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Abstract  

 

Tuberculosis (TB) is a chronic infectious disease mainly caused by the tubercle bacillus 

Mycobacterium tuberculosis and one of the world’s deadliest diseases that has afflicted humanity 

since ancient times. Although the number of people falling ill with TB each year is declining, its 

incidence in many developing countries is still a major cause of concern. Upon invading host cells by 

phagocytosis, M. tuberculosis can replicate within infected cells by arresting the maturation of the 

phagosome, whose function is to target the pathogen for elimination. Host cells have mechanisms of 

controlling this evasion by inducing autophagy, an elaborate cellular process that targets bacteria for 

progressive elimination, decreasing bacterial loads within infected cells. In addition, autophagy 

activation also aids in the control of inflammation, contributing to a more efficient innate immune 

response against M. tuberculosis. Several innovative TB therapies have been envisaged based on 

autophagy manipulation, with some of them revealing high potential for future clinical trials and 

eventual implementation in health care systems. Thus, this review highlights the recent advances on 

the innate immune response regulation by autophagy upon M. tuberculosis infection and the 

promising new autophagy-based therapies for TB. 
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Mycobacterium tuberculosis: biology and infection 

 

Mycobacterium tuberculosis, the major causative agent of tuberculosis (TB), is estimated to latently 

infect one third of the world population and continues to claim more lives than any single other 

bacterial pathogen, despite the availability of drugs since 1944, when streptomycin was first 

administered to a TB patient. Although only a small percentage of the latently infected individuals 

will ever develop active disease, this translates into a huge number of 8 million new TB cases and 

nearly 1.5 million deaths per year.  

TB is often regarded as a developing world disease where debilitated health care systems together 

with the HIV epidemic allow it to remain rampant. In addition, the increasing incidence of multidrug-

resistant (MDR) and extensively-drug resistant (XDR) TB, which in some countries accounts for over 

20% of new infections, has the potential to exert a heavy toll also in developed countries (WHO 

Global tuberculosis report 2014). 

Mycobacterium tuberculosis and all other species of mycobacteria, many of which are opportunistic 

intracellular pathogens, owe much of their resilience to a distinctive lipid-rich cell envelope that not 

only protects the cells against harsh environments, but also contains many molecules that are immune 

effectors crucial in evading the host immune response (Briken et al., 2004, Court et al., 2010, Ehlers 

2010, Ishikawa et al., 2009, Lang 2013, Nobre et al., 2014, Philips and Ernst 2012, Schafer et al., 

2009). Besides glycolipids and glucans that constitute most of M. tuberculosis cell envelope, several 

secreted proteins have been identified and shown to also play fundamental roles in M. tuberculosis 

survival and proliferation within the host (Abdallah et al., 2007, Philips 2008, Philips and Ernst 2012). 

This extremely successful human pathogen enters our bodies through inhalation of aerosols 

containing M. tuberculosis cells. This organism then employs an array of immune modulators to 

invade and thrive in the host professional phagocytic cells, such as macrophages, neutrophils, 

monocytes and dendritic cells (DCs) by arresting phagosome maturation and fusion with lysosomes 

(Cooper 2009, Ernst 2012). While for many other pathogens the recruitment of phagocytic cells to the 

infection site halts and eradicates invading organisms, in mycobacterial infections it actually helps the 

pathogen to proliferate by providing further cells for infection (Ernst 2012, Philips and Ernst 2012). 
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As recruited cells get infected, the host immune system coordinates the edification of specific 

protective structures named granulomas, the histological hallmark of this disease (Ernst 2012, Philips 

and Ernst 2012). Granulomas are traditionally viewed as an attempt by the host to control the 

infection that is achieved with variable degrees of success (Davis and Ramakrishnan 2009, Lin et al., 

2014, Philips and Ernst 2012). The dogma claims that M. tuberculosis resides inside phagosomes, 

however some reports have described that this pathogen can also grow in the cytoplasm environment 

(van der Wel et al., 2007). The bacteria that replicate inside phagocytes control cell death pathways 

towards necrosis and recruit more non-infected macrophages, expanding the infection (Lee et al., 

2011, Philips and Ernst 2012). 

Understanding how this organism evades and exploits our immune defense mechanisms has the 

potential to change significantly how we tackle this disease, improving the lives and health of millions 

worldwide. 

 

Autophagy: a general antibacterial host mechanism  

 

Macroautophagy (hereafter referred as autophagy) is a mechanism that relies on the formation of a 

double-membrane vesicle, the autophagosome, which engulfs components of the cytoplasm and 

delivers them to degradation in the lysosome. Autophagy is crucial for the maintenance of cellular 

homeostasis by continuously degrading damaged organelles, long-lived proteins, protein aggregates, 

and intracellular pathogenic microorganisms (Mizushima 2011). It also provides a way of recycling 

nutrients, which then participate in de novo protein synthesis and energy production. Autophagy can 

be induced by a variety of stimuli and/or environmental stresses, as for example nutrient starvation, 

low oxygen levels, oxidative stress, pathogen infection and certain drugs treatments (Bento et al., 

2013, Gomes and Dikic 2014).  

Autophagy-related (ATG) proteins are the key players in the regulation of autophagy, being 

hierarchically organized in functional complexes that control all the autophagy steps, from the 

initiation signalling point to the autophagosome fusion with the lysosome. The formation of new 

autophagosomes is triggered and assisted by a core of ATG proteins that can be subdivided in some 



4 
 

groups: (1) the unc-51-like kinase (ULK) complex, composed by the mammalian Atg1 orthologues 

ULK1 and ULK2, ATG13 and the focal adhesion kinase-family interacting protein of 200 kDa 

(FIP200), that is controlled by AMP-activated protein kinase (AMPK) and mechanistic target of 

rapamycin (mTOR), both being responsive to signals such as amino acids and glucose availability, 

growth factors stimulation, stress conditions and AMP/ATP energetic status of the cell; (2) class III 

phosphatidylinositol 3-kinase (PI3K) complex (controlled via phosphorylation by the ULK complex), 

composed by VPS34, Atg6 (also known as Beclin 1), Atg14 (also known as Barkor) and VPS15 (also 

known as p150), that is involved in the synthesis of phosphatidylinositol 3-phosphate PI3P, whose 

function in autophagy is not very clear but seems to favour the recruitment of WD-repeat-domain-

phosphoinositide-interacting proteins (WIPIs in mammals and Atg18 in yeast) to the phagophore 

membrane, marking membranes for autophagosome nucleation (3) ATG9, which is involved in the 

supply of lipid bilayers to the formation of autophagosomes; (4) ATG12-ATG5-ATG16L1 complex, 

formed by an ubiquitination-like reaction where ATG12 is conjugated to ATG5 (by a mechanism 

dependent on ATG7 and ATG10, which act similar to an E1-ubiquitin activating enzyme and an E2-

ubiquitin conjugating enzyme, respectively), which then is associated to ATG16L1 and, subsequently 

to the nascent phagophore; and (5) ubiquitin-like microtubule-associated protein 1-light chain 3 (LC3 

in mammals or Atg8 in yeast) family system, where pro-LC3 is cleaved by ATG4B, resulting in LC3-

I that is then conjugated to phosphatidylethanolamine (PE) by ATG7 and ATG3 to form LC3-II, the 

autophagosome-associated form of LC3. The ATG12-ATG5-ATG16L1 complex enhances the 

recruitment of LC3 to the site of lipidation and conjugation of LC3 to PE (Figure 1). LC3-II is thought 

to be involved in the elongation and closure of the autophagosome and it is also important in the 

recruitment of cargo, by a mechanism dependent on proteins similar to P62 (also known as 

sequestosome 1 or SQSTM1) and neighbor of BRCA gene 1 (NBR1), containing LC3-interacting 

(LIR) and ubiquitin-associated (UBA) domains. This type of proteins recognizes ubiquitin-tagged 

substrates through their UBA domains and interacts with LC3-II via the LIR domain, acting as cargo 

adapters for ubiquitinated proteins that can be degraded by autophagy (Bento et al., 2013, Gomes and 

Dikic 2014). 
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The formation of autophagosomes can be regulated by a wide variety of signals that are usually 

categorized into mTOR-dependent and mTOR-independent (Sarkar 2013). mTOR is a classic 

negative regulator of autophagy and its activity is canonically inhibited by starvation or rapamycin 

treatment, which leads to activation of Atg13-ULK1/ULK2-FIP200 complex, thereby inducing 

autophagy. ULK1 phosphorylation/activation by AMPK and upregulation of phosphatase and tensin 

homologue (PTEN) via inhibition of AKT kinase, both induced by p53, also inhibit mTOR. AMPK 

can also phosphorylate tuberous sclerosis complex 2 (TSC2), which impacts on the activity of the 

TSC-Ras homology enriched in brain (RHEB) axis, ultimately leading to mTOR inactivation and 

autophagy induction. Among the mTOR-independent mechanisms, inhibition of inositol 

monophosphatase (IMPase), which reduces the levels of free inositol and inositol (1,4,5)-triphosphate, 

and activation of AMPK via Ca2+-transfer from the endoplasmic reticulum to the mitochondria, are 

some of the most well characterized mechanisms regulating autophagy (Bento et al., 2013, Ravikumar 

et al., 2009).  

 

With particular interest for the context of this review, autophagy constitutes a cell-autonomous 

defence mechanism against a wide-range of intracellular pathogens from bacteria (i.e. Mycobacterium 

tuberculosis, Streptococcus pyogenes, Shigella flexneri, Salmonella enterica) to protozoa and viruses 

(Gomes and Dikic 2014).  

In the specific case of bacteria, after invading host cells, they reside within vacuoles or phagosomes, 

whose maturation tends to be blocked. Eventually, some bacteria damage the membrane of the 

phagosome and escape into the cytosol. Bacteria in damaged phagosomes or in the cytosol can then be 

targeted to autophagy and degradation in the lysosome, by a mechanism that relies on the binding of 

ubiquitin or galectin to bacteria and/or to the membrane of phagosome-containing bacteria, which are 

recognized by the autophagic adaptors P62, NBR1, optineurin or calcium binding and coiled-coil 

domain 2 (CALCOCO2 or NDP52). However, some bacteria have the ability to manipulate autophagy 

for survival by secreting effectors that inhibit the pathway (Gomes and Dikic 2014, Huang and 

Brumell 2014). In the next sections, we will revise the main findings that have implicated autophagy 

in the clearance of mycobacteria, as well as some of the mycobacterial defence mechanisms against 
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elimination by host cells and potential tuberculosis therapeutics based on autophagy antimicrobial 

responses.  

 

Autophagy: a host defence mechanism against Mycobacterium tuberculosis  

 

Mycobacterium tuberculosis is an intracellular pathogen that can replicate within infected 

macrophages, by arresting the maturation of the phagosome where the bacteria reside. This is at least 

in part attributed to the failure of phagosomes to undergo fusion with lysosomes by selective 

exclusion of Rab7 GTPase and lysosomal-associated membrane protein 1 or LAMP-1 (markers of late 

endosome and lysosome), coupled with the retention of Rab5 (an early endosome marker) on the 

phagosome, which allows M. tuberculosis to avert the usual physiological destination of 

phagocytosed material (Via et al., 1997). In addition, M. tuberculosis also interferes with the delivery 

of V-ATPase subunits and lysosomal hydrolases from the trans-Golgi network (TGN) to the 

phagocytic compartment, which impacts on its biogenesis and function. This is connected to the fact 

that M. tuberculosis produces an array of lipids and lipoglycans (i.e. lipoarabinomannan) that mimic 

certain mammalian phosphatidylinositols important for the synthesis of PI3P via VPS34 which not 

only inhibits autophagy but also blocks PI3P-dependent trafficking pathways, such as the one between 

the TGN and the phagosome (Fratti et al., 2003, Shui et al., 2011, Vergne et al., 2004). M. 

tuberculosis also secrets a tyrosine phosphatase (MptpA) that further reduces the phagosomal levels 

of PI3P and blocks phagosome-lysosome fusion by interacting with vacuolar protein sorting 33b 

(Vps33b), a host protein typically associated with vesicle trafficking steps in the endosome/lysosome 

pathway (Bach et al., 2008, Vergne et al., 2005) (Figure 2).  

Nutrient starvation, a conventional inducer of the VPS34 kinase complex, has been shown to act as an 

effective promoter of biogenesis, acidification and maturation of mycobacterial phagosomes, by 

increasing the delivery of late endosome/ lysosome markers (e.g. vacuolar-type H+-ATPase or V-

ATPase, LAMP1 and cathepsin D) and the recruitment of membrane-associated LC3 to the 

phagosome, which directly impacts on the survival of mycobacteria in infected cells (Gutierrez et al., 

2004). Interferon-γ (IFN- γ), a cytokine associated with protective immunity against M. tuberculosis, 
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and immunity-related GTPase family, M (IRGM or LRG-47), a downstream effector of IFN-γ, show 

similar effects to starvation, while the PI3 kinases inhibitors 3-methyladenine (3-MA) and 

wortmannin abrogate this response (Gutierrez et al., 2004). Depletion of Beclin-1 and Atg7, critical 

autophagy regulators, also inhibit IFN-γ- or Irgm1-induced phagosomal maturation (Singh et al., 

2006). Therefore, immunological or pharmacological VPS34- or autophagy-targeted manipulation can 

render infected cells more resistant to mycobacterial infection.    

Besides from inhibiting VPS34, mycobacteria have other ways of protecting themselves against 

autophagy-mediated clearance. For instance, the “enhanced intracellular survival” (Eis) gene 

enhances the survival of M. tuberculosis and other mycobacteria inside of cells by diminishing 

autophagy and pro-inflammation (Shin et al., 2010a, Wei et al., 2000). Infection of macrophages with 

an eis-deleted M. tuberculosis strain (Mtb-Δeis) was shown indeed to augment the formation of LC3-

positive and double membrane vesicles (autophagosomes) as compared to the Mtb-WT strain. These 

vesicles enclose the bacilli and subsequently fuse with multivesicular structures, leading to the 

formation of late or degradative autophagic vacuoles, which correspond to autolysosomes. In addition, 

Mtb-Δeis also upregulates the production of pro-inflammatory cytokines, such as tumor necrosis 

factor-α (TNF-α) and interleukin-6 (IL-6), and the generation of ROS by a c-Jun N-terminal kinase 

(JNK)-dependent mechanism in host macrophages, being the last event the one triggering autophagy 

and pro-inflammation (Shin et al., 2010a). Interestingly, Eis protein secreted by M. tuberculosis 

appears to enhance survival of other mycobacteria, namely M. smegmatis, in macrophages. M. 

tuberculosis-Eis is an efficient Nɛ-acetyltransferase, rapidly acetylating Lys55 of dual-specificity 

protein phosphatase 16 (DUSP16; also known as MKP-7), a JNK-specific phosphatase, whereas M. 

smegmatis-Eis is more efficient as a Nα-acetyltransferase and preferentially acetylates the terminal 

amino group of peptides (Kim et al., 2012b). This difference between both proteins is likely to be 

explained by a structural dissimilarity in the peptide recognition pocket of the enzymes; M. 

tuberculosis-Eis is characterized by the presence of a narrow channel, while M. smegmatis-Eis has a 

deep, round-shaped substrate-binding pocket, which seems more suitable for accommodating the 

terminal amino group of peptides than specific sequences within proteins (Kim et al., 2012b). This 

structural difference seems indeed to have a physiological impact on the survival of both species. 
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While M. tuberculosis-Eis significantly down-regulates lipopolysaccharides-induced JNK 

phosphorylation, M. smegmatis-Eis does not reveal this function. Therefore, acetylation of DUSP16 

by M. tuberculosis-Eis seems to be the key initial event in the JNK-dependent inhibition of 

autophagy, phagosome maturation and ROS generation, which ultimately contributes to enhanced 

survival of M. tuberculosis within the macrophage cells (Kim et al., 2012b). This also suggests that M. 

tuberculosis developed adaptive evolutionary strategies to potentiate the suppression of the host 

innate immune system.  

M. tuberculosis has also been suggested to pervert the function of some intrinsic host mechanisms 

favouring the survival of the bacteria in macrophages. This is the case of coronin 1a (Coro1a), a host 

F-actin-binding protein, which inhibits autophagosome formation around M. tuberculosis-containing 

phagosomes, most likely by inhibiting the activation of p38 mitogen-activated protein kinase (p38 

MAPK) necessary for autophagy induction via Toll-like receptor (TLR) signalling pathways in innate 

immunity (Seto et al., 2012).  

 

However, host adaptive responses have also evolved in order to take advantage of some intrinsic 

mycobacteria mechanisms, as for example the type VII secretion system ESX-1 (Watson et al., 2012). 

Recruitment of LC3 to M. bovis bacilli Calmette Guerin (BCG)-containing vacuoles depends on 

exogenous stimulation of autophagy (Gutierrez et al., 2004, Singh et al., 2006, Watson et al., 2012). 

On the contrary, targeting of LC3 to M. tuberculosis-containing vacuoles seems to be triggered 

without any extrinsic stimulatory signal. One of the major differences between BCG and virulent 

mycobacteria is the lack of ESX-1 from the BCG strain, which may explain their different 

effectiveness in replicating within macrophages and in activating innate immune responses by the host 

(Harboe et al., 1996).  

Mycobacterium marinum has been used in many studies as a surrogate model of M. tuberculosis due 

to its relative safety for humans (fish and amphibians are the preferred hosts) and its shared 

mechanisms of pathogenesis (Tobin and Ramakrishnan 2008). Although ESX-1 is present in both 

pathogenic species, it seems to play different roles in targeting bacteria to degradation. For instance, 

ESX-1 is required for total vacuolar escape of M. marinum (contributing to an intracellular phase 
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where it resides in the cytosol without being enclosed by any membrane organelle), which becomes 

ubiquitinated and sequestered by LAMP-1-positive host vesicles by a mechanism that seems to be 

Atg5-independent and to occur in the absence of LC3-membrane association (Collins et al., 2009). In 

contrast, ESX-1 has been suggested to induce M. tuberculosis-containing phagosomes 

permeabilization/perforation, which allows cytosolic components of the ubiquitin-mediated autophagy 

pathway access the enclosed bacillus. Stimulator of interferon gene (STING), which works both as a 

direct cytosolic DNA sensor and an adaptor protein that functions upstream of TANK-binding kinase 

1 (TBK1) in type 1 interferon signalling, recognizes extracellular bacterial DNA (which has been 

shown to be exposed during macrophage infection), promotes ubiquitin tagging of the bacilli (mostly 

through K63-linkage) and subsequent LC3 recruitment to the phagosome by a mechanism dependent 

on the ubiquitin-autophagy adaptors p62 and NDP52 (Watson et al., 2012). This leads to the 

formation of bacilli-containing autophagosomes that mature via fusion with lysosomes to create 

autolysosomes (Figure 2). In opposition to M. marinum, this mechanism was shown to require the 

activity of Atg5, as macrophages with Atg5 genomic deletion were unable to recruit LC3 to 

phagosomes containing M. tuberculosis and induce their maturation into autolysosomes, as assessed 

by strong decrease of LAMP1 co-localization (Collins et al., 2009, Watson et al., 2012). This whole 

mechanism is clearly dependent on ESX-1 since an M. tuberculosis mutant defective in early secreted 

Ag of 6 kDa or ESAT-6 (the major ESX-1-secreted substrate with membrane damaging activity) fails 

to recruit LC3 to the phagosome. Therefore, M. tuberculosis clearance by the autophagy-lysosomal 

pathway provides a way of cell-autonomous control of bacterial replication within macrophages and 

appears to be fundamental for the host survival upon M. tuberculosis infection. Indeed, Atg5-/- 

deletion render mice extremely sensitive to M. tuberculosis, as all mice succumb to infection by 4 

weeks post-infection and a 1,000-fold increase in bacilli replication is observed within the lungs, as 

compared to Atg5+/+ infected-mice (Watson et al., 2012). However, it is interesting to note that only 

one-third of intracellular bacteria are targeted by the ubiquitin-autophagy pathway, which suggests 

that infection control may be potentiated by strategies that augment autophagy activity in the host 

cells and that avoid autophagy evasion by the remaining bacilli.  
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TBK-1 also plays a critical role in regulating mycobacteria clearance by autophagy and cell defence 

against mycobacteria-triggered infection (Pilli et al., 2012). TBK-1 was previously shown to control 

type I interferon response elicited by intracellular DNA and, more recently, to orchestrate autophagy 

clearance of mycobacteria by a mechanism dependent on Rab8b, optineurin and P62. TBK-1 

depletion does not suppress formation of autophagosomes but suppresses their maturation into 

autolysosomes due to inhibited delivery of lysosomal hydrolases to the autophagosomal compartment. 

In addition, TBK-1 also triggers phosphorylation of serine 403 in the ubiquitin-associated (UBA) 

domain of p62, strongly increasing its affinity for ubiquitin-tagged substrates, such as mycobacteria 

tagged with K63-linked ubiquitin chains, which induces their elimination by autophagy (Figure 2). Of 

interest is also the fact that TBK-1 is required for IL-1β-induced clearance of M. tuberculosis by 

autophagy, since the TBK-1 inhibitor BX795 or TBK-1 depletion reduces mycobacterial killing when 

autophagy is induced by IL-1β (Pilli et al., 2012).    

 

Elimination of M. tuberculosis through autophagy has been clearly elucidated as an ubiquitin-

dependent mechanism where phagosomes-enclosing bacteria are tagged with ubiquitin chains, which 

are subsequently recognized by the autophagy adaptors p62 and NDP52 that recruit all the autophagy 

machinery necessary for their degradation (Gomes and Dikic 2014, Huang and Brumell 2014). 

However, the E3 ligase (Parkin) that triggers K63-ubiquitination of mycobacteria was only recently 

identified. Parkin (also known as PARK2) mutations and polymorphisms, apart from being well-

known Parkinson’s disease risk factors, are also associated to increased susceptibility to 

Mycobacterium leprae infection (Mira et al., 2004). In fact, parkin is important for the host defence 

against M. tuberculosis by promoting xenophagy, by a mechanism similar to the one that implicates 

the protein in mitophagy induction (Geisler et al., 2010, Youle and Narendra 2011). This resemblance 

is likely to be explained by the fact that endosymbiotic bacteria are the most probable evolutionary 

origin of mitochondria, which suggests an evolutionarily conserved role for parkin (Manzanillo et al., 

2013).  

The major evidences implicating parkin in M. tuberculosis xenophagy showed that infected-Park2-/- 

macrophages present a significant reduction in ubiquitin-positive mycobacteria, as compared to 
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normal cells (Manzanillo et al., 2013). While expression of wild-type Park2 in Park2-/- macrophages 

restored ubiquitin localization around mycobacterial cells, two parkin pathogenic RING domain 

mutants with no E3 ligase activity (T240R and P437L) failed to do so (Manzanillo et al., 2013). 

Infected-Park2-/- macrophages also revealed decreased recruitment of the ubiquitin adaptors P62, 

NDP52 and NBR1 and the autophagy proteins LC3 and Atg12 to mycobacterial cells, compromising 

their efficient elimination. Parkin deficiency increased indeed bacterial viability and replication within 

infected macrophages, being Park2-/- mice extremely susceptible to M. tuberculosis; all infected Park2 

deficient mice succumbed to M. tuberculosis infection by 85 days post-infection, whereas all infected 

wild-type mice remain alive and with no overt signs of stress (Manzanillo et al., 2013).  

 

Crosstalk between innate immunity and autophagy in tuberculosis 

 

Induction of cytokines expression is a key host defence mechanism against M. tuberculosis infection 

and can be triggered by activation of TLR- and non TLR-dependent signalling cascades (Jo 2013). 

Apart from regulating other defence responses that are beyond the scope of this review, IFN-γ was 

shown to be an important cytokine in the regulation of mycobacteria clearance by autophagy, while 

the cytokines IL-4 and IL-13 seem to inhibit this effect (Harris et al., 2007). On the other hand, TNF-α 

appears to synergize the antimicrobial and autophagic responses triggered by IFN-γ (Harris et al., 

2008), while many other cytokines positively aid in the autophagic response against mycobacteria (i. 

e. TNF-β, IL-2, IL-6, CCL2) (Harris 2011). Interestingly, maturation of M. tuberculosis-containing 

phagosomes induced by IFN-γ was shown to be abrogated by the TNF blockers adalimumab, 

etanercept and infliximab (Harris et al., 2008). Overall, T helper-1 (Th1) cytokines appear to induce 

autophagy, whereas the Th2 cytokines IL-4 and IL-13 seem to inhibit it. Apart from inhibiting IFN-γ-

induced autophagy, IL-4 and IL-13 also inhibit starvation-induced autophagy in a way dependent on 

protein kinase B (AKT) (Harris et al., 2007). Therefore, a precise balance of different cytokines is 

critical in the host response to M. tuberculosis.  

TLR-dependent signalling pathways account for the maintenance of this balance. For instance, the 

receptors TLR2, TLR4 and TLR9 appear to be the main TLRs implicated in the recognition of 
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mycobacteria and production of antimicrobial effectors and cytokines upon M. tuberculosis infection 

(Kleinnijenhuis et al., 2011). TLR2, 4 and 9-stimulation was interestingly shown to induce maturation 

of bacterium-containing phagosomes, activate autophagy and increase degradation of bacteria 

(Delgado et al., 2008, Sanjuan et al., 2007, Xu et al., 2007) by mechanisms dependent on myeloid 

differentiation primary response gene 88 (MyD88), TIR-domain-containing adapter-inducing 

interferon-b (TRIF) and MAPK (Delgado et al., 2008, Jo 2013, Shi and Kehrl 2008, Xu et al., 2007). 

Non-TLR pathways have also been implicated in regulation of autophagy upon M. tuberculosis 

infection. One of the examples is the signalling cascade triggered by NOD-like receptor 2 (NOD2), 

which is an intracellular receptor that recognizes bacterial molecules (i.e. peptidoglycan) and induces 

expression of proteins that upregulate autophagy, such as IRGM, LC3 and ATG16L1, contributing to 

decreased M. tuberculosis virulence (Juarez et al., 2012).  

Regulation of cytokines production and autophagy activation seem to be mutually regulated by each 

other; as mentioned before, cytokines regulate autophagy, but the opposite is also true. For instance, 

autophagy seems to positively regulate the expression and secretion of TNF-α (Crisan et al., 2011, Jo 

2013) and to negatively regulate the secretion of several other proinflammatory cytokines, including 

IL-1α, IL-1β and IL-18 (Crisan et al., 2011, Harris et al., 2011, Jo 2013, Nakahira et al., 2011, Saitoh 

et al., 2008, Zhou et al., 2011). For the specific case of IL-1β, autophagy was shown to control its 

expression by different ways: increasing degradation of pro-IL-1β and inhibiting AIM2 and NLRP3 

inflammasome, which decreases IL-1β processing and secretion (Bradfute et al., 2013, Harris et al., 

2011, Nakahira et al., 2011, Shah et al., 2013, Zhou et al., 2011). Although IL-1 is necessary for 

protection against mycobacteria, negative regulation of IL-1 by autophagy is likely to have beneficial 

effects to the infected cells as high levels of IL-1 are associated to excessive inflammation and 

pathology, suggesting that a precise control of IL-1 expression and release is needed for a successful 

response against infection (Bradfute et al., 2013). Atg5 deficiency in mice causes indeed an excessive 

pulmonary inflammatory response characterized by neutrophils infiltration and IL-17 response with 

increased IL-1α secretion (Castillo et al., 2012) (Figure 3). 

In addition to act as a modulator of proinflammatory cytokine secretion, autophagy also plays a role in 

antigen processing and presentation. In fact, autophagy was shown to be directly associated to 
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enhanced delivery of intracellular material to major histocompatibility complex (MHC) class II 

pathway under mycobacteria infection (Jagannath et al., 2009). Rapamycin-induced autophagy 

enhanced indeed mycobacterial Ag85B presentation by antigen presenting cells (APCs) infected with 

M. tuberculosis, while suppression of autophagy by 3-MA or knockdown of Beclin-1 attenuated this 

effect (Jagannath et al., 2009).  

 

Association between genetic variants of autophagy-related genes and susceptibility to 

tuberculosis  

 

Although Crohn's disease is considered to have an autoimmune origin, increasing evidence points to 

an infectious aetiology involving mycobacteria (Greenstein 2003). Some genome wide-association 

studies (GWAS) have been suggesting indeed an overlap between genetic susceptibility for 

inflammatory bowel disease (IBD), such as Chron’s disease, and tuberculosis (TB) (Jostins et al., 

2012). Therefore, it is not surprising that both diseases share similar profiles of genetic variants and 

risk factors. IRGM polymorphisms are an example, as they were initially identified as an autophagy 

risk loci for Chron’s disease and more recently a TB risk factor in different populations (King et al., 

2011, Wellcome Trust Case Control 2007). In fact, genetic variants of the IRGM gene are the most 

consensually associated to TB infection, with at least five different genetic variants identified so far. 

Although the detailed mechanism by which this gene regulates autophagy is not clear, IRGM was 

shown to induce clearance of mycobacteria in infected macrophages by inducing phagosomal 

maturation and autophagy. Most of the variants are associated to increased protection against TB 

(Bahari et al., 2012, Che et al., 2010, Intemann et al., 2009). However, carriers of the Chron’s disease-

related T allele of rs10065172 reveal increased susceptibility to TB (King et al., 2011), while the -

1208G/-1161T/-947T haplotype is also positively associated with the disease (Che et al., 2010).  

TLR2 is another gene that has been associated to TB and, in opposition to IRGM variants, all the 

TLR2 variants identified so far appear to be risk factors of developing TB (Ben-Ali et al., 2004, 

Etokebe et al., 2010, Ogus et al., 2004). A variety of cell wall components of mycobacteria are known 

to activate macrophages through TLR2, suggesting that this innate immune receptor plays a role in the 
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host response to M. tuberculosis infection (Bowdish et al., 2009, Drennan et al., 2004). The direct role 

of TLR2 activation in the regulation of autophagy is not well ascribed; however, several evidences 

have been suggesting that TLR2 activation is capable of inducing autophagy by a mechanism 

dependent on the activation of p38 MAPK (Seto et al., 2012). Interestingly, the R753Q TLR2 

polymorphism was shown to render TLR2 incapable of inducing tyrosine phosphorylation and hetero-

dimerization with TLR6 upon agonist-binding, ultimately leading to impaired capacity of p38 and 

autophagy activation (Xiong et al., 2012). 

Genetic polymorphisms in vitamin D receptor (VDR) are also associated with predisposition to TB 

when combined with 25-hydroxycholecalciferol (calcidiol) deficiency (Wilkinson et al., 2000). 

Calcidiol is a precursor of calcitriol (1,25-dihydroxyvitamin D3), the active form of vitamin D, which 

has been shown to protect against M. tuberculosis infection via upregulation of autophagy (Campbell 

and Spector 2012, Fabri et al., 2011, Yuk et al., 2009). Interestingly, regulation of autophagy by 

TLR2 seems to occur through the activation of VDR by the binding to calcitriol, triggering the 

expression of the antimicrobial peptide cathelicidin, which induces autophagy and promotes 

autophagosome-lysosome fusion (Shin et al., 2010b).   

These and other autophagy-related genetic variants associated to TB are listed and summarized in 

Table 1. 

 

Tuberculosis therapeutics based on autophagy anti-mycobacteria responses  

 

The current TB numbers, associated with the HIV epidemic and the growing number of 

immunocompromised population, under medication of immunosuppressive drugs or due to aging, is a 

serious cause of concern for public health. When we further combine the portfolio of dated anti-TB 

drugs in use and the emergence of MDR and XDR strains, the potential threat to public health urges 

for the development of new and more effective strategies. 

As described before, autophagy plays a critical role in the host immune response against M. 

tuberculosis and therefore the development of autophagy-based therapies to combat TB represents an 

appealing strategy. In fact, it has been established that prolonged use of autophagy inhibitors such as 
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azitromycin, inhibits intracellular killing of mycobacteria and predisposes cystic fibrosis patients to 

mycobacterial disease (Renna et al., 2011). Furthermore, autophagy was shown to be determinant in 

the intracellular killing effect of the first line TB drugs isoniazid and pyrazinamide through a 

mechanism based on the release of reactive oxygen species (Kim et al., 2012a). Therefore, autophagy 

inducers can and are being explored as potential new TB therapies. 

Rapamycin (sirolimus) and everolimus are potent mTOR inhibitors and autophagy inducers, currently 

approved for clinical use to prevent transplant rejection (Gutierrez et al., 2004, Ni Cheallaigh et al., 

2011). Although these drugs are strong autophagy inducers, they are also immunosuppressing drugs 

and therefore their direct use in TB therapies is counterproductive (Ni Cheallaigh et al., 2011, Yu et 

al., 2013). Nevertheless, direct delivery of these drugs to the lungs using a nanoparticle system to 

enable specific particle uptake by professional phagocytic cells has been proposed in an attempt to 

minimize the systemic side effects (Ni Cheallaigh et al., 2011). An in vitro study recently published 

showed the potential of investing further in this approach since rapamycin-carrying nanoparticles 

were efficiently taken up by macrophages and exhibited substantial activity against intracellular M. 

tuberculosis (Gupta et al., 2014). Another possible approach is to enhance rapamycin potency towards 

autophagy induction, and therefore to reduce the amount of rapamycin that needs to be administered, 

reducing adverse side effects. To this end, small molecules enhancers of rapamycin (SMERs) in 

combination with rapamycin have been shown to increase the killing of mycobacteria by primary 

human macrophages, suggesting a possible application in TB therapy (Floto et al., 2007). 

Nevertheless, these SMERs were shown to act either independently or downstream of mTOR (Sarkar 

et al., 2007).   

Niclosamide, an approved drug currently used to treat worm infections in the intestinal tract, was also 

found to be an inhibitor of mTORC1 signalling and a potent stimulator of autophagy (Balgi et al., 

2009). Despite its effectiveness in the gastrointestinal tract, its poor absorption precludes any use in 

TB therapy. However, the niclosamide-derivative drug nitazoxanide, already in use as an anti-

protozoal agent and with good intestinal absorption, was also shown to inhibit mTORC1 signalling 

and potently induce autophagy (Lam et al., 2012). It was demonstrated that nitazoxanide and its active 

form, tizoxanide, inhibit intracellular M. tuberculosis proliferation at the concentration normally 
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found in the blood after oral administration (Lam et al., 2012). Interestingly, this drug was previously 

shown to kill both replicating and non-replicating M. tuberculosis in vitro by an unknown mechanism 

(de Carvalho et al., 2009). It is possible that these promising results in TB therapy are the 

consequence of a dual mode of action involving direct targeting and killing of the bacteria, but also 

autophagy induction in phagocytic cells, which promotes intracellular clearance of M. tuberculosis 

(Lam et al., 2012). It was also found that this effect was not compromised in the presence of first line 

anti-tuberculosis drugs, like isoniazid, pyrazinamide, ethambutol, rifampicin and streptomycin (Lam 

et al., 2012). Furthermore, this drug has been proven safe without significant side effects, in very long 

treatment regimens (up to 4 years), in AIDS related cryptosporidiosis (Fox and Saravolatz 2005, 

Rossignol et al., 2006). All of these characteristics make nitazoxanide a drug with very promising 

applications in TB therapy. 

Recently, it was also found that treatment of M. tuberculosis-infected macrophages with the AMP-

mimetic 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) robustly activates 

autophagy and inhibits the survival of intracellular bacilli (Yang et al., 2014). This was shown to be 

dependent on AMPK-induced mTOR inhibition and AMPK-induced peroxisome proliferator-

activated receptor-gamma coactivator 1α (PPARGC1A) upregulation, accounting for increased 

expression of autophagy-related genes via CCAAT/enhancer-binding protein β (CEBPB) and 

autophagy induction (Yang et al., 2014). Therefore, the development of drugs that activate AMPK 

may have potential application in TB therapy (Yang et al., 2014). 

 

There are however other methods of inducing autophagy in an mTOR-independent manner. Immuno-

adjuvants that induce autophagy have likely applications in TB treatment. INF-γ is a cytokine that has 

been demonstrated to be absolutely essential to control M. tuberculosis infection in both animal 

models and humans (Jouanguy et al., 1999). Besides activating macrophages to kill bacteria through 

the production of reactive nitrogen intermediates (Chan et al., 1992), IFN-γ stimulates delivery of 

mycobacteria to lysosomes by activating autophagy (MacMicking et al., 2003, Singh et al., 2006). A 

pilot study involving the administration of IFN-γ as an immune adjuvant for drug-resistant TB therapy 

obtained promising results suggesting the efficacy of IFN-γ in drug resistant TB (Suarez-Mendez et 
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al., 2004). It is possible that by blocking the Th2 cytokines IL-4 and IL-13, known to restrict 

autophagy, similar promising results may be achieved, since a high-throughput RNA interference 

screen in a human monocytic cell line (THP-1) found that these autophagy-negative regulators are 

absolutely essential for intracellular mycobacterial survival and growth (Kumar et al., 2010). In fact, it 

has been demonstrated in vitro that lactic acid bacteria enhance the bacterial killing ability of 

mononuclear phagocytes by increasing autophagy-inducing cytokine IFN-γ levels and by reducing IL-

4 and IL-13 (Ghadimi et al., 2010). In addition, oral treatment with lactic acid bacteria was sufficient 

to down-regulate the lung Th2 response (Forsythe et al., 2007, Ghadimi et al., 2010). 

 

Calcitriol is the hormonally active form of vitamin D. It is produced by the kidney but also in human 

macrophages from its precursor 25-hydroxy vitamin D, by a specific 1-α hydroxylase, and it has been 

demonstrated to be required for IFN-γ induced autophagy (Fabri et al., 2011). Vitamin D and IFN-γ 

induced autophagy have been shown to promote lysosomal fusion with phagosomes containing M. 

tuberculosis and to consequently inhibit mycobacterial expansion in the host (Bradfute et al., 2013, 

Campbell and Spector 2012). It was therefore tempting to test whether vitamin D could be used as a 

dietary supplement in TB treatment, since historically vitamin D sources like sunbathing and cod liver 

oil were used to treat TB. Many clinical trials have been performed to test this hypothesis; the results 

have however been inconclusive, with several studies showing positive results, especially in patients 

with vitamin D deficiency (Kearns et al., 2014, Salahuddin et al., 2013), but many other major clinical 

trials showing no benefits overall (Kearns et al., 2014, Martineau et al., 2011, Ralph et al., 2013, 

Wejse et al., 2009). It is still uncertain whether vitamin D will have any use in TB therapy, with some 

researchers advocating that better knowledge is needed about vitamin D concentrations for optimal 

immune response in order to perform adequate clinical trials (Ralph et al., 2013). 

 

Lithium, carbamazepine and sodium valproate are currently approved drugs used to treat mood 

disorders and epilepsy. They target d-myo-inositol-1,4,5-triphosphate (IP3)-regulated pathway, 

depleting intracellular inositol, and therefore induce autophagy (Rubinsztein et al., 2007, Sarkar et al., 

2005). Tamoxifen is a drug currently used to treat a wide variety of diseases, from breast cancer to 
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mood disorders and infertility, among others. It was shown to be an inducer of autophagy in a 

Beclin1-dependent manner (Rubinsztein et al., 2007, Wienecke et al., 2006). Ridaifen-B, a tamoxifen 

derivative, was also shown to be an inducer of autophagy but through a currently unknown Beclin1-

independent mechanism (Nagahara et al., 2013). Gefitinib, an epidermal growth factor receptor 

(EGFR) inhibitor used to treat breast and other types of cancer, has also been shown to induce 

autophagy and to be effective in M. tuberculosis killing in a mouse model (Stanley et al., 2014). 

Nortriptyline and fluoxetine, currently used to treat depression, were also reported to promote 

autophagy and enhance mycobacteria clearance (Stanley et al., 2014, Sundaramurthy et al., 2013). 

While the mechanisms behind autophagy enhancement by these two drugs are currently unknown, 

fluoxetine effect is related to increased TNF-α secretion (Stanley et al., 2014). Since all these FDA-

approved drugs have been reported as autophagy inducers, they have the potential to be used as 

complementary treatment(s) to current TB therapies. 

 

Statins are widely used HMG-CoA reductase inhibitors currently approved for clinical use to lower 

cholesterol levels (Ray et al., 2010). It has been recently documented that statins also have 

immunomodulatory and anti-inflammatory effects with reports of reduced mortality in patients with 

bacteraemia (Kwak et al., 2000, Liao and Laufs 2005, Parihar et al., 2014, Tleyjeh et al., 2009). In TB 

mice models, treatment with statins reduced significantly the bacterial load and the pulmonary 

pathological effects of TB infection (Parihar et al., 2014). It was further shown in TB-infected 

macrophages and in mice models that treatment with statins improves the efficacy of first line TB 

drug regimens and of rifampicin alone (Lobato et al., 2014, Skerry et al., 2014). It was demonstrated 

that statins improve bacterial clearance by the host and improve the efficacy of TB drugs by 

promoting autophagy via inhibition HMG-CoA reductase pathway (Parihar et al., 2014). Furthermore, 

there are some reports claiming that statins also enhance autophagy in an mTOR-dependent way by 

inhibiting the Rac1-mTOR signalling pathway (Wei et al., 2013). The full mechanisms behind the 

autophagy inducing effects of statins are still not fully elucidated; however the effects observed from 

statin administration are promising and may provide another possible complement to TB therapy. 
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Several TLRs have been shown to be involved in autophagy induction and to play a critical role in the 

formation of the immune response (Delgado et al., 2008, Sanjuan et al., 2007, Xu et al., 2007). 

However, prolonged stimulation of TLRs (by abundant TLR-interacting mycobacterial compounds) 

results in the production of immunosuppressive cytokines, decreased antigen presentation and 

survival of bacteria inside macrophages (Saraav et al., 2014). Nevertheless, TLR-4-mediated 

autophagy was found to promote mycobacteria containment in macrophages (Xu et al., 2007). Finding 

the right equilibrium of different TLRs activation using either drug or vaccine approaches might lead 

to increased immunogenic response and improved TB therapies. 

 

The existing prophylactic approach to TB, the BCG vaccine, was first tested in humans over 90 years 

ago and has been used extensively despite its unreliability in terms of averting TB in adults (Colditz et 

al., 1995, Fine 1995). A new vaccine or an innovative strategy to improve the efficacy of the current 

BCG vaccine would have a profound impact in current situation of the TB epidemic. Stimulation of 

autophagy was found to increase the efficacy of attenuated H37rv and BCG vaccines, through 

enhancement of the ability of macrophage and DCs to present mycobacterial antigens (Jagannath et 

al., 2009). Rapamycin-treated macrophages exhibited a substantial increase in antigen presentation 

when infected with the tested TB vaccine strains and wild-type H37rv strain (Jagannath et al., 2009). 

Furthermore, the results showed that DCs also had enhanced antigen presentation when treated with 

rapamycin (Jagannath et al., 2009). The increased in vitro antigen presentation was observed to 

translate into in vivo protection in a TB mice model (Jagannath et al., 2009). It was further 

demonstrated that M. smegmatis and M. bovis BCG strains that were modified in order to overexpress 

immunogenic antigens targeted by the autophagy-lysosome pathway (such as Ag85B) led to an 

increase in antigen presentation (Jagannath et al., 2009). This is in agreement with a different study 

showing that a live BCG strain overexpressing Ag85B is a more efficient vaccine when compared to 

the wild-type BCG strain (Horwitz et al., 2006). 

DNA vaccines used directly or as prime-boost are alternative promising approaches to either improve 

the efficacy of the current BCG vaccine or to create a new more effective one (Rivas-Santiago and 

Cervantes-Villagrana 2014). Plasmids containing M. tuberculosis DNA (from Ag85, Hsp65 and the 
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23 members of Esx gene family) used in experimental DNA vaccines have been found to lead to 

higher INF-γ production and consequent induction of autophagy (Meerak et al., 2013, Villarreal et al., 

2014, Zarate-Blades et al., 2013).  

These promising TB therapies are listed and summarized in table 2. 

 

Final remarks  

 

Autophagy is a key mechanism in eukaryotic cell resistance to M. tuberculosis infection as it plays a 

vital role in the intracellular clearance of this pathogen. It potentiates the effect of some of the current 

first line TB drugs, influences antigen presentation and modulates the release of cytokines that are 

determinant for the infection outcome. Although the knowledge of how autophagy influences 

immunity is still far from complete, there is a clear potential for autophagy-based therapies in 

advanced TB treatment strategies. Promotion of autophagy through pharmacological means by 

administrating autophagy-inducing drugs and cytokines has produced positive results in vitro, in TB 

mice models and even in a human pilot study. Enhancing autophagy also increases the efficacy of the 

only TB-prophylactic method available, the BCG vaccine. The results of using autophagy-inducing 

approaches to combat TB are very promising and an autophagy-based therapy for TB may soon be a 

reality. 
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Legend of figures 

 

Figure 1. The autophagy pathway and its main regulators. Autophagy is typically subdivided in 

different steps: (i) vesicle nucleation/initiation, (ii) phagophore elongation, (iii) autophagosome 

maturation, (iv) autophagosome-lysosome fusion and (v) cargo degradation. Following AMPK 

activation and/or mTORC1 inhibition (by factors such as nutrient depletion and energetic stress), the 

complex formed by ULK1/2, FIP200 and ATG13 is activated, which is turn activates the VPS34 

complex by phosphorylation. Both complexes regulate the nucleation/initiation step of autophagy, 

with VPS34 providing PI3P to the phagophore, which is likely to assist the recruitment of WIPI to the 

phagophore. On the other hand, membrane expansion depends on ATG9, which is postulated to 

supply lipid bilayers to the phagophore, and on two ubiquitin-like conjugation systems that conjugate 

LC3 and ATG12 to PE and ATG5, respectively. ATG12-ATG5 complex further interacts with 

ATG16, presumably at the surface of the autophagosome membrane. LC3-II seems to be involved in 

the elongation and closure of the autophagosome membrane, as well as in the recruitment of cargo to 

the phagophore. Subsequently, the autophagome fuses with the lysosome, forming the autolysosome, 

where degradation of the autophagosomal contents occurs. 

 

Figure 2. M. tuberculosis clearance by autophagy. M. tuberculosis (Mtb) invades macrophages by 

phagocytosis and arrests the maturation of the phagosome by excluding late endosome and lysosome 

markers (i.e. RAB7, V-ATPase, VPS33b, LAMP-1) from the phagosome and by promoting the 

retention of early endosome markers (i.e. RAB5) in the phagocytic compartment. Host cells have 

developed ways of overcoming the evasion of M. tuberculosis from the phagocytic pathway by taking 

advantage of some intrinsic M. tuberculosis mechanisms. For instance, phagosomal permeabilization 

induced by the bacterial ESX-1/ESAT-6 system allows the host protein STING to recognize 

extracellular bacterial DNA, which then promotes ubiquitin marking of bacteria (mostly via K63-

linkage chains formation by the E3 ligase Parkin). Ubiquitin is then recognized by autophagy 

adaptors, such as P62 that deliver the bacilli to autophagosomes. TBK-1-induced phosphorylation of 
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Ser403 of P62 increases the affinity of P62 to ubiquitin. Autophagosomes are subsequently fused to 

lysosomes, where degradation of mycobacteria occurs. 

 

Figure 3. Crosstalk between autophagy and inflammation during M. tuberculosis infection. 

Autophagy activation in macrophages is controlled by membrane- and intracellular-innate immune 

receptors, as well as by several inflammatory cytokines released by T helper 1 (Th1) and T helper 2 

(Th2) cells upon M. tuberculosis infection. The receptors TLR2, TLR4, TLR9 and NOD2, and the 

pro-inflammatory cytokines TNF-α, IFN-γ, IL-2, IL-6 and CCL2 promote autophagy activation. On 

the other hand, the anti-inflammatory cytokines IL-4 and IL-13 appear to inhibit IFN-γ-induced 

autophagy activation. However, cytokines expression and secretion are also regulated by autophagy. 

For instance, IL-1α, IL-1β and IL-18 are negatively regulated by autophagy, while TNF-α is 

upregulated by this mechanism. 
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Table 1. Autophagy-related genetic variants associated to tuberculosis    
 

 
Gene 

 

 
Variant 

 
TB-association 

 
Reference * 

 
VDR 

 

 
Combination of TT or Tt genotype  (Taq1) with 25-

hydroxycholecalciferol deficiency; ff  (Fok1) genotype 
 

 
The combination of genotype TT/Tt and 25-hydroxycholecalciferol deficiency, 

and the genotype ff are positively associated with TB 
(individuals of Hindu and Gujarati origins). 

 

 
Wilkinson et al, 2000 

 
TLR2 

 

 
Arg753Gln (AA genotype) 

 
Carriers of this polymorphism present higher risk of developing TB 

(Turkish individuals). 
 

 
Ogus et al, 2004 

 
TLR2 

 

 
Arg677Trp (C2029T) 

 
This polymorphism is associated to increased susceptibility to TB 

(Tunisian individuals). 
 

 
Ben-Ali et al, 2004 

 
IL-1β 

 

 
-31position genotypes 

 
A significant difference of IL-1 beta -31 genotypes was found between 98 tuberculosis patients 

and healthy controls. 
 

 
Sun et al, 2007 

 
IRGM 

 

 
-261TT 

 
It confers protection against TB (Ghanaian individuals). 

 
Intemann et al, 2009 

 
 

TLR2 
 

 
 

P631H 

 
It is significantly overrepresented in tuberculosis when TB patients were compared to controls, 

indicating a possible low-risk predisposition 
(Croatian individuals). 

 

 
Etokebe et al, 2010 

 
 

IRGM 
 

 
-1208AA genotype and 

-1208G/-1161T/-947T haplotype 

 
The -1208AA genotype is associated to decreased susceptibility to TB, while the -1208G/-

1161T/-947T haplotype is positively associated to TB 
(Chinese individuals). 

 

 
Che et al, 2010 

 
IRGM 

 

 
rs10065172C/T 

 
The carriers of the Chron’s disease-related  rs10065172C/T 

SNP present increased susceptibility to TB (African American individuals). 
 

 
King et al, 2011 

 
 

LAMP1 and MTOR 

 
Rs9577229 (LAMP1) 
Rs6701524 (MTOR) 

 
Associations were observed between SNPs in LAMP1, 

MTOR and infection with M. tuberculosis Beijing genotype, but statistical significance was lost 
after correction for multiple testing  (Indonesian individuals). 

 

 
Songane et al, 2012 

 
IRGM 

 

 
-1161C/T and -947C/T 

 
Both polymorphisms are associated to decreased susceptibility to TB 

(Iranian individuals). 
 

 
Bahari et al, 2012 

 
* Note: Genes are listed according to the respective date of publication (from earliest to latest).   
 



Table 2. Potential tuberculosis therapies based on autophagy manipulation 
 

 
Therapy 

 
Effects 

 
Reference 

Sirolimus (Rapamycin), 
Everolimus mTORC1 inhibitor and autophagy inducer; increases BCG vaccine efficacy 

Gutierrez et al, 2004 
Jagannath et al, 2009 

Gupta et al, 2014 

 
SMERs 

 
Synergistic effect with rapamycin on autophagy, acting independently or downstream of mTOR; autophagy inducer Floto et al, 2007 

 
Nitazoxanide  (tizoxanide) 

 

 
Inhibitor of mTORC1 signalling and autophagy inducer; kills mycobacteria directly by an unknown mechanism 

 
de Carvalho et al, 2009 

Lam et al, 2012 
 

 
IFN-γ 

 
Increases production of reactive nitrogen species in macrophages and induces autophagy 

Chan et al. 1992 
MackMicking et al, 2003 

Singh et al, 2006 
 

 
Lactic acid bacteria 

 

 
Increase production of IFN-γ and decrease the autophagy negative regulators IL-4 and IL-13; induce autophagy 

 
Ghadimi et al, 2010 

 
Vitamin D 

 

 
Required for IFN-γ induced autophagy 

 

 
Campbell & Spector 2012 

 
 

Lithium, Carbamazepine, 
Sodium valproate 

 

Targets d-myo-inosiltol-1,4,5 triphosphate (IP3)-regulated pathway, depletes intracellular inositol and 
induces autophagy in a mTOR-independent way 

 
Sarkar et al, 2005 

 

 
Tamoxifen Inducer of autophagy in a Beclin1-dependent manner 

 
Wienecke et al, 2006 

 

 
Ridaifen-B 

 
Tamoxifen derivative that induces autophagy through an unknown Beclin1-independent mechanism 

 
Nagahara et al, 2013 

 

 
Gefitinib 

 
Induces of autophagy (although it is not clear, the authors postulate that gefitinib-induction of autophagy relies on p38 MAPK inhibition) 

 
Stanley et al, 2014 

 

 
Nortriptyline 

 
Induces autophagy by an unknown mechanism 

 
Sundaramurthy et al, 2013 

 

 
Fluoxetine 

 
Induces autophagy possibly due to enhanced TNF-α secretion 

 
Stanley et al, 2014 

 

Statins Promote autophagy by inhibiting HMG-CoA reductase pathway and in a mTOR-dependent way; improves the efficacy of first line TB drugs 

Wei et al, 2013 
Parihar et al, 2014 
Skerry et al, 2014 
Lobato et al, 2014 

 

Ag85-overexpressing strains 
for vaccines Ag85 is targeted by the autophagy-lysosome pathway and increases antigen presentation 

 
Horwitz et al, 2006 

Jagannath et al, 2009 
 

DNA vaccines 
(Ag85, Hsp65, Esx genes) Potentiate INF-γ production and induce autophagy 

Meerak et al, 2013 
Zarate-Blades et al, 2013 

Villarreal et al, 2014 
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