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Abstract: 

The spatial accuracy of point clouds generated by stereo image-based 3D reconstruction 

algorithms is very sensitive to the intrinsic and extrinsic camera parameters determined during 

camera calibration. The existing camera calibration algorithms induce a significant amount of 

error due to poor estimation accuracies in camera parameters when they are used for large-scale 

scenes such as mapping civil infrastructure. This leads to higher uncertainties in the location of 

3D points, and may result in the failure of the whole reconstruction process. This paper proposes 

a novel procedure to address this problem. It hypothesizes that a set of multiple calibrations 

created by videotaping a moving calibration pattern along a specific path can increase overall 

calibration accuracy. This is achieved by using conventional camera calibration algorithms to 

perform separate estimations for some predefined distance values. The result, which includes 

multiple sets of camera parameters, is then used in the Structure from Motion process to improve 

the Euclidean accuracy of the reconstruction. The proposed method has been tested on 

infrastructure scenes and experimental analyses indicate more than 25% improvement in the 

spatial accuracy of 3D points. 
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1. Introduction 

3D laser scanning is used in the current practice to capture accurate and detailed spatial data for 

projects requiring fully automated 3D data retrieval. However, its application in the construction 

industry is limited due to high costs of the equipment and the necessity for having skilled 

equipment operators at the field (Klein, et al., 2012). Automatic 3D reconstruction from multiple 

view imagery or video streams is emerging as an inexpensive alternative to the laser-based 

systems. Several studies have demonstrated the capabilities of image-based 3D reconstruction 

approaches that work based on Structure from Motion (SfM) techniques (Furukawa & Ponce, 

2010) (Fathi & Brilakis, 2011) (Dai, et al., 2013) (Wu, 2013) (Fathi & Brilakis, 2013) 

(Golparvar‐Fard, et al., 2014). The image-based methods cannot replace the laser-based systems 

without achieving acceptable levels of geometrical accuracy. Two main issues need to be studied 

for this purpose: camera calibration and dense multi-view geometry (Strecha, et al., 2008). The 

scope of this paper is to focus on the first issue as the first step in the stereo-based 3D 

reconstruction pipeline. 

Camera calibration is the process of determining a set of camera parameters that describe 

the mapping between 3D world coordinates and 2D image coordinates. They are categorized into 

intrinsic and extrinsic parameters. Intrinsic parameters represent internal geometry and optical 

characteristics of the lens such as focal length, principal point, and distortion coefficients. 

Extrinsic parameters represent the camera position and orientation in the 3D world coordinate 

system. The existing camera calibration methods are divided into two categories: a) explicit 

calibration (i.e., conventional approach) and b) self- or auto-calibration. For explicit calibration, 

the parameters are estimated by establishing correspondences between reference points on an 

object with known 3D dimensions and their projection on the image. On the other hand, self-
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calibration automatically calculates the parameters using geometrical constraints in images, but 

is less accurate than the explicit methods (Furukawa & Ponce, 2009). 

Most of the existing image-based 3D reconstruction methods use a single camera as the 

sensor system. This imposes a constraint on the generated results: using a single camera for 

image acquisition, the scene can only be reconstructed up to an unknown scale factor (Pollefeys, 

et al., 2008). This limitation is of great importance especially in infrastructure applications that 

require spatial data collection in the Euclidean space. The use of a calibrated stereo camera set 

eliminates this problem, but at the cost of additional steps for camera calibration and more 

sensitivity of the results to the calibration parameters (Peng, 2011) (Xu, et al., 2012). 

Comprehensive sensitivity analyses of stereo camera calibration parameters with respect to 

different factors (e.g., baseline distance, depth of points, etc.) have shown higher uncertainties 

when the camera distance to the calibration object (hereafter is called depth of calibration) varies 

in a wider range (Dang, et al., 2009) (Peng, 2011). While testing these theoretical findings 

through several observations, the authors noticed less uncertainties in estimated camera 

parameters as well as more accurate 3D reconstruction results for 3D points that have a depth 

value close to the depth of calibration; hence, the authors hypothesized that the use of multiple 

sets of calibration parameters rather than a single set could potentially enhance the 3D 

reconstruction accuracy. 

This paper aims to initially demonstrate that the existing calibration procedures could 

induce significant amount of error if they are used for large-scale 3D reconstruction applications 

and then test the abovementioned hypothesis. As the main contribution of the paper, a 

transformational approach is presented for stereo camera calibration and its application in the 3D 

reconstruction pipeline. This approach does not provide new mathematical relationships for 
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estimating the necessary parameters; instead, conventional calibration algorithms are used in a 

multi-step procedure that will result in multiple sets of camera parameters each optimized for a 

particular depth of calibration. These sets are ultimately used in the bundle adjustment step of the 

SfM process to achieve optimum X, Y, and Z coordinates for 3D points. This allows maintaining 

the well-known benefits of the conventional algorithms while improving the Euclidean accuracy 

of the reconstruction. Results from two case studies show significant improvement in the 

accuracy of 3D points when using the new approach versus the conventional methods: a 

reduction of 3.2cm (25%) in terms of the 95% spatial distance error between 3D points in the 

first experiment and 4.8cm (29%) in the second experiment. 

2. Background 

An ideal camera behavior (i.e., a distortion-free lens) is normally described using a pinhole 

camera model (Fig. 1). In this model, the camera aperture is defined as a single point and the 

main assumption is that no lenses are used to focus light. Interested readers are referred to 

(Hartley & Zisserman, 2003) for mathematical details. In case of non-negligible lens distortion 

Figure 1: A schematic of the pinhole camera model 
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or far-range 3D reconstruction (i.e., camera distance to the object of interest is more than 10m), 

pinhole camera model is not accurate enough and more parameters should be taken into account 

(Ricolfe-Viala & Sanchez-Salmeron, 2010). These parameters are generally used to model the 

radial and tangential lens distortion through non-linear functions  vuu ,  and  vuv ,  that map 

the unobservable distortion-free image coordinates  vu,  to image coordinates with distortion 

 dd vu , . The use of these distortion types has been shown to be sufficient for most practical 

applications (Hartley & Kang, 2005).  

In case of monocular 3D reconstruction, the scope of camera calibration narrows down to 

estimating the focal length  yx ff , , principal point C , and distortion coefficients. There are two 

primary approaches to this problem: conventional calibration via scene constraints of objects 

with precisely known geometry; and self-calibration via SfM (scene geometry plus camera 

parameters). 

(Zhang, 2000) proposed a calibration technique that requires a camera to observe a planar 

grid-pattern from different orientations. The minimum number of views is two but more views 

should be used in practice to achieve acceptable results. The redundancy helps to propagate the 

estimation errors and hence reduce the uncertainty of the estimated parameters. A closed-form 

solution was presented to model the radial lens distortion which is followed by a non-linear 

refinement. (Liebowitz, 2001) proved that using a planar object is equivalent to fitting the image 

of the absolute conic to the image circular points of the imaged plane. Similar approaches were 

used by others to expand the set of acceptable calibration patterns. The use of circle-like patterns 

was studied in (Kim, et al., 2005) to take advantage of the fact that imaged circular points are 

always on the images of planar circles. In another study, (Zhang, 2004) demonstrated that camera 
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calibration is feasible using only one-dimensional objects (i.e., points aligned on a line), thus 

eliminating the need for a planar 2D calibration object. However, the method fails if the object is 

moving freely in the environment. A generic calibration concept was also presented in (Sturm & 

Ramalingam, 2004) that considers most projection models used in computer vision (e.g., 

perspective and affine models, optical distortion models, and catadioptric systems), but it is a 

conceptual model without any quantitative evaluations. More recently, (Wang, et al., 2008) 

presented a model for lens distortion which used radial distortion parameters plus a transform 

from the ideal image plane to the real sensor array plane. Although this model has fewer 

parameters to be calibrated, it has been shown that its performance is very similar to the 

conventional models. (He & Li, 2008) and (Ricolfe-Viala & Sanchez-Salmeron, 2010) also 

achieved similar performances by applying different concepts: vanishing points and computing 

the camera lens distortion isolated from the camera calibration process. 

The need for a calibration object has been eliminated through self- or auto-calibration 

methods. (Furukawa & Ponce, 2009) used a top-down information approach for this purpose 

(output of a multi-view stereo camera system on scaled-down input images is used to establish 

feature correspondences). The method requires rough camera parameter estimates which can be 

acquired from the EXIF tags of still photographs. In another study, (Kim & Kweon, 2009) 

proposed to use scene constraints in the form of camera constraints which is based on image 

warping using images of parallelograms. Although these methods have demonstrated promising 

results in several case studies, they cannot still provide the same level of accuracy that explicit 

(i.e., calibration object-based) methods have achieved. 

Stereo camera calibration is similar to the monocular case with a difference that the 

relative position between two cameras ),( 00 tR  needs to be found beside the intrinsic and 
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extrinsic parameters of each camera. The geometric relationship between the left ),( ll tR  and 

right ),( rr tR  cameras can be expressed as follows 

llrrlr tRRttRRR 1

0

1

0 ,    (1) 

 

A feature-based calibration method for distributed stereo camera networks presented in 

(Mavrinac, et al., 2010). The method converges, provides pairwise orientations, and scales with 

network size, but has shown repeatability problems especially in the local interest point detection 

step. In another study, (Xiao, et al., 2010) designed an accurate stereo camera calibration process 

for industrial on-site inspection by using a cross-shaped calibration target. The method, however, 

is only applicable in controlled indoor environments. (Xu, et al., 2012) studied the use of a 

chessboard-like calibration pattern along with a gradient threshold-based corner extraction 

method for a stereo vision calibration process. They primarily used the calibration process 

developed in the Camera Calibration Toolbox, which is based upon methods proposed in (Zhang, 

2000) (Sturm & Ramalingam, 2004). The experimental results showed stability and accuracy for 

a visual system with large baseline (i.e., ~60cm). 

The abovementioned methods have been successfully used in close-range 3D 

reconstruction applications (Z ≤ 2m) with spatial accuracies that rival laser scanning (Seitz, et 

al., 2006); however, the same level of accuracy has not been achieved in far-range applications 

(Z > 10m) even using cameras with multi megapixel resolution; (Dai, et al., 2013) shows that 

errors in the order of ±6-8cm should be expected in such applications. 

In a stereo reconstruction problem, in particular, the accuracy of results could be very 

sensitive to the intrinsic and extrinsic calibration parameters as well as the distance between the 
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camera and the object of interest (House & Nickels, 2006) (Geiger, et al., 2011). This may be 

justified by the point that in such a problem, the estimated parameters are kept constant 

throughout the SfM process and errors can accumulate. (Dang, et al., 2009) have presented a 

thorough mathematical analysis for sensitivity of stereo 3D reconstruction to erroneous 

calibration parameters. The result of this study is summarized in Table 1, where Z  is the depth 

of the point to be reconstructed; b  is the baseline; f  is the focal length in pixels; xC  is the x-

coordinate of the camera center; u  is the x-coordinate of the point in the image space;  vu ~,~  are 

normalized coordinates of the point in the image space; and subscript L  denotes the left camera 

in the stereo rig. From this table, it can be concluded that the sensitivity of the results is the 

highest for yaw, pitch, and roll. Reconstruction errors also scale linearly with b  and higher 

tolerances are acceptable in estimating b . 

Table 1: Sensitivity of stereo 3D reconstruction to erroneous calibration parameters (Dang et al., 

2009) 

Error Source 
Linear Sensitivity of 3D 

Reconstruction 
Error Source 

Linear Sensitivity of 3D 

Reconstruction 
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2

~1 L

L

u
b

ZZ





 baseline error b  

b

Z

b

Z





 

pitch error L  LL

L

vu
b

ZZ ~~
2





 center offset LC  

bf

Z

C

Z

L

2





 

roll error L  L

L

v
b

ZZ ~
2





 focal length error Lf   xL

L

Cu
bf

Z

f

Z





2

2

 

 

Existing camera calibration packages such as Camera Calibration Toolbox not only 

provide the best estimation for each parameter but also calculate the amount of uncertainties in 
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the given estimation (in terms of a ± range). For example, in the case of calibrating a stereo rig 

with two 8 megapixel cameras, 12mm focal length, and 28cm baseline, the following output 

could be achieved: 34.1701.3854 leftf ,    61.3421.3215.114033.1658 leftC , 

21.2161.3845 rightf ,    40.3330.3542.115526.1759 rightC , 

   00.537.076.015.743.030.279 T . This range of uncertainty is another source 

of information that could be used to analyze the sensitivity of the process. An observation in 

(Peng, 2011) indicates that if the depth of calibration is (more or less) kept constant, the ranges 

of the uncertainties decrease. On the other hand, if the depth keeps varying in a larger range, 

higher uncertainties in the estimated parameters could be seen. The following reasons could be 

listed for such a behavior. First, the projection function, that includes the process to compensate 

for the lens distortion, is a non-linear function; hence, if the input data covers a broader range of 

depths, there is a higher probability to be trapped in local optima. Second, the cost function in the 

optimization process is the reprojection error which is more sensitive to the data in closer depths; 

hence, the estimated parameters could result in high spatial distance error for data in farther 

depths. 

The problem statement can be summarized as follows. The sensitivity analyses of the 

stereo 3D reconstruction process have shown a near quadratic relationship between the Z  value 

of a 3D point and the errors in estimated spatial coordinates of the point. This may not be a 

significant issue in close-range 3D reconstruction as the range for Z  is limited (Z ≤ 2m), but 

considerably affects the reconstruction accuracy in far-range scenarios (Z > 10m). Since this 

relationship cannot be changed, the only solution to decrease the reconstruction error is to reduce 

the uncertainties in the estimated camera calibration parameters. This, for example, implies that 

if the uncertainties were reduced by 50%, the reconstruction accuracy would increase four times. 
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None of the existing stereo camera calibration procedures address this issue. The research 

objective of this paper is therefore to enhance the Euclidean accuracy of generated point clouds 

from stereo 3D reconstruction algorithms using an explicit camera calibration procedure that 

reduces the level of uncertainties in estimated parameters. The key research question that will be 

answered is: how can we use the known information about the sensitivity of 3D coordinates of 

points with respect to calibration parameters and design a camera calibration procedure that is 

capable of providing higher Euclidean accuracies? 

3. Solution Hypothesis 

Inspired by the outcome of previous studies ( (House & Nickels, 2006) (Strecha, et al., 2008) 

(Peng, 2011) (Xu, et al., 2012)), the authors performed several observations to assess the amount 

of uncertainty that may exist in estimating calibration parameters. In these observations, two 

5megapixel video cameras with a baseline distance of 30cm as well as fixed focal length lenses 

with mmf 25  were used to implement two scenarios each for five times: a) depth of 

calibration varies from 5m to 15m; and b) depth of calibration is fixed at 10m. The reason for 

repeating each scenario was to study whether they could all result in the same calibration 

parameters or not. Observations from the first scenario indicated that 5-10% difference can be 

seen for estimated parameters at each repetition while those differences were 3-4% for the 

second scenario. Next, the average of the parameters at each scenario were used to calculate 3D 

coordinates of a set of corresponding feature points in a stereo frame (i.e., a pair of left and right 

view frames) captured from an object at the distance of ~10m from the camera set. The results 

for the second scenario showed less noise and spatial distance error. 

The initial observations explained above have led the authors to hypothesize that a multi-

step stereo camera calibration procedure can enhance the final Euclidean accuracy of 3D points 
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if the data is properly fused into the reconstruction process. This hypothesis relies upon finding 

sets of camera parameters each for a particular depth of calibration. These sets of parameters are 

extracted from the video streams captured from a moving calibration board. As seen before, it is 

expected to achieve higher reconstruction accuracies if the depth value of a 3D point is close to 

the depth of calibration. 

The following delimitations are listed to clarify the boundaries for the proposed 

hypothesis in this paper: 1) only a planar calibration object with a chessboard pattern is used and 

other possible types and shapes of calibration objects are not considered; 2) the method is not 

applicable for fish-eye lenses; 3) the absolute 3D coordinates of points cannot be measured and 

hence the accuracy is quantified using the spatial distance between pairs of 3D points; and 4) the 

effective range of depth values for 3D points is limited to 100 times of the baseline distance due 

to significant errors that are expected beyond that (Gallup, 2011). 

4. Methodology 

If the depth of calibration is denoted by D , a conventional explicit stereo camera calibration 

procedure is repeated n  times for different D  values. At each repetition, a different value is 

selected for D  (e.g., mDi 10 ) and while it is kept constant, a set of stereo video streams are 

collected (Fig. 2). During the video recording process, the camera system and the board move in 

a way that iD  does not change significantly. As a requirement, the calibration board should be 

videotaped from different angles and the whole pattern should be visible in all video frames. The 

motion can be arbitrary and does not need to be known, but should not be a pure translation; this 

constraint is imposed by the conventional camera calibration algorithms. The best strategy could 

be keeping the camera set in a fixed location and instead moving the calibration board in 
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different directions and angles. The directions could be up, down, left, and right. It is also 

recommended that the board is tilted forward and backward while having up to 45 degrees lateral 

rotations. It is also necessary to mention that while videotaping, it is preferred to limit the 

movement such that the calibration board appears at different areas of video frames. It is known 

that if the calibration pattern only appears at the central part of video frames, the estimations will 

behave poorly at peripheral areas (Zhang, 2000). 

The collected data is then used as the input in a conventional calibration algorithm to find 

the required parameters. The result corresponding to iD  is saved and the process is repeated for 

the next D  in the sequence. The outcome includes multiple sets of calibration parameters 

 nii ,...,1|  , each corresponding to a specific D . Once the required calibration information is 

acquired, iP  is hardcoded into the 3D reconstruction pipeline with the assumption that the 

camera and lens parameters do not change throughout the future data collection efforts. 

The calibrated sensor system can be used to collect stereo video streams from a target 

scene. Data processing starts with extracting key video frames and is followed by detecting and 

matching feature points in different views. In order to find 3D coordinates of point j  in k -th 

Figure 2: Data collection for camera calibration at D (left: side view; right: top-down view) 
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stereo view ( jkp ), the correct set of camera calibration parameters need to be determined first. 

For this purpose, the average of the following parameters are found from  nii ,...,1|  : focal 

length ( avgf ), principal point ( avgC ), rotation ( avgR ), and translation ( avgt ). These average values 

are used to find an initial estimation for Z  coordinate of the point in the camera coordinate 

system (solve Eqs. 2-5 where  11, vu  and  22 ,vu  are the image coordinates of the point in the 

left and right views, respectively). To simplify and speed-up the calculations, the lens distortion 

effect is ignored here because only a very rough estimate of the Z  coordinate is needed in this 

step. 

  0
~~

1)()(  ZuCXf xavgxavg  (2) 

  0
~~

1)()(  ZvCYf yavgyavg  (3) 

     
     11

)(

31

)(2

33

2)(

13

)(

32

2)(

12

)(

31

2)(

11

)(

~

~~

avgxavgavgxavgavgxavgavgxavg

avgxavgavgxavgavgxavgavgxavg

tftCuZRuCRf

YRuCRfXRuCRf




 (4) 

     
     21

)(

31

)(2

33

2)(

23

)(

32

2)(

22

)(

31

2)(

21

)(

~

~~

avgyavgavgyavgavgyavgavgyavg

avgyavgavgyavgavgyavgavgyavg

tftCvZRvCRf

YRvCRfXRvCRf




 (5) 

 

The i  that has the closest D  to the rough estimation of the Z  coordinate (i.e., Z
~

) is 

selected as the correct camera calibration information for jkp . As can be inferred, the selected 

calibration parameters for two different points in a stereo view are not necessarily the same and 

they can change based on how far a point is from the camera set. 

Once an appropriate i  is selected for every point in a stereo pair, 3D coordinates of the 

points are calculated in the camera coordinate system by using a visual triangulation method. 
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Lens distortion parameters need to be included here to acquire more accurate estimations. These 

coordinates are then transformed into world coordinate system according to 


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 (6) 

where  Twww ZYX ,, is a point in the world coordinate system; cwR  and cwt  are the rotation 

matrix and translation vector from camera to world coordinate system;  Tccc ZYX ,,  is the point 

in the camera coordinate system; and superscript T represent the transpose of a matrix or vector. 

The camera motion information and world coordinates of 3D points are finally refined in 

a bundle adjustment problem. This is a global non-linear optimization problem that minimizes a 

predefined cost function. The cost function   xbaf ˆ,   is the Euclidean distance between the 

reprojection of a 3D point into 2D image space and 2D coordinates of the corresponding feature 

point that is detected in a video frame. The function f  takes  TT

i

TT aaaa ,...,, 21 and 

 TT

j

TT bbbb ,...,, 21  as input parameters and returns  TT

pij

T

p xxx ˆ,...,ˆˆ
11 . In this formulation, ia  is 

the vector of estimated location for the left camera at time i ; jb  is the vector representing the 

3D world coordinates of the j -th point; and pijx̂  is the projected image coordinates of world 

point j  in the i -th stereo frame. 

An incremental 3D reconstruction approach is used to generate a 3D point cloud 

representing the entire scene. The reconstruction pipeline starts with the first stereo frame and the 

abovementioned process (i.e., initial estimation of the Z  coordinate of a point in a stereo frame, 

selection of an appropriate camera calibration set, calculation of the 3D point in camera 
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coordinate system, transformation of the 3D point into world coordinate system, and bundle 

adjustment optimization) is repeated once a new stereo frame is added. 

5. Design of Experiments 

This section provides details of experiments that are designed to validate the proposed stereo 

camera calibration procedure. The primary control variable in these experiments is the technical 

properties of the sensor system which need to be fixed while collecting the necessary data. A set 

of two video cameras capable of streaming raw video data and a pair of fixed focal length lenses 

are used. This is required to avoid the change of focal length and information loss during image 

compression. An appropriate baseline distance is also selected based on the typical range values 

that are encountered in infrastructure applications (typical range values are 10-25m). Once the 

sensor system is ready, the following parameters should not change while collecting the 

necessary data: video resolution, focal length, and relative position of the two cameras. The 

baseline distance between the left and right cameras ( b ) can be selected based on a simple 

formulation presented in (Gallup, 2011) for analyzing the reconstruction accuracy in a stereo 

setup.  
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
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(7) 

where z  is the depth in cm, z  is the expected measurement error in cm, f  is the focal length 

measured in pixels, and d  is the disparity error of a feature correspondence. As an example, in 

case of using two 5MP cameras with 16mm fixed focal length lenses and assuming mz 20 , 

cmz 2 , 6500f , and 1.0d , the baseline distance can be calculated as 30cm. 
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A checkerboard with an appropriate number of black and white squares in two 

perpendicular directions is also required for the calibration process. The number of squares and 

their dimensions are selected according to the scene (a pattern of 13×14 squares each with a 

dimension of 60mm). 

Two sets of experiments were designed to study the impact of the conventional and 

proposed calibration procedures on the accuracy of 3D coordinates of points. The first 

experiment includes 3D reconstruction of a building façade with intersecting planar faces. The 

planes are well-textured and have a brick pattern. The second experiment includes another 

building façade with planar faces, but covered with poorly-textured aluminum panels. Fig. 3 

shows a snapshot of the two environments. The scenes are selected to be planar for a main 

reason: the planarity allows controlling the Z  coordinate of 3D points in the desired range by 

simply changing the distance between the stereo camera system and the planar face.  

For camera calibration, six sets of stereo video streams are captured from the board under 

different conditions. In the first set which will be used for testing conventional procedures, the 

Figure 3: Two building façades for multi-step stereo camera calibration experiments 
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depth of calibration changes in the range of mDm 155 1   while capturing the videos. Captured 

video frames should cover different views and angles of the board while the camera moves 

smoothly toward and/or away from the board. The next five sets are needed to test the proposed 

stereo camera calibration procedure. In these sets, the distance between the depth of calibration is 

fixed to mD 52  , mD 103  , mD 154  , mD 205  , and mD 256  , respectively. These limits 

have been selected according to the typical range values that we encounter in building 

applications. The sensor system is also used to collect stereo videos from the planar scenes while 

the distance of the camera to the planar scenes changes from mDm 255  . This data is a 

control variable and will be used for 3D reconstruction of the scenes in two scenarios: a) using 

conventional calibration procedures (parameters acquired from the 1
st
 set of calibration videos); 

and b) using the proposed multi-step calibration procedure (multiple sets of parameters acquired 

from the 2
nd

 to 6
th

 set of calibration videos). 

The performance of the proposed calibration procedure is assessed based on the 

following metrics: a) spatial distance accuracy of the initial estimation for 3D coordinates of 

points with different range values (only one set of stereo frames is used in this case); and b) 

spatial distance accuracy of a dense 3D point cloud. For the first metric, stereo frames 

corresponding to }25,20,15,10,5{ mD   are extracted from the videos to detect and match feature 

points. Calibration parameters acquired from the conventional and proposed procedure are then 

used to estimate 3D coordinates of feature points from left and right views of stereo frames. 

Spatial distance between pairs of feature points is then calculated for each case and compared to 

the ground truth data that is acquired using total station surveying. For the second metric, 

calibration parameters from the conventional and proposed procedure are used separately in a 

dense 3D reconstruction package and the spatial accuracy of the results is evaluated. The sample 
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size at all experiments is considered to be 384 which correspond to 95% confidence level and 

±5% confidence interval. 

6. Implementation and Results 

A prototype was created using Microsoft Visual C# to implement and test the proposed multi-

step calibration procedure and subsequent 3D reconstruction steps. The C# platform provides a 

base to connect to any number of cameras with real-time responsiveness. OpenCV (Intel® Open 

Source and free C++ Computer Vision Library) was selected as the main image processing 

library. Two high resolution Flea2 cameras were used to capture stereo video streams. The 

baseline distance was approximately 30cm and the video resolution was 5MP with a frame rate 

of 7.5 fps. A calibration board with a pattern of 13×14 squares each with a dimension of 60mm 

was also built. 

An automatic stereo camera calibration software was developed using the functions 

available in OpenCV. The user runs the program while videotaping a calibration pattern at a 

predefined distance from the camera set. The program is real-time responsive and automatically 

detects the calibration pattern in every video frame. Once the pattern is successfully detected in a 

stereo frame using the OpenCV’s cvFindChessboardCorners function, chessboard corners are 

automatically refined to their location with subpixel accuracy and also matched between the two 

views by invoking the cvFindCornerSubPix function (Fig. 4). This process continues until 

enough number of views are captured (typically between 30 to 40). Then, the calibration function 

(cvStereoCalibrate) is invoked and the necessary parameters are calculated. cvStereoCalibrate 

provides the possibility of calibrating a stereo camera set according to different constraints such 

as zero radial or tangential distortions, fixed principal point, fixed aspect ratio, and/or fixed focal 

length. The same process is repeated for different D values.  
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The designed experiments were performed according to the specified details. The 

previously mentioned camera system and calibration board were used to capture the six sets of 

required data for calibration. Using the developed automatic calibration software, 50 stereo 

frames were extracted in each case (i.e., mD 5 , mD 10 , mD 15 , mD 20 , and 

mD 25 ) and the calibration parameters were calculated. Fig. 5 demonstrates some of the 

intermediate results. Then, two sets of stereo video streams were captured from the façade with 

brick pattern and the façade with aluminum panels while the distance between the camera system 

and planar faces was changing in the range of mDm 255  . 

For evaluating the first performance metric (i.e., spatial accuracy of the initial estimation 

for 3D coordinates of points with different range values), stereo frames corresponding to 

}25,20,15,10,5{ mD   were extracted from the façade videos and 3D coordinates of feature 

points were calculated using the sets of estimated calibration parameters. Spatial distance 

between pairs of 3D feature points was then compared to the ground truth data. Table 2 illustrates 

the average error at each scenario (sample size of 384). The results indicate that a more accurate 

initial estimation can be acquired for a point at a range of Z  using the calibration parameters that 

correspond to ZD  ; this supports the hypothesis presented in this paper.  

Figure 4: Automatically detected and matched calibration board corners 
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Table 2: Average spatial distance error for different calibration scenarios 

Calibration 

Scenario 

Average spatial distance error (cm) 

mZ 5  mZ 10  mZ 15  mZ 20  mZ 25  

mD 5  ±2.5 ±4.7 ±9.9 ±17.5 ±23.7 

mD 10  ±2.8 ±4.4 ±8.4 ±15.5 ±20.3 

mD 15  ±3.6 ±5.2 ±6.4 ±14.6 ±19.8 

mD 20  ±4.4 ±6.0 ±9.1 ±11.3 ±18.3 

mD 25  ±5.0 ±7.6 ±12.5 ±15.1 ±15.2 

mDm 255   ±3.3 ±4.9 ±10.3 ±15.8 ±19.0 

 

To evaluate the second performance metric (i.e., spatial distance accuracy of a dense 3D 

point cloud), two dense 3D point clouds were generated at each experiments: one using the 

information acquired from a conventional stereo camera calibration algorithm and another using 

the proposed procedure. The key-frame selection method proposed in (Rashidi, et al., 2013) was 

used to extract frames that have minimum motion blur and appropriate number of feature points 

while the camera motion between two consecutive key-frames is larger than a minimum 

Figure 5: Visualization of the extrinsic parameters in stereo camera calibration 
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threshold. In addition, a modified version of the patch-based multi-view stereo software, which is 

based on (Furukawa & Ponce, 2010) and available online, was used to generate the dense 3D 

reconstructions. 384 pairs of points were selected randomly from the generated dense 3D point 

clouds and their spatial distance was compared to the ground truth data. Total station surveying 

was used to acquire the ground truth data. 

Fig. 6 demonstrates the results involving the building façade with a brick pattern (i.e., the 

first experiment). The 95 percentile error in the point cloud generated from the information 

acquired by conventional calibration algorithms was ±12.8cm while this error was ±9.6cm in the 

point cloud generated by using the proposed calibration procedure. This shows a reduction of 

3.2cm (25%) in the spatial distance error because of using the proposed multi-step stereo camera 

calibration procedure. The relative improved accuracy can also be visually seen by comparing 

the point clouds in Fig. 6(a) and Fig. 6(b). The second point cloud is sharper in planar areas. This 

supports the presented hypothesis in this paper. It is necessary to mention that this accuracy may 

be further improved by modifying the multi-view geometry process which is out of the scope of 

this paper. 
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Fig. 7 shows the generated dense 3D point clouds for the second experiment (i.e., 
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building façade with aluminum panels). Fig. 7(a) demonstrates the 3D point cloud acquired by 
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using the conventional stereo camera calibration algorithms. Fig. 7(b) shows the same point 
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cloud when the proposed multi-step calibration procedure is used. No significant difference in 
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the appearance of the two point clouds can be noted in the front view snapshots. However, the 
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quality of these point clouds can be visually evaluated when the variance of the points on the 

(a) 

(b) 

Figure 6: Dense 3D point cloud of the building façade with a brick pattern. (a) Conventional 

calibration method. (b) Multi-step calibration procedure. 
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planar surface is examined. This variance is demonstrated in Fig. 7(c) and Fig. 7(d). As can be 

seen, in case of using the multi-step calibration procedure, the variance of the points on the 

planar surface is much lower than the case that uses conventional calibration algorithms. In 

general, this is a very challenging scene to be reconstructed with image-based 3D reconstruction 

algorithms due to the prevalence of repetitive patterns and also existence of poorly-textured 

(a)                                     (b) 

(c)                                     (d) 

Figure 7: Dense 3D point cloud of the building façade with aluminium panels. (a,c) 

Conventional calibration method. (b,d) Multi-step calibration procedure 
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surfaces. The Euclidean accuracy of the coordinates of 3D points were therefore less than the 

ones acquired in the previous experiment. The 95 percentile spatial distance errors in this case 

were ±16.5cm for conventional methods and ±11.7cm for the proposed procedure. This indicates 

an average reduction of 4.8cm (29%) in spatial distance errors. 

7. Conclusion Remarks 

Accurate 3D reconstruction of infrastructure from multiple-view imagery can provide the 

construction industry with an inexpensive alternative to the laser-based surveying techniques. In 

the case of using a calibrated stereo camera system, several observations have shown that the 

accuracy of final results is very sensitive to the calibration parameters especially in far-range 

applications. The highest sensitivity corresponds to the distortion coefficients. Due to this 

sensitivity, the existing stereo camera calibration algorithms only provide accurate results when 

they are used in close-range applications. 

This paper presented a novel multi-step stereo camera calibration procedure to alleviate 

the abovementioned problem. The goal was to enhance the Euclidean accuracy of the generated 

dense 3D point clouds in far-range scenarios. The proposed procedure uses a set of discrete 

values to represent the distance between the sensor system and the calibration board ( D ). For 

each D , a set of stereo video streams are collected while the distance between the camera and 

the board is fixed to D . Conventional stereo camera calibration algorithms are then used to 

calculate calibration parameters for the given D . Repeating this process for all the values results 

in multiple sets of camera parameters each corresponding to a specific D . These sets are then 

used in the SfM process with the following assumption: for each 3D point, the set of calibration 

parameters that have the closest D  value to the point’s Z  coordinate are used. Results from two 

different case studies demonstrated that this procedure is capable of reducing the spatial 
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measurement errors by 25% in 3D reconstruction of a building façade with a brick pattern and 

29% in 3D reconstruction of a building façade with aluminum panels. As mentioned before, 

camera calibration and dense multi-view geometry are key issues regarding the capability to 

achieve spatial accuracy levels that could compete with laser-based spatial data collection 

systems. 
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