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shape of combustion noise. Reasonable agreement with the measured

spectral level is achieved.
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I. Introduction

Combustion noise may become an important noise source if not well understood and

controlled at the design stage of lean-burn gas turbine combustors because lean burning

involves highly unsteady flames. Since lean burning has been identified as a potential way

forward for environmentally friendly engines with low emission, this noise source needs to

be studied. A priori knowledge of its source mechanisms is desirable and precise prediction

methods are essential for design purposes. There are two components of combustion noise

in gas turbines: the direct noise is due to pressure fluctuations generated directly by

unsteadiness in the rate of heat released by combustion; and the indirect noise is produced

by entropy fluctuations and also generated by fluctuations in the rate of heat release, which

produce reflected acoustic waves as they accelerate through the turbine inlet guide vanes.

Modeling of both direct and indirect broadband noise requires a sound understanding of the

characteristics of the underlying heat release fluctuations that are ultimately the combustion

noise source, and the transfer function that relates these acoustic and entropic fluctuations

to the unsteady heat release rate. While previous work has extensively studied the sound

emission from open flames (e.g. Refs. 1,2,3,4) without the effects of enclosures, the attention

received to predict the spectral characteristics of combustion noise in the complicated

configuration of a realistic aeroengine combustor is far from sufficient in literature.

In the present study, we employ modeling methods to compute the broadband spectrum

of combustion noise, and aim to validate the models by comparing the calculated results

with available measurement of combustion noise spectra on a demonstrator aeroengine. A

schematic flowchart of the modeling method is illustrated in figure 1. For open flames in

free space, an analytical solution exists for the pressure fluctuations generated by specified

fluctuations in heat release rate, i.e. the transfer function. However for an aeroengine

Figure 1. Schematic flowchart of the prediction model.
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combustor in an enclosed system, the transfer function needs to be calculated numerically

since it varies spatially and temporally. This numerical computation is the primary objective

of this paper, and it is achieved by using a computer program called LOTAN based on

low-order linear acoustical network analysis.

A spectral model5 for turbulent premixed flames is applied to represent the

thermoacoustic sources. This model has been shown to be capable of providing quantitative

acoustic spectra based on local mean turbulence and mean heat release rate. In the

model, a local wave number model spectrum of heat release rate fluctuation is mapped

to a frequency spectrum required to calculate the sound pressure spectrum. The spectral

model was validated experimentally on premixed swirling jet flames5,6 with underpredictions

observed at low frequencies.5,7, 6 This deficiency is improved in this paper after applying

corrections to the model. The input of mean quantities for this model can be obtained from

either measurement5,6 or CFD simulation.7 In the work reported here, it is obtained from

Reynolds-averaged Navier-Stokes (RANS) calculations for the combustor flow field.

The paper commences with a brief description of the theoretical model in Sec. II,

including the calculation of the Green’s function for thin annular ducts using LOTAN and

an outline of the spectral model.5 Section III discusses the LOTAN results of the Green’s

function, including its spatial variation, spectral features, the effects of source position, the

reflected sound from entropy waves accelerating through the combustor exit, and flow paths

in combustor and outer annulus, for the demonstrator aeroengine. Following the modeling

methods, the predicted noise spectra for the demonstrator aeroengine are compared in Sec. IV

with the measured noise data. The conclusions of the study are then summarized in Sec. V.

II. Theoretical Modeling

II.A. Combustion noise spectrum

The geometry of an aeroengine combustor is complicated. The air from compressor exit

is split. The main flow path is through a premixer, where the fuel is introduced, and the

mixture enters an annular combustor. Secondary flows through inner and outer annuli enter

the combustor through ports and perforated cooling rings, as shown in figure 2. The flows

at compressor exit and turbine entry are choked, giving simple inlet and outlet boundary

conditions and ensuring that linear fluctuations generated in the combustor do not depend

on compressor or turbine properties. Marble and Candel8 derived the boundary conditions

at a choked exit. This has been confirmed experimentally by Leyko et al.
9 using results from

Bake et al.
10 and has been extended to circumferential waves and annular nozzles.11 The

reflected waves created when an upstream-propagating acoustic wave approaches a choked

inlet nozzle have been determined by Stow et al.
11
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Figure 2. The schematic configuration of the demonstrator engine combustor.

We introduce the Green’s function G(y, τ ;x, t): G1 represents the pressure generated at

(x, t) due to an impulse of rate of heat addition δ(x−y, t−τ) at (y, τ); G2 similarly describes

the entropy produced and G3, G4 and G5 the vorticity. G is the solution of the linearised

Euler equations from compressor exit to turbine entry that satisfies the appropriate inlet and

outlet boundary conditions. The determination of this Green’s function will be discussed

further in Sec. II.B.

The pressure perturbation p
�(x, t) generated by a rate of heat input q̇

�(y, τ) per unit

volume is then given by

p
�(x, t) =

� ∞

−∞

�

vf

G1(y,x, t− τ) q̇�(y, τ) d3y dτ, (1)

where vf denotes the volume of the flame brush and the prime denotes a perturbation from

the mean. A similar integral can be written for the entropy fluctuation at (x, t) using

G2(y, τ ;x, t). Following the Fourier transform of Eq. (1) one obtains

p̂(x,ω) =

�

vf

Ĝ1(y,x,ω) ˆ̇q(y,ω) d
3y, (2)

where ω is the angular frequency.

The power spectral density P̂ (x,ω), a measurable quantity in experiments, can be simply

obtained as

P̂ (x,ω) =

�

vf

�

vf

Ĝ1(ya,x,ω)Ĝ∗
1(yb,x,ω) · ψq(ya,yb,ω) d

3ya d
3yb, (3)
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where ψq is the power spectral density of q̇�,

ψq(ya,yb,ω) =
1

2π

� ∞

−∞
ˆ̇q(ya,ω) ˆ̇q∗(yb,ω) dω; (4)

the overline denotes an averaging process, the asterisk indicates the complex conjugate, and

ya,yb are two locations within the flame brush vf . It is assumed that the Green’s function

has negligible variation over the correlation volume for the fluctuating heat release rate,

which will be confirmed in Sec. III.D. The correlation spectrum of the heat release rate,

ψq(ya,yb,ω), needs to be integrated over the flame brush vf . As shown in Wäsle12 this

amounts to integrating the contributions from the coherent monopole sources of combustion

noise with a correlation volume Vcor over the flame volume. Therefore the power spectral

density in Eq. (3) is reduced to

P̂ (x,ω) ≈
�

vf

��Ĝ1(y,x,ω)
��2 · ψq(y,ω)Vcor d

3y. (5)

The sound pressure level (SPL) is hence characterized by P̂ (x,ω) as 10 log10(P̂ /p
2
ref), where

the reference acoustic pressure is pref = 2× 10−5 Pa.

In Secs. II.B and III we discuss the calculation and results of the Green’s function and in

Sec. II.C models for ψq and Vcor are summarised. These are combined in Sec. IV to predict

the noise spectrum in an aeroengine combustor.

II.B. Green’s function for thin annular ducts

The Green’s function determines the linear acoustic, entropic and vortical waves due to a

harmonic variation in the heat release rate. We calculate its Fourier transform Ĝ(y,x,ω)

using a computer program LOTAN which was developed from a low-order thermoacoustic

network model to predict combustion oscillations in lean premixed prevaporized (LPP)

gas turbine combustors. Ĝ(y,x,ω) eiωt determines the waves at x due to a harmonically

varying spatially concentrated rate of heat input δ(x − y) eiωt. The program is intended

for thin annular combustors, typical of aeroengines, so axial and circumferential variations

are included but radial dependence is ignored. An introduction to the theory behind the

LOTAN program can be found in Stow.13,14,15

In a LOTAN calculation the geometry is constructed as a series of modules with jump

conditions between them.16 The linear waves propagate or convect through straight portions

of the geometry. The appropriate conservation conditions are applied across the combustion

zone, any changes in cross-sectional area and where flow paths split or join. Together with

the inlet and outlet boundary conditions this leads directly to the modal transfer functions,
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for example (p̂/ˆ̇q)n, in circumferential mode number n. By using the Green’s function

technique by Hedge et al.
17 and the routine method of eigenfunctions to solve the Green’s

function,18 the pressure response to a concentrated source 1
r δ(θ− θ0) δ(r− r0) δ(x− x0) eiωt

at circumferential angle θ0 can be expressed as a superposition of circumferential modes of

the transfer function, i.e.

Ĝ1(y,x,ω) =
N�

n=−N

�
p̂/ˆ̇q

�

n
e
in(θ−θ0), (6)

as shown in figure 1. Note that since the summation over circumferential modes is

theoretically infinite, we should take N to be sufficiently large so that the truncation error

is small.

The unsteady heat input can generate entropic and vortical waves as well as acoustic

wave. These are coupled at the choked combustor exit where incident entropy and vortical

disturbances lead to reflected pressure waves which need to be included in combustion noise

calculations. If one ignores the reflected pressure waves, then the resulting noise is the

direct noise. The total combustion noise (direct + indirect) is obtained by including all the

contributions. The differences in the spectrum between the direct and full combustion noise

for a gas turbine combustor are discussed in Sec. III.D.

The LOTAN program can calculate the frequency spectrum and mode shape of the

transfer functions for an observer at x(r, θ, x) and the source at y(r0, θ0, x0). By running

LOTAN for different axial source position x0 and varying the values of θ0 in Eq. (6), one

obtains the dependence of Ĝ1(y,x,ω) on the source position. Because the mean flow is

axisymmetric, the transfer function for a negative mode is equivalent to the mode of the

corresponding positive value. Summing these two contributions from the ±n modes gives

the Green’s function in Eq. (6) as

Ĝ1(y,x,ω) =
�
p̂
�
ˆ̇q
�

n=0
+ 2

N�

n=1

�
p̂
�
ˆ̇q
�

n
cos

�
n(θ − θ0)

�
, (7)

which means that only positive mode numbers need to be computed thereby nearly halving

the computational time required to obtain Ĝ1(y,x,ω) using LOTAN.

II.C. Spectral model for heat release rate

A model for the heat release rate spectrum ψq(y,ω) in Eq. (5) is obtained as follows. The use

of a reaction progress variable c taking a value of 0 in the unburnt and 1 in the fully bunt

mixtures, in turbulent premixed combustion calculations is common. Since the mixture

is homogeneously mixed in premixed combustion, the fluctuations in c must result from
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fluctuations in reaction (or heat release) rate. Thus, one can write

q̇
�(y, t) = A c

�(y, t), (8)

where A is a constant of order unity to be determined later. It is straightforward to write

the spectrum as Eq(κ) = A2
Ec(κ), where κ is the wave number, by taking the Fourier

transform on both sides of the above expression. If one integrates this expression over all

wave numbers then q̇�2 = A2
c�2. Since the reaction rate is a highly intermittent signal, its

root mean square (rms) value can be as high as its mean value,4 and thus q̇ = A
�
c�2. A

similar expression has been obtained by Spalding19 for turbulent premixed combustion at

sufficiently large turbulence Reynolds number ReT = u
�Λ/a0 with the turbulence intensity

u
� and integral length scale Λ larger than the laminar flame speed sL and laminar flame

thickness δL.

It is well known20 that the presence of the rms of c leads to a singular behaviour for the

mean heat release rate, q̇ when the flamebrush leading or trailing edge is approached, that is

when the mean value of c going towards 0 or 1, and this is avoided in practical simulations

by replacing the rms value by the variance.20 This gives a model for the mean heat release

rate as21

¯̇q = ρ0Yf,0H
�ξ = ρ0Yf,0HCD

�
��/�k

�
�c�2, (9)

where �ξ is the mean scalar dissipation rate of the progress variable variance �c�2, and CD = 2.0

is a model constant as proposed in Peters.21 The symbols ρ0, Yf,0 and H are the reactant

density, fuel mass fraction and lower heating value of the fuel respectively. The dissipation

rate of turbulence kinetic energy, �k = 1.5u�2, is �� = u
�3
/Λ. This mean heat release rate model

then identifies

A = ρ0Yf,0HCD

�
��/�k

�
. (10)

While other models proposed recently for �ξ (see Ref. 22 for a summary of these models)

are available, the above model is chosen for its simplicity and to limit the number of model

parameters in the spectral description. Furthermore, these recent models also suggest the

balance between the production and dissipation of progress variable fluctuation in a broad

sense, including contributions coming from thermochemical processes. Nevertheless, it is

worth to explore these models in a future study.

The wave number spectrum of the heat release rate, Eq(κ), then becomes

Eq(κ) = (ρ0Yf,0H)2C2
D

�
��/�k

�2
Ec(κ), (11)

where a correction has been made to the expression of Eq in a similar approach used in an
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earlier study5 to account for the dimension of Eq. As has been done in that study5 one

may use the model scalar spectrum derived by Tennekes and Lumley23 with their proposed

constants α = 1.5, β = 0.3 for Ec if c is presumed to be a passive scalar. The validity of this

assumption requires a comprehensive analysis using laser diagnostics and direct numerical

simulation data which is beyond the scope of this investigation. However, the spectrum

of a reactive scalar reported in a recent study24 offers a reasonable support for the above

assumption. After some algebraic rearrangement, the heat release spectrum Eq is obtained

as

Eq(κ) = ρ0Yf,0H
¯̇q · C2

DCs ��5/3 �k−2
κ
−5/3 · exp

�
−3

2

�
πβα

1/2(κΛ)−4/3 + α(κηc2)
4/3

��
, (12)

where Cs is an amplitude scaling function to be obtained below, and the Corrsin/Kolmogorov

scale ηc becomes LC = (a30/��)0.25 for a passive scalar. Since c is a reactive scalar, Hirsch et

al.
5 considered two effects:

1. The propagation speed of the flame front characterized by the Gibson scale LG = s
3
L/��

which will tend to “iron out” the small scales, i.e. produce a spectral cut off at high

wave numbers. This effect is considered through an effective Corrsin length scale:

ηc = max [cGLG, LC ] with cG = 3. (13)

2. To account for a change of combustion regime, the mean heat release rate model by

Schmid et al.
25 is used as it explicitly includes the Damköhler number Da,

¯̇q = 4.96
�

k

�
sL(2/3k)

−0.5 +
�
1 +Da

−2
�−0.25

�2
· c̃ (1− c̃)ρ0Yf,0H, (14)

Da =
0.09ks2L
�C2

c a0
, (15)

where the constant Cc ≈ 1.2 suggested for the natural gas fuel is employed in this

work for the kerosene fuel used in the aeroengine combustor. The amplitude scaling

function Cs is derived as

Cs =
α

CD

�c�2(Da)
�c�2(Da → ∞)

=
α

CD

�
sL(2/3k)−0.5 +

�
1 +Da

−2
�−0.25

sL(2/3k)−0.5 + 1

�2

. (16)

In the limit of Da → ∞, Cs becomes α/CD.

By combining Eqs. (12–16) one recognises that the local wave number spectrum for the

heat release rate, Eq(κ), is determined by the mean quantities. To obtain the frequency

spectrum ψq(ω) required for the acoustic power spectrum, Hirsch et al.
5 followed Tennekes
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and Lumley23 by requiring that the spectral energy content in the corresponding scales

is conserved, i.e. κEq = ωψq, and postulating that the frequency spectrum is a simple

rearrangement of the wave number spectrum, as has been used by Clavin & Siggia.26 This

leads to a mapping between wave number and frequency, strictly when homogeneity is

assumed, which is reasonable for small scales relevant for combustion despite the large scales

are inhomogeneous in turbulent premixed combustion. This mapping is written as

κ =
2π

Λ

2π0.5

α0.75
(fτc)

1.5
, (17)

where the characteristic time scale τc is given by

τc = Cτ
δT

sT
= Cτ

Λ

u�
a0/(sLΛ) +

�
1 +Da

−2
�0.25

sL/u
� +

�
1 +Da−2

�−0.25 (18)

using the turbulent burning velocity relations proposed by Schmid27 with the model constant

Cτ ≈ 0.5.

Now the local frequency spectrum of the heat release rate ψq(ω) = κEq(κ)/ω is obtained

by combining Eqs. (12–18). Moreover, it has been suggested in previous studies12,28 that

the correlation volume is Vcor = 8 �3cor over the flame brush and �cor ≈ δT , the flame brush

thickness. Substituting these models for ψq and Vcor into Eq. (5), one obtains the combustion

noise spectrum for thin annular combustors as

P̂ (x,ω) =
8

ω

�

vf

��Ĝ1(y,x,ω)
��2 · κ Eq(κ) δ

3
T d3y. (19)

III. The Green’s Function for a Demonstrator Engine

III.A. The demonstrator engine combustor

Measurements of the combustion noise spectrum for a demonstrator aeroenginea have been

conducted using pressure transducers (“rumble probes”) in combustor and jet pipe. From

the perspective of modeling the geometry within a LOTAN application, the demonstrator

engine combustor consists of a diffuser plenum, 16 premixer ducts and the combustor, as

illustrated in figure 2. The premixer ducts supply fuel and air to the combustor through

the main flow path. Air also enters through perforated front and rear tiles. The annular

combustor is surrounded by inner and outer annuli which supply cooling air to the combustor

through outer and inner perforated tiles. There are thus six flow paths, i.e. the main flow

(acoustic) path plus the paths in the outer annulus, inner annulus, outer tile, front and rear

aRolls-Royce proprietary.
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inner tiles. Apart from this, fuel is also introduced via a pilot to ignite the main burner from

the established pilot flame. The operating condition chosen for evaluation is at a low-medium

power setting of 44% of maximum power (1747.5 rpm), where there is negligible fuel supplied

to the pilot flame and the burning is in premixed mode.

A Rolls-Royce in-house code FLOWNET is used to generate the geometry and mean flow

parameters as inputs for the LOTAN program (see figure 1). The geometry is composed of

a network of modules which describe its features. Each flow path is modeled as a string of

consecutive straight ducts with different cross-sectional areas and/or mean radii to account

for the axially varying geometry. Appropriate conservation condition are applied across the

junctions of ducts and zones of heat input.16 The premixer is modeled as a ring of ducts

uniformly positioned circumferentially. Since the cross-stream dimension of a premix duct is

small compared with the wavelength the flow within it is one-dimension (1-D). The cooling

flow is considered by modeling the flow within the inner and outer annuli to be connected

through a distribution of holes to the combustor flow. The input parameters for the mean

flow are the pressure, axial velocity, density and temperature in each duct.

The boundary conditions on the mean flow are prescribed both at the inlet for p, T and

at the outlet for mass flow rate ṁ. Figure 3 shows the axial variations of pressure, axial

p
(P

a)

2x104

u
(m

/s
)

40

premixer

−1 −0.5 0 0.5 1

ρ
(k
g/

m
3
)

x/L

1

 

 

main acoustic
outer annulus
inner annulus
outer tile
front inner tile
rear inner tile

−1 −0.5 0 0.5 1

T
(K

)

x/L

300

plenum
combustor

←  flame

Figure 3. The axial variations of mean flow variables p, u, ρ, T along all flow paths of the demonstrator engine.
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velocity, density and temperature for the mean flow along the various flow paths in the test

geometry. The combustor inlet is located at x/L = 0.0 and the axial coordinate is normalized

using the combustor length L. As shown in Fig. 3, abrupt changes in the mean variables

occur due to the geometry changes in the flow paths. In the main acoustic path, there is an

evident jump in mean temperature at the beginning of the flame very close to the combustor

inlet, and the drops in T within the combustor are due to the cooling flow from other paths.

The boundary conditions applied are those of a choked inlet and outlet, representing

approximations for the compressor outlet and turbine inlet flows respectively. The LOTAN

code uses the choked boundary conditions described in Stow et al.
11 for the inlet and outlet.

The linear flow perturbations are calculated by propagating acoustic, entropic and vortical

disturbances in straight ducts and annuli and joining ducts of different cross-sectional areas

with appropriate conservation conditions.16

III.B. Spatial variation

The Green’s function is obtained for the demonstrator engine as per Eq. (7). A restriction of

LOTAN for modeling the junction of the 1-D premix ducts to the annular geometries of the

plenum and combustor requires that the largest circumferential mode number must be less

than half the number of the 1-D premixer ducts (16 in total for the demonstrator engine),

and hence N = 7 is used in Eq. (7). This has been checked to be sufficient to ensure small

truncation errors as discussed in Sec. III.C.

Figure 4 shows the axial variations of the pressure-like Green’s function |Ĝ1(y,x,ω)| in
the six flow paths of the combustor at 100 Hz and 300 Hz. At a low frequency of 100 Hz the

−1 −0.5 0 0.5 1
2

3

4

5

6
x 10

−3

x/L

|Ĝ
1
(y
,x

,ω
)|

100 Hz

 

 

plenum

combustor

premixer

← flame

main acoustic
outer annulus
inner annulus
outer tile
front inner tile
rear inner tile

−1 −0.5 0 0.5 1

x/L

300 Hz

RP3&4

RP1&2

Figure 4. The axial variations of the Green’s function |Ĝ1(y,x,ω)| in all flow paths of the demonstrator engine.
N = 7, θ = π/3, θ0 = 0, x0 at combustor inlet.
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Green’s functions shows very little variation in the amplitude of the pressure perturbation

throughout the combustor apart from within the premixer ducts, where because of their

smaller total cross-sectional area inertial effects are more important. At 300 Hz differences

in amplitude become evident, particularly between |Ĝ1| in the outer and inner annuli. There

is little variation of |Ĝ1| within the combustor (0 � x/L � 1) for both frequencies. The noise

measurements were performed using two pairs of “rumble probes”, RP 1 & 2 in the outer

annulus and RP 3 & 4 in the combustor which is part of the main acoustic path. The axial

positions of the rumble probes, as marked in the right graph in figure 4, are 0.292 (RP 1 &

2) and 0.353 (RP 3 & 4) respectively, both of which are in the first half of the combustor.

The contours of |Ĝ1(y,x,ω)| in the (x, θ) plane for the frequencies 100, 300, 500 and

1000 Hz are shown in figure 5 to explore the spatial distribution of the Green’s function

within the combustor, which is the main acoustic path and is of most interest. As expected

the Green’s function is distributed symmetrically with respect to the source position θ0 = 0.

|Ĝ1| varies gradually in the circumferential direction θ; again there is very little axial variation

of |Ĝ1| away from the source particularly in the region θ − θ0 �= 0.

Figure 5. Contours of the Green’s function |Ĝ1(y,x,ω)| on the (x, θ) plane in the main acoustic path. N = 7,
θ0 = 0, x0 at combustor inlet.
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Figure 6. The spectra of |(p̂/ˆ̇q)n| of individual circumferential modes 0–7 and the spectrum of the Green’s
function |Ĝ1(y,x,ω)|. N = 7, θ = π/3 , θ0 = 0. x at RP 3 & 4, x0 at combustor inlet.

III.C. Spectra of individual modes and G1

To find out the relative contribution from each individual mode to the Green’s function, the

spectra of |(p̂/ˆ̇q)n| for the circumferential modes n = 0–7 are plotted in figure 6 together with

the spectrum of the Green’s function by adding up the modes in [−7, 7]. It is observed that

the contributions from high-order modes to Ĝ1 are an order of magnitude smaller than those

from low-order modes for low frequencies (< 1000 Hz), and that the contribution from even

higher modes is negligible. Therefore summing up to N = 7 is sufficient to ensure accuracy

of Ĝ1 for the demonstrator engine.

III.D. Effects of source position and entropy wave

The effect of source position on the Green’s function has been investigated. If Ĝ1 is strongly

dependent on y, one needs to run LOTAN for a number of axial source positions x0. In a

lean-burn system, most of the heat release occurs within the first 15–20% of the combustor

length. We consider the variation of Ĝ1 for a distribution of axial source positions within

the first 24% of the combustor length. The actual values of x0 for four representative source

Table 1. Axial positions of the selected source representing a fluctuation in heat release rate and the distances
of the source to the combustor inlet.

module no. DG B072 DG B080 DG B084 DG B088

x0/L 0.002 0.086 0.158 0.240

13 of 21



Figure 7. Effects of source position and entropy waves on spectrum of the Green’s function |Ĝ1(y,x,ω)|. N = 7,
θ = π/3, θ0 = 0. x at RP 3 & 4.

positions are summarized in table 1. Figure 7 shows the spectra of |Ĝ1(y,x,ω)| for these

different source positions with (dashed lines) and without (solid lines) entropy waves incident

of the exit nozzle. It confirms that |Ĝ1| is not sensitive to the axial source position if entropy

waves are assumed to have diffused before the combustor exit, particularly at low frequencies.

This implies that when applying the prediction model in Eq. (19) it is safe to take Ĝ1 outside

the source integral with respect to x0, and hence that LOTAN needs to be run only once for

each mode number.

The inclusion of entropy waves at the combustor exit, however, produces a frequency

variation on top of the underlying trend in spectral levels as in figure 7. The variation

becomes gradually smaller at high frequencies. In addition, the Green’s function also varies

with the source position when the entropy waves are included because those waves have a

much shorter wavelength than acoustic waves, and so a modest change in source position

leads to different phase in the entropy distrubance incident on the nozzle. This magnifies

the effect of source position on the Green’s function. For this reason Ĝ1 must be retained

inside the integral of the prediction model in Eq. (19) if the entropy waves are assumed to

convect without dispersion to the nozzle. One can see from figure 7 that the rapid variation

of the Green’s function with frequency is strongly dependent on source position. This will

be smoothed out after an integral over y for a distributed source, as illustrated in figure 8.

III.E. Paths in combustor and outer annulus

The difference of the Green’s function |Ĝ1(y,x,ω)| between the observer x in the combustor

and outer annulus is of interest as the measured noise data were acquired in the two flow
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Figure 8. Effects of entropy waves on spectrum of the source integral
�
vf

|Ĝ1(y,x,ω)|2 d3y. N = 7, θ = π/3, θ0 = 0.

x at RP 3 & 4.

Figure 9. Comparison of spectra of the Green’s function |Ĝ1(y,x,ω)| for observer position x in combustor (RP
3 & 4) and outer annulus (RP 1 & 2). N = 7, θ = π/3, θ0 = 0, x0 at combustor inlet.

paths. The spectra of |Ĝ1| in the combustor (RP 3 & 4) and outer annulus (RP 1 & 2)

are compared in figure 9. It reveals that the spectral level of |Ĝ1| in the combustor is

above that in the outer annulus almost over the entire frequency range [10, 4000] Hz. For

example, the difference at 600 Hz is about 4.5 dB in terms of SPL. From the comparison

of Green’s function in the two flow paths, it is straightforward to deduce that the predicted

noise spectrum in the combustor would be higher than that in the outer annulus, which is

consistent with experimental results as will be seen in Sec. IV.
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IV. Prediction of Combustion Noise Spectrum

IV.A. RANS data of combustor flow

The input of mean quantities to the spectral model summarized in Sec. II.C are supplied by

the results from RANS simulation of the combustor flow for the demonstrator aeroengine

computed using a commercial CFD software, ANSYS FLUENT. First, the local mean flow

quantities k̃, �̃, c̃, sL, a0, ρ0, Yf,0, ẇ are extracted by post-processing the CFD results, and then

the other quantities, u
�
,Λ, Da, δT , sT , etc., are calculated from the extracted quantities.

Figure 10 illustrates the predicted spatial variation of the mean reaction rate ẇ and fuel

mass fraction Yf,0. It is obvious that the majority of mean reaction rate is confined within

the first 15–20% of the combustor length and that the fuel mass fraction Yf,0 is even more

concentrated towards the combustor inlet. This distribution of ẇ and Yf,0 indicates a short

(a) mean reaction rate ẇ

(b) fuel mass fraction Yf,0

Figure 10. Contours of mean reaction rate ẇ (kg/m3/s) and fuel mass fraction Yf,0 in the mid-plane of the
demonstrator combustor from the FLUENT RANS data.
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flame length, and thus the processing time will be reduced significantly when the RANS

data are included in the volume integral over the unsteady heat release sources. The fuel

injection from the pilot and main jet can be seen in figure 10(b). For the pilot-main fuel

split considered in this work, the majority of the fuel is injected via the main jet and causes

most of the mean reaction rate. The relatively rich pilot mixture seen in figure 10(b) is due

to the low air flow rate in the pilot. Since rich burning is quiet, the contribution from the

pilot flame to combustion noise can be ignored.

IV.B. Comparison between prediction and measurement

The prediction of combustion noise spectrum is obtained by evaluating the volume integral

over the flame brush in Eq. (19). The integrand involves the Green’s function and the

spectral model described in Sec. II.C (see figure 1). As discussed in Sec. III.D the Green’s

function has different value depending on whether or not the entropy waves are assumed to

have diffused before the combustor exit. Figure 11 shows the measured combustion noise

spectra by the two pairs of rumble probes, together with the predictions in the combustor

and outer annulus, respectively when no entropy diffusion or dispersion occurs. Only one

group of data is shown for each pair of rumble probes because the differences between the

spectra of the two probes are negligible for both measurements and calculations. As can be

seen in figure 11, the difference in the pressure spectra between the combustor and outer

annulus is captured reasonably well by the modeling method used in this study. Overall the

general broadband levels are in reasonable agreement between theory and experiment.

However a number of narrowband peaks are observed in the experimental data that are

not predicted in the theory. The mains hum is evident at 50 and 150 Hz in figure 11 on

all rumble probes, particularly in the combustor. A strong combustion resonance occurs at

410 Hz (and its harmonics) in both flow paths and generates a narrow peak that dominates

the pressure spectra, exceeding the neighboring spectral levels by some 30 dB. This is due

to self-excited thermoacoustic oscillations of the combustion system and is outside the scope

of this investigation of broadband combustion noise. The frequencies of the combustion

oscillations, however, can be worked out using LOTAN and they agree very well with the

measured oscillation frequencies. The rumble probe measuring combustor pressure was

placed at the end of the igniter tube of length 50 mm. The measured spectra in the combustor

show the expected (damped) quarter-wavelength resonance around 2500 Hz associated with

this tube. In the prediction the pressure was calculated on the combustor wall and so there

is no corresponding resonance.

In contrast, the predicted spectral shape exhibits broadband activity over the entire

frequency range, with the exception of a resonance at around 1800 Hz in the outer annulus.

The outer passage is modeled as an annulus with one end open and the other closed and
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Figure 11. Comparison between predicted and measured noise spectra in the combustor and outer annulus of
the demonstrator engine.

this frequency is near its 3/4-wavelength resonance. A modal analysis reveals that this peak

is actually comprised of resonance frequencies of circumferential modes [−7, 7] that span

over hundreds of Hertz. However, LOTAN may overpredict these resonance modes due to

some simplifications used in the network model. For example, the downstream end of the

outer annulus is not “closed” in the real engine because part of flow leaves as outer NGV

(nozzle guide vane) bleed flow which would increase the damping. Nevertheless, on the whole

the prediction model captures the main characteristics of the broadband spectral shape of

combustion noise in the demonstrator aeroengine combustor, including the relative difference

of noise spectrum between the combustor and outer annulus.

Moreover, reasonable amount of agreement in spectral level is achieved between the

predicted and measured noise spectra, nearly over the entire frequency range except for

very high frequencies f � 3000 Hz. The difference in spectral level between the two flow

paths becomes increasingly larger across this frequency range, and this is also captured

in the predictions as a result of the Green’s function shown in Sec. III.E. A deficiency

of the spectral model5 used for the predictions has been observed in previous studies5,7, 6

that it underestimates the spectral level of combustion noise at low frequencies. This

deficiency, however, is not evident in figure 11 in that the comparison between predictions

and measurements is reasonably good in the low frequency range, which could be attributed

to the correction for the spectrum of heat release rate as described in Sec. II.C.
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V. Conclusions

In this paper, a theoretical model has been developed to predict the spectrum of

combustion noise generated in an aeroengine combustor, and has been compared with

measured noise data from a demonstrator aeroengine. The combustion noise sources are

modeled using a spectral model of heat release rate by Hirsch et al.,5 which has shown good

quantitative agreement with recent experimental results.5,7, 6 The time-averaged combustor

flow of the demonstrator aeroengine has been computed using the commercial software

FLUENT following RANS methodology. The CFD results indicate that the predominant

combustion occurs close to the combustor inlet. This significantly reduces the computational

burden for combustion noise calculation by reducing the size of the integral volume.

The computer program LOTAN has been used to calculate the transfer functions relating

the linear waves, i.e. acoustic, entropic and vortical, to the heat release fluctuation.

Then the Green’s function was obtained by summing up the transfer functions of different

circumferential modes in a thin annular combustor. When all entropy waves are assumed to

be diffused before the combustor exit, the spectral content of the Green’s function Ĝ1(y,x,ω)

is observed to be insensitive to the axial source position. This saves the computational time

for LOTAN and the numerical source integral. The effect of retaining the entropy waves

without dispersion or diffusion until combustor exit is to produce a variation for Ĝ1(ω)

on top of the underlying trend in the spectral level. The Green’s function shows some

dependence on source position when the entropy waves are included at the combustor exit,

but this dependence becomes very weak after an integral over the source volume. The

analysis suggests a difference of about 4.5 dB at 600 Hz in the spectral level of Ĝ1 between

the combustor and the outer annulus.

All ingredients, i.e. the Green’s function determined by LOTAN, the mean reaction rate

and flow quantities from the FLUENT simulation, and the spectral model,5 are required

to prediction of combustion noise. The comparison between the predicted and measured

noise spectra for a demonstrator aeroengine has shown that the main characteristics of the

broadband spectral shape of combustion noise at a low-medium power setting is captured

by the modeling framework developed in this study. The predicted spectral levels also show

reasonable agreement with the measurements nearly over the entire frequency range, which

indicates that the deficiency of underpredictions at low frequencies5,7, 6 of the source spectral

model has been ameliorated by the corrections to the model.

This work is an explorative application of the earlier source spectral model5 to the

prediction of combustion noise of a realistic aeroengine combustor. The results show scope

for improvement and further development. One promising avenue is to model the combustion

noise sources directly through investigating the spatio-temporal correlation of heat release
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rate fluctuations in the combustor using unsteady CFD simulations or experiments, rather

than translating the wave number spectrum to frequency spectrum as in the spectral model

used in this paper. A direct measurement of this spatio-temporal correlation in open

turbulent flames would be helpful in this regard. In addition, more flow conditions (e.g.

higher power settings) and the acoustic field in the jet pipe by including the propagation of

linear waves through turbine blade rows will be investigated in future work.
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