
Improving PPM with dynamic parameter updates

Christian Steinruecken, Zoubin Ghahramani, David MacKay

Abstract

This article makes several improvements to the classic PPM algorithm, resulting in a new
algorithm with superior compression effectiveness on human text. The key differences of
our algorithm to classic PPM are that (A) rather than the original escape mechanism, we
use a generalised blending method with explicit hyper-parameters that control the way
symbol counts are combined to form predictions; (B) different hyper-parameters are used
for classes of different contexts; and (C) these hyper-parameters are updated dynamically
using gradient information.

The resulting algorithm (PPM-DP) compresses human text better than all currently
published variants of PPM, CTW, DMC, LZ, CSE and BWT, with runtime only slightly
slower than classic PPM.

1 Introduction

The classic PPM algorithm by Cleary and Witten [1] compresses sequences of symbols
one symbol at a time, by gradually learning context-dependent conditional probability
distributions. At the heart of every PPM-like algorithm is a data structure that stores
symbol occurrence counts for each context, in a way that allows these counts to be
accessed efficiently to compute the conditional symbol distributions. The primary
difference between different variants of PPM is the way these counts are updated and
combined to form predictions: these two details jointly define the probabilistic model

that determines the algorithm’s compression effectiveness.1

This paper gives an explicit form of the probabilistic model of the classic PPM

algorithm, and then proposes several modifications, each of which increase the com-
pression effectiveness on human text. The runtime costs of this new method are
comparable to those of other PPM variants, and none of our proposed changes in-
creases the memory requirements of the algorithm.

The resulting finite-depth algorithm (PPM-DP) compresses human text better
than any published PPM-variant, including Charles Bloom’s PPMZ [2] and Dmitry
Shkarin’s PPMII [3, 4]. It also beats CTW [5, 6, 7], BWT [8, 9], DMC [10], CSE [11],
and LZMA [12, 13] on human text.

1Of course all compression algorithms define a probability distribution over the input objects they
compress, at least implicitly. Suppose that an algorithm C maps input sequences S to compressed
output sequences C(S). Then C’s implicit probability distribution PC over input sequences S is
given by PC(S) =

1
Z
· 2−|C(S)|, where |C(S)| is the length of the compressed output sequence, and

Z is a constant that normalises the probabilities to unity.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/42338382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Background

PPM-like algorithms use arithmetic coding to compress and decompress sequences
one symbol at a time, using predictive probability distributions P (xn | x1 ... xn−1)
that depend on the preceding symbols. Each time a symbol is encoded or decoded,
the algorithm updates its internal model to improve the symbol predictions for the
remainder of the sequence.

A characteristic feature of PPM algorithms is that these predictive symbol dis-
tributions are computed hierarchically from context-dependent symbol occurrence
counts M, which are collected from the input sequence during compression / de-
compression. These counts are collected separately for different contexts, where the
context of a symbol (at a given position n) is the sequence of symbols immediately
preceding it (or a finite suffix thereof). For example, the length-3 context of symbol
xn is the sequence (xn−3, xn−2, xn−1). All PPM variants use a designated data struc-
ture (such as a trie) to be able to access these counts quickly. Finite-depth variants
of PPM consider contexts up to some maximum length Dmax.

Let X denote the alphabet of input symbols (possibly including a special EOF sym-
bol for marking the end of the sequence). For any given context s, letMs(x) denote
how often a given symbol x was counted, and let |Ms| denote the total number of
symbols counted. It is important to note that the quantity Ms(x) is not generally
equal to the number of times the subsequence (s :: x) occurred in the sequence ob-
served so far: the way symbols are counted and how their counts are combined to
form predictions vary among PPM algorithms, and implicitly define the algorithm’s
probabilistic model.2

This paper proposes several changes to the original PPM algorithm, which are
summarised as follows:

• Replacing the escape mechanism with blending of predictions from all available
context depths. Blending was investigated in detail by Bunton [15]. We describe
a generalised version of blending in section 4, in which a small number of hyper-
parameters control the blending of predictions from different-depth contexts.

• Choosing separate hyper-parameters for different classes of contexts, grouped
together by the number of unique symbols observed in the context, and by
context-depth. This technique is described in section 5.

• Adjusting the hyper-parameters of each context class during compression, using
the analytically computed gradients of the log probability of the data. Such a
technique was used in the Deplump compressor by Bartlett and Wood [16]. This
technique is described in section 6.

The conjunction of these techniques define a new algorithm named PPM-DP, whose
compression effectiveness is demonstrated in section 7.

2The most common rule for counting symbols is the “update exclusions” rule of Moffat [14], which
states that symbols are always counted in the longest matching context, but in shorter contexts are
only counted once for every unique longer context. This rule is used in this paper.

We begin by giving an explicit (and generalised) form of the probabilistic model
of Cleary and Witten’s PPM, including symbol exclusions and update exclusions by
Moffat [14].

3 The probabilistic model of PPM’s escape mechanism

The original PPM algorithm by Cleary and Witten [1] formed predictive symbol
distributions using a method called the escape mechanism. The idea behind this
mechanism is to predict the next symbol using only the count in the longest matching
context if the symbol was observed at least once, and to back off to a shorter context
otherwise.

The probabilistic model induced by this escape mechanism is stated below. We
generalise the original escape mechanism slightly to include two hyper-parameters:
a strength parameter α, and a discount parameter β. Some classic PPM variants
correspond to particular settings of these hyper-parameters. For example, α=1 and
β = 0 recovers Cleary and Witten’s PPMA, while setting α= 0 and β = 1

2
produces

Howard’s PPMD [17]. The permitted range of β is the interval [0, 1], and α must take
a value between −β and +∞.

PPM’s predictive distribution over the next symbol (assuming that all countsMs

are up to date) can then be recursively expressed as follows:

Ps\R(x) :=

Ms(x)− β

T
\R
s + α

if x ∈Ms and x 6∈ R

U
\R
s · β + α

T
\R
s + α

· Psuf(s)\Ms
(x) otherwise.

(1)

where the recursion starts with s being the longest supported context, and R, the set
of excluded symbols, is initially empty. The function suf(s) denotes the longest proper
suffix of s. For example, suf(TEA)=EA, and suf(T)=ε, where ε is the empty sequence.

T
\R
s is the total number of symbol occurrences in Ms (including repetitions) after

excluding all symbols in R:

T \R
s

:=
∑

x∈Ms

Ms(x) · 1[x 6∈ R] (2)

and U
\R
s is the number of unique symbols inMs that do not occur in R:

U\R
s

:=
∑

x∈X

1[x ∈Ms] · 1[x 6∈ R]. (3)

Pε is the top-level (unigram) distribution, and Psuf(ε) is defined to be uniform (or
some other suitable base distribution over the input alphabet X). P

s\R denotes the
adaptive symbol distribution for context s that excludes all symbols in set R. (Note
that the adaptive distributions Ps and summary multisets Ms are changing objects
whose predictions for symbol xN+1 depend on the preceding symbols x1 ... xN ; this
conditional dependence is left implicit for ease of notation.)

The escape mechanism appeals because of its simplicity and computational con-

venience, but its probabilistic model is somewhat difficult to reason about. Also, its
compression effectiveness on human text is inferior to the blending method described
in section 4; see e.g. the work by Bunton [15] for comparisons of these two methods.

4 Blending

The classic PPM algorithm can be modified to use other forms of probability estima-
tion, different from the original “escape mechanism” and its derivatives. The approach
taken in this paper combines the observations from all context depths, blending their
probability distributions (rather than switching between them and applying exclusion
rules). In particular, we use the following construction:

Ps(x) :=
Ms(x)− β

|Ms|+ α
· 1[x ∈Ms] +

Usβ + α

|Ms|+ α
·

1

|X |
if s = ε

Psuf(s)(x) otherwise,

(4)

where 1[x ∈Ms] equals 1 if symbol x was observed at least once in context s (and
0 otherwise). Ms is the multiset of symbol counts for context s, and Us denotes the
number of unique symbols inMs:

Us =
∑

x∈X

1[x ∈Ms]. (5)

Equation (4) defines a probabilistic model that corresponds to a generalised form
of “interpolated Kneser–Ney smoothing” [18] with a uniform base distribution. This
model can also be considered an approximate sequential construction of a Pitman–Yor
process [19].

A blending PPM can be implemented straightforwardly by replacing PPM’s escape
mechanism with equation (4). There are no ESC symbols when blending is used:
symbol probabilities are always calculated by visiting contexts of all depths.

Computing the cumulative symbol distributions of a blending PPM (as required
for arithmetic coding) is computationally slightly more expensive compared to a PPM

that uses the escape mechanism. However, the computational overhead is not pro-
hibitive, and there may be several approaches for speeding up this computation,
e.g. careful caching, or using approximations to blending like PPMII’s information
inheritance mechanism [3].

The predictive symbol distributions of a generalised blending PPM, as defined in
equation (4), depend on two hyper-parameters α and β. It is worth pointing out that
the settings of these hyper-parameters strongly affect the compression effectiveness of
the model. How these hyper-parameters should be set can be determined empirically,
or using an optimisation algorithm; for example, for English text, setting α = 1

2
and

β = 3
4
seems to work reasonably well [20].

We remark that although equation (4) uses the same two hyper-parameters as
in equation (1), they affect compression effectiveness slightly differently in the two
models; settings of α and β that yield good compression with the escape mechanism
will not work well with blending, and vice versa.

5 Distinguishing different classes of context

Most PPM algorithms use the same parameter values for all contexts, i.e. one (often
hard-wired) pair of hyper-parameters that govern the predictions for all contexts. One
side-effect of this practice is, for example, the well-known problem that increasing
the maximum context depth Dmax can worsen (rather than improve) compression
effectiveness. This same problem limits the effectiveness of unbounded depth PPM

variants such as PPM*. Luckily, it turns out that this problem is easy to fix.
Instead of setting these hyper-parameters to fixed values that are shared by all

contexts, we recommend setting the hyper-parameters differently for different classes
of context. In particular, we recommend grouping contexts into classes based on their
depth in the context tree (i.e. the context length |s|), and based on their fanout (the
number of unique symbols Us observed in the context). Each such group of contexts
then shares one pair of hyper-parameters (αfd, βfd), where d is the context’s depth
and f the context’s fanout.3

The predictive distributions (4) remain the same, except that each instance of α
and β is now looked up in a matrix of F × D entries. Only D different depths and
F different fanouts are distinguished: for all contexts whose depth d exceeds D, the
parameter value of the largest distinguished depth is used. The same rule applies for
contexts whose fanout is larger than F . We write α and β for the two (F ×D)-sized
matrices of parameter values. For good results on human text, in our experience, F
should be at least 5, and D should be between 7 and Dmax.

A key remaining question is of course how all these hyper-parameters should be
set. If it was difficult to find good settings for a single pair of hyper-parameters,
then setting F × D pairs of hyper-parameters might be even more challenging. In
section 6, we address this problem using analytically derived gradients of the symbol
distribution (with respect to the hyper-parameters).

Historical notes. The idea of using depth-dependent discount parameters may
have originated with Chen and Goodman’s versions of Kneser–Ney smoothing, in
particular the “interpolated Kneser–Ney” method from section 4.1.6 of their technical
report [18]. Depth-dependent discount parameters are also used in the unbounded-
depth PPM-variant named “Deplump” [21, 16], and in the Sequence Memoizer of
Wood et al. [22] on which the Deplump compressor is based. Fanout-dependent
parameters appear in section 4.1.7 of Chen and Goodman’s report [18], and appear
to be used (at least implicitly) in PPMII by Shkarin [3].

6 Setting the hyper-parameters

For any given input sequence x1 ... xN , the optimal settings of α and β are those
that minimise log2 1/P (x1 ... xN |α,β), the compressed output length. To find these

3Grouping contexts based on depth is sufficient for avoiding the problem of deep contexts being
used ineffectively (if the hyper-parameters are set carefully). Making context groups depend also on
node fanout further improves compression.

settings, it is helpful to obtain analytic gradients of the output length with respect
to the hyper-parameters.

The gradients of the output length can be computed additively from the gradients
of the conditional symbol distributions:

∇ log2
1

P (x1 ... xN)
=

N
∑

n=1

∇ log2
1

P (xn | x1 ... xn−1)
(6)

where P (xn | x1 ... xn−1) was defined in (4). These gradients can be computed effi-
ciently, with not much more effort than required for computing the probability mass.

6.1 Gradients

Writing Ps as an abbreviation for Ps(xN+1 | x1 ... xN ,α,β), and switching to natural
logarithms, the gradients of the conditional symbol probabilities with respect to a
discount parameter βfd are:

∂ log Ps

∂βfd
=

1

Ps

(

−1

|Ms|+ αfd

+
Us

|Ms|+ αfd

Psuf(s) +
αfd + Usβfd

|Ms|+ αfd

·
∂Psuf(s)

∂βfd

)

(7)

And the gradients with respect to a strength parameter αfd are:

∂ log Ps

∂αfd

=
1

Ps

(

βfd −Ms (x)

(|Ms|+ αfd)
2 +
|Ms| − Usβfd

(|Ms|+ αfd)
2 · Psuf(s) +

αfd + Usβfd

|Ms|+ αfd

·
∂Psuf(s)

∂αfd

)

. (8)

The quantities Ms(x), |Ms| and Us are defined as in equation (4). These gradients
are helpful in two ways: firstly, they can be used to update the hyper-parameters
during compression, and secondly, they can be used in an offline search to find the
optimal parameter settings for a given sequence. These procedures will be described
in sections 6.2 and 6.3.

6.2 Dynamic parameter updates

As the optimal settings of the hyper-parameters α and β depend on the sequence
being compressed, it is attractive to adjust them adaptively during compression,
rather than setting them to fixed values.

One simple way of implementing such an adaptive mechanism is to make small
adjustments to the α and β parameter matrices each time a symbol is learned, just
before the algorithm regularly updates the symbol countsM. The adjustments add
the gradients (7) and (8), scaled by a step size δ, to the hyper-parameters:

αfd ← αfd + δ ·
∂ logPs

∂αfd

and βfd ← βfd + δ ·
∂ logPs

∂βfd

. (9)

In our implementation, we used a step size of δ = 0.003. The implementation must
ensure that each modified parameter value stays within its permitted range, i.e. βfd ∈
[0, 1] and αfd ∈ [−βfd,+∞).

6.3 Offline optimisation

Optimal settings of the hyper-parameters α,β for a given sequence x1 ... xN can be
found using e.g. a conjugate gradient optimiser. Offline optimisation is a slow proce-
dure, as it requires compressing the chosen file many times. The output of the offline
optimisation is parameter values that are optimal for the chosen file. These values
will clearly not be optimal for other files, but may work reasonably well on files that
are similar to the file they were optimised for. For this reason we’ve used parameters
that were optimised offline on a file from the Canterbury corpus to initialise the α

and β hyper-parameters in PPM-DP (which uses dynamic parameter updates).

7 Results

The compression effectiveness of our algorithm (PPM-DP), as evaluated on the files
of the Canterbury and Calgary corpora, is presented in Table 1. PPM-DP (depth 8)
compresses human text better than PPMII, PPMZ, CTW, CSE, LZMA, bzip2 and gzip.
The Dmax = 16 variant of PPM-DP compresses even better. On non-text data (files
kennedy.xls, ptt5, sum, geo, obj1 and obj2), LZMA has the strongest compression ef-
fectiveness. More results can be found at http://inference.org.uk/compression/
ppm-dp/.

8 Discussion

We proposed a novel data compression algorithm based on the PPM algorithm by
Cleary and Witten [1], taking inspiration from the work on Deplump [25, 16] and
PPMII [3, 4], and insights from Chen and Goodman [18] and Bunton [15].

PPM-DP’s runtime is comparable to (but slightly slower than) that of other PPM
algorithms. Our algorithm uses the same information as other finite-depth PPM

implementations (a trie data structure with symbol counts), and therefore requires
exactly the same amount of memory.

Limitations. The use of blending and dynamic parameter updates may slow
down the algorithm slightly, adding a small (constant) overhead per symbol. In
our current implementation, we made no attempts to take computational shortcuts
(such as those in Shkarin’s PPMII source code), but of course such optimisations
can and should be made. Our implementation used floating point representation for
the α and β hyper-parameters and their gradients, but faster fixed-point arithmetic
could be used instead. For example, one speed-up found in PPMII is the “informa-
tion inheritance” mechanism [3], which can be interpreted as a computationally fast
approximation to the blending mechanism defined in equation (4). Of course, any
changes to the probabilistic model (even when intended as an approximation) will
also change the analytic form of the gradients. Such changes should therefore be
made with caution.

Future directions. We think it will be beneficial to explore different ways
of grouping or disaggregating contexts into separate classes. It may be interesting

http://inference.org.uk/compression/ppm-dp/
http://inference.org.uk/compression/ppm-dp/

Results gzip LZMA bzip2 CSE CTW PPMZ PPMII N8 N8+ N16+

alice29.txt* 2.850 2.551 2.272 2.192 2.075 2.059 2.033 2.019 2.018 2.015

asyoulik.txt 3.120 2.848 2.529 2.493 2.322 2.309 2.308 2.289 2.284 2.280

cp.html 2.593 2.478 2.479 2.555 2.307 2.158 2.139 2.140 2.121 2.113

fields.c 2.244 2.152 2.180 2.276 1.990 1.896 1.845 1.845 1.820 1.799

grammar.lsp 2.653 2.709 2.758 2.750 2.384 2.300 2.268 2.221 2.210 2.199

lcet10.txt 2.707 2.233 2.019 1.928 1.832 1.794 1.791 1.787 1.783 1.773

plrabn12.txt 3.225 2.746 2.417 2.283 2.185 2.194 2.202 2.178 2.172 2.171

xargs.1 3.308 3.369 3.335 3.494 2.962 2.850 2.852 2.782 2.775 2.771

kennedy.xls 1.629 0.409 1.012 0.891 1.009 1.373 1.168 1.576 1.547 1.519

ptt5 / pic 0.816 0.618 0.776 0.772 0.796 0.754 0.757 0.777 0.767 0.768

sum 2.671 1.982 2.701 3.024 2.571 2.538 2.327 2.525 2.448 2.399

bib 2.509 2.199 1.975 1.975 1.833 1.718 1.726 1.728 1.715 1.697

book1 3.250 2.717 2.420 2.268 2.180 2.188 2.185 2.167 2.165 2.166

book2 2.700 2.224 2.062 1.977 1.891 1.839 1.827 1.822 1.819 1.809

news 3.063 2.521 2.516 2.525 2.350 2.205 2.188 2.215 2.196 2.177

paper1 2.789 2.598 2.492 2.540 2.291 2.212 2.190 2.186 2.179 2.170

paper2 2.887 2.655 2.437 2.412 2.229 2.185 2.173 2.164 2.162 2.158

progc 2.677 2.532 2.533 2.604 2.337 2.257 2.198 2.218 2.207 2.192

procl 1.804 1.666 1.740 1.712 1.647 1.447 1.437 1.487 1.459 1.415

progp 1.811 1.671 1.735 1.778 1.679 1.449 1.445 1.544 1.513 1.432

trans 1.610 1.420 1.528 1.598 1.443 1.214 1.222 1.301 1.241 1.195

geo 5.345 4.185 4.447 5.354 4.532 4.578 4.317 4.571 4.383 4.379

obj1 3.837 3.506 4.013 4.462 3.721 3.667 3.506 3.658 3.577 3.574

obj2 2.628 1.991 2.478 2.711 2.398 2.241 2.160 2.259 2.213 2.173

Table 1: Compression rates of selected compression algorithms on the files of the Canterbury
and Calgary corpora. The results are shown in output bits per input byte, with winning
entries highlighted in bold. Non-text files are separated from text files with a dotted line.

Our algorithms: N8, N8+ and N16+ are variants of PPM-DP: N8+ uses a maximum
context depth of Dmax =8, and 12F × 7D separate parameter pairs. N16+ uses Dmax =16
and 10F × 12D parameter pairs. N8+ and N16+ use dynamic updates as described in sec-
tion 6.2, and N8 has no dynamic updates. The initial settings of the hyper-parameters were
chosen based on an offline optimisation for file alice29.txt, and were hard-wired into the
algorithm.

Other algorithms: gzip [23] uses a variant of the LZ77 algorithm [24], bzip2 [9] is a com-
pressor based on the Burrows–Wheeler transform [8], LZMA is an algorithm by Pavlov [13],
CTW is the reference implementation of “context tree weighting” by Willems et al. [5], CSE
is an implementation of “compression by substring enumeration” by Dubé and Beaudoin
[11], PPMZ is the PPM variant of Bloom [2], PPMII is the official implementation of the
(depth 16) PPM variant by Shkarin [3].

to construct an unbounded depth version of PPM-DP, which might improve com-
pression effectiveness on large files. To produce a highly efficient implementation of
PPM-DP, it may be worthwhile incorporating some of the computational techniques
from Shkarin’s beautiful source code of PPMII [26]. Finally, it could be beneficial
to incorporate PPM-DP’s probabilistic model into multi-model ensemble compressors
such as PAQ [27, 28, 29].

References

[1] J. G. Cleary and I. H. Witten, “Data compression using adaptive coding and partial
string matching,” IEEE Transactions on Communications, vol. 32, no. 4, pp. 396–402,
Apr. 1984.

[2] C. Bloom, “Solving the problems of context modelling,” Informally published report,
1998. [Online]. Available: http://cbloom.com/papers/ppmz.pdf

[3] D. A. Shkarin, “Повышение эффективности алгоритма PPM (Improving the effi-
ciency of the PPM algorithm),” Проблемы Передачи Информации (Problems of In-
formation Transmission), vol. 37, no. 3, pp. 44–54, 2001, for an English translation see
Shkarin [30].

[4] ——, “PPM: One step to practicality,” in Proceedings of the Data Compression Con-
ference, J. A. Storer and M. Cohn, Eds. IEEE Computer Society, 2002, pp. 202–211.

[5] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “Context tree weighting: A se-
quential universal source coding procedure for FSMX sources,” in International Sym-
posium on Information Theory, Proceedings. IEEE, Jan. 1993, p. 59.

[6] ——, “The context-tree weighting method: Basic properties,” IEEE Transactions on
Information Theory, vol. 41, no. 3, pp. 753–664, 1995.

[7] F. M. J. Willems, “The context-tree weighting method: Extensions,” IEEE Transac-
tions on Information Theory, vol. 44, no. 2, pp. 792–798, 1998.

[8] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algorithm,”
Digital Equipment Corporation, Palo Alto, California, Tech. Rep. SRC Research Re-
port 124, May 1994.

[9] J. Seward, “bzip2, version 1.0.6,” A compressor based on the block-sorting transform
of Burrows and Wheeler [8]. Source code, Sep. 2010. [Online]. Available: http://www.
bzip.org/

[10] G. V. Cormack, “Dynamic Markov compression (dmc.c),” A file compressor based on
the “dynamic Markov compression” algorithm by Cormack and Horspool [31]. Source
code, Feb. 1993. [Online]. Available: http://plg.uwaterloo.ca/∼ftp/dmc/dmc.c

[11] D. Dubé and V. Beaudoin, “Lossless data compression via substring enumeration,” in
Proceedings of the Data Compression Conference, J. A. Storer and M. W. Marcellin,
Eds. IEEE Computer Society, 2010, pp. 229–238.

[12] I. Pavlov, “7-Zip, version 3.13,” Source Code, first published version, Dec. 2003.
[Online]. Available: http://www.7-zip.org/

[13] ——, “LZMA SDK,” Source Code, Apr. 2011. [Online]. Available: http://www.7-zip.
org/sdk.html

[14] A. Moffat, “Implementing the PPM data compression scheme,” IEEE Transactions on
Communications, vol. 38, no. 11, pp. 1917–1921, Nov. 1990.

[15] S. Bunton, “Semantically motivated improvements for PPM variants,” The Computer
Journal, vol. 40, no. 2, pp. 76–93, 1997.

http://cbloom.com/papers/ppmz.pdf
http://www.bzip.org/
http://www.bzip.org/
http://plg.uwaterloo.ca/~ftp/dmc/dmc.c
http://www.7-zip.org/
http://www.7-zip.org/sdk.html
http://www.7-zip.org/sdk.html

[16] N. Bartlett and F. Wood, “Deplump for streaming data,” in Proceedings of the Data
Compression Conference, J. A. Storer and M. W. Marcellin, Eds. IEEE Computer
Society, 2011, pp. 363–372.

[17] P. G. Howard, “The design and analysis of efficient lossless data compression systems,”
Ph.D. dissertation, Department of Computer Science, Brown University, Providence,
Rhode Island 02912, USA, Jun. 1993.

[18] S. F. Chen and J. Goodman, “An empirical study of smoothing techniques for lan-
guage modeling,” Centre for Research in Computing Technology, Harvard University,
Cambridge, Massachusetts, USA, Tech. Rep. TR-10-98, 1998.

[19] Y. W. Teh, “A Bayesian interpretation of interpolated Kneser–Ney,” School of Com-
puting, National University of Singapore, Tech. Rep. TRA2/06, 2006.

[20] C. Steinruecken, “Lossless data compression,” Ph.D. dissertation, University of Cam-
bridge, 2014.

[21] J. Gasthaus, F. Wood, and Y. W. Teh, “Lossless compression based on the Sequence
Memoizer,” in Proceedings of the Data Compression Conference, J. A. Storer and M.W.
Marcellin, Eds. IEEE Computer Society, 2010, pp. 337–345.

[22] F. Wood, C. Archambeau, J. Gasthaus, L. James, and Y. W. Teh, “A stochastic mem-
oizer for sequence data,” in ICML ’09: Proceedings of the 26th Annual International
Conference on Machine Learning, ser. ACM International Conference Proceeding Se-
ries, L. Bottou and M. L. Littman, Eds., vol. 382, Jun. 2009, pp. 1129–1136.

[23] J.-l. Gailly and M. Adler, “gzip,” An open source file compressor based on the
DEFLATE algorithm by Katz and Burg [32]. Source code, 1992. [Online]. Available:
http://www.gnu.org/software/gzip/

[24] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on Information Theory, vol. IT-23, no. 3, pp. 337–343, Mar. 1977.

[25] J. Gasthaus and Y. W. Teh, “Improvements to the Sequence Memoizer,” in Advances
in Neural Information Processing Systems 23, J. Lafferty, C. K. I. Williams, J. Shawe-
Taylor, R. Zemel, and A. Culotta, Eds., 2010, pp. 685–693.

[26] D. A. Shkarin, “ppmdj,” An implementation of PPMII by Shkarin [3]. Source code,
2006. [Online]. Available: http://www.compression.ru/ds/ppmdj.rar

[27] M. V. Mahoney, “Fast text compression with neural networks,” in Proceedings of the
Thirteenth International Florida Artificial Intelligence Research Society Conference
(FLAIRS 2000), J. N. Etheredge and B. Z. Manaris, Eds. AAAI Press, 2000, pp.
230–234.

[28] ——, “The PAQ1 data compression program,” 2002, unpublished draft. [Online].
Available: http://cs.fit.edu/∼mmahoney/compression/paq1.pdf

[29] ——, “Adaptive weighing of context models for lossless data compression,” Department
of Computer Science, Florida Institute of Technology, Melbourne, FL, USA., Tech.
Rep. CS-2005-16, 2005.

[30] D. A. Shkarin, “Improving the efficiency of the PPM algorithm,” Problems of Infor-
mation Transmission, vol. 37, no. 3, pp. 226–235, 2001, translated from Russian [3].
See also [4].

[31] G. V. Cormack and R. N. S. Horspool, “Data compression using dynamic Markov
modelling,” The Computer Journal, vol. 30, no. 6, pp. 541–550, 1987.

[32] P. Katz and S. Burg, “PKZIP, version 2.04g,” Software. Distributed by PKWARE
Inc. (Milwaukee, Wisconsin, USA), 1993, first implementation of the DEFLATE algo-
rithm, described by Katz [33].

[33] P. Katz, “APPNOTE.TXT — .ZIP file format specification, version 2.0,” Distributed by
PKWARE Inc. (Milwaukee, Wisconsin, USA), Feb. 1993, contains the first published
description of the DEFLATE algorithm developed by Katz and Burg [32].

http://www.gnu.org/software/gzip/
http://www.compression.ru/ds/ppmdj.rar
http://cs.fit.edu/~mmahoney/compression/paq1.pdf

