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Abstract

We present a new simulation scheme which allows an efficient sampling of reconfigurable
supramolecular structures made of polymeric constructs functionalized by reactive binding sites.
The algorithm is based on the configurational bias scheme of Siepmann and Frenkel and is powered
by the possibility of changing the topology of the supramolecular network by a non—local Monte
Carlo algorithm. Such plan is accomplished by a multi—scale modelling that merges coarse-grained
simulations, describing the typical polymer conformations, with experimental results accounting
for free energy terms involved in the reactions of the active sites. We test the new algorithm for a
system of DNA coated colloids for which we compute the hybridisation free energy cost associated
to the binding of tethered single stranded DNAs terminated by short sequences of complementary
nucleotides. In order to demonstrate the versatility of our method, we also consider polymers
functionalized by receptors that bind a surface decorated by ligands. In particular we compute the
density of states of adsorbed polymers as a function of the number of ligand-receptor complexes
formed. Such a quantity can be used to study the conformational properties of adsorbed polymers
useful when engineering adsorption with tailored properties. We successfully compare the results
with the predictions of a mean field theory. We believe that the proposed method will be a useful
tool to investigate supramolecular structures resulting from direct interactions between function-

alized polymers for which efficient numerical methodologies of investigation are still lacking.



I. INTRODUCTION

Polymeric constructs functionalized by active groups that can selectively react with com-
plementary groups are at the core of many biological systems (e.g. cell signaling and protein
docking) and are becoming a very popular tool to engineer new functional materials in the
field of nanotechnology.[2H6] For instance, DNA strands tipped by reactive sequences of sin-
gle stranded (ss)DNA are currently used to mediate direct interactions between colloids, [2-4]
in DNA origami to assist the assembly of DNA tiles into complex patterns,[7] or to design
supramolecular gels.[8, 9] Functionalized polymers are also used in nanomedicine, in partic-
ular in drug delivery to engineer selective targeting. |5, 6] [10]

Functionalized polymers are difficult to model because their properties result from a
synergistic effect between the reaction free energy of the functional groups and the polymer
conformations that are sharply constrained by the tight binding acting between reacting
spots.[ITHI3] These two contributions to the free energy are comparable (though usually
of opposite sign) and, in the interesting regimes, are accessible by thermal fluctuations.[12]
Hence a statistical mechanics treatment of these systems needs to account for these two
effects. [14H16]

This leads to a multi-scale problem that hampers the modelling of these systems. In
particular an adequate description of the reactive binding sites requires atomistic models that
become unpractical when sampling polymer conformations. This can be better explained
by considering the two systems that will be treated in this paper. First we will study the
hybridisation of tethered inert strands of ssDNA terminated by a reactive sequence as used
in DNA coated colloids (DNACCs). Here a detailed model necessary to properly describe
the hybridisation free energy of the reactive sequences[I7] cannot be employed, in realistic
computational time, to study typical DNACCs made of thousand of different ssDNA (long
of up to 50 base pairs) terminated by short strings of active bases.[18] In a second system we
will study the conformation and the density of states of functionalized polymers adsorbed
by ligands distributed on a surface as motivated by recent experiments.[5] Similarly to the
case of DNACCs, a proper sampling requires exploring many configurations grouped in
different topologies in which different receptors bind different ligands. Realistic dynamics of
atomistic models cannot access the timescales of such systems.

In this paper we study the possibility of designing non—local Monte Carlo (MC) moves



to sample between supramolecular polymer configurations with different topologies. Specif-
ically we propose an algorithm that could, in one step, bind/unbind two tethered strands
in a system featuring DNA-mediated interactions or that could attach/detach a receptor of
a functionalized polymer to/from a ligand tethered to a surface. In doing so we will employ
a multi-scale approach in which the free energy of the reacting sites is taken into account
implicitly, using accessible experimental results.

Some steps in this direction have already been taken.[I4] [15] In particular in Ref. 14 we
used MC Rosenbluth Sampling [19] to estimate the hybridisation free energy of tethered sin-
gle stranded DNA constructs. Because Rosenbluth weights can be linked to the free energy
of the constructs, [19] it is possible to calculate the configurational part of the hybridisa-
tion free energy by comparing independent Rosenbluth simulations of free and hybridised
strands.

In this paper we want to extend these methods to a dynamic algorithm in which the
supramolecular network is reconfigured on the fly. There are different reasons for aiming
at this step. Notoriously the quality of the sampling in static Rosenbluth simulations
becomes poor for long polymeric constructs. [20, 21] Moreover, from a more practical point
of view, a dynamic scheme is much more versatile because it allows to study a broader range
of systems for which pre—computing Rosenbluth weights (as done in Refs. [14], [15) would be
unfeasible. In particular this has motivated the study of the targeting problem presented in
the second part of the paper.

This paper is organised as follows. In Sec. |lI| we present our algorithm. We present the
multi—scale approach, detail the algorithm by which supramolecular structures are generated,
and derive the acceptance rules used to swap between them. In view of the similarity with
the configurational bias MC (CBMC) scheme,[22] and of its ability to swap between config-
urations with different topologies, we label the new algorithm topological CBMC (tCBMC).
In Sec. [[T] we test tCBMC for DNA—coated colloids systems. In particular we show how
tCBMC can measure the hybridisation free energy of two tethered constructs in agreement
with previous studies. |14, [15] In Sec. we then consider a polymer functionalized by re-
ceptors targeting ligands distributed on a surface. In particular we show how tCBMC, in
tandem with a powerful umbrella sampling scheme,[23] allows to compute the density of
states of an adsorbed polymer as a function of the number of functionalized ligands. We

validate our finding using a mean field (MF) theory that we present in appendix . Finally
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FIG. 1: (a) The hybridisation of two tethers functionalized by reactive sites is controlled by the
hybridisation free energy of the free active groups in solutions AGq (b), and by a configurational

term AGenr due to the tethering constraint.

in Sec. [V] we present the conclusions and the perspectives of our work.

II. THE METHOD

Fig. [la depicts the typical situation that we are interested in modelling. Two polymeric
constructs, tethered in r; and ry, are tipped by complementary reactive elements (A and A).
We discern between two possible states in which the constructs are either free (f) or react
giving rise to a bound state (b). In the latter case we say that a supramolecular structure,
spanning between r; and rs, has been formed. Here we introduce an algorithm that samples
directly between configurations of type f and of type b. For simplicity we keep the tethering
points r; and ry fixed (this constraint can be removed combining the current technique with
standard local algorithms).

Our coarse-grained approach does not model the atomistic details of the reactive elements.
Instead we use implicit terms (ga, ¢z and ¢,3) as internal partition function of the active
groups and bound complex (A, A and AA, respectively). The internal partition functions
can be linked to the equilibrium constant of the dimerisation reaction between free reacting

groups in solution (Fig. [1p). In particular the equilibrium condition between the chemical



potential of the reactants i, = f151 + 172 implies the following relation[I2] [13]

AR _ g e~AAG0 )
qAqx pe

where pg is the standard concentration. The partition functions of the free (f) and bound

(b) tethers can then be derived summing over all the possible constructs’ configurations
Zy = quZ/dcf e~PHD(er) (2)
% = 4 [ done () ~ ), 3)

where c; represents two polymers emanating from r; and ry, while ¢, is a single polymer
branch (see Fig. [I)). In Eq. [3] fee(cy) is the function that provides the end-to-end distance
of a bound configuration (c,) and we have defined 75 = |r; — ry|. In Egs. [2| and [3| H\)
and H® are the configurational energies of the free and of the bound constructs. They also
account for the interactions of the chain with the environment (hard walls, other polymers,
etc.). In this study the polymeric constructs are modelled by flexible freely-jointed chains
(FJCs) made of Ny and Ny segments for the free constructs and N, = N; + N, segments
for the bound construct. The nature of H® and H) will be further specified in the next
sections.

The method of Fig. [la may resemble identity swap MC schemes that have been used, for
instance, to sample populations of polymers with different lengths by removing monomers
from longer chains and regrowing them at the end terminals of the shorter chains.[24] How-
ever in Fig. [la we have to account for the loss of three degrees of freedom of the hybridised
chain due to the fixed—end—point constraints.

Notice that we have used a point—like representation for the reactive elements. This may
look limiting, for instance, in the case of DNACC systems where the length of the hybridised
segments can be comparable with the Kuhn length of the constructs. In this regard, we
observe that it is rather straightforward to generalise our procedure to more detailed models
that include a non trivial representation of the reactive groups.

Here we explain how we create new polymer configurations. Like in Rosenbluth sampling,
in order to generate free configurations f, we grow two open chains by sequentially adding
N; and N segments u; starting from ry and ry respectively.[25] The i—th segment (u;) is
sampled within & possible ones (u;,, with @ = 1,---k) that are generated with a uniform

distribution. In this work we use £ = 20. The segment u; is chosen within the &k possibilities



with probability p; o ~ eXp[—ﬁHZ.(f)(ui,a)]. Hi(f)(u) is the interaction of the segment u
with the surrounding environment, including the fraction of chains already grown.[19] If
VVZ.(f) = k! ZZ:1 exp[—BHi(f)(ui,a)], we can define the Rosenbluth weight of the newly
generated configuration (c;) in the standard way W) (c;) = vazbl I/Vi(f). Following the
previous procedure, a free configuration c; is generated with probability
pep) = S (@)
! W (cs)

A similar algorithm can be used to grow bound constructs b. However in this case we
have to further bias the sampling to satisfy the distance constraint on the end points. If the
1 — 1-th segment terminates in x; 1, the k possible segments are generated with probability
distribution function given by the normalised density of FJCs made of N, — i segments
with end point distance equal to |ro — x;_1 + 1, 4|.[19] This probability function is given by
p(|lre — X1 + Wi o|; Np — 1) /p(Jr2 — X;21]; Ny — i + 1), where p is the end-to-end distribution
function of FJC constructs.[26, 27] In practice, the generation of the trial segments u; , is
done by a hit—-or-miss algorithm that uses the known end-to—end functions p.[26], 27] We
then define W®(c;) as the Rosenbluth weight of the bound construct which is computed
as for free polymers but using H® instead of H). Notice that the previous procedure

produces a hybridised construct ¢, with probability

Ny e_BH,i(b)(ui) p(‘I‘Q —X;_1+ ua‘; Nb . Z)

i=1 VVZ-(b) p(jra —xi—1|; Np —i+ 1)

_ 5(fee(cb) - 7”12) e_fBH(b)(Cb) (5)
p(ris, Ny)  WO(e)

pley) =

where we recall that f.. is the end—to—end distance of the bound configuration c;.
Growing fixed—end chains has already been used in polymer simulations.[28-31] Instead,
what we propose here is an algorithm that samples between constructs of type ¢, and

constructs of type cy. This can be done using the following acceptance rules

(n)
; Po W(b)(cb )
acc, = min|l,
(s, V) AW
accyp = min[l, = I,
pe W®(c,”)
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FIG. 2: Coarse-Grained model of DNA strands tipped by reactive sites (circles). The squares
represent the charges of the negative backbone that are coarsened (in groups of three) at the
junction points of the chains and rescaled by a normalisation factor (z) that is provided by DLVO

theory.[32]

as can be derived using Eqgs. (1-5). In the previous equations ™ and ¢ distinguish the
trial (new) configuration from the current (old) system configuration. As in CBMC[22] the
Rosenbluth weight of the old configuration is computed by re—growing the chains. It is
important to notice that our method is not constrained to the knowledge of the end-to-end
distance functions p. In particular using the self-adapting fixed-end-point scheme of Ref. 31,
it is possible to design guiding probability distributions that can replace p when directing
the growth of the chains toward the target point.

Finally using the acceptance rules (Egs. @ it is possible to calculate the “polymeric free

energy” associated to the formation of the bound construct as
AGhys = AGy + AGent = —kpT log [Lb

Lf] ,

(7)

where Ly and Ly are the number of times that the simulation has visited a bound and a free

state.

III. DNA-COATED COLLOIDS

In this section we utilise tCBMC to compute the hybridisation free energy associated
to bridge formation in DNACC systems (Fig. and compare the results with previous
attempts. [14], [15] We map a single-stranded DNA into a FJC [33] with unit length segment



equal to ¢ = 1.25nm. The unit length segment ¢ has been chosen comparing end-to-end
distances with a more accurate model of the DNA strands.[I7] Each segment represents
three bases, resulting in an averaged distance between nucleotides compatible with the ex-
perimental results [34], 35] (0.43-0.5nm). The negative charges of the backbones are then
grouped at the junction point between two unit segments (Fig. . A similar model was
used in Ref. 36l We consider the tethers studied by Rogers et al. [18] of a Poly(T) string
of 65 nucleotides terminated by a reactive sequence. The interaction between two charges
(¢ and j) placed at distance 75 is provided by a screened potential as given by the DLVO
theory[32]

VDLVO(Tij) o <Z€)2 eXp[_Tij/AD] (8)

47T€0€R Tij

where z is the effective charge correction[32]

_ expla/Ap] ‘ (9)

1+a/Ap

In Eq. 8| Ap is the Debye length,[32] and ¢ is the vacuum dielectric constant.  In the
implicit solvent representation of Eq.[d] a is the excluded salt region which has been taken
equal to a = 0.5 nm.[33] The temperature is fixed at T = 308K,[32] eg = 75, and we
used a monovalent salt concentration equal to 125 mM.[I8] The free constructs are made of
N; = Ny =21 segments, while the hybridised chain is made of N, = N; + N, segments with
fixed end-points. H® and H) are then given by the sum over all the pairs of charges of
the DLVO interaction (Eq. [8)) augmented by the impermeable wall term. Notice that the
end—points of the free chains also carry a charge and that the charge on the middle point of
the bound construct is doubled. The excluded wall term constrains the constructs to remain
within two parallel planes placed at distance h (Fig.[2]). Below, we consider the case in which
the two tethering points are positioned opposite each other (i.e. on a line perpendicular to
the two surface planes) and do not move along the surface.

Simulations are developed following the scheme presented in the previous sections. In each
MC cycle, we either attempt to change topology (with 20% probability) or we implement a
“standard” MC move (with 80% probability). The change-of-topology movement attempts
to hybridise or to free a bound state with equal probability. When attempting to make
(open) a bridge if the state is in the bound (free) state the MC move is rejected. “Standard”
MC moves consist either in regrowing full chains using CBMC (with 20% probability) or

9



in local rotations of chain branches by mean of pivot and double pivot MC moves. The
swap between free and bound states is done as described in the previous section using the
acceptance rules given by Eq. [6] The hybridisation free energy is then computed using Eq.
[7 by counting the number of times that bound and free states have been visited.

It is convenient to bias the run to explore a comparable number of bound and free
configurations. This can be done by using a free energy bias AGy;.s that pushes the sim-
ulation, say, toward bound states. On the fly we can then iteratively correct AGhi.s by
a factor log(Ly/L;) (where f/b/f is the number of times that the Markov chain has vis-
ited the bound/free state starting from the last time that AGy;,s has been corrected) until
convergence where AGhias = AGhyp.

Fig.|3n (symbols) shows the results for AG.,¢ (Eq.[7)) at different plane-to-plane distances
h (Fig. . Notice that the configurational free energy cost AG.,; has been translated by
kpTlog(psl?). This factor appears (along with AGy) as a pre—factor in the acceptance rules
in Eq. [6] (notice that[26], 27] p ~ ¢=3). If compared with the static Rosenbluth method of
Refs. 14, [15 (full lines) the agreement is perfect (within the scattering due to the noise). In
the inset of Fig. |3 we report the probability distribution function of the Rosenbluth weight
(W) of f and b constructs recorded using tCBMC. While for h = 10¢ we have overlap
between the free and the bound distributions, for h = 21¢ the overlap region is minimal.
Nevertheless convergence is achieved also in the latter case. This proves the robustness of
the method and highlights the importance of using a bias (AGpi,s) to record a sufficiently
high number of jumps between f and b states.

To better highlight the different nature of the proposed method with respect to previous
studies,[14], [15] in Fig. |3p we compare the Rosenbluth weights distributions obtained in the
simulation of Fig. [3 for h = 10¢ with those obtained in Rosenbluth sampling.[I4] [15] As
expected, |20} 21] we find that the distributions of the static runs|[I4] [I5] are very different
from the distributions obtained with tCBMC. Moreover two different equilibrium runs (in
which jumps between free and bound states were forbidden) provide the same distributions
as tCBMC (full lines in Fig. |3). This confirms that tCBMC is indeed an equilibrium run.
If this validates tCBMC from a technical perspective, we believe that the strength of the
method, as compared to static approaches, lies in its versatility. This is illustrated in the

next section.
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FIG. 3: (a) AGeus as a function of the plane distance calculated using Rosenbluth runs|14] [15]
(full lines) and using the new proposed algorithm (red squares). Inset: distribution functions of
the Rosenbluth weights generated in the tCBMC runs for /¢ = 10 and h/¢ = 21. (b) Distribution
functions of the Rosenbluth weight for A = 10¢ as obtained in Rosenbluth sampling (RS), in
tCBMF, and in “standard” MC moves. In part (b) and in the inset of part (a), f and b label free

and bound constructs.

IV. ADSORBED POLYMERS

In this section we want to demonstrate how tCBMC can handle situations in which the
typical configurations include a large number of different topologies separated by entropic
barriers that cannot be easily overcome by standard simulations. We will study a system
of polymers functionalized by receptors targeting a surface decorated by ligands (Fig. )
Most of the studies on polymer binding to surface (e.g. Ref. 37H40) have focused on non—

selective adsorption in which each monomer of the chain interacts with every element of the
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FJC

FIG. 4: A system of polymers functionalized by receptors targeting a surface decorated by

ligands:[5] (a) definition of the model parameters, and (b) loop inserting/deleting MC moves.

surface. Here, we consider the case in which a selected fraction of the monomers carries a
binding site (receptor) whereas all other monomers cannot bind to the surface. Moreover,
the surface is considered to display discrete binding sites (ligands) at a given surface density
(Fig. . In this case the adsorbed chain can neatly be decomposed into a series of loops
encompassed by two tails (Fig. 4). The selective-monomer case is usually addressed by
standard simulations[41] or using theoretical modelling.[42] 143]

In this section we provide a valuable alternative by using the algorithm of Sec. [[I] to
design MC moves that allow to create/destroy loops in one go. We will use this algorithm
to calculate the density of states (£2(m)) of adsorbed constructs which we define as

ef/gAGO

Zots =Y Z(m) Z(m) = Q(m)[

1 Po

| (10)

where Z,qs (Z(m)) is the partition function of an adsorbed chain (binding m ligands), and
AG) is the free-energy of the receptor-ligand dimerisation. We will compare our findings
with the results of a mean field theory that will be developed to rationalise recent findings, [5]
and that has been detailed in Appendix [A] Our methodology has the potential to unveil how
the typical configurations of the adsorbed chain affect the thermodynamics of adsorption. [5]
This is more complicated than the case of functionalized nano—particles for which the con-
figurational costs are simply additive in the number of bound tethers.[10]

The system of Fig. has been motivated by recent experiments on constructs of the

biological polysaccharide hyaluronan (HA) functionalized with hosts reacting with guests
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immobilised on a surface.[5] HA have an unusually large Kuhn segment length,[44] and were
here modelled by non-interacting FJCs made of Ny, = 64 segments of length ax = 14nm.
On a FJC we randomly distribute ng receptors placed at the junction points between two
segments (notice we have Ny, + 1 available spots). Each receptor can selectively bind a
surface on which ligands are randomly distributed at a density equal to 1/d?, where d is the
averaged distance between ligands. In this study we have used ng = 27.[5] Each topology is
characterised by a number m of formed ligand-receptor complexes (Fig. [da).

The tCBMC scheme employed is depicted in Fig. . A loop is generated/destroyed as
a result of the binding/unbinding of a randomly chosen receptor to/from a randomly cho-
sen ligand. Such a scheme requires the ability to generate loop configurations with fixed
end-points (¢4 in Fig. ) and double—loop configurations with three fixed point constraints
(cap in Fig. 4p). Notice that in Fig. , cqp differs from ¢, only for the dashed parts of
the chains. The remaining fraction of the polymer (full lines) is not affected by a single
step implementation of the MC move and may include more loops. We generate configura-
tions of type ¢, and cq, using the same procedure outlined in Sec. E In particular when
growing a loop of length N,, we use the FJC end-to—end probability distribution function
p(|xi—1 + W0 — ro|, Ny — )20, 27] to generate trial vectors that are then sampled using
the corresponding Rosenbluth weights (Sec. [[I)). Here x;_; is the end point of the (i — 1)~th
segment relative to the starting point of the loop. With such a procedure we can (re)grow
single and double loop configurations and calculate their Rosenbluth weight (that we label
by W@ and W to distinguish between the two different topologies).

Given the previous procedure of generating configurations, the algorithm works as follows.
When making a loop we attempt a reaction between a random receptor (chosen within the
mp,s free ones) on the polymer and a random ligand (chosen within the my s ones that

are free) on the surface (see Fig. . We then grow a new configuration of type cflnb) and
(n)

a,

calculate the corresponding Rosenbluth weights W (@b (¢\")). Similarly, we retrace the old

configuration c((;;) and calculate its Rosenbluth weight W(“b)(cg%)). In the reverse move we
try to un—bind a host-guest complex randomly chosen within the m that are present in the
system (Fig. ) Similarly to what was done before, we grow a new single loop configuration

(n) (0)

Cay » (re)grow the current double-loop configuration (c,;), and measure the corresponding

Rosenbluth weight (W@ (¢ and W (@) (cgog)) The acceptance rules for the two moves are

13



then given by

—BAGo
mR,fm&fe ) (11)

m+1  ps
WD) p pllrl, NI, o)
T (ab) (¢ ()) p(|ra + 1o|, Ny + Ny)

m Po
(me + 1)(myy + 1) e=BAGo
'W(ab)( N p(|ra + 18], N, ‘I—Nb)}
W@ (L)) p(Iral, Na)p(|rs, No) 1

aCCop—ab = min [17

ACCqpsap = Min [1, (12)

We recognise that the structure of Eqs. |11 and [12|is the same as that of Egs. |§| (with W@
and W@ replacing W) and W® respectively). The pre-factors are due to the fact that,
following the flow of the algorithm, the probability to generate a c((znb) or a c((l’z) configuration
is equal to 1/(mpg gme ) and 1/m respectively.

Notice that the randomly selected reacting receptor could be on the tail of the construct
(rather than in a loop as in Fig. p). In this case the algorithm should sample between a
configuration made of a tail and a configuration made of a tail plus a loop. This can be
easily implemented by generalising the way configurations are generated and Egs. and
121 For completeness, we detail how the algorithm works in this case in Appendix [B]

We also report that more efficient runs were obtained by implementing a MC move that
re-arranges two loops by swapping the ligand which a receptor is bound to. The details
are also reported in Appendix [B] Notice that such a move would be required to guarantee
the ergodicity of the algorithm in the case that the choice of the free ligand to bind /unbind
(when making/destroying a loop) would be restricted (for efficiency purposes) to a region
enclosing the tethering points. In that case certain loops with stretched strands could be
unreachable by an algorithm that would only use making/destroying loop moves.

Alternatively one can think of biasing the choice of the ligands in more subtle ways that
also depend on the length of the loops/tails that encompass the randomly selected receptor,
as well as on the positions of the ligands to whom such loops/tails are tethered.

Those complications were avoided in our current study. In particular, we randomly
distributed ligands across a square of side L = 11 - ax with periodic boundary conditions
and, when attempting to bind/unbind receptors, the ligands were chosen uniformly.

We are now in a position to sample between the different topologies of an adsorbed

polymer by adding and removing loops. This could be hampered by high free energy barriers
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resulting in runs exploring only a very few distinct m. To avoid this kind of trapping, we have
used the successive umbrella sampling (SUS) scheme of Virnau and Miiller.[23] At a certain
step of the simulation we only allow sampling between configurations with m and m — 1
attached receptors. This implies that if the system is in a state with m (m— 1 receptors) and
we attempt to create (destroy) a loop the MC move is immediately rejected. By sequentially
moving the window within which the sampling is constrained, we can reconstruct Z(m) by

using[23]

_ 0 N 9 S
ST A e -

where N, and N,,_; are the number of times that the run has visited a configuration with
m and m — 1 complexes formed when constrained between m — 1, and m.

In Figure [5ln we report the density of states Q(m) (Egs. [13| and normalised by Q(1).
While increasing the average ligand-ligand distance d;, ©2(m) decreases. Interestingly, in
intermediate regions, {2(m) exhibits a maximum.

This finding is easily interpreted. 2(m) is the result of the competition between the
combinatorial gain of many ligands that can bind many receptors and the configurational
cost associated to the formation of loops and to the polymer surface interaction (Fig. [4)).[45]
Increasing the ligand density (i.e. decreasing dy) rises the multivalency of the system, and
the density of states increases because of the combinatorial gain.

This statement can be made more rigorous considering a MF theory in which ligands are
regularly distributed with a homogeneous density 1/d?. We can show that in this approxi-
mation (see Appendix the partition function can be written as

One(m) = W[V?’/_Q”]mlxp(m) , (14)

d?a[{

where W(m) is a function that only depends on the architecture of the functional chain (see
Eq. , and ny is the number of ligands present on the plane. In particular ¥ accounts
for the multivalency of the receptors on the chain but is independent of d,. Interestingly
Eq. predicts a scaling relation between (2 and d, that has been tested in Fig. for
the simulation results of Fig. . Satisfactorily, when plotting Q(m)d?(m_l) we find a nice
collapse of the density of states at different ligand concentrations. Importantly at small d,
simulations agree with the MF theory. This is not the case when d, becomes comparable

with the length of the Kuhn segment ay. Indeed in this case the typical loop configurations
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FIG. 5: Density of states versus number of bound receptors at different ligand concentrations (the
arrow direction points toward data sets with higher dy). In part (a) Q(m) is reported in simulation

units while in (b) we test the mean field scaling prediction of Eq. (14 (full line).

become more stretched, resulting in a density of states smaller than what is predicted by the
MF theory. Overall, the results of this section validate the use of tCBMC to study selective
adsorption of polymers, the key advantage being the possibility to sample directly between

different adsorbed states by means of dedicated MC moves.

V. DISCUSSIONS

Functionalizing complex macromolecules by reactive elements is nowadays a popular tool
to engineer self-assembling systems and smart aggregates. In spite of the high degree of

designability of these materials, efficient simulation methods are hampered by the multi—
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scale nature of these systems.

In this paper we have developed a Monte Carlo scheme dedicated to the study of thermally
reconfigurable supramolecular networks. This scheme combines an implicit treatment of the
reactive sites with coarse grained simulations that are used to sample the polymeric network.
Based on our previous works, [I4] [15] and similar to what is done in existing literature,[28-31]
we have used schemes that can generate polymers whose configurations are constrained by
the reactions of the active spots. Comparably to what is done in configurational bias MC, [22]
we use the bias measured while generating these configurations to implement dynamic MC
moves between them. The novel development in the present case is that we were able to
directly sample between states with different topologies.

First we tested the algorithm by considering tethered constructs tipped by reactive spots
as in systems of DNA coated colloids. We have demonstrated that the proposed method
can reproduce the correct hybridisation free energy previously obtained using established
methods.

We have then studied a system of polymers functionalized by receptors binding ligands
distributed on a surface. In this case many possible topologies are present, with polymers
exhibiting multiple loops while binding different groups of receptors to different groups of
ligands. Such topologies are separated by entropic barriers that hamper the efficiency of
algorithms based on local Monte Carlo moves. We have demonstrated the ability of the
proposed algorithm to handle also this system, supporting the usefulness of the proposed
method with respect to existing techniques. This has been done by measuring the density of
states of adsorbed chains and by comparing them to the predictions of a mean field theory.
In appendix [A] we show how this quantity can be used to derive, e.g., binding isotherms
and to identify regions in parameter space where the functionalized constructs discriminate
sharply between surfaces with high and low ligand coverage.[5l, 10] This “superselective”
behaviour is desirable when engineering smart systems for drug delivery.

We believe that the proposed method could support the understanding and the design
of supramolecular systems. For instance, concerning DNA coated colloids, it will allow
to calculate the full density of states of two particles cross-linked by a given number of
bridges. This will highlight the role played by tether—tether interactions which is usually
neglected in the modelling of micron-sized particles[14] [15] (18] but which has been shown to

be relevant for particles of sub-micron size.[36] Concerning selective targeting, the proposed
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method could aid the design of functionalized chains resulting in desired properties. In this
respect, it will be important to generalise our scheme to worm-like chain models and study
how the ligand-receptor affinity is altered when the receptor is mounted on a semi—flexible
segment. [46]

This can be done in view of the fact that it is possible to grow fixed end—point chains
featuring strong intramolecular interactions between adjacent segments of the chains.[31]

The study of excluded volume interactions between polymers is also desirable. In a more
general perspective, it will be interesting to explore the usefulness of the method when
applied to other relevant systems like, for instance, network forming polymers.[8) [0, 47, 48]
This will deserve future investigations.
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Appendix A: A Mean Field Theory for Adsorbed Chains

In this appendix we derive the mean field estimate that has been used in section to
compare the partition function of an adsorbed polymer Z(m) (Eq. [14] and Fig. [5). This
is possible in view of the fact that we are taking ideal constructs for which the partition
function of an adsorbed chain can be decomposed into the product of loops and tails.

We first concentrate on calculating the partition function of a tail made of n segments
(Zian(n)) and the partition function of a loop made of n segments with end points tethered

at a distance equal to r (Zieep(n;7)). By means of Rosenbluth sampling we obtain

0.55
Ztail(n) ~ % n>1,
(i) = 2 a1

Ziail and Zyoep are calculated with respect to the partition function of an ideal chain of
length n and fixed starting point. In particular, in Eq. |Al|the 1//n and 1/n terms are the

corrections due to the impermeability of the plane, while the end point constraint in Zj,p
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is accounted for by the distribution function p(r,n).[20, 27] We define by z; (i =1, -+ ,ng)
the ordered sequence of the positions of the receptors along the chain (x; € [0, -, Neeg]
with z; < z; if i < j).

Using Eq. we can compute the partition function of a chain binding m ligands (placed
inr,, a=1,---,m) to the m receptors z,, (where o, < 05 if a < j):

e*,@AGO m
Z({zou 7)) = Zean(ro)Zea(Noos = 0,) [——] "

m
: H Zloop(|ra - roc—1|7x0a - onﬁl)'

a=2

(A2)

In the previous expression o labels one of the ng!/(m!(ng—m)!) different sets of m receptors
taken from the ng ones present on the chain.
Next we approximate the end-to—end distribution function in Eq. with a Gaussian

p(r,n) ~ < 5 )3/2 exp [— 31 } ) (A3)

2 2
2nagm 2a5n

Although this is a good approximation only when n is large we have verified, using the
explicit form of the end-to—end distance p(r,n),|26] 27] that the relative discrepancy in the
final result is always smaller than 2% (data not shown).

We now approximate the ligand positions {r;} by a homogeneous distribution of density
1/d2. Practically this allows to replace sums into integrals as follows

Z[.}:[di%]m/drl...drm[.] (A4)

T

Using Eqgs. [AT], and [A3]into Eq.[A2] we can calculate the partition function of a chain

adsorbed by the receptors z,, (« =1, -+ ,m)

Z({wo )~ Y Z({wiwi}) = ne FBAGOW [\/m]m—l

v} pe diax
1 - 1 3/2
0.552 [ }
\/xal (Nseg - xUm) g Loy — Toy_y

(A5)

where n, is the number of ligands present on the plane which is taken to be a square of

side length equal to 11 - ax (see Sec. . Finally summing over all the possible sets of m
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FIG. 6:  Number of polymers adsorbed per unit area (I') and selectivity parameter (a) as a

function of the scaling parameter y at two different concentrations.[5]
receptors (o) we obtain Z(m) as defined in Sec. [[V}

Zm) = 3 2({r..)
i Y VTR LT (6

Po d? aK

-

1 m 1 3/2
U = 0.55% [ ]
(m) Za: \/xm (Nseg - xam) H Lo; — Loj_y

(A7)

W(m) only depends on the position of the receptors on the chain and has been computed by
an exact enumeration. In particular for the results of Fig. [5| the 27 receptors were placed at
the position {x;} = {2, 3, 5, 7, 10, 14, 15, 19, 23, 29, 31, 34, 35, 36, 39, 44, 48, 50, 51, 54, 55,
56, 57, 59, 60, 61, 62} along the Ny + 1 = 65 possible positions. Notice that although we
have 27 receptors, In Fig. |5 we never observed more than m = 19 complexes reacting. This
is due to the fact that receptors that are at the two extremities of the same segment were
never allowed to bind simultaneously. Indeed a concurrent reaction would over—constrain
the system. Other ways of distributing receptors on the chains (e.g. forbidding neighbouring
receptors) did not alter the general picture.

Using the density of states we can calculate the binding isotherms. In particular, following

the modelling presented in Ref. 5, we divide the functionalized plane into square cells of side
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size equal to a. Limiting our study to the case in which no more than a single polymer can
bind a cell, the partition function of a polymer adsorbed onto a cell is given by Z(m) (Eq.
IA6) with

2

(A8)

T

This scenario is simplified with regard to the real system but has been chosen because it is
illustrative. By equalising the chemical potential of a polymer in the bulk with the chemical
potential of an adsorbed polymer, we can easily calculate the fraction of cells (0) that are
occupied by a polymer. In particular if we define

Gowa = 3 Z(m) = S 0 m) (A9)

where ¢ is the bulk concentration of the polymers and y is the following scaling variable

) = exp|—BAGy|\/3/27 (A10)

djakpe

we find
(A11)

Using © we can then derive the number of adsorbed polymers per unit area

©

(A12)

We notice that the leading term of I' when y — 0 does not depend on a (I' ~
carg Y, y"¥(m)).

Results for I' are reported in Fig. |§| (black curves, left y-axis), as a function of the scaling
variable y at two different polymer concentrations c. For a given polymer system, the
scaling variable y is proportional to the ligand surface density. Notice that the number of
chains adsorbed increases with the scaling variable y. It is useful to calculate the selectivity
parameter defined as [10]

~ dlogI’  dlogl’
~ dloge,  dlogy

(A13)

where ¢, = 1/d? is the density of ligands. Notice that o measures how sensible the adsorption

process is to a change in the ligand surface density. Calculated values for a are reported in
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FIG. 7: MC moves by which a receptor on the tail bind/unbind from a ligand (a) and by which

a receptor changes ligand to which is bound (b).

Fig. |§| (red curves, right y-axis). The superselective region is characterised by o« > 1 and
follows previously reported trend.[5, [I0] However, at this point, a quantitative agreement
with experiments is still missing. [5] This is related to limitations of the coarse-grained model
for the polymer (that, e.g., neglects chain rigidity close to a receptor) and to the fact that
we did not allow multiple polymers binding to the same lattice site in the adsorbed phase.

These aspects go beyond the scope of this paper and will be addressed elsewhere.

Appendix B: Tail Reactions and Ligand Swapping

In this section we complete the description of the MC moves introduced in Sec. [[V] First
we consider the reaction of a receptor on a tail (Fig. [7z). In this case we have to sample
between a tail ¢,, and a tail plus a loop ¢, (dashed lines in Fig. 7). The generation of the
loop follows what was done in Sec. [[V] The tail can be generated in the same way as the free
constructs in the DNA system (Sec. . In particular the trial segments are not biased by

the end-to-end distribution function p but are generated with a uniform distribution. Using
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the notation of Sec. [V] the acceptance rules are then given by
TR, 1My, f e BAGo .

m+ 1 Po
RAICY

Wen ()
m
ACCqp—sqy = MIN [1, . B2
- (mp+1)(mes+1) (B2)
po WWey) 1 ]
e P8G0 yr(ad) (L)) p(lrs|, Np) 1

ACCap—sq,p = MiN [1,

plIrol )]

We now consider the swapping of a ligand (Fig. [7p). In this case a bound receptor
is detached and rebound to another ligand. This implies the construction of double loop
configurations (c,p) that is done as described in Sec. . The acceptance of the receptor
displacement is then given by (see Fig. [7)

a, (n)
WO (e,) p(Iry], Na)p(Iryl, V)
W (a,b) (c((;;)) p(lra|7 Na)p<|rb|’ Nb)

acCob—sap = min[l,
(B3)
The previous acceptance rule is slightly modified when the receptor that is moved is the

tethering point of one of the two tails. In this case we have to sample between configurations

made of a loop plus a tail.
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