(θ)

g(θ)
= −A(X(θ), θ)−X ′(θ)B(X(θ), θ).

QED.

The necessary condition (9) places an upper bound on the slope of X, the bound

depending locally on the prior and on the level of X. For some priors, this upper

bound is negative at certain points; in that case a strictly increasing X cannot be

implemented and so X would have to have a flat section there. Consider the case in

which u(x, θ) = θu(x). Then the condition becomes

X ′(θ) ≤ −u′(X(θ))(θu′(X(θ))− c)

cu′′(X(θ))
[
f ′(θ)

f(θ)
+

2u′(X(θ))

(θu′(X(θ))− c)
].

Since X(θ) is strictly below the efficient level, θu′(X(θ))− c > 0. Therefore the right

hand side is negative if
f ′(θ)

f(θ)
+

2u′(X(θ))

(θu′(X(θ))− c)
< 0,

so (9) is harder to satisfy if f is falling fast.

We have assumed (Assumption 1) that X is strictly below the efficient level for all

θ < θ̄. Suppose instead that (θ, θ̄] is partitioned into open intervals (ai, bi) on which

X(θ) < x∗(θ) and closed intervals [bi, ai+1] on which X(θ) = x∗(θ). In that case, if

(X,T ) is r-implementable then, in an equilibrium of the type described in Proposition

1, all types in any interval (bi, ai+1] tell the truth. A type θ ∈ (ai, bi] randomizes in

a way which is similar to the case above but only over messages in (ai, θ]. A result

analogous to Proposition 2 would hold, but separately for each interval (ai, bi). We

omit the details.

We have also assumed that X is a strictly increasing function. For the case in
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which X has intervals on which it is constant we do not know if the conditions

given in Proposition 2 are necessary. After every message the principal’s belief must,

as above, be such that X is optimal. However, the optimal solution may involve

Myerson ironing, which depends on global properties of the type distribution, and

so the local characterization provided by (6) is not available for the flat intervals.

Different messages could in principle give rise to the same optimal X despite beliefs

which are very different in nature. Nevertheless, such functions can be r-implemented

if they satisfy the conditions of Proposition 3, as we show in the next subsection.

4.3 Sufficient Conditions for r-implementability

First we give a sufficient condition which corresponds to Proposition 2, namely

that (X,T ) would be optimal for P if she had belief G, where G is any distribution

smaller than the prior in the likelihood ratio ordering.

Proposition 4 Suppose that (X,T ), with associated utility schedule U ≥ 0, is

such that (Θ, X, T ) ∈ ΓP (G,U(θ)) for some type distribution G ∈ ∆1(Θ) such that

G ≼LR F . Suppose also that X satisfies Assumptions 1 and 2 and is differentiable.

Then (X,T ) is r-implementable.

The proof is constructive. In the equilibrium, type θ’s message strategy is given

by the distribution function

sA([θ, θ̂]|θ) =
g(θ)

f(θ)

f(θ̂)

g(θ̂)

for θ̂ ≤ θ, which ensures that P ’s posterior belief is proportional to G after every

message.

Combining Propositions 2 and 4 gives

Corollary 2 Given X which is differentiable and satisfies Assumptions 1 and 2,

(X,T ), with associated utility schedule U , is r-implementable if and only if U(θ) ≥ 0
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and (Θ, X, T ) ∈ ΓP (G,U(θ)) for some G such that G ≼LR F .

The next proposition gives sufficient conditions on X which correspond to the

necessary conditions in Proposition 3. Again, the proof is constructive. In the con-

structed equilibrium, the message strategy of type θ is given by the distribution

function

sA([θ, θ̂]|θ) =
f(θ̂)

f(θ)
exp[−

∫ θ

θ̂

z(v)dv],

where z(v) = A(X(v), v) +X ′(v)B(X(v), v) for v ∈ Θ.

Proposition 5 Suppose an incentive-compatible and individually rational schedule

(X,T ) is such that X is differentiable and satisfies Assumption 1 and condition (9).

Then (X,T ) is r-implementable.

Combining this with Proposition 3,

Corollary 3 Given X which is differentiable and satisfies Assumptions 1 and 2,

an incentive-compatible and individually rational schedule (X,T ) is r-implementable

if and only if it satisfies condition (9).

Proposition 5 establishes that any schedule (X,T ) which satisfies the necessary

conditions can be implemented by simply giving the parties the incentive-compatible

direct revelation mechanism which implements the schedule in the case in which

renegotiation is impossible. The next Proposition shows that, in the game defined

by this mechanism, the equilibrium described above is essentially unique - in any

equilibrium of the game, the outcome is (X,T ).

Proposition 6 Suppose that (X,T ) is an incentive-compatible and individually

rational schedule such that X is differentiable and satisfies Assumptions 1 and 2 and

condition (9). Then the game Φ(Θ, X, T ) has a unique equilibrium outcome. That is,

(X,T ) is strongly r-implementable.

A sketch of the proof of Proposition 6 is as follows (the full proof is in the Ap-
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pendix). Let U be the utility schedule associated with (X,T ). Suppose that there is

some other equilibrium of Φ(Θ, X, T ) with equilibrium utility schedule Ũ . Call this

equilibrium (s̃A, s̃P , G̃) and let its outcome schedule be (X̃, T̃ ). If Ũ = U then it

follows by incentive compatibility of Ũ and U that (X̃, T̃ ) = (X,T ), so assume that

Ũ ̸= U .

Step 1. Ũ(θ) ≥ U(θ) for all θ ∈ Θ. This is because any type θ has the option to

tell the truth in Φ(Θ, X, T ) and then decline to renegotiate, giving him a payoff of

U(θ).

Suppose, for example, that Ũ and U coincide for types up to θ1 and for all higher

types Ũ is strictly higher than U . This implies that, for θ > θ1,

Ũ(θ)− U(θ) =

∫ θ

θ1

uθ(X̃(v), v)dv −
∫ θ

θ1

uθ(X(v), v)dv > 0. (11)

Step 2. No type sends any message in (θ1, θ̄]. This follows from the argument

in the proof of Lemma 2. The lowest type sending such a message θ would be θ.

Having sent this message this type would then get his default payoff U(θ). But our

assumption is that Ũ(θ) > U(θ), so it cannot be part of θ’s equilibrium strategy to

send message θ.

In the equilibrium corresponding to Ũ we can assume without loss of generality

that after any message P offers the mechanism (Θ, X̃, T̃ ). This means that it would

be optimal for P to offer this mechanism to types above θ1 if the default outcome were

(X(θ1), T (θ1)) and she knew only that the message was in the set [θ, θ1]. However,

P ’s updated belief, conditional on this set of messages, about types in (θ1, θ̄] is F

conditional on (θ1, θ̄]. This is because, by Step 2, these types only send messages in

[θ, θ1]. So X̃ must equal xF (P ’s ex ante optimal schedule) for types above θ1. Hence,

by Proposition 2(ii), X(θ) ≥ X̃(θ) for θ ∈ (θ1, θ̄). However, by (11), this contradicts

our assumption that Ũ > U on the interval (θ1, θ̄].

4.4 The Linear Case

One leading case, treated in an earlier version of this paper, is the bilateral trade
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model, in which P is the seller of a unit quantity of a divisible good and A is a buyer,

type θ of whom has utility θx for quantity x. So [x, x̄] = [0, 1] and u(x, θ) = θx.

Furthermore, assume that c < θ, so that the efficient quantity for all types is equal

to 1. The seller’s optimal schedule xF is a step function corresponding to a posted

price mechanism, where xF is equal to zero below θ∗ and equal to 1 above θ∗, with

θ∗ maximizing the seller’s revenue function R(θ) = (θ− c)(1− F (θ)). Hence, neither

x∗ nor xF is strictly increasing.

Our main results above apply also to this case. The necessary condition (9) in

Proposition 3 becomes θf ′(θ) + 2f(θ) ≥ 0. Since this is independent of X ′(θ), any

increasing function X such that X(θ) = 1 for all θ ≥ θ∗ can be r-implemented

as long as this condition is satisfied by the prior. The condition is equivalent to

concavity of P ’s revenue function R(θ), which in turn is implied by the increasing

hazard rate assumption on F . The density of the mixed strategy defined in the

proof of Proposition 5 becomes in this case (f(θ̂)(θ̂)2)(f(θ)θ2)−1 for types θ below

a critical value θ′, and higher types have the same strategy as type θ′, where θ′ =

{min θ|X(θ) = 1} ≤ θ∗. It is straightforward to show that the principal’s updated

belief G is such that16

1−G(θ)

g(θ)
= θ − c,

and so virtual utility is the same for all types. Therefore P is indifferent between all

incentive-compatible mechanisms for which the individual rationality constraint binds

at the bottom. Hence it is optimal for her to offer the initial mechanism (Θ, X, T )

again. Although, for generic beliefs, only posted price mechanisms are optimal for P ,

the beliefs which arise endogenously in equilibrium are the non-generic ones which

justify the given mechanism.

4.5 Discussion

In Section 2 we presented one setting to which our analysis applies. Here we

outline several additional ones and discuss some of our main assumptions. The initial

16For θ ≤ θ′: for higher types the game is over, since the initial mechanism has to give quantity
1 to them.
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mechanism could be designed by the principal, as in our hold-up example, or by a

third party such as a social planner. If the mechanism is chosen by the principal,

the question arises why she would not simply have a null contract initially and then

implement her optimal schedule xF . In other words, why should we be interested in

r-implementability of any other schedules?

As we have seen in the case of the hold-up example, an ex ante contract serves to

give investment incentives that an ex post contract fails to provide. For a different

example, consider the case of a firm, the principal, seeking to hire a new employee,

the agent. The initial mechanism corresponds to an announced labor contract that

is designed to attract applications from potential workers. There are various reasons

why a null initial contract might be strictly suboptimal. One possibility is that

workers have a fixed cost a > 0 of applying to the firm (i.e. of taking part in

the mechanism) and the announced contract therefore has to incorporate a type-

independent rent. If the initial contract were null, the principal’s optimal mechanism

after the worker has arrived would leave the lowest types with utility below the

reservation level of 0 since a is sunk. In this case the principal’s optimal mechanism

would be (Θ, xF , tF − a), but she would have to announce it in advance, and be

legally obliged to honor it, which introduces the problem that it may be vulnerable to

renegotiation after the worker has arrived. A richer set of optimal (for the principal)

schedules could arise if workers have type-dependent reservation utilities, given, for

example, by employment contracts which they could obtain from another firm. If

this outside option is no longer available once the worker has arrived at the principal

then, again, the principal would be obliged to announce her mechanism in advance.

Her optimal mechanism in this case may be very different from (Θ, xF , tF ).

Alternatively, the initial mechanism may be chosen by a third party. For example

suppose this third party is a regulator, the principal is a firm and the agent a potential

buyer. The regulator wishes to maximize the weighted sum of the buyer’s expected

utility and the seller’s expected profits and so chooses a mechanism (Θ, x, t) that

maximizes
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∫ θ

θ

[U(θ) + απ(θ)] dF,

for some α > 1, where π(θ) is the firm’s profit and U(θ) = θu(x(θ)) − t(θ) is buyer

type θ’s utility. Using standard arguments, the optimal schedule xR∗
solves(

θ +
1− α

α

1− F (θ)

f(θ)

)
u′(xR∗

(θ)) = c,

which implies that

x∗(θ) ≥ xR∗
(θ) ≥ xF (θ).

As in the previous examples, the optimal initial mechanism is neither the principal’s

preferred mechanism, nor the efficient one. Nor, in general, is it a convex combination

of those two mechanisms.

In another similar example, the planner is the headquarters of the firm. The

division (principal) aims to maximize its own profits; the headquarters, however, is

interested both in the profit which the division makes from a particular buyer (agent)

but also in the profits to be made from this buyer by its other divisions in the future.

This profit may depend both on the type of the buyer and, because, say, of learning

effects, on the quantity consumed by the buyer, which affects future willingness-to-

pay.

The Form of Renegotiation

In the case in which the initial mechanism is chosen by a planner, we do not need

to assume that he can oblige the parties to use his mechanism. Instead, both parties

have a legal right to take part in it. Would the principal, if she could, offer a different

mechanism to be played in stage 1 instead of the planner’s mechanism? We have

already shown (Corollary 1) that she would not offer one after the agent’s type is

realized. In the hold-up example of Section 2 the agent does not know his type at

the outset, so the question of ex ante renegotiation arises - would the principal want

to propose a new mechanism before the type is realized (but after the investment
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stage)? We rule this out by assumption, on the grounds that it is unlikely in most

applications that the principal could observe the timing of this realization, and the

agent would have an incentive not to reveal it.

Our formulation assumes that after the initial mechanism is played the subsequent

bargaining takes the form of an ultimatum game. Our results extend to a model in

which there are finitely many stages at which the principal makes a renegotiation

proposal and there is no discounting. In an equilibrium17 of that game, after the

agent’s initial message, the principal always offers the initial mechanism again on the

equilibrium path and a type-θ agent accepts a new mechanism before the final stage

only if it offers a utility strictly higher than U(θ). At the final stage the agent accepts

and reveals his type as in our analysis above.

In these formulations of the bargaining game there is typically some unrealized

surplus after the play has ended. For an illustration of the kind of situation for which

this is an appropriate model, consider the hold-up example of Section 2. The seller

and buyer meet at date t and the buyer places an order, i.e., chooses a contract from

the menu which the seller pre-announced before the investment stage, and after date

t there is an exogenous finite amount of time by which trade must be completed.

This could be because the good is perishable or because at some point it will become

obsolete as a result of external competition. Alternatively, it may be that the seller

has an exogenous production window available for this buyer after which other more

profitable options will appear. In such a situation, when there is incomplete infor-

mation, it is natural that in the post-mechanism bargaining game some inefficiency

remains at the end of the game, i.e., after the deadline.

Could the principal avoid the renegotiation problem by proposing the initial mech-

anism only at the last minute before the deadline? In our hold-up example, it is easy

to see that this is not possible, since the initial mechanism must be announced before

the investment stage, otherwise the buyer would have the wrong investment incen-

tives. In the case in which the designer is a third party, it may be that she cannot

observe the precise time at which P and A meet, or the date of the subsequent dead-

17Other equilibria are outcome-equivalent.
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line. This is particularly likely to be the case when the planner is designing a general

mechanism for a population of principals and agents. It might be argued that the

principal could propose to delay and play the planner’s mechanism at the deadline;

however, the agent would have no incentive to agree, since renegotiation cannot harm

him and in principle could benefit him. A further possibility is that the initial mecha-

nism, though announced some time before the deadline, could itself stipulate, in order

to obviate renegotiation, that it must not be played until just before the deadline.

This would be difficult to enforce because, as just noted, the exact date of the dead-

line may not be observable to third parties. Moreover, the mechanism would still be

vulnerable to interim renegotiation.

Even if there is no exogenous deadline it may be the case that the principal is

able to commit to her second-stage mechanism. This is implicitly assumed in most of

the literature on principal-agent theory, in which the ultimatum game is standardly

adopted. In that case, if there is a third-party designer, our assumption is that the

designer cannot fully commit the principal to her initial mechanism. There are many

settings in which a third party finds it harder to commit another person than it is for

that person to commit herself.

We assume that the planner cannot prevent renegotiation by, for example, de-

stroying any remaining quantities of the good (in case the principal is a seller and the

agent a buyer) or by taxing away the principal’s surplus from renegotiation. Physi-

cally destroying remaining quantities might be impossible if the planner cannot verify

at what point his mechanism has been executed. Similarly, in order to tax the prin-

cipal’s surplus the planner would have to be able to verify if renegotiation has taken

place, which might be difficult if parties’ renegotiation agreements are silent or can be

claimed to form part of an entirely new contractual agreement between the principal

and the agent (for a further discussion, see Hart and Moore (1999)).

Finally, we conjecture that our results will extend in some form to models in which

the post-mechanism bargaining takes the form of an infinite-horizon bargaining game

with discounting. Consider the bilateral trade case with linear utility outlined in
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subsection 4.4. Suppose that the initial mechanism is a direct revelation mechanism18

in which the buyer announces his type and the outcome for announcement θ is a

contract according to which the buyer receives the good at time τ(θ) and pays a price

p(θ). Suppose also that the bargaining is in discrete time and the uninformed party

makes all the offers. Our conjecture is that it is possible to r-implement any outcome

function which corresponds to an equilibrium σ of the bargaining game for a belief

which is lower in the likelihood ratio order than the prior, and that this is achieved,

as in our analysis above, by giving the parties the corresponding direct revelation

mechanism, and by a mixed strategy of the buyer which, after any message, gives an

updated belief which supports, in the subsequent bargaining equilibrium, the outcome

of σ. The derivation of the buyer’s mixed strategy would have to be substantially

more complicated than in our analysis above because the property that beliefs after

different messages are scaled versions of each other would no longer hold, otherwise

the rate at which the seller would subsequently screen would vary with the buyer’s

message. We leave the exploration of these generalizations to future work.

Appendix

Proof of Lemma 1 (i) Since m is optimal for θ and m′ is optimal for θ′,

u(x(m, sP , θ), θ)− t(m, sP , θ)) ≥ u(x(m′, sP , θ
′), θ)− t(m′, sP , θ

′)

and

u(x(m′, sP , θ
′), θ′)− t(m′, sP , θ

′) ≥ u(x(m, sP , θ), θ
′)− t(m, sP , θ).

Therefore, since ux > 0 and uxθ > 0, x(m′, sP , θ
′) ≥ x(m, sP , θ).

(ii) Let M ′(θ) = {m ∈ M |x(m, sP , θ) > x∗(θ)}. By standard results, for any m,

P ’s optimal schedule given Gm satisfies x(m, sP , θ) ≤ x∗(θ) for all θ ∈ supp(Gm).

18Cramton (1985) refers to this as a direct revelation sequential bargaining mechanism.
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Hence, if m ∈ M ′(θ) then θ /∈ supp(Gm). But

pr({(θ,m) ∈ Θ×M |θ /∈ supp (Gm)andm ∈ supp (sA(.|θ))} = 0,

where pr refers to the joint distribution derived from F and sA. Therefore pr{θ ∈
Θ|sA(M ′(θ)|θ) > 0} = 0.

(iii) Suppose x(m, sP , θ) > x(m′, sP , θ). Then Lemma 1(ii) implies that x(m′, sP , θ) <

x∗(θ), and so θ < θ̄(Gm′). There are two cases to consider. (a) there exists θ1 =

min{θ̃ > θ|θ̃ ∈ supp(Gm′)}. (b) there exists a sequence {θi}∞i=1 ⊆ supp(Gm′) and

{θi}∞i=1 ↓ θ.

Case (a): downward incentive constraints bind for the mechanism sP (m
′) so

u(x(m′, sP , θ1), θ1)− t(m′, sP , θ1) = u(x(m′, sP , θ), θ1)− t(m′, sP , θ). (12)

But θ is indifferent between m and m′, so

u(x(m′, sP , θ), θ)− t(m′, sP , θ) = u(x(m, sP , θ), θ)− t(m, sP , θ).

Since θ1 > θ and x(m, sP , θ) > x(m′, sP , θ), this last equation, together with super-

modularity, implies

u(x(m, sP , θ), θ1)− t(m, sP , θ) > u(x(m′, sP , θ), θ1)− t(m′, sP , θ).

So, by (12),

u(x(m, sP , θ), θ1)− t(m, sP , θ) > u(x(m′, sP , θ1), θ1)− t(m′, sP , θ1),

which contradicts optimality of message m′ for θ1.

Case (b). By Lemma 1(i), x(m, sP , θ) ≤ x(m′, sP , θi) for all θi ∈ {θi}∞i=1. There is

no loss of generality in taking sP (m
′) to be right-continuous. This implies x(m′, sP , θ) ≥

x(m, sP , θ). Contradiction. QED
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Proof of Proposition 1 Let (sA, sP , {Gm}m∈M) be an r-equilibrium of Φ(M,xM , tM)

which r-implements the given outcome function (X,T ). Take a message m which is in

the support of sA. After this message is sent the default outcome is (xM(m), tM(m))

and P ’s belief is Gm. The minimum of the support of Gm is θ(Gm). For brevity we

refer to θ(Gm) as θm.

As argued above, the outcome function which is given by sP (m) must coincide

with (X,T ) for types in the support of Gm. Therefore (Θ, X, T ) is optimal for P given

belief Gm subject to the constraint that type θm gets at least u(xM(m), θm)− tM(m).

It follows that

(*) (Θ, X, T ) is optimal for P given belief Gm subject to the constraint

that type θm gets at least u(X(θm), θm)− T (θm).

Now suppose that the initial mechanism is (Θ, X, T ). In Φ(Θ, X, T ), A’s strategy

is defined by the two-step procedure:

(i) select a message m in M using the strategy sA;

(ii) given m, announce θm, the lowest type which sends m according to sA.

P ’s strategy is: offer (Θ, X, T ) after any message. P ’s beliefs are derived via Bayes’

Rule.

This profile clearly implements the schedule (X,T ). To see that it is an equi-

librium, note first that A is indifferent between all type announcements since any

message leads to the same schedule and all possible defaults belong to this schedule.

Therefore A’s strategy is optimal. Next, consider P ’s strategy. Initially, suppose that

P can observe the message m chosen by A in stage (i) of his strategy, in addition

to his type announcement. Then P ’s belief is Gm, with lower bound of support θm.

The default outcome is (X(θm), T (θm)). Therefore, by (*), it is optimal for P to offer

(Θ, X, T ). In fact, P only observes the message θ, not m. However, P knows that

m lies in the set {m|θm = θ} and, as just shown, (Θ, X, T ) is optimal for each such

m. Therefore P ’s strategy is optimal and so the given strategies and beliefs form an

equilibrium.

The fact that, for any m chosen at stage (i) of his strategy, A announces the lowest
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type who would send m implies that he never announces a type above his true type.

QED

Proof of Corollary 1 In the interim-renegotiation case, given (X,T ) and as-

sociated U , P proposes an incentive compatible direct revelation mechanism that

satisfies A’s participation constraint given by Û(θ) ≥ U(θ) for all θ. In the ex-

post renegotiation case, in the equilibrium of Proposition 1 P ’s optimal mecha-

nism is (Θ, X, T ) after every message m when the reservation utility is given by

u(X(m), θ)−T (m). Therefore, it is also the optimal mechanism when the reservation

utility is U(θ) ≥ u(X(m), θ) − T (m). Since this is true for every message, the same

statement is true before observing the message. Hence (Θ, X, T ) solves P ’s interim

problem. QED

Proof of Lemma 3 (i) Take θ2 > θ1 > θ. Then the distribution over Θ conditional

on messages up to θ1 is, by Bayes’ Rule,

G(θ2|[θ, θ1]) =
∫ θ2
θ

sA([θ, θ1]|θ)f(θ)dθ∫ θ̄

θ
sA([θ, θ1]|θ)f(θ)dθ

.

The denominator is strictly positive because types only send messages below them.

The integrals are well-defined because of our assumption that mixed strategies are

derived from distributional strategies.

Differentiating w.r.t. θ2,

g(θ2|[θ, θ1]) =
sA([θ, θ1]|θ2)f(θ2)∫ θ̄

θ
sA([θ, θ1]|θ)f(θ)dθ

,

so
g(θ2|[θ, θ1])
g(θ1|[θ, θ1])

=
sA([θ, θ1]|θ2)f(θ2)
sA([θ, θ1]|θ1)f(θ1)

. (13)

By (8), which applies except on a set of sA-measure zero,

g(θ2|[θ, θ1]) =
∫ θ1
θ

gθ̂(θ2)dsA(θ̂)

sA([θ, θ1])
=

g(θ2)

sA([θ, θ1])

∫ θ1

θ

(1−G(θ̂))−1dsA(θ̂),
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where sA is the measure over messages, i.e. sA([θ, θ1]) =
∫ θ̄

θ
sA([θ, θ1]|θ)f(θ)dθ.

Hence
g(θ2|[θ, θ1])
g(θ1|[θ, θ1])

=
g(θ2)

g(θ1)
,

so, from (13),
g(θ2)

g(θ1)
=

sA([θ, θ1]|θ2)f(θ2)
sA([θ, θ1]|θ1)f(θ1)

.

This proves (i) since sA([θ, θ1]|θ2) ≤ sA([θ, θ1]|θ1) = 1.

(ii) follows because if G is smaller than F in the likelihood ratio ordering then it

is also smaller in the hazard rate ordering (see Shaked and Shanthikumar (1994)).

(iii) Since G ≼LR F and f is continuous, g cannot jump up. If it jumps down

then, by (6), X must jump down because the RHS of (6) is decreasing in X. This

contradicts the fact that X is non-decreasing. QED

Proof of Proposition 4 (Θ, X, T ) ∈ ΓP (G,U(θ)) implies that G has a strictly

positive density g. We construct an equilibrium of the type described in Proposition

1 which implements (X,T ). The initial mechanism is (Θ, X, T ). (i) P ’s strategy is to

offer (Θ, X, T ) again after any message. (ii) Each type θ has a mixed strategy with

support [θ, θ] and a mass point on θ, given by the distribution function

sA([θ, θ̂]|θ) =
g(θ)

f(θ)

f(θ̂)

g(θ̂)

for θ̂ ≤ θ and sA([θ, θ̂]|θ) = 1 for θ̂ > θ. (iii) After message θ̂, P ’s belief about types

is given by G conditional on θ ≥ θ̂.

The distribution in (ii) is well-defined because G ≼LR F implies that sA is non-

decreasing and sA([θ, θ]|θ) = 1. Furthermore, by the argument in the proof of Lemma

3(iii), sA is continuous.

Since X is differentiable, (6) applied to G implies that g is differentiable. The

density of the mixed strategy of type θ is

σA(θ̂|θ) =
g(θ)

f(θ)

f(θ̂)

g(θ̂)

[
f ′(θ̂)

f(θ̂)
− g′(θ̂)

g(θ̂)

]
.
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The fact that F has no mass points and sA is continuous implies that Gθ̂ is

continuous for every message θ̂. Bayes’ Rule implies that P ’s belief over types in

[θ̂, θ̄] after message θ̂ is given by

Gθ̂(θ) =

∫ θ

θ̂
σA(θ̂|v)f(v)dv∫ θ̄

θ̂
σA(θ̂|v)f(v)dv

=

∫ θ

θ̂
g(v)dv∫ θ̄

θ̂
g(v)dv

=
G(θ)−G(θ̂)

1−G(θ̂)
.

This shows that the principal’s beliefs are correct after every message. Given those

beliefs, applying (6), it is optimal for P to offer (Θ, X, T ) again after any message.

A’s strategy is optimal because every message leads to the same offered schedule

(X,T ), so he is indifferent between all messages. This shows that the strategies form

an equilibrium. QED.

Proof of Proposition 5 As in the proof of Proposition 4, we construct an equilib-

rium for initial mechanism (Θ, X, T ) which r-implements (X,T ).

Let z(θ) = A(X(θ), θ) + X ′(θ)B(X(θ), θ). (i) P ’s strategy is to offer (Θ, X, T )

again after any message. (ii) The mixed strategy of type θ of A, sA(.|θ), is given by

the distribution function

sA([θ, θ̂]|θ) =
f(θ̂)

f(θ)
exp[−

∫ θ

θ̂

z(v)dv]

for θ̂ ≤ θ and sA([θ, θ̂]|θ) = 1 for θ̂ > θ. By (9) −z(θ) is bounded, so the integral is

well-defined. The density is then

σA(θ̂|θ) =
1

f(θ)
[exp(−

∫ θ

θ̂

z(v)dv)][f ′(θ̂) + f(θ̂)z(θ̂)].

This distribution is well-defined because f ′(θ̂) + f(θ̂)z(θ̂) ≥ 0 by (9).

(iii) Given message θ̂ ∈ Θ, P ’s belief (c.d.f) is

Gθ̂(θ) =

∫ θ

θ̂
exp[−

∫ v

θ̂
z(w)dw]dv∫ θ̄

θ̂
exp[−

∫ v

θ̂
z(w)dw]dv
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for θ̂ ≤ θ and Gθ̂(θ) = 0 for θ̂ > θ.

Note that if θ1 < θ2 < θ

sA([θ, θ1]|θ)
sA([θ, θ2]|θ)

=
f(θ1)

f(θ2)
exp[−

∫ θ2

θ1

z(v)dv],

which is independent of θ, so that any two types θ and θ′ randomize in the same way,

proportionally, over the set of messages below min[θ, θ′]. This is the property which

ensures that the principal’s posterior distribution is invariant, apart from scaling, to

the message.

To see that this is an equilibrium, note first that, by Bayes’ rule, the conditional

density after message θ̂ of type θ ≥ θ̂ is

gθ̂(θ) =
σA(θ̂|θ)f(θ)∫ θ̄

θ̂
σA(θ̂|v)f(v)dv

=
exp[−

∫ θ

θ̂
z(w)dw]∫ θ̄

θ̂
exp[−

∫ v

θ̂
z(w)dw]dv

,

so P ’s beliefs are correct given A’s strategy. A’s strategy is optimal because every

message leads to the same offered schedule (X,T ), so he is indifferent between all

messages. It remains to show that P ’s optimal mechanism is (Θ, X, T ) after every

message, i.e., that
1−Gθ̂(θ)

gθ̂(θ)
=

(ux(X(θ), θ)− c)

uxθ(X(θ), θ)

for every message θ̂ ∈ Θ and every θ ≥ θ̂.

Let for all v ≥ θ̂, kθ̂(v) =
∫ v

θ̂
z(w)dw. Then

1−Gθ̂(θ)

gθ̂(θ)
=

∫ θ̄

θ
exp[−kθ̂(v)]dv

exp[−kθ̂(θ)]
,

so we need to show that∫ θ̄

θ

exp[−kθ̂(v)]dv = exp[−kθ̂(θ)]
(ux(X(θ), θ)− c)

uxθ(X(θ), θ)
. (14)

For θ = θ̄, the LHS of (14) is zero, and the RHS is also zero since ux(X(θ̄), θ̄)− c = 0

by efficiency at the top. The derivative of the LHS with respect to θ is −exp[−kθ̂(θ)].
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The derivative of the RHS is

e−kθ̂(θ)(−k′
θ̂
(θ))

(ux − c)

uxθ

+ e−kθ̂(θ)
uxθ[uxxX

′(θ) + uxθ]− (ux − c)[uxθθ + uxxθX
′(θ)]

(uxθ)2
,

where arguments (X(θ), θ) have been omitted for brevity. Since k′
θ̂
(θ) = z(θ), this is

equal to −exp[−kθ̂(θ)] and so (14) is true for all θ. This shows that P ’s strategy is

optimal. QED.

Proof of Proposition 6 Let U be the utility schedule associated with (X,T ).

By standard results,

U(θ) = U(θ) +

∫ θ

θ

uθ(X(v), v)dv. (15)

Therefore, if every equilibrium of Φ(Θ, X, T ) has the same utility schedule then

every equilibrium gives the same outcome, namely (X(θ), T (θ)), to each type θ, since

uxθ > 0. Suppose then that there is an equilibrium with utility schedule Ũ ̸= U . Call

this equilibrium (s̃A, s̃P , G̃). Since any type θ is able to tell the truth in Φ(Θ, X, T )

and decline to renegotiate, giving U(θ), it must be that Ũ(θ) ≥ U(θ) for all θ ∈ Θ.

By Proposition 1, we can assume without loss of generality that in the strategy

profile (s̃A, s̃P ) P offers (Θ, X̃, T̃ ) after any message, where (X̃, T̃ ) is the outcome

implemented by (s̃A, s̃P , G̃).

Let θ1 = inf(θ|Ũ(θ) > U(θ)) and let θ2 = inf(θ|θ > θ1, Ũ(θ) = U(θ)) unless

Ũ(θ) > U(θ) for all θ > θ1, in which case let θ2 = θ̄.

(a) Assume that θ2 < θ̄.

Then Ũ(θ) > U(θ) for all θ ∈ (θ1, θ2), Ũ(θ1) = U(θ1) and Ũ(θ2) = U(θ2), by

continuity of Ũ and U . Since, for θ ∈ supp(s̃A), min[supp(G̃θ)] = θ it follows that,

for θ ∈ (θ1, θ2), θ /∈ supp(s̃A), otherwise θ would be the lowest type to send message

θ, hence Ũ(θ) = U(θ). So no type in (θ1, θ2) sends any message in (θ1, θ2).

Since P offers (Θ, X̃, T̃ ) after any message, (X̃, T̃ ) is optimal for P conditional

on the set of messages [θ, θ1]. Let P ’s probability distribution conditional on this set

be denoted by G̃1. Then, for θ ∈ (θ1, θ2), G̃1 must have a density g̃1 and g̃1(θ) is
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proportional to f(θ) since types in (θ1, θ2) only send messages in [θ, θ1]. Hence, by

(6) and the argument in the proof of Proposition 3, X̃ is differentiable on (θ1, θ2) and

f ′(θ)

f(θ)
= −A(X̃(θ), θ)− X̃ ′(θ)B(X̃(θ), θ)

for θ ∈ (θ1, θ2).

By Lemma 3,
g′(θ)

g(θ)
≤ f ′(θ)

f(θ)
.

So

−A(X̃(θ), θ)− X̃ ′(θ)B(X̃(θ), θ) ≥ −A(X(θ), θ)−X ′(θ)B(X(θ), θ)

for θ ∈ (θ1, θ2). Hence, if X̃(θ) = X(θ), X̃ ′(θ) ≥ X ′(θ). For small enough ε > 0,

Ũ(θ) > U(θ) for θ ∈ (θ1, θ1 + ε). Therefore X̃(θ) > X(θ) for θ ∈ (θ1, θ1 + ε) by (15).

Therefore, since X̃ ′ ≥ X ′ whenever X̃ = X,

∫ θ2

θ1

uθ(X̃(θ), θ)dθ >

∫ θ2

θ1

uθ(X(θ), θ)dθ,

which contradicts Ũ(θ2) = U(θ2).

(b) Now assume that θ2 = θ̄, so that Ũ(θ) > U(θ) for all θ ∈ (θ1, θ̄].

According to the equilibrium strategy s̃A, types in (θ1, θ̄] only send messages in

[θ, θ1], so, conditional on this set of messages, P ’s belief G̃1 satisfies

1− G̃1(θ)

g̃1(θ)
=

1− F (θ)

f(θ)

for θ > θ1. Also (X̃, T̃ ) is optimal for P given this belief so

1− F (θ)

f(θ)
=

ux(X̃(θ), θ)− c

uxθ(X̃(θ), θ)
.

From Lemma 3
1− F (θ)

f(θ)
≥ 1−G(θ)

g(θ)
=

ux(X(θ), θ)− c

uxθ(X(θ), θ)
,
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so X(θ) ≥ X̃(θ) for θ ∈ (θ1, θ̄) since uθx > 0. By (15) this contradicts the fact that

Ũ(θ) > U(θ) on this interval. QED
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