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Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe
and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local
density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies,
particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous
and is a local functional of the density, which means that this approximation neglects memory effects and
long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory
(TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This
has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn
(VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time
domain. In this case, the equations become very involved making the computation out of reach; we hence
propose an approximation to the VK functional which allows us to calculate the dynamics in real time and
at the same time to keep most of the physics described by the VK functional. We apply this formulation to
the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar
to what was previously observed in model systems or within linear response. In the non-linear domain, our
results show that relaxation times do not decrease with increasing deposited excitation energy, which sets
some limitations to the practical use of TDCDFT in such a domain of excitations.

I. INTRODUCTION

Reactions with photons serve since the event of quan-
tum physics as a crucial tool for the analysis of atoms
and molecules, a tool which has been refined in the course
of time, experimentally as well as theoretically.1 Photo-
reactions have become extremely popular with the ad-
vent of coherent light sources whose enormous progresses
allow meanwhile to trigger and to track photon-induced
electron dynamics in a time-resolved manner.2 This calls,
at the theoretical side, for reliable and detailed mod-
elling. Among the various available approaches, Time-
Dependent Density Functional Theory (TDDFT) offers
an optimal compromise. Within this approach, one needs
to approximate the so-called exchange-correlation po-
tential which contains the many-body effects (beyond
Hartree) of the system. The standard approximation
is the Adiabatic Local Density Approximation (ALDA),
in which the ground-state local density approximation is
evaluated at the instantaneous local density. Although
ALDA provides a sound starting basis for describing dy-
namical processes, it is still plagued by intrinsic lim-
itations. One of them concerns the account of dissi-
pative effects which require to go beyond ALDA. The
main characteristic of the ALDA is that it is local in
time as well as in space. Vignale and Kohn showed for
the case of time-dependent linear response theory that a
frequency-dependent local-density approximation of the
exchange-correlation potential does not exist in general,
but that a local approximation can be maintained if the

theory is extended to also include the current density.3,4

Therefore, it can be more convenient and more efficient
to use a local functional of the current density rather
than a non-local functional of the density. By studying a
weakly perturbed electron gas, Vignale and Kohn derived
an exchange-correlation vector potential that is a local
functional of the current density.4 This functional has
been used since then for the description of finite and infi-
nite electronic systems within the linear-response regime.
One of the successes of this approach is that the use of the
local current-density functional puts the polarizability of
conjugated polymers into the right order of magnitude,
while it was grossly overestimated in ALDA.5,6 In ex-
tended systems, it is able to describe the electron-electron
scattering responsible for the Drude-like tail in metals, a
feature which is completely absent within ALDA.7 TD-
CDFT can also be used beyond linear response in a real-
time description. Such an extension has already been
studied, but so far for models or simple systems8–10 in
which, thanks to the considered space symmetries, the
complexity of the equations reduces to that of TDDFT.
These studies indicate that the VK introduce an artificial
damping of electron dynamic, which was also observed
in the linear response of atoms.11 It becomes then im-
portant to further explore the VK functional. It is the
aim of this work to investigate TDCDFT with the VK
functional in the real-time domain for realistic systems
in full three space dimensions. The outline of this article
is as follows. In Sec. II, we summarize the key equations
of TDCDFT, we introduce the VK functional, and we
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show how one can approximate it to make calculations
feasible. We report the main aspects of the implemen-
tation in Sec. III. In Sec. IV, we present results for the
time evolution of the dipole moment of Ca, Mg, and Na2,
we compare the excitation energies with previous works
using VK in the linear regime, and we explore the non-
linear regime. Finally, we give our conclusions in Sec. V.

II. THEORY

Standard TDDFT employs a scalar multiplicative
Kohn-Sham potential VS(r, t) composed of the external
field Vext, the Hartree potential VH and an exchange-
correlation (xc) potential Vxc. The current is a vector
field and, accordingly, TDCDFT complements the Kohn-
Sham equations by a vector potential AS to

i~
∂ϕα(r, t)

∂t
=
{ 1

2m

[
−i~∇− q

c
AS(r, t)

]2
+ VS(r, t)

}
ϕα(r, t) , (1a)

VS(r, t) = Vext(r, t) + VH(r, t) + Vxc(r, t) , (1b)

AS(r, t) = Aext(r, t) + Axc(r, t) , (1c)

where q = −e is the electron charge and c the light veloc-
ity. The vector potential AS is composed of an external
contribution Aext and the exchange-correlation vector
potential Axc. In the following we will use the Vignale-
Kohn (VK) approximation for the xc potentials.4

The density and the current density can be expressed
in terms of the Kohn-Sham wave functions as

ρ(r, t) =
∑
α

|ϕα(r, t)|2 (2a)

j(r, t) =
~
m

∑
α

Im [ϕ∗α(r, t)∇ϕα(r, t)]

− q

mc
AS(r, t) ρ(r, t) , (2b)

and are independent of the gauge chosen to represent the
electromagnetic potentials.

A. The Vignale-Kohn functional in real time

Up to second order in spatial derivatives, under the
basic assumption that the gradients of the density and
the velocity are small (see Ref. 12), and choosing a gauge
with Vxc = 0, the VK functional in real time reads

q

c

∂Axc,i(r, t)

∂t
= ∂iV

ALDA
xc −

∑
j ∂jσxc,ij(r, t)

ρ(r, t)
, (3)

where the second term on the right-hand side is usually
referred to as the “memory term”. It is determined by

the visco-elastic xc stress tensor whose components are

σxc,ij(r, t) =

∫ t

−∞
dt′

{
η(r, t, t′)

[
∂ivj(r, t

′) + ∂jvi(r, t
′)

− 2

d
∇ · v(r, t′)δij

]

+ ζ(r, t, t′)∇ · v(r, t′)δij

}
(4)

where d is the number of spatial dimensions.13 Here
v(r, t) = j(r, t)/ρ(r, t) is the time-dependent velocity
field. The time-dependent visco-elastic coefficients are
the Fourier transforms of the complex visco-elastic coef-
ficients:

η(r, t, t′) =

∫
dω

2π
ηxc(ρ̄, ω)e−iω(t−t′)

∣∣∣∣
ρ̄=ρ(r,t∗)

(5a)

ζ(r, t, t′) =

∫
dω

2π
ζxc(ρ̄, ω)e−iω(t−t′)

∣∣∣∣
ρ̄=ρ(r,t∗)

(5b)

where η stands for the shear viscosity and ζ for the bulk
viscosity coefficient (still possibly including elasticity ef-
fects). There remains an open question on the choice of
the time instant t∗. It may be either t∗ = t or t∗ = t′ or
anything in between. The differences involve higher gra-
dient corrections,12 which are disregarded in the present
approach and which become obsolete anyway in the in-
stantaneous approximation which we will use (Sec. II B).
The visco-elastic coefficients are expressed in the fre-
quency domain as

ηxc(ρ, ω) = −ρ
2

iω
fT

xc(ρ, ω) (6a)

ζxc(ρ, ω) = −ρ
2

iω

[
fL

xc(ρ, ω)− 2(d− 1)

d
fT

xc(ρ, ω)

− d2εxc(ρ)

dρ2

]
. (6b)

Here εxc(ρ) is the xc energy density and fL,T
xc (ρ, ω) are the

frequency-dependent longitudinal (L) and transverse (T)
response kernels of the homogeneous electron gas eval-
uated at the density ρ. The xc kernels are not known
accurately. There are two works in which practicable ap-
proximations are given.14,15 In the following, we will use
the more recent parametrization given by Qian and Vi-
gnale (QV),15 which was designed to satisfy all known
limits and relations of the longitudinal and transverse xc
kernels, and which allows a simple analytic evaluation of
η(r, t, t′).

B. An instantaneous approximation to the VK functional

With its third order derivatives and double integrals
over time, the VK approximation makes the Kohn-Sham
equations highly involved. Our goal here is to simplify
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the original equations to make their computation feasi-
ble while keeping the important aspects of the VK ap-
proximation. We are looking for an approximation to
σxc,ij(r, t) which is local in time (i.e. instantaneous) as

σxc,ij(r, t) ≈ η0(r, t)

[
∂ivj(r, t) + ∂jvi(r, t)

− 2

d
∇ · v(r, t)δij

]
+ ζ0(r, t)∇ · v(r, t)δij . (7)

This can be obtained by considering the time-dependent
visco-elastic coefficients η(r, t, t′) and ζ(r, t, t′) in Eq. (4)
as significantly different from zero only during a time
interval t′ ∈ [t − T, t], with t′ so short with respect to
the plasma period that the velocity gradients during that
time interval can be considered constant. This leads to
the identifications

η0(r, t) =

∫ t

−∞
dt′ η(r, t, t′) (8a)

ζ0(r, t) =

∫ t

−∞
dt′ ζ(r, t, t′) . (8b)

Using the QV parametrization for ηxc(ρ, ω) and ζxc(ρ, ω),
we can evaluate (8a) and (8b), which read

η0(r, t) = ρ(r, t) aT
3

∣∣
ρ(r,t)

(9a)

ζ0(r, t) = 0, (9b)

where the coefficient aT
3 is given in Ref. 15. Note that

to arrive at (9a) we assume limω→0 ηxc(ρ, ω) = 0. This
is compatible with the instantaneous approximation (7).
Under this approximation, indeed, the visco-elastic co-
efficients η(r, t, t′) and ζ(r, t, t′) are assumed peaked for
t − t′ → 0+ and to approach zero very quickly. This
implies that most of the memory comes from the recent
past. This approximation to the static limit of ηxc coin-
cides with the QVA/QV0 approximation used in previous
works.7,16,17 Note also that the approximation (9a) corre-
sponds to a transverse kernel fT

xc(ρ, ω) = −iωηxc(r, ω)/ρ2

that is purely imaginary. This feature will be important
for the interpretation of the results in Sec. IV, since it is
precisely the imaginary part of the complex fL,T

xc kernels
that is responsible for the dissipative effects.9

III. IMPLEMENTATION

We have implemented the VK functional in our open-
source package TELEMAN.18 Wave functions and fields
are represented on an equidistant Cartesian grid in 3D co-
ordinate space. The operators of momentum and kinetic
energy are evaluated in Fourier space exploiting the fast
Fourier transformation. For the (scalar) energy-density
functional, we use the Perdew-Wang parametrization.19

The ionic cores are described by separable pseudo-
potentials of Goedecker type.20 The static solution is
evaluated using accelerated gradient iteration21 and in
order to deal with the numerical Axc each time step of
the dynamical evolution is done by a fourth order series
expansion of the exponential of the Kohn-Sham Hamil-
tonian. For more technical details see Ref. 22.

Even in its simplified form the implementation of the
VK functional in a real-time propagation of finite sys-
tems remains demanding, because it involves third order
derivatives of the wave functions and because the veloc-
ity v = j/ρ becomes an unsafe quantity in the tails of
the electron cloud where ρ becomes very low. The prob-
lems raised by TDCDFT can be understood by looking
at Fig. 1, which shows the density and velocity profiles
along the symmetry axis of a Na2 dimer :

1. The velocity is well behaved in the center of the box
where density is large, but it is plagued by strong
fluctuations and huge values near the edges. This
simply comes from the fact that, while both the
density and the current basically vanish at the box
boundaries, thus physically corresponding to a re-
gion of space virtually void of particles, their ratio
may take large values. This feature is also present
in TDDFT, but it has no practical consequence as
the velocity has no impact on the Kohn-Sham field.
However, in TDCDFT, the strange velocity profile
at the outer tail, amplified by high-order deriva-
tives, leads in a few time steps to insurmountable
numerical instabilities.

2. A better understanding of the velocity behavior is
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attained by looking at the density, which is cross-
ing 10 orders of magnitude on this example. It
is becoming extremely small towards the edges of
the box and, since the velocity v involves ρ−1, this
makes v a numerically critical, perhaps even un-
physical, object in the outer tail of a finite system.

3. TDDFT calculations are performed on a reduced
set of valence electrons while the remaining core
electrons are modeled through a pseudo-potential.
The concept of a density thus becomes ambiguous:
It could mean the total density ρ of all electrons
or the (smaller) density of valence electrons only
ρval. The problem is in fact rather fundamental
as pseudo-potentials are usually not tuned to any
quantity involving currents. Their use in a TD-
CDFT environment has thus to be ”adapted” to
this new context. After a careful analysis of this
difficulty in actual computations, we finally decided
to follow a split-minded strategy. We compute the
(conventional) scalar Kohn-Sham potential using
the valence density ρval (as usually done when us-
ing pseudo-potentials) and use the total density ρ in
all above outlined expressions of the current func-
tional (as naturally stems from TDCDFT equa-
tions). Note also that a pseudopotential descrip-
tion is valid for moderate ionisation regimes, and
therefore the use of high intensity fields introduces
further difficulties.23,24

Therefore, although the implementation of the TDCDFT
equations is in principle straightforward, one has to care-
fully handle the points raised above to avoid that the
equations violently diverge in less than one time step of
propagation. We have obtained a stable code by using
two essential measures : (i) for the derivatives in the cur-
rent functionals, we use second-order finite differences
derivatives, which, in presence of fluctuations, are more
robust than the high order Fourier definition ; (ii) in
the computation of the velocity, we employ a numerical
smoothing technique to eliminate the spurious signal in
the low density area, which progressively puts the veloc-
ity to a constant while ensuring its continuity along all
axes.

IV. RESULTS

We tested our implementation by calculating the time
evolution of the dipole moment for three closed-shell sys-
tems, namely the Ca atom, the Mg atom, and the Na2

dimer. We excite the systems by an instantaneous ini-
tial boost of the valence electron cloud and then let the
system evolve freely. This avoids interference with an
external photon field and thus allows us to check the sta-
bility of the code as such, and the physics it describes.
Moreover, from the dipole moment, we can extract ex-
citation energies and compare them with previous works

which use the VK functional in linear response. The nu-
merical parameters are optimized for each system. We
use 643 grid points for Ca and Mg but 483 for Na2. The
grid spacing is 0.6 a0, 0.5 a0, and 0.8 a0 for Ca, Mg, and
Na2, respectively. All three systems deal with two active
valence electrons and use a time step of 0.02 ~/Ry. The
boost strength is varied and will be specified in each case
separately.

A. Damping of the dipole moment

Figure 2 shows the time evolution of the dipole mo-
ment of Ca, calculated using TDDFT within ALDA and
TDCDFT within the VK approximation.

Ca is distinguished by having one very dominant dipole
mode with only very little spectral fragmentation. This
avoids damping of the dipole signal by distribution over
many sub-modes (Landau damping25,26) and makes it
the ideal test case for checking dissipative contributions
from TDCDFT. And indeed, the dipole signal from mere
TDDFT carries on to oscillate without visible damping.
In TDCDFT, we however observe a strong damping of
the dipole moment. This was already observed in pre-
vious works on model systems,8,10 although it had been
shown to be overestimated in small systems while be-
coming correct in the thermodynamic limit.10 The VK
approximation, hence, can describe dissipation even in a
real-time description and in the instantaneous approxi-
mation (7). We also see that the position of the oscilla-
tion peaks remains the same as in TDDFT. This can be
understood from the fact that the approximation (9a)-
(9b) to the visco-elastic coefficient η0 and ζ0 corresponds
to a purely imaginary transverse kernel fT

xc, and that
only a real part can have an effect on the position of the
oscillation peaks.11
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Figure 2. Dipole moment of Ca as a function of time for
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boost of pboost = 0.01 ~/a0.
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Table I. Excitation energies (eV) for the lowest s → p tran-
sitions of Ca and Mg.

This work Previous work11

Expt.31 ωVK ωVK ωALDA

Ca 2.933 3.66−0.068i 2.962−0.063i 3.381

Mg 4.346 4.45−0.047i 4.509−0.093i 4.571

B. Linear response

From the dipole signal after a faint instantaneous
boost one can compute the spectral distribution of dipole
strength by Fourier transformation of the dipole sig-
nal. This is the real-time approach to linear response
spectra.27–29 We have done that for the case of Ca and
Mg atoms. In Ca, there is a clear dominant dipole tran-
sition such that it suffices to look just at position and
width of this prominent dipole peak. In Mg, the situation
is more involved as, besides a strong 3s→ 3p transition,
there exist several nearby transitions (3s → 4p, 5p, 6p)
which are only about one order of magnitude less intense
than the main one (we have checked that these transi-
tions match tabulated transitions in Mg30). Our initial
boost excites all dipole modes simultaneously. Thus the
various transitions contribute with comparable weights
and it will be difficult to single out the effect of a single,
dominant mode.

The results for Ca and Mg are compiled in Table I with
those for TDDFT in the column ωALDA and for TDCDFT
in the columns ωVK. We also compare our results with
the work of Ullrich et al.,11 where the full VK functional
has been implemented within linear response, and with
experimental measurements.31 It is worth noting that in
Ref. 11, the authors explore well identified transitions
while our boost analysis excites a mix of modes. TDDFT
has purely real frequencies while the TDCDFT results
acquire an imaginary part. Thus the effect of the VK
approach with respect to ALDA is to broaden the peaks.
The position of the peaks remains almost the same as in
ALDA for our instantaneous approach. There is a small
shift of the real part for the case of Ca in Ref. 11, whereas
the imaginary parts (widths) are comparable in both cal-
culations in the case of Ca. As for Mg, the damping in
our computations is larger than that of the individual
3s → 3p transition of Ref. 11, an effect which can be
attributed to our simultaneous account of the dominant
transition and nearby ones. These results confirm the
findings from Fig. 2 from the frequency perspective. Our
implementation of TDCDFT thus seem to be robust since
two different calculations give similar results.

C. Non-linear effects

An important physical issue and a strong motivation
of the present investigation concerns the possible access

to dissipative behaviors in non linear dynamical scenar-
ios. Therefore, we have explored this aspect by increas-
ing the value of the initial boost. Note that in this work,
we do not use absorbing boundary conditions. The sys-
tem we explore is thus closed and we can focus on how
initial excitation energy does redistribute towards “ther-
mal” degrees of freedom, without being polluted by the
competing de-excitation channel provided by direct elec-
tron emission.

Figure 3 compares the evolution of the dipole moment
in TDCDFT for various initial boost strengths and in
two test cases, that is the Mg atom and the Na2 dimer.

Note that the dipole moments are rescaled proportion-
ally to the inverse of the initial boost. They would thus
become identical for an undamped motion. We see only
little dependence on the initial boost. This is plausible
when looking at the model for the viscosities as given
in Eq. (6) together with the approximation (9) because
there is no entry for the actual excitation energy visi-
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ble. But this is unphysical, since theories with a de-
tailed microscopic description of electron-electron colli-
sions, namely for Fermi liquids in bulk32 and for finite
electron systems,33–35 show that damping depends sen-
sitively on excitation status because the phase space for
collisions opens up with increasing energy (or temper-
ature). The instantaneous VK approximation to TD-
CDFT does not reproduce this expected trend. Thus it
is limited to the linear regime and should better not be
used for non-linear excitations. This is consistent with
the way in which the VK functional has been derived,
i.e. for a weakly perturbed electron gas.

D. Total energy

We finally looked at the time evolution of the total en-
ergy. Figure 4 shows the adiabatic total energy as defined
in Refs. 8, 10, and 36.

As expected, the total energy remains constant with
TDDFT in ALDA, whereas using VK, the initial total
energy (the contribution to the kinetic energy due to the
initial boost) is dissipated in the course of time. D’Agosta
and Vignale36 proved that the adiabatic Kohn-Sham en-
ergy decreases monotonically in the absence of an ex-
ternal field when the VK approach is used, which indi-
cates that the system is irreversibly driven to equilibrium.
This scenario has already been observed in previous TD-
CDFT works on one-dimensional models,8,10 where it is
argued that the energy loss is distributed over configura-
tion space (thermalization), however, without accounting
for compensation by thermalization of the system.
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excited with a boost of pboost = 0.01 ~/a0.

V. CONCLUSIONS

We have implemented TDCDFT in real time and three
spatial dimensions. We have used the approximation to
the exchange-correlation vector potential proposed by Vi-
gnale and Kohn which takes into account non-adiabatic
effects. Due to the numerical challenges that such an
implementation represents, we have developed a new ap-
proximation for the non-adiabatic term that, while treat-
ing the memory instantaneously in time, maintains the
dissipating effects of the VK approximation. We have
demonstrated the capabilities of the method by apply-
ing it to Mg, Ca and Na2 whereby we are modeling a
short laser pulse by an instantaneous boost. Within the
linear regime (small boosts), our results compare well
with previous results obtained using the VK functional
within linear response theory. This indicates that our
implementation as well as our approximation to the VK
functional are robust. However, in the non-linear regime
the VK approximation is found to fail.. Indeed, it is ex-
pected that damping should significantly depend on the
amount of deposited excitation energy in a system: the
larger the excitation energy, the faster the relaxation.
This general feature is not reproduced within our im-
plementation of TDCDFT. Better approximations to the
exchange-correlation functional need to be devised. How-
ever one has to consider also the increasing complexity
of the equations to deal with from a numerical point of
view, which may cause this route to dissipation unpracti-
cal. This has yet to be explored. The quest for a reliable
and manageable theoretical framework to describe quan-
tum dissipation in finite systems remains a challenge.
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