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Abstract

The manufacturing of multistable shells has been dominated by the use of pre-

stressed and composite materials. Here we advocate the use of common materials

through a simple design that requires no pre-stressing and has an initially develop-

able geometry. A rudimentary demonstrator is constructed and serves as the start-

ing point for further study. An existing homogenisation model for a lattice structure

is combined with an analytical strain energy model from the literature to show the

mechanical properties needed to construct an initially developable, bistable grid

shell. The concept is also tested in a commercial Finite Element package, where a

number of parametric studies are performed. Both the demonstrator and the FE

model confirm the validity of the design while a series of parametric studies helps

establish the limits of this behaviour with respect to local and global geometry of

grid shell and honeycomb structures.
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1 Introduction

This work addresses the challenge of designing initially developable, free-standing, multistable

shells without the use of composite materials or pre-stressing. Multistable shells have been
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the focus of much recent work since they offer a basis for the construction of morphing

structures. They are able to support loads in distinct geometries, without the need for

elaborate mechanisms. The manufacturing of multistable shells has been dominated by

the use of pre-stressed materials and fibre-reinforced composites; in retrospect, this can

be attributed to the work by Hyer (1981b), which introduced unsymmetric laminates as

viable candidates for engineering applications of bistable shells. Laminates are attractive

because they offer control of material properties through the orienting of the distinct lam-

inae. However, laminates also have a number of disadvantages, namely, they are relatively

expensive and they require skilled manual assembly and dedicated facilities. Perhaps most

importantly, they are harder to employ in continuous large-scale (in the order of tens of

metres and above) and small-scale (in the order of millimetres and below) structures.

At the same time, there has been a surge in the development of “smart materials,”

which often provide the basis for morphing structural applications. These can be ex-

pensive, offer highly specialised properties, and often are not straightforward to integrate

within the host structure; hence, there is clear motivation to find alternative ways of

controlling material properties. One attractive approach is to use the local geometry

of a material; with such methods we can lower our dependence on more expensive and

often harder-to-manufacture composite materials. Some ways of manipulating the macro-

mechanical properties of shells through patterning and texturing have been studied pre-

viously in this context. Recent examples of such concepts exist in the form of corrugated

shells (Norman et al., 2008, 2009) and dimpled sheets (Golabchi & Guest, 2009).

Although these methods have their respective motivations and applications, here we

seek as simple a technique as possible, to make manufacturing straightforward and scal-

able. Taking inspiration from earlier laminate designs, we note that the major stiffness

contribution comes from the fibres; the matrix mostly serves as a binder for those more

essential structural components. Similar properties can be obtained if we removed mater-

ial from a solid plate of an isotropic material, in such a way that reproduces the stiffening

action of the fibres along particular directions. The creation of perforations is both a

simple procedure and an easily scalable one. This concept corresponds to grid shells,

2



honeycombs and perforated shells, whose global material properties can be manipulated

by variations in the local geometry.

The theoretical treatment of multistable shells has most commonly employed the Uni-

form Curvature (UC) assumption, first used by Mansfield (1962). By considering “len-

ticular” sections, where the bending moment naturally diminishes at the periphery, he

produced exact solutions of the Föppl-Von Kármán equations. The same author later jus-

tified the obvious weakness of the model to describe a known variation of the curvature

at the boundary layer when constant thickness shells are considered. In Mansfield (2005),

the approximate width of the boundary layer is calculated for an initially flat strip, thick-

ness t, bent to a curvature κ along its length by end moments applied to its ends. The

resulting width of 0.77
√
t/κ is very small for thin shells in large-deflection scenarios.

Hyer (1981a) produced an even simpler model, using the same UC assumption, and

discretising the FVK equations with the Rayleigh-Ritz method. The simplicity of this

model proved powerful in many instances and was used in various studies, especially re-

lating to composite plates under thermal loads (Salamon & Masters, 1995; Dano & Hyer,

1998). At the same time, deficiencies of the UC assumption were noted, for example,

Gigliotti et al. (2004) point out that the importance of planform aspect ratio is missed

by both models. The failure of the UC assumption to exactly capture the boundary

condition was mentioned above and led to various efforts to construct models with many

more degrees of freedom (Aimmanee & Hyer, 2004; Pirrera et al., 2011). This appears to

be so when stretching effects dominate behaviour, for example, when the shell has initial

Gaussian curvature. Coburn et al. (2013) show that the deformed shapes of spherical

caps have boundary layers wider than Mansfield’s approximation—because they possess

significant Gaussian curvature, which can only be captured accurately using higher-order

curvature distributions. Our initial and deformed shapes of shell are close to being de-

velopable throughout: stretching (and boundary layer) effects are minimal, which enables

us to proceed with a uniform curvature assumption.

Bistable, developable shells are not new. In the context of MEMS, for example, we

have various examples (Gerson et al., 2012; Pham & Wang, 2011). These, however, contain
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the well-known clamped, bistable arch and effectively rely on initially loaded boundaries

for bistability to proceed. The shells presented here are unloaded and only restrained at

one central point to prevent rigid body motion.

A set of workers persisted in extending the Mansfield model, especially in associ-

ation with multistable shells, producing various practical results along the way. Guest &

Pellegrino (2006) focused on a developable formulation that described bistable cylindrical

shells, where bistability depends on the modular ratio between different orientations of the

structure; Seffen (2007), accounting for both bending and stretching effects, showed that

multistability is possible even for isotropic, pre-stressed shells; Vidoli & Maurini (2008)

extended the scope of the examination by Seffen to describe the feasibility of a shallow,

tristable, orthotropic shell; Fernandes et al. (2010), again with the same formulation, gave

a method of quasi-statically actuating a bistable, pre-stressed shell. The analytical model

used in the present work—an extension of the work in Seffen (2007)—clearly falls within

this tradition, and the corresponding symbols are employed where appropriate.

The aim of the present study is to prove that grid shells and honeycomb shells can be

made to be (at the very least) bistable when initially free of stresses and singly curved.

Both types of shell are connected networks of beam-like elements, but their elastic re-

sponses differ because of relative differences in their local geometrical proportions. The

cross-section of grid shell beams typically have comparable width and depth and thus,

they respond locally as classical Euler-Bernoulli, or Timoshenko, beams. Honeycomb

beams have a depth-to-width ratio greater than ten, and behave as slender webs, which

are more prone to local distortions and instabilities when bending and torsion are locally

applied; fundamentally, the Euler-Bernoulli hypothesis that cross-sectional shape remains

conserved, is not guaranteed, and the beams have to be treated as plate-like elements

aligned to the through-thickness direction (Cote et al., 2004; Russell et al., 2011). On

the other hand, the elastic response of perforated plates, which are formed by drilling,

or stamping out, holes in a thin homogenous plate, under simple in-plane loads can be

found exactly by making use of the well-known solution for the stress-field around a hole

(Slot & O’Donnell, 1971). This response is then cast as the set of effective orthotropic
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properties, offered by an equivalent uniform plate without holes.

We address the feasibility of grid and honeycomb shells as bistable candidates by

reversing the homogenisation process in the context of the previous well-known models of

multistability: these models reveal the required range of effective orthotropic properties

and initial uniform curvatures of the shell mid-surface. We assume from the outset that

the effective properties of our shells do not depend on the initial uniform curvatures: so

that homogenisation considers a flat shell, for simplicity and thus, we may decouple the

realisation of the global geometry from the sizing of the local beam elements. The latter

is aided by well-established homogenisation models for grid and honeycomb shells, which

in their majority, however, only deal with in-plane loading. Converting these results

into out-of-plane bending and twisting moduli for each type of shell usually follows the

practice by which the so-called ABD matrices are obtained, by summing and integrating

effects though the thickness (Mansfield, 2005). Here, this is appropriate when the local

behaviour is beam-like, as in grid shells, because integration assumes implicitly that the

cross-sectional shape is conserved. To our knowledge, this has not been tested for the

deeper local beams in honeycomb shells, so we use the same process but treat the results

with caution. In order to test and confirm our results, we resort to a complementary finite

element analysis of both shells.

Section 2 presents a physical demonstrator constructed in the lab, which acts as mo-

tivation for the investigation that follows. Both grid shells and honeycomb shells can be

defined by the same geometrical terms, which are introduced in Section 3. The overall

geometry is dictated by the planform outline, its size and its initial curvature. Locally, the

beam network is a symmetrical square mesh made up of interconnected prismatic sections

governed by their length, width and height (or depth). Both sets of properties are hier-

archically related in the relative senses of magnitude and orientation: the density of the

grid network must be high enough for homogenisation to be effective in practical terms,

and we describe the orientation by the angles between the local beam directions, the

global axis of initial curvature and the global edges of shell. From the outset, we stipulate

globally symmetrical layouts, in order to reduce the number of independent parameters,
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and we focus on effective material properties for two such orientations. These are chosen

to avoid anisotropic coupling for further simplicity, and the generalised Hooke’s laws in

extension and bending are expressed via the usual A and D matrices for orthotropic

materials.

Using the earlier UC model (Section 4), we then show that multistability is concom-

itant to the effective torsional rigidity, α, and Poisson’s ratio, ν, alone in the original

dimensionless framework, with both taking values as large as possible. Their expressions

are calculated from the Hooke’s laws explicitly in terms of the ratios of the local geomet-

rical parameters: we also calculate the stability landscape in terms of a range of values for

each parameter, in order to identify the relative requirements between them for achieving

bistability.

We then establish the set of geometrical parameters for our finite element “starting”

model in Section 5, where we first focus on grid shells: we describe mesh generation,

the choice of elements, the boundary conditions, solution control and how to establish

multistable behaviour from the simulations. We also consider the sensitivity of perform-

ance to element density and we discuss the deviations in deformed equilibrium shape com-

pared to the UC model assumptions. Parametric studies on bistability are then carried

out by varying the initial radius of curvature and the height-to-width ratio of constituent

beam elements. The latter frames further study on the effective depth of the grid shell,

where deeper shells are considered to be honeycomb shells but which must be constituted

of shell elements for accurate computational assessment. A parametric study follows, but

not at the same level of detail as before for the sake of brevity. Out of interest, we show

that a helically-curved honeycomb shell can also be bistable before concluding with a

summary of our findings.

2 Physical demonstrator

The design and construction of a hand-held physical model was pursued, where the plan-

form dimensions are in the order of decimetres. In terms of material, any isotropic material
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satisfies the mechanical properties. However, the large deformations involved in travel-

ling from one stable state to the next need to be considered. An intermediate flat state

helps establish an upper ceiling for the required strains. For example, let us consider a

cylindrical shell with a square a× a planform, a thickness h and initial curvature radius

of curvature ρi. Considering a known symmetry for bistable cylindrical shells during the

transition to a secondary state (Guest & Pellegrino, 2006), the originally curved direction

of the shell ends up in an almost flat configuration. Hence an estimate for the strain

upper limit of the extreme fibres is given by:

ε =
h

2ρi
(1)

For h = 10 mm and ρi = 160 mm, values of practical concern here, ε ≈ 3%, which is

greater than typical maximum strains for metals; hence, we need to consider alternative

materials. Thermoplastics fit the strain requirement; they can withstand strains above

10% before yielding, depending on the type of the plastic (Biron, 2012). In addition, they

can be easily cut and drilled. Finally, they can be bent and shaped at a low temperature—

the so-called crystalline melting point—below 200◦C in some cases (Tripathi, 2002). If

the material goes beyond this temperature, deforms and then cools to below its recrys-

tallisation temperature, it retains its deformed shape.

A demonstrator is constructed out of a 6 mm sheet of the thermoplastic polypropylene

(PP), which is cheap and widely available. A water-jet cutter is used to shape the desired

local geometry, starting with a 300 mm×300 mm square. The side-length of unit cell—the

“ligament” length, is 10 mm, and the target ligament thickness is 0.1 mm, which is very

thin and leads to a few imperfections as seen in Fig. 1. The sample is then constrained

by a cylindrical mould with a radius of 160 mm and heated to a temperature of 160◦.

After cooling the sample to room temperature and removing the mould, we observe a

spring-back effect—the demonstrator does not lose all residual stress during heating—but

it remains cylindrically curved. There is also some local buckling of ligaments, since the

sample was constrained to bend in the mould at room temperature. Nevertheless, bistable
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behaviour is ascertained as documented in Fig. 2. The second state is almost cylindrical,

with a smaller curvature orthogonal to the initial curvature but directed out-of-plane in

the same sense, as predicted by both the simulations and the theoretical model; there

is also a second, very mild principal curvature in the same direction. Repeated loading

produces a relaxing effect, eventually taking the curvature outside the bistable region:

but despite its lack of robustness, this novel structure proves the feasibility of almost

developable multistable honeycombs.

3 Characteristics of grid shells and honeycombs

Grid shells—also known as lattice shells and reticulated shells—are defined globally in

the same way as conventional shell structures but locally, we must account for their

construction from beam-like elements rigidly connected to each other; this is carried out

momentarily. There are numerous construction and cost benefits associated with grid

shells, but here we note the following: they allow light through—at least much more so

than a continuous structure; they allow the exchange of gases and fluids between the

spaces that they define, which can be a critical characteristic in engineering applications;

they are generally lighter than their continuous counterparts; and finally, in architectural

terms, the particular discrete topology can be aesthetically desirable (Malek, 2012).

We now proceed to define a local geometry for the constituent beam-elements. We

assume a rectangular cross-section for the members or ligaments and that all members

are identical in dimensions: their exact dimensions are one subject of later analysis. Both

the global pattern and the local geometry are displayed in Fig. 3, indicating a regular

orthotropic grid and labelling of the beam-element geometry, specifically the length, height

and width of the beam as d, h and b, respectively.

By considering different orientations for the grid shell, a dramatic variation of the

in-plane mechanical properties can be achieved. For example, there must be a reduction

in stiffness if we compare the effective Young’s modulus in the X-direction vs that in the

x-direction. In the former, deformation originates in the stretching of the beam-elements
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while in the latter, their bending contributes the most. These effects are explained further

in the next section.

For grid shells, it is reasonable to assume that members behave as beams provided

the height-to-width ratio for the cross-section, h:b, remains small. Above a certain ratio,

the structure becomes honeycomb-like, with deep members that must be treated as plate-

like elements. The in-plane properties of grid-shells and honeycombs for a given pattern

should be the same, but we expect the out-of-plane properties to vary significantly with

the height of the elements, h. The distinction between them is quantified momentarily.

3.1 Homogenisation of mechanical properties

A square grid shell can easily allow adjustment of the modular ratio for an orthotropic

shell by adjusting the cross-sectional areas of beam-elements in the two directions. At the

same time, we can expect the Poisson’s ratio to increase dramatically after the removal

of material in such a pattern. An exaggerated effect can be visualised in the form of

a square truss, with the nodes of the grid in our design corresponding to hinges in the

truss and the strips of material corresponding to rod elements. Stresses in the diagonal

direction clearly affect the geometry in the principal direction more intensely than on a

solid plate. With this setup in mind, we can visualise the square pattern turning into

a diamond-shaped pattern to accommodate the applied loading. The effect of loading

along the principal direction would be carried by the structure along that same direction,

with the perpendicular rods remaining unstressed, and hence with no geometrical change

in that direction, i.e. the Poisson’s ratio vanishes. In reality, there is some stiffness due

to the nodes, and a truss equivalent is not ideal; it is more appropriate to consider each

beam-element as having fixed supports at both ends, since symmetry dictates no rotation

at the nodes. Consequently, the resulting displacements for a unit cell rotated by 45◦ and

in tension are primarily due to the bending of the beam-elements. A diagram of expected

deformation for a unit cell is shown in Fig. 3, overlaid on the original, unstressed square

geometry.
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For an elementary quantitative analysis, we turn to a model by Lebée & Sab (2013),

which assumes the grid elements to be identical beams. While that work proceeds to

describe a more elaborate, and more accurate formulation, we admit the simpler formula-

tion for the purposes of this study. Here, the standard ABD notation for the constitutive

properties of shells is used. The homogeneity of the grid shell in the out-of-plane z-

direction ensures that the B matrix is zero. If we consider a square grid, as pictured

in Fig. 3, then we have matrices A and D with respect to the local coordinate system

(1-2-3), where 3 is the out-of-plane direction, given by:

A =



ES1

d

0 0

0
ES1

d

0

0 0

(
d

GS2

+
d3

12EI3

)−1


, D =



EI2

d

0 0

0
EI2

d

0

0 0
GJ

d


, (2)

where S1 is the cross-sectional area of a beam (= bh) and S2 is its shear area (= hd); I2

and I3 are moments of inertia about the 2 and 3 axes, respectively; E and G are moduli

of the homogeneous material; and J is the torsion constant. An approximation for the

latter for a rectangular section is found in Young & Budynas (2002), to be equal to:

J = hb3

[
1

3
− 0.21

b

h

(
1− b4

12h4

)]
, (3)

when h > b. The formulation for D again assumes beam-like behaviour for each element,

with a neutral mid-surface of zero in-plane strains.

The A and D matrices noted above can be used to obtain the corresponding matrices in

different orientations with a rotational transformation. For example, if we want to obtain

equivalent in-plane, homogenised moduli for a sheet in a direction 45◦ to the direction of

the beam-elements, we first apply a rotational transformation to A, producing:
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Ad = A45◦ =



Ehb
[
d3 + 2db2 + 2b3(1 + ν)

]
2d
[
d3 + 2b3(1 + ν)

] Ehb
[
d3 − 2db2 + 2b3(1 + ν)

]
2d
[
d3 + 2b3(1 + ν)

] 0

Ehb
[
d3 − 2db2 + 2b3(1 + ν)

]
2d
[
d3 + 2b3(1 + ν)

] Ehb
[
d3 + 2db2 + 2b3(1 + ν)

]
2d
[
d3 + 2b3(1 + ν)

] 0

0 0
Ehb

2d


,

(4)

where the d subscript refers to the diagonal (45◦) orientation with respect to the unit

cell’s local geometry. From this, we can extract corresponding homogenised parameters

quite easily:

νA =
Ad21

Ad11

=
d3 − 2db2 + 2b3(1 + ν)

d3 + 2db2 + 2b3(1 + ν)
(5)

and

αA =
Ad33

Ad11

=
d3 + 2b3(1 + ν)

d3 + 2db2 + 2b3(1 + ν)
. (6)

The same procedure can produce corresponding parameters for bending by operating on

the D matrix. These are:

νD =
Ad21

Dd11

=
−400h5b2 + 252h4b3 − 21b7 + 100h7(1 + ν)

400h5b2 − 252h4b3 + 21b7 + 100h7(1 + ν)
, (7)

and

αD =
Dd33

Dd11

=
100h7(1 + ν)

400h5b2 − 252h4b3 + 21b7 + 100h7(1 + ν)
. (8)

We plot values of these parameters for different local dimensions in Fig. 4. The values for

the Poisson’s ratio and the shear modulus parameter, α, that correspond to the matrix A

are almost unchanged by the variation of the geometry, where their values are very close

to unity for the entire range of geometry that we are examining. The same values, when

estimated from the corresponding D matrix vary significantly—in the range of 0 to 1 for

ν and 0.5 to 1 for α. Recall that for our model to be valid h > b, hence we only plot the

estimates for h/b > 1.

The homogenisation method becomes more accurate when the local dimensions are
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much smaller than the planform dimensions of the shell. However, in the simulations that

follow, we also have to balance that theoretical requirement with practical considerations,

such as the constructibility of the shell and computational cost: we therefore choose the

global dimensions to be more than 25 times the width of the unit cell and we note that

we are dealing with elastic phenomena locally, where the properties reliably scale.

4 Analytical model

An expression for the strain energy stored in the deformed shell with components due to

shallow bending and in-plane stretching is taken from Seffen & Maurini (2013) and is, in

turn, an extension of previous work found in Seffen (2007) and Fernandes et al. (2010).

We reproduce it here in its simplest dimensionless form, in the absence of pre-stressing

and for an initially cylindrical configuration:

U =
(
κxκy − κ2xy

)2
+
[
(κx − κx0)2 + 2νD(κx − κx0)κy + κ2y + ακ2xy

]
, (9)

κx and κy are the dimensionless observed curvatures, κx0 is the dimensionless initial

curvature of the shell, which is arbitrarily assigned to the x direction, νD is the out-of-

plane Poisson’s ratio and α is proportional to the in-plane shear modulus of the shell,

and thus to αD from the previous section. Also recall the αA and νA parameters from the

previous section which would normally be used to solve the membranal problem. In Seffen

& Maurini (2013) the curvatures are made dimensionless by multiplying by the factor a2/t,

where a is the planform dimension for the shell and t is the thickness. Equilibrium states

are given by minimising the energy stored according to calculus of variations; since our

model exhibits no twisting curvature as observed in our demonstrator, we may assume

solutions where κxy = 0 is valid. It can then be shown after differentiating U that the

remaining non-zero curvatures are found by solving the coupled algebraic equations:

κx − κx0 + κy(κxκy + νD) = 0, κy − κx0νD + κx(κxκy + νD) = 0, (10)
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Closed-form solutions are achievable, but too lengthy to be immediately useful, or present-

able here; but it is clear from inspecting them that they are a function of the initial

curvature and the Poisson’s ratio only. The stability of solutions is then assessed by the

Hessian of the same energy expression, specifically, for stability to be guaranteed, it is

sufficient to show that all eigenvalues of the Hessian are positive for the equilibrium under

consideration. The general form of the eigenvalues, λ, can be found as:

λ1 = α− 2κxκy, λ2,3 =
1

2

(
2 + κ2x + κ2y ±

√
κ4x + 14κ2xκ

2
y + κ4y + 16κxκyνD + 4ν2D

)
.

(11)

In λ1, α does not cause instability for developable equilibria, but a minimum shear mod-

ulus is required for doubly curved equilibria to be stable. The second eigenvalue, λ2, with

a positive sign before the root, is always positive. The sign of the third eigenvalue de-

pends on the relative magnitudes of κx, κy and ν. A brief numerical investigation proves

the feasibility of bistability for such a structure, for a range of Poisson’s ratio and shear

modulus values, where the relevant plot is given in Section 5.2.1—with consideration for

both in-plane and out-of-plane properties.

5 Finite-Element Analysis

This concept for a bistable shell is tested through Finite Element (FE) simulations on

the commercial software package ABAQUS (Abaqus, Inc., 2007). A number of para-

meters are required to fully define the geometry of such a structure. In this section we

assume an initial cylindrical geometry for a shell with a rectangular planform. Double

curvature facilitates multistability—i.e. isotropic materials can be used for constructing

doubly curved, bistable shells—so omitting it here ensures that the effects we observe are

the product of global material properties, and not only of extensional effects. The set of

required dimensions to fully define each geometry is as follows:

• Global geometry:

– length of shell projection along x-direction (ax)
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– shell length along y-direction (ay)

– cylinder radius of curvature—along x-direction(ρx)

– global thickness. The global thickness for a grid shell is not a directly accessible

quantity. We can simply assume the value given to the local beam-member

height, or we can treat it with various homogenisation methods.

• Local geometry (defined previously):

– length of beam-members (d)

– beam-member cross-section width (b)

– beam-member cross-section height (h). We treat this as the global shell thick-

ness as mentioned above.

These are shown in detail in Figs. 3 and 5.

ABAQUS has a graphical interface that facilitates defining the geometry of the struc-

ture we are examining, the loads, the boundary conditions etc. However, the resulting

structures cannot be modified easily. In addition, the mesh-like, curved structure at the

basis of our study, cannot be drawn with any standard tools and attempting to draw it

manually (node by node) would be impractical. An alternative exists for the user in the

direct use of input (.INP) files that ABAQUS can read in simple text and which define

the entire simulation with appropriate commands. The writing of a text file can be easily

automated and, in this case, the .INP file is written in the open source software language,

PYTHON, as an executable script. In this script, the 3D coordinates of each node and

member are defined in a parametric mathematical form, so that the local and global geo-

metry can be changed by adjusting only the dimension(s) of interest—greatly assisting

parametric studies. Similarly, all remaining options for the simulation are input as text

commands.

The simulation is composed of two Dynamic Implicit steps, with quasi-static application—

a method suitable for non-linear structural problems (Dassault Systémes/Simulia, 2011).

The node corresponding to the centre of the shell is held fixed for all degrees of freedom.
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In the first step we use displacement control on two nodes on opposite sides of the shell

as shown in Fig. 6: all other nodes are unconstrained, allowing for the possibility of, for

example, twisted shapes as well as ordinary curved deformations. During the second step,

displacement control is removed and the shell is allowed to return to a load-free equilib-

rium geometry. Elements of type B31, a three-node linear beam element, are used with

four elements per ligament after a brief mesh sensitivity study, see Fig. 7.

For a set of cases that follow, the global geometry is fixed and the effects of local

geometry variations are examined. The global dimensions are fixed as follows: ax =

520 mm, ay = 520 mm, ρx = 300 mm, thus mirroring a realistic design for a hand-held

demonstrator. Later, the effect of the global curvature on multistability is also examined.

5.1 Proof of concept

We begin with one case in detail, to establish that bistability is feasible under these

specifications. We fix the remaining spatial variables such that d = 10 mm, b = 0.2 mm,

h = 0.8 mm. For this ligament length the total number of elements is equal to 5184. The

ratio of the length of the beam-member to the beam cross-sectional dimensions is greater

than 100 and large enough for an Euler-beam assumption to be reasonable. The corner

node is displaced by 150 mm along the z-axis over the duration of the first step, and both

the loading and the relaxation steps have a duration of 100 s. The Young’s Modulus for

the material is set to equal those of aluminium at 69 GPa and the Poisson’s ratio at 0.32,

to reflect a realistic material. The corresponding homogenised material properties can be

found through Eqs. (5) to (8) which give νA and αA approximately equal to unity (0.998

and 0.999 respectively), and νD = 0.72 and αD = 0.86.

We present a plot of the total strain energy in Fig. 8. During the loading period

we see a clear minimum; when we remove the displacement boundary condition at the

corner node, the strain energy settles at this value and does not return to an unstressed

state. Both these observations confirm the existence of a second stable geometry for this

shell. The initial state, as noted above, is perfectly cylindrical. The second state, on first
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inspection, appears to be approximately cylindrical in the same sense as the initial state,

but with the two directions of curvature reversed.

A detailed examination of the secondary stable geometry is shown in Fig. 9. The

profiles of the shell in the x- and y-directions are isolated and plotted in two separate

sets of axes. The first profile, in the direction of initial zero curvature (y), appears almost

uniformly curved, with a larger radius of curvature than the initial state. A dotted,

circular arc is also plotted in the same set of axes for visual comparison, and we observe

an almost perfect match. The profile in the x-direction is drawn exaggerated in the z-

direction. Although, the deviation from a flat profile is small, it is noticeable where,

towards the centre, the shell is concave upwards. At an approximate radial distance of

two thirds of the total shell radius, the curvature changes sign and is maintained until a

boundary layer where the curvature is more pronounced. The deviation from the central

node in the perpendicular direction does not exceed 13 mm at any point (less than 4.3% of

the shell’s half-width), while the maximum value is observed at the periphery. Given these

results, it is appropriate to refer to the second stable configuration as almost cylindrical.

Coburn et al. (2013) obtained similar results when producing, through composites, a

tristable shell. This variation of curvatures was predicted in Vidoli (2013) using a coarse

von Kármán model with quadratically varying curvature.

5.2 Parametric studies

To the authors’ knowledge, this is the first time a grid shell has been investigated in

the context of multistability. Hence, almost every parameter that we have treated as a

constant in the basic case is worthy of further investigation, including local and global

dimensions and their relative magnitudes. In this section, we limit our investigation to

those parameters that appear the most critical or to the local geometry parameters that

are not directly assessed by our UC model, namely the cross-sectional dimensions of the

beam-elements. Later, the initial curvature and the moment of inertia of the beam-element

are also investigated with respect to multistability.
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5.2.1 Ligament height-to-width ratio

We focus first on the influence of the cross-sectional height of the member beams (h) on

bistability. We fix all parameters except h and perform a series of simulations as described

in Section 5. The cross-sectional width is set at 0.2 mm. The height is varied between

that same value and increased by 0.2 mm up to a value of 1.2 mm.

Results of this study are shown in Fig. 10, in the form of force-displacement diagrams.

The value for the force is specific to the node also used for displacement control and

shown in Fig. 6, while displacement, w, also refers to the same node. Both the force and

displacement outputs are rendered dimensionless: the force is multiplied by ρx/(Eh
3) and

the displacement is divided by the apex height, H, shown in Fig. 5.

The resulting force-displacement graphs show a characteristic snap-through effect for

all cases. As h is increased, the plot crosses the displacement axis for the first time when

h = 0.8 mm. The case of h = 0.6 mm is almost tangential to the displacement axis at its

lowest point. Thus in this scenario, a ratio of h:b greater than an approximate value of

three is needed for bistability, while additional simulations for h > 0.8 mm are consistent.

We add to these conclusions by returning to the material properties for the grid shell

obtained in Section 3.1 in Fig. 11. We produce a colourmap of the stability regimes for

specific global dimensions, matching the dimensions of the simulations, while varying the

cross-sectional height and width, h and b respectively. This plot supports a constant

minimum ratio of h:b for bistability to be possible, with a value close to five. Recall from

earlier in this section that this is in rough agreement with our simulations, which show

an approximate value slightly above three for a similar scenario.

For larger h:b ratios our beam assumption becomes defunct. Once h and d have

comparable values, and while b retains a small relative value (20b < h ≈ d), it is reasonable

to begin treating each ligament as a plate element. This results in a global honeycomb

structure and is investigated further in Section 5.3. We should note that repetition of this

study with a change in cross-sectional width shows that the ratio of the two cross-sectional

dimensions is the critical parameter and not the absolute value of one or the other.

17



5.2.2 Initial curvature

Another critical parameter for bistability, is the initial curvature of the shell, with respect

to a planform of constant dimensions. Equivalently, we may consider the apex height

of the shell as the critical parameter, since the three parameters are related, with the

global geometry from Fig. 5. The relevant series of FE simulations fixes the planform

dimensions, ax and ay, as all other simulations to be square: 520 mm × 520 mm. The

ligament cross-section is 0.1 mm× 0.4 mm, the length of the ligaments is 10 mm and the

initial radius of curvature, ρx, varies between 300 mm and 550 mm at 50 mm intervals.

The results of the parametric study are shown in Fig. 12, where dimensionless force-

displacement diagrams are plotted for all the tested values. The last case to be marginally

bistable, for increasing values of the curvature, corresponds to a global radius of curvature

equal to 450 mm, with a depth-to-planform length ratio equal to 0.16. Although this is

a specific case with absolute dimensions, the trend observed can greatly inform future

physical designs.

5.2.3 Cross-sectional scaling

A notable observation regarding the strain energy of the shell is obtained by scaling

the dimensions of the cross-section: the ratio h:b is kept fixed (at a value of three)

with the absolute values of the (h, b) pair as (0.02 mm, 0.06 mm), (0.1 mm, 0.3 mm) and

(0.2 mm, 0.6 mm). The strain energy from the simulations is pre-multiplied by a factor hb3

and is plotted in Fig. 13, where all curves match almost exactly. The scaling used matches

the moment of inertia of the cross-section, which takes the form hb3/12 for a rectangular

cross-section; and a linear relationship between the strain energy and the local moment

of inertia indicates bending-dominated behaviour throughout the geometrical transition.

5.3 Honeycombs

Honeycombs are a natural extension of grid shells. We make the distinction between

the two to mainly signify a change in our assumptions about the relative ratios of the

18



parameters h, b and d. We use the same square pattern as for grid shells, and we use the

same symbols for the geometry as before

A series of FE simulations are performed under the plate assumption for the ligament

geometry. The model has the same global parameters as the earlier grid shell model:

locally, the distance between nodes, or the ligament length (d) is initially set at 10 mm,

while the ligament thickness is fixed at 0.1 mm. The ratio of d:b is large enough to admit

a plate geometry, as long as the h parameter is also sufficiently large. We only admit h

values greater than 2 mm, or a ratio of h:b greater than 20.

The ABAQUS model extends the grid shell model using an additional layer of nodes,

which is added at a radial offset from the original set. All nodes now define the corners

of the connecting ligaments shell-elements, whose middle surface is orthogonal to the

global shell’s middle surface. Four-noded quadrilateral S4R shell elements are chosen to

maintain a reasonably fast simulation, where the number of elements is fixed at 4× 4 per

rectangular plate-ligament. With d = 10 mm and planform dimensions 520 mm×520 mm,

a total of approximately 80000 elements are needed.

One immediate goal is to establish the limit of bistable behaviour with respect to large

values of h. In Fig. 14 we plot the strain energy for various values of h where only the

early part containing possible strain energy minima is required. For low values of h, the

plots are consistent with the grid shell simulations and a clear minimum for the strain

energy appears during the loading phase. This minimum is eventually lost for values of

h = 30 mm and higher. A value of h = 25 mm also allows bistability, but is omitted from

the plot for clarity.

In Fig. 15 snapshots from one simulation are displayed for two reasons: they help

visualise the differences in local geometry of the honeycomb model with the earlier grid

shell model, and they give a clear image of the intermediate and final stable equilibria

of the honeycomb shell. With respect to the latter, the secondary stable configuration is

extremely similar to the one obtained for grid shells, during the transition however, the

honeycomb forms a saddle-shape, a behaviour that is not observed for grid shells to such

an extent.
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A stability overview of the corresponding homogeneous shell with the same global di-

mensions is also offered in Fig. 16 with respect to the shear modulus, G, and the thickness

of the shell, t. The material properties are arbitrarily chosen to roughly correspond to

the analysis in Section 3.1; the Poisson’s ratio is set at 0.95—a high value that fits the

theoretical requirement—and orthotropic behaviour is assumed. Figure 16 shows that we

cannot obtain bistability for a narrow band of low shear modulus, when G/Giso is less

than two. When the shear modulus is sufficiently large for bistable behaviour, bistability

is lost at an approximate thickness of 22 mm, which increases marginally with the value

of the shear modulus. The theoretical result is in rough agreement with the results of the

FE simulations.

The comparison with theory is expanded in Fig. 17, which shows first in Fig. 17a

contours of the strain energy across the (κx, κy) plane for a thickness of 10 mm. There are

two distinct minima corresponding to two cylindrical geometries, and the curvature of the

second state is slightly smaller. After connecting the two minima with a straight line, the

strain energy is plotted along this profile. This sectioning allows for the theoretical result

corresponding to Fig. 14 to be plotted in Fig. 17b. The deformation path during actuation

is not explicitly plotted here, but can be extrapolated from Fig. 17a and is consistent with

the hyperbola κxκy = constant, i.e. the shell proves to be almost inextensible. The loss

of the second energy minimum is the focus here, and for this purpose this profile suffices.

A rough agreement with the FE simulations is again immediate.

5.4 Helical grid shell

The geometrical possibilities for a bistable grid shell are not limited to neither shallow

shells nor square planforms. In order to test matters, we arbitrarily chose a helicoidal

shell with dimensions similar to earlier structures. The ABAQUS planform is a rhomboid

with sides of 300 mm and 900 mm with its largest internal angle equal to
(
π
2

+ arctan 1
2

)
.

The shortest side is parallel to the x-direction, and the rhomboid is then wrapped along

a cylindrical mathematical surface with its axis parallel to the x-direction. The initial
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geometry is displayed in Fig. 18a, where the cross-section of the ligaments is once again

assumed to be rectangular with dimensions 0.2 mm × 0.8 mm. The shell is loaded by

displacement control of the centre nodes on the two shorter sides, which are displaced

along the y-direction, beyond the flattening of the grid shell in this direction, and then

released. A two step, Dynamic Implicit model is setup in ABAQUS, as with earlier

simulations. The strain energy of the system is shown in Fig. 18b.

A clear minimum is seen after a sudden dip during the loading phase (0–100 s). After

the relaxation phase, the strain energy returns to the geometry of a secondary geometry, in

agreement with the earlier minimum value. The secondary stable geometry is also shown

in Fig. 18a and closely matches a cylindrical surface, with an axis along the y-direction.

Such a design potentially allows for more control of the stiffness in both directions contrary

to the shallower, square design.

6 Summary and concluding remarks

This work has investigated a novel multistable shell without using composite or prestressed

materials. By taking advantage of the change in global material properties from the pat-

terning of grid shells and honeycomb shells, suitable designs can produce multistability

in relatively simple structures. In contrast to composite designs, this method is easily

scalable—from the micro to the architectural scale. In addition, it facilitates light and

fluid permeable structures. The construction of a thermoplastic demonstrator honeycomb

confirmed the bistable nature of such a structure, albeit short-lived due to creep effects;

there is considerable scope for an improved model. A series of FE simulations helped us

understand the necessary local patterning with respect to the global dimensions. Spe-

cifically, developable shells were investigated. Parametric studies focused on the limits of

multistability with respect to the global thickness of the shells and to the global radius

of curvature. In addition the predicted initial and secondary global geometry for bistable

grid shells were explored. Finally, the FE simulations indicated that the deformation is

bending dominated.
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This study is not exhaustive but it establishes the feasibility of multistability in the

context of grid shells and honeycomb shells. This discovery invites further examination

of our assumptions for material homogenisation and motivates the investigation of more

elaborate patterns—potentially to increase the energy barrier between stable states and

to address boundary effects. We look forward to pursuing such work in the future.
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figs/ppegs.jpg figs/ppedetail.jpg

Figure 1: A honeycomb structure carved out of a solid polypropylene sheet using a
water-jet cutter to produce a connected ligament network. The dimensions
of the flat sheet are 300 mm× 300 mm. The unit cell has a length of 10 mm
while the ligament cross-section is 0.1 mm × 6 mm. The required small
ligament thickness proves too delicate an operation, and results in a few
imperfections, seen more clearly on the right.
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figs/pinit.jpg figs/pfin.jpg

Figure 2: A polypropylene demonstrator showing the two stable geometries for a hon-
eycomb shell design. The left image shows the initially, perfectly cylindrical
geometry, while the right image shows the secondary geometry, rotated by
90◦. Although the second geometry is also approximately cylindrical, a mild
curvature is also seen in the orthogonal direction. It is also clear that the
radius of curvature in the second state is larger than in the initial geometry,
as predicted by both the theoretical model and the FE simulations. Due to
creep effects, the success of this design—with this particular material—was
short-lived.
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figs/grid.pdf

figs/deformedsin.pdf

figs/deformedAlign.pdf

figs/localgSK.jpg

Figure 3: Detail of the square grid shell (left) and the local geometry with the relev-
ant dimensions (right). X-Y is a fixed coordinate system in the grid shell,
always aligned to the principal stiffness directions (i.e. the network); x-y
is a global coordinate system that is fixed in space and is either aligned or
at 45◦ to the X-Y system. No intermediate orientations are considered.
Multistability is promoted by high Poisson’s ratio and high shear modulus
in the directions of the principal curvatures of the shell. Hence, we align
the diagonal of the grid with these directions (x-y). A diagram of a square
unit cell on a grid shell is shown in the centre, before and after the applic-
ation of opposing external forces. Assuming rigid nodes, and accounting
for symmetry, each beam-element is treated as an Euler-Bernoulli beam,
fixed at both ends. The local (X-Y ) and global (x-y) coordinate systems,
are both displayed. When the two coordinate systems align, the deform-
ation is stretching-dominated, while when they are at 45◦ to each other,
the deformation is bending-dominated.
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figs/nuagrid.pdf

figs/nudgrid.pdf

Figure 4: Plots of the variation of the Poisson’s ratio and the shear modulus-related
parameter for grid shell structures with respect to the local geometry. These
estimates are made in correspondence to A and D matrices.

figs/globalGeom.pdf

Figure 5: End view of the global initial geometry of the shell defined by the planform
dimensions, ax and ay, and the initial curvature, ρx; the apex height relative
to the edges is H.
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figs/grishellMid.pdf

Figure 6: In a series of finite element simulations using the commercially available
software package, ABAQUS, a cylindrical grid shell is modelled with dis-
placement control applied in the pattern indicated by arrows. The shell is
free at the boundaries, but is constrained in all directions at the centre node
(marked with a dot). All other nodes are completely free.

figs/meshsens.pdf

Figure 7: Different resolutions for the mesh were tested for the basic geometry of the
shell, with n noting the number of elements per beam. The chosen metric
is the displacement of the midpoint of one of the sides of the shell. The
results are converging and four elements per beam are judged sufficient.
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figs/sepbb.pdf

Figure 8: Strain energy for the shell, plotted against time within two Implicit Dynamic
ABAQUS steps, with a duration of 100 s for each step. During the first step,
the shell is gradually loaded: we can distinguish a minimum for the energy
conforming to a second equilibrium geometry. In the second step, we remove
the loading boundary condition and the shell returns to the second state.
The value of the final strain energy is equal to the value at the minimum.
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figs/profx368bb.pdf

(a) Secondary state y-profile

figs/profybb.pdf

(b) Secondary state x-profile

Figure 9: The geometry of the second state is presented here in more detail. We plot
the profile of the shell for x = 0 and y = 0 respectively (the coordinate
system was defined in Fig. 5). In the former case, we contrast the plot with
a circular arc of 368 mm radius. The comparison shows an almost exact
match. In the other perspective—shown in an exaggerated aspect ratio,
curvature is more subtle. The y-profile is almost flat towards the centre,
but with a more pronounced curvature towards the boundary. There is a
switch in the sign of the curvature near the radial centre.
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figs/pTbbfull.pdf

Figure 10: Comparison between force-displacement diagrams for different beam-
member thicknesses. The vertical reaction force from the corner node of
the shell, at which displacement control is applied, is P . Both the force and
the displacement are made dimensionless by appropriate coefficients, while
the beam-member width is fixed at 0.2 mm. For a square cross-section we
observe a prominent snap-through effect, but not a second equilibrium.
Increasing the thickness—and hence the ratio between beam height and
width—we observe a second load-free equilibrium for ratio approximately
three and above. The irregularities in the plot for thinner local thickness
can be attributed to local buckling effects. This induces a global rippling,
detracting from the assumption of uniform deformation.
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figs/swh.pdf

Figure 11: Results of homogenisation model for grid shell properties from Section 3.1
showing the dependence of multistability on cross-sectional dimensions.
The parameter values are calculated through Eqs. (5) to (8) and then
substituted into the dimensional energy expression from Eq. (9), allowing
for numerical solutions for stable equilibria. We only plot values of h > b in
accordance with our model’s assumption for Eq. (3), while the remaining
variables match the values used in the FE simulations in this section.
There is a cut-off point for bistability at a constant ratio between h:b,
approximately equal to five.
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figs/depthbbfull.pdf

Figure 12: Multistability is also affected by the initial curvature of the shell. Starting
with the base grid shell case, the radius of curvature is gradually increased
for a series of simulations, and dimensionless force-displacement diagrams
are presented here. The last marginally bistable grid shell in this progres-
sion occurs for a radius of curvature equal to 450 mm.

figs/compsetbbfull.pdf

Figure 13: One of the notable results of our simulations is the scaling of the energy
with respect to cross-sectional dimensions of the grid shell ligaments. In
this plot we compare the total strain energy for three grid shells undergoing
the same displacement-controlled deformation. The three cross-sections
examined are 0.02 mm× 0.06 mm, 0.1 mm× 0.3 mm and 0.2 mm× 0.6 mm.
The energy scales proportionally to moment of inertia of the cross-section,
or hb3, which indicates a bending-dominated deformation.
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figs/hcsebb.pdf

Figure 14: Switching to a honeycomb model on ABAQUS allows for a new range of
ligament geometries to be examined. An initially cylindrical shell is tested
with planform dimensions (520 mm×520 mm), ligament length d = 10 mm
and ligament thickness b = 0.1 mm. By varying the ligament height, h,
the upper limit of the bistable behaviour is shown to be almost 30 mm.
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figs/Shsnap.pdf

Figure 15: The simulated transition of a honeycomb shell from an initial cylindrical
geometry to a second stable configuration. The resulting shapes are similar
to those for a grid shell, where the ligaments are modelled as beams. Here,
the ligaments are modelled as shells and in this particular model, each
ligament has dimensions 10 mm × 10 mm × 0.1 mm, although thicknesses
up to 25 mm achieved bistability for square shells of side 520 mm. The
figure also displays the relevant thickness of the honeycomb shell compared
to global dimensions. The time represents the proportional displacement
actuation for the first 100 s and the unloading phase for the final 100 s.
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figs/gt.pdf

Figure 16: Comparison of the behaviour of the honeycomb structure for high values
of ligament thickness—as shown in Fig. 14—with the theoretical predic-
tion. The dimensional strain energy form of equation Eq. (9) is used to
obtain the equilibria and plot the stability regions for the corresponding
homogeneous shell. The global dimensions have the same values as all the
simulations in this section, while for this plot the Poisson’s ratio is set to a
value of 0.95. Bistability is lost for values of thickness between 20–25 mm,
depending on the value of the shear modulus.
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figs/cpbbb.pdf

(a) Strain energy contour plot

figs/pminbb.pdf

(b) Theoretical strain energy during actuation

Figure 17: The contour plot at the top shows the variation of the predicted dimen-
sional strain energy according to Eq. (9). The global geometry is the same
used throughout this section, but we assume a homogeneous shell with
a Poisson’s ratio of 0.95 and a shear modulus twice the isotropic value
(0.5); the thickness is set at 10 mm. The secondary equilibrium appears at
(κx, κy) = (2.45×10−6, 0.00316) or (almost) as a same-sense cylinder with
a radius of 316 mm—slightly larger than the initial radius. At the bottom
we plot the strain energy profile along the dashed line in the top diagram.
This is done for various shell thicknesses to show the correspondence to
the simulated honeycomb structure results in Fig. 14.
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figs/hel.pdf

(a)

figs/helsebb.pdf

(b)

Figure 18: An initially helical, bistable grid shell is shown at the top from an ABAQUS
simulation. On the left column we see the initial geometry, and on the right
column the final geometry after actuation and relaxation. The top row
shows a side view of the shell while the bottom row shows the shell viewed
from above. At the bottom we show strain energy vs time for the helical
grid shell FE simulation. We can see a clear minimum during the actuation
phase (0–100 s). The actuation in this case is not optimised with respect
to the second stable configuration; this might explain why the dip to the
minimum is more sudden than in earlier simulations. The relaxation phase
concludes at the same strain energy, confirming the bistable character of
this structure.
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