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Abstract (120 words) 1 

Many species of microalgae possess the capacity to produce hydrocarbons, polysaccharides, 2 

and other valuable products in significant amounts. However, large-scale production of algal 3 

products is not yet competitive against non-renewable alternatives from fossil fuel. Metabolic 4 

engineering approaches will help improve productivity, but the exact metabolic pathways and 5 

identity of the majority of the genes involved remain unknown. Recent advances in 6 

bioinformatics and systems biology modeling coupled with increasing numbers of algal 7 

genome sequencing projects are providing the means to address this. A multi-disciplinary 8 

integration of methods will provide synergy for a systems-level understanding of microalgae, 9 

and thereby speed up the improvement of industrially valuable strains. In this review we 10 

highlight recent advances, challenges, their application in microalgae research, and potentials. 11 

 12 

Introduction  13 

Microalgae are simple photosynthetic eukaryotes that are among the most diverse of all 14 

organisms. Microalgae inhabit all aquatic ecosystems, from oceans, lakes and rivers to even 15 

snow and glaciers, as well as terrestrial systems including rocks and other hard surfaces. 16 

Microalgae exhibit significant variation in physiology and metabolism, which is reflected in the 17 

genetic diversity that exists both between species, and within a single genome, where a 18 

seeming mosaic of genetic origins can be observed [1]. Mining the genomes of these organisms 19 

is a great opportunity to identify novel pathways of biotechnological importance. In particular, 20 

microalgae are of considerable interest for the synthesis of a range of industrially useful 21 

products, such as hydrocarbons and polysaccharides [2, 3], due to rapid growth rates, 22 

amenability for large scale fermentation, and the potential for sustainable process development 23 

[4].  24 
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Algae as a source of biofuel molecules, such as triacylglycerides (TAGs), the precursor for 1 

biodiesel [5], have been a focus in recent years, with potential yields an order of magnitude 2 

greater than competing agricultural processes [6]. Currently, in order for microalgae to 3 

synthesize TAG it is necessary to expose them to stress conditions such as nutrient limitation, 4 

which reduces growth and increases energy dissipation. This trade-off between biosynthesis of 5 

TAG and cell growth is therefore a severely limiting factor [7]. If a better understanding of the 6 

metabolic and regulatory networks were available, they could be rewired for increased TAG 7 

synthesis, with fewer drawbacks than for existing algal cells. 8 

The production of other interesting algal products will also benefit from a better understanding 9 

of microalgae on a systems level. For example, polysaccharides such as starch and cell wall 10 

materials can be used for biotechnological applications [8]. These carbohydrates can be 11 

degraded to fermentable sugars for bio-ethanol production [9], or serve as chemical building 12 

blocks for renewable materials, but the composition and proportions of the different sugar 13 

components require optimization. Similarly, various valuable secondary metabolites produced 14 

by microalgae are of interest in the food, nutrition, and cosmetics industries [2], but often they 15 

are produced in trace amounts, or only under conditions that are not amenable to industrial 16 

cultivation.   17 

Over 30 microalgal genomes have been sequenced and numerous transcriptomics, proteomics 18 

and other systems biology studies performed. Yet our understanding of metabolic pathways 19 

within these microalgae remains limited [10]. A significant knowledge gap needs to be filled 20 

between omics data, the annotation thereof and our systems level understanding. This will 21 

allow the conversion of these resources into useable genome scale models, and provide the 22 

basis for effective metabolic engineering, synthetic biology and biotechnology. Here we 23 

consider novel approaches to improve annotation of algal omics data, the establishment of 24 
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genome-scale metabolic models, and ways to integrate these for effective exploitation of 1 

microalgae for biotechnology. 2 

 3 

Annotation challenges for microalgae  4 

The nuclear genome of the model green alga Chlamydomonas reinhardtii, sequenced in 2007 5 

[1], is approximately 120 Mb and encodes ~15,000 genes. Although C. reinhardtii is commonly 6 

used as a reference for the annotation of other microalgae, only a subset of ~50 proteins have 7 

experimentally validated functions according to the UniProt database 8 

(http://www.uniprot.org), compared to ~6800 proteins for the model plant Arabidopsis 9 

thaliana. Consequently, most C. reinhardtii genes have been computationally annotated by 10 

inferred homology with other organisms, including A. thaliana, other plants and microbes [1], 11 

using BLAST or family-wise alignment methods such as HMMER and InterProScan (Table 2). 12 

Blast-based methods often use the principle of one-to-one recognition meaning that annotation 13 

of a query gene is based on the annotation of a single known gene. This limits the success rate 14 

for recognition and correct annotation of distantly related C. reinhardtii genes, but becomes 15 

even more problematic when an in silico derived annotation of C. reinhardtii is subsequently 16 

used for the annotation of other algal species. This is because two algal species can be more 17 

diverse than any two plant species, for example. Therefore, these methods, which are highly 18 

suitable for high-throughput analysis due to their simplicity, are not suitable for accurate in-19 

depth annotation of algal genomes. In the Critical Assessment of protein Function Annotation 20 

(CAFA) experiment [11], the accuracy of more advanced function annotation algorithms was 21 

assessed. The CAFA concluded that 33 of 54 tested function annotation algorithms 22 

outperformed the standard BLAST-based method (Table 2). The substantial improvement can 23 

be explained by the fact that these 2nd generation methods do not apply the one-to-one 24 

http://www.uniprot.org/
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recognition principal, but rather use a one-to-many recognition strategy to increase their 1 

success rate and include context aware principles for annotation. An example is Argot2 (Box 1) 2 

[12], which applies the one-to-many recognition strategy by calculating the statistical 3 

significance of all candidate homologous genes found by BLAST [13] and HMMER [14], 4 

combined with an assessment of semantic similarities of associated GO terms. In a context 5 

aware multi-level approach, annotation is not merely based on sequence similarity, but also 6 

other factors such as protein-protein interactions [15], transcript expression patterns [15], 7 

phylogenetic trees [16], compartmentalization [17], and literature [18] are taken into account. 8 

FFPred2 from UCL-Jones [17] is the prime example of such a homology-independent function 9 

annotation algorithm.  10 

 11 

Advanced multi-level annotation methods effectively increase the recall of function prediction 12 

while maintaining a reasonable precision. The challenge in genome annotation of microalgae 13 

lies in the small number of experimentally validated algal genes and the lack of algae-specific 14 

contextual data such as protein interaction data. This results in a relatively low number of 15 

genes predicted to have a specific biological function. To overcome this, multiple annotation 16 

methods and data sources should be combined. The combined result increases the number of 17 

annotated genes, whilst a consensus prediction among the different methods improves the 18 

accuracy of the annotation [19]. Due to their simplicity and speed, 1st-generation methods can 19 

be used for initial high-throughput analysis of a large set of genes. 2nd-generation methods can 20 

then be used for a refined analysis of these genes. However, in order to utilize these advanced 21 

methods fully, a significant amount of experimentally determined contextual data is required. 22 

Whilst increasing amounts of gene expression data are being generated, there is still little 23 

structural and protein interaction data available for algae. In the absence of such experimental 24 

facts, it is still possible to generate this contextual information by in silico prediction methods 25 
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[20, 21]. Although studies have shown that this is a feasible option [22], caution is necessary, 1 

since there is a high risk of error propagation. 2 

  3 

Apart from functional annotation it is also important to establish the cellular location of a 4 

protein. For this there are several tools available, including Argot2 (Box 1) [12], TargetP [23], 5 

SignalP [24], PSORTb [25] and PredAlgo [26]. The latter of which is a tailor-made multi-6 

subcellular localization prediction tool dedicated to three compartments of green algae: the 7 

mitochondrion, the chloroplast, and the secretory pathway. However, due to the limited number 8 

of algal proteins with a known cellular localization, the algorithm is trained with a relatively 9 

small C. reinhardtii data set. This raises questions regarding reliability for other algal species 10 

that are more distantly related. Therefore it is advisable to use PredAlgo in combination with 11 

non-algal specific tools in a similar way as for functional annotation. 12 

To support large-scale annotation of algal sequence data, up to date databases and readily 13 

available supporting tools are required. Online databases give the means to share data easily so 14 

that the scientific community can profit as a whole. Supporting tools can assist in annotating 15 

genes, pathways, and performing statistical analysis. While genomic data for various algae are 16 

available in NCBI and UniProt, the amount of public data is lagging behind in comparison to 17 

plant and bacterial species. Additionally, tools and databases that do more than storing the 18 

available sequencing data are needed. There are a small number of tools available, although 19 

these are often limited to C. reinhardtii. One such tool is ChlamyCyc [27] a C. reinhardtii specific 20 

pathway/genome database of the MetaCyc [28] facility for metabolic pathway analysis. 21 

Additionally, the Augustus tool, which is commonly used for prediction of eukaryotic genes 22 

[29], has a tailor-made section for C. reinhardtii. Finally, the Algal Functional Annotation Tool 23 

[30] incorporates annotation data for a few microalgal species from several pathway databases, 24 
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ontologies, and protein families. Broadening the scope of these, annotation tools for a range of 1 

microalgae would allow comparative analysis, which is useful for easy mapping of various 2 

differences between microalgae. In this context, a useful tool which has been applied to plant 3 

research is Phytozome (http://www.phytozome.net) [31], a comparative hub for analysis of 4 

plant genomes and gene families. It acts as a reference for the key data of many plant species, 5 

and provides click-to-go features such as BLAST and summarizing key data. Phytozome has 6 

grown to be a major asset to the plant science community. Although it contains data from a few 7 

green algae, an expanded web-portal focused on algal systems-bioinformatics research could 8 

be of immense benefit to the field, particularly for those studying the more industrially-relevant 9 

diatoms and heterokont species (Table 1). Such a web-portal would provide the means for new 10 

and existing tools specifically useful for algal species to facilitate exposure to a broad audience. 11 

Additionally, it could act as a hosting platform for small but useful tools like a refined algal 12 

literature research algorithm, and tools that suggest genes to fill gaps in metabolic or 13 

regulatory pathways for microalgae. Adopting an algal web-portal would provide a good 14 

overview of all available data and tools, and help in reducing the redundancy that is often seen 15 

in biology and bioinformatics. 16 

  17 

http://www.phytozome.net/
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Table 1: A list of selected industrially useful microalgae.  1 

Species Genome 
size‡ 
(Mb) 

Proteins 
in 
UniProt‡ 

Characteristics‡ Ref‡ 

Chlamydomonas 
reinhardtii 

120 

 

15,144   Model system for unicellular green algae 

 Rapid growth 

 

Monoraphidium 
neglectum 

68  16,761  Biofuel production candidate [32] 

Nannochloropsis 
sp. 

44 16,226   Produces high amounts of omega-3-long-

chain polyunsaturated fatty acids 

 

Phaeodactylum 
tricornutum 

27  10,673   Production of antibacterial fatty acids  [33] 

Chlorella 
variabilis 

46 

 

9,831   Contains several essential nutrients 

 Rich source of lutein 

 

Ostreococcus 
tauri 

12.6 9,050  Smallest microalgal genome  

Chlorella vulgaris n.a. 292  High lipid content under nitrogen 

limitation  

[34] 

Dunaliella salina n.a. 238  High concentration of beta-carotene  [35] 

Chlorella 
protothecoides 

n.a. 96  High lipid content in heterotrophic 

growth [3] 

 Highest published biomass yield [36] 

[3], 

[36] 

Haematococcus 
pluvialis 

n.a. 60  Antioxidant astaxanthin production  [37] 

Botryococcus 
braunii  

~166 – 

211 [38] 

30  High levels of liquid hydrocarbons and 

exopolysaccharides [39] 

[38], 

[39] 

Neochloris 
oleoabundans 

n.a. 0  High lipid content  [7] 

‡: Genome size, estimated protein numbers and characteristics are according to NCBI and 2 

UniProt, unless otherwise specified. 3 

n.a.: Not available. 4 

  5 
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Table 2: Comparison of the features of commonly used functional annotation tools. 1 

Methods Success 

rate* 

Computational 

speed 

Availability Additional notes Ref 

Standard 

BLAST  

Limited Fast Online/ 

offline 

 Dependent on global 

sequence similarity 

for success 

 Suitable for high 

throughput analysis 

[13] 

HMMER  Moderate Fast Online/ 

offline 

 Family-wise 

alignment method 

 Suitable for high 

throughput analysis 

[14] 

InterProScan  Moderate  Slow Online/ 

offline 

 Family-wise 

alignment method 

 Uses pre-computed 

protein domains  

[40] 

FFPred2  High Slow Limited 

online/ 

offline  

 Algorithms currently 

trained on non-algal 

datasets  

 Not suitable for high 

throughput  analysis 

[17, 

20] 

Argot2  High Moderate Limited 

online  

 Initial selection is 

dependent on BLAST 

and HMMER output 

 Additionally predicts 

compartmentalization 

 User-friendly 

interface 

[12] 

* For distantly related sequences  2 

  3 
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Box 1: Argot2   1 

One of the top performers in the CAFA experiment is Argot2 [12]. It stands out when it comes 2 

to simplicity, as well as its incorporation of BLAST and HMMER. This method combines an easy 3 

interface with multi-layer analysis, making it a perfect starting point for biologists who want to 4 

annotate their data.  5 

Argot2 requires a nucleotide or protein sequence as input. It queries the UniProt and Pfam 6 

databases using BLAST and HMMER respectively, providing an initial high-throughput 7 

sequence analysis. A weighting scheme and clustering algorithm are then applied to the results 8 

to select the most accurate GO terms for each query sequence. The user can choose to perform 9 

this entire process online at the Argot2 webserver, limited to a hundred sequences per query. 10 

Alternatively, if the BLAST and HMMER steps are performed by the user locally and provided to 11 

the webserver, over a thousand sequences can be submitted per query.  After the analysis is 12 

completed, which can take several hours depending on the amount of input data, the user is 13 

provided with the prediction results as well as the intermediate BLAST and HMMER files. These 14 

predictions include molecular function, biological processes and cellular component GO terms 15 

for each query. Predicted GO terms are ranked by a score based on statistical significance and 16 

specificity. Optionally, the user can choose to compute protein clusters based on functional 17 

similarity.  18 

  19 
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Box 2: Flux analysis in microalgae  1 

Flux balance analysis (FBA) [41] is the most commonly applied method to simulate metabolism 2 

in genome-scale metabolic models. It identifies a theoretically optimal use of metabolic 3 

capabilities for a selected metabolic objective, in a specific environment. As some microalgae 4 

can grow autotrophically in chemically defined medium, the boundary conditions for 5 

consumption of all medium components are well-specified in those cases. This is advantageous 6 

for in silico metabolic flux analysis using metabolic models e.g. how a microalga can achieve 7 

maximal growth under defined illumination. In addition, disabling metabolic capabilities 8 

associated with a gene allows simulation of mutant strains. FBA can thus assess the potential of 9 

different strains and different environmental conditions. In order to run FBA, all reactions are 10 

organized in a stoichiometric matrix S. Each column in S represents a different reaction, and 11 

each row a different metabolite. A nonzero value at position [i,j] thus indicates the 12 

stoichiometric coefficient of metabolite i in reaction j. FBA then employs two different 13 

constraints: (i) Metabolism is assumed to be in steady-state; production/degradation of 14 

intermediate compounds is not possible. (ii) Thermodynamics (reversibility) and substrate 15 

availability both dictate lower and upper flux bounds for individual reactions. Finally, one or 16 

more reactions are selected to represent the metabolic objective of, for example, algal biomass 17 

production. Together, the S matrix, the constraints, and the objective function form a linear 18 

programming problem:   19 

   max(x * c) 20 

s.t.    S * x = 0 21 

                  x ≥ lb 22 

                  x ≤ ub 23 
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With: x  flux vector, c objective vector, 0  a null vector ensuring steady state, and lb/ub  1 

lower/upper bounds for each reaction. The vector x represents a flux distribution with the 2 

theoretically maximal value for the metabolic objective. However, due to the presence of 3 

alternative/cyclic pathways, there are often alternative flux distributions with equally high 4 

values for the objective function. Flux variability analysis [34] explores for each reaction to 5 

what extent the flux can vary while permitting only a small reduction in the obtained objective 6 

value. In addition, experimental data can be used to provide additional constraints. For 7 

example, 13C-labelling experiments provides experimentally measured fluxes as inputs for the 8 

model simulations [42, 43]. Several FBA-based methods also facilitate the integration of 9 

transcriptomic and proteomic data with metabolic models to constrain reactions based on the 10 

gene expression levels [44]. Thereby, flux distributions are identified which are most consistent 11 

with the expression data [45]. Metabolic models are thus integrated with, and their predictions 12 

compared to, experimental data yielding new insights in metabolic functioning. 13 

 14 

 15 
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Understanding algal metabolism on a systems level 1 

The sheer number of genes for metabolic enzymes, combined with the complexity of cellular 2 

metabolism, means that it is not straightforward to establish metabolic capability, even for 3 

well-annotated species. This limitation has led to the development of metabolic models, which 4 

represent a snapshot of metabolism of an organism in a network format. Once an annotated 5 

algal genome or transcriptome is available, a corresponding genome-scale metabolic model 6 

(GSMM) can be reconstructed and the topology of the metabolic network of the algal species 7 

can be analyzed. An initial draft model can be generated directly from the genome annotation 8 

and is then adjusted and expanded based on experimental data, literature and gap-filling 9 

procedures. The final model then includes all reactions the alga is known to perform and the 10 

associated genes and constraints, e.g. reaction directionalities and rate limits. Due to their 11 

comprehensive representation of metabolism, metabolic models form the basis for a large and 12 

diverse set of mathematical methods predicting metabolic behavior. These methods include the 13 

widely employed Flux Balance Analysis (FBA) [41] and Flux Variability Analysis (FVA) [46], but 14 

also methods integrating fluxomic, transcriptomic, or proteomic data (see Box 2) [41]. For an 15 

extensive overview of mathematical methods using metabolic models we refer to Zomorrodi et 16 

al. [47]. Here, we focus on recent developments in the modeling of microalgae specifically.  17 

Metabolic models of microalgae reflect the modeling counterpart of their current annotation; 18 

therefore, inconsistencies between model predictions and experimental findings indicate 19 

missing and/or poor annotations. For example, experimentally identified metabolites were 20 

compared to metabolites that could be produced in metabolic reconstructions of C. reinhardtii 21 

[48, 49] (Figure 2). Metabolites found experimentally but not in the models initiated pathway 22 

elucidation and identification of the corresponding genes, and thereby led to an improved 23 

genome annotation [48]. This procedure was automated by Christian et al., who designed a 24 
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gap-filling method to identify reactions allowing production in a model of experimentally-1 

detected metabolites [49]. These updated reactions and annotations [48, 49] were 2 

subsequently stored in ChlamyCyc [27], allowing continuous expansion of the database. 3 

Concurrently, a separate C. reinhardtii metabolic model, iAM303, was created, in which the 4 

included open reading frames were experimentally validated. This led both to improved 5 

structural genome annotation, and to additional support for the reactions included in the 6 

model [50]. This model was greatly expanded in iRC1080 in 2011 and additional ORFs were 7 

validated [51]. The predictive power of the latter model was tested for 30 environmental 8 

conditions and 14 gene knockouts. In addition, iRC1080 predicted essential genes (lethal 9 

phenotype upon knockout) under varying experimental conditions, although these predictions 10 

remain to be verified [51]. Recently GSMMs for Ostreococcus tauri and Ostreococcus lucimarinus 11 

have been constructed [52] (Figure 2), demonstrating expansion in the field. The initial models, 12 

based on the available gene annotations, revealed that these could not account for the 13 

production of many biomass constituents [52]. The gap-filling method designed in [49] was 14 

subsequently employed to find suitable reactions for the production of these metabolites [52]. 15 

It is well recognized that the exact choice of growth conditions is highly important to attain 16 

desired metabolic activities. Metabolic models can explore how different growth conditions 17 

affect metabolism and identify theoretically optimal conditions for a given metabolic objective. 18 

For example, multiple metabolic models of C. reinhardtii were used to simulate metabolism 19 

under autotrophic, heterotrophic and mixotrophic conditions to verify model predictions [53], 20 

to investigate how metabolite production is influenced [53, 54], and to contrast mutant strains 21 

[51]. C. reinhardtii metabolic models were also used to determine how quantity of light [51, 55, 22 

56] and its spectral composition [51] affect metabolism. Of particular interest is the possibility 23 

to predict an optimal light spectrum for a given metabolic goal [51]. In contrast to these 24 
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successful models of C. reinhardtii, the metabolism of other algae is only poorly understood. For 1 

example, some industrially relevant algae can currently not be grown efficiently without 2 

bacterial presence [57]. Potentially, these algae and associated bacteria can be modeled 3 

simultaneously in order to deduce their relationship, as has been done for microbial 4 

communities [58, 59].  5 

The most comprehensive algal metabolic models to date are iRC1080 [51] and AlgaGEM [53], 6 

which are GSMMs and account for various cellular compartments. However, they vary in degree 7 

of compartmentalization (Figure 2). In iRC1080, half (865/1730) of the non-transport 8 

reactions occur in cellular compartments other than the cytosol. In contrast, this is only about 9 

12% (201/1617) for AlgaGEM. This reflects that independently generated GSMMs for the same 10 

organism can differ significantly in their representation of metabolism, as different sources of 11 

information are included. By combining the information from all currently available C. 12 

reinhardtii metabolic models, as well as from improved annotation methods, a single and more 13 

comprehensive GSMM may be obtained. This consensus C. reinhardtii GSMM would be an 14 

important starting point for the generation of GSMMs for other interesting microalgae, with the 15 

proviso mentioned earlier that it might not be applicable to distantly related microalgae. 16 

Alternatively, ab initio models can be made using genome data for the alga in question, but 17 

employing the strategies and tools developed for C. reinhardtii, as has been done for 18 

Ostreococcus [52]. Ultimately, GSMMs of various microalgae will be valuable for designing 19 

strategies that increase the production of compounds of interest [47, 60]. This combined with 20 

the design of novel synthetic pathways, such as the species-independent prediction 21 

demonstrated for novel isobutanol, 3-hydroxypropionate, and butyryl-CoA biosynthesis [61], 22 

will pave the way for model-driven engineering of algal species.   23 

 24 
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Figure 1: Overview of metabolic models of microalgae. Green boxes represent C. reinhardtii 1 

GSMMs, the red box represents an Arabidopsis thaliana GSMM associated with a 2 

Chlamydomonas reinhardtii GSMM, and the blue box represents two Ostreococcus 3 

GSMMs. A connection between two GSMMs indicates that the former was used in the 4 

reconstruction of the latter. The boxes are annotated with the model names if available 5 

and otherwise with the author name(s):  Christian et al. [49], Boyle & Morgan [54], 6 

AraGEM [62], iAM303 [50], Cogne et al. [56], Kliphuis et al. [55], AlgaGEM [53], iRC1080 7 

[51], Krumholz et al. [52]. The numbers in each box indicate the total number of 8 

reactions (R), total number of genes (G), unique decompartmentalized metabolites (M), 9 

and biological cellular compartments (C) found in available model files. The pie charts 10 

depict the distribution of biochemical reactions among different compartments as well 11 

as compartment-spanning transport reactions (reaction categories are shown in the 12 

legend). The category ‘others’ refers to the following compartments: flagellum, Golgi 13 

apparatus, thylakoid lumen, nucleus, and eyespot.  14 

*: Additional information obtained from authors. 15 

**: Gene information not available from model files. 16 

 17 

  18 
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Integrating bioinformatics and modeling for algal biotechnology  1 

Improvements in algal annotations will need to interact closely with systems modeling of the 2 

metabolic and regulatory networks in order to refine our understanding of the capabilities of a 3 

specific alga, and to provide a basis for applications in biotechnology. Figure 2 shows the 4 

connection between the various stages in bioinformatics and systems biology modeling. New 5 

algal genomic, transcriptomic, and proteomic data are collected (step 1), allowing identification 6 

of genes and proteins (step 2). After 1st-generation high-throughput functional annotation 7 

(step 3), a refinement step using 2nd-generation function annotation algorithms (step 4) is 8 

applied. The bioinformatics annotation itself is an iterative process for genes and proteins until 9 

they are deemed sufficient (step 5). These annotations (step 6), as well as data available from 10 

public databases and the literature (step 7), are then used by systems biology modeling to 11 

reverse-engineer a GSMM (step 8) to study metabolic interactions in different circumstances in 12 

detail. After attaining a GSMM, experimental validation of the metabolic model (step 9) should 13 

be performed to validate model predictions or pinpoint inaccuracies and knowledge gaps. 14 

Depending on these results, additional omics data or refinement of annotation is required. Due 15 

to the low number of experimentally validated algal proteins, the feedback loop from algal 16 

modeling back to genes/proteins function prediction plays a significant role in strengthening 17 

the knowledge foundation, which will ultimately underpin efficient engineering of algal 18 

genomes for industrial product synthesis. Once an algal GSMM is constructed, it should be 19 

made available in a common public database and literature.  20 

 21 

The GSMMs provide a basis for both computational and lab-driven experiments, assisting in the 22 

discovery of biotechnology-driven solutions for genetic bottlenecks in algae. For example, to 23 

enable microalgae to become a viable industrial biosynthesis platform, their photosynthetic 24 
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efficiency, product yield, and growth rates under conditions for product synthesis, will need to 1 

be addressed.  Photosynthetic efficiency, with an estimated maximum of 8-9% in wild-type 2 

algae [63, 64], sets a limit to both product synthesis and growth rate. Because of efficient light-3 

harvesting antenna, algal cells can absorb much more light than they are able to use for 4 

photosynthesis [56], with the excess lost as heat or fluorescence. In dense algal cultures, such 5 

as might be found in industrial cultivation systems, this reduces light penetration, placing a 6 

limit on the depth of the culture, and increasing the surface area to volume ratio required for 7 

maximum productivity. Truncated light-harvesting chlorophyll antenna size (tla) mutation with 8 

reduced antenna size in C. reinhardtii has been shown to improve solar energy conversion 9 

efficiency and photosynthetic productivity in mass culture and bright light [65]. Another study 10 

has modeled different pathways for the process of carbon fixation [66], as a means to overcome 11 

the low oxygenase activity of Rubisco [67]. Bar-Even et al. [66] computationally identified 12 

alternative carbon fixation pathways by using approximately 5,000 known metabolic enzymes, 13 

hoping to find carbon fixation pathways with superior kinetics, energy efficiency, and topology. 14 

Some of their proposed pathways were estimated to be up to two to three times more efficient 15 

than the conventional Calvin-Benson cycle. Using an algal GSM to study these pathways would 16 

help to understand how these predictions may affect biomass and product synthesis in 17 

microalgae.  18 

As explained earlier, nitrogen limitation is a necessary stimulus for TAG accumulation by 19 

microalgae [7]. This also triggers a reduction in photosynthetic membrane lipids and cessation 20 

of cell growth. The link between TAG accumulation and macronutrient stress has been 21 

investigated using a systems approach, leading to the identification of a putative N-triggered 22 

transcription factor in C. reinhardtii, the overexpression of which resulted in about 50% 23 

increase in lipid production under specific experimental conditions [68]. In another approach, 24 

in the diatom, Thalassiosira pseudonana, TAG production was increased via an RNAi knockdown 25 
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strategy targeting not the biosynthesis of lipids, or the production of competing energy sinks, 1 

but instead targeting lipases, involved in glycerolipid catabolism [69]. The integration of 2 

knowledge gained from GSMMs and similar metabolic engineering offers scope for improved 3 

efficiency, based on rational design. For example, farnesyl pyrophosphate is a precursor of 4 

terpenoids, steroids, and carotenoids, and the metabolite itself is also a product of interest in 5 

algae. Bacterial promoters responsive to the toxic accumulation of farnesyl pyrophosphate have 6 

been identified and used to regulate the expression of the precursor biosynthesis operon. This 7 

increased the yield of amorphadiene two fold over chemically inducible and constitutive gene 8 

expression [70]. Such an approach in microalgae would be foreseeable in the future when 9 

promoters in various algal species are better understood, through model-driven design that 10 

incorporates systems data.  11 

In contrast to the use of bacteria and yeasts for industrial production, algal biotechnology is in 12 

its infancy. Alongside genome sequence information, a key requirement is the ability to carry 13 

out genetic transformation, and while this is only routine for C. reinhardtii, and the diatoms P. 14 

tricornutum and Thalassiosira pseudonana, in the last few years there has been a rapid increase 15 

in published methods for transformation of several species of industrial interest including 16 

Nannochloropsis sp. [71]. Moreover, the ability to engineer the chloroplast genome offers 17 

considerable opportunities for metabolic engineering, given the focus of this organelle on 18 

biosynthesis [72]. But for predictive metabolic engineering there is an urgent need to expand 19 

the toolbox, particularly for the regulation of transgene expression. In this context, there are a 20 

number of well-established systems for inducible gene expression in C. reinhardtii, most 21 

notably promoters that are regulated in response to nitrate (NIT1 or NIA1) [73] or , copper 22 

(CYC6) [74]. More recently, vitamin responsive cis-elements have been identified, namely a 23 

cobalamin (vitamin B12) responsive promoter [75], as well as a thiamine (vitamin B1) 24 



Page 20 of 28 
 

responsive riboswitch [76], have been demonstrated as useful regulatory tools. Vitamins 1 

present advantages of being benign, cheap and effective at low concentrations. However, the 2 

majority of these have been discovered by coincidence rather than design, and a more rational 3 

approach will come from use of transcriptomic data to provide promoters responsive to 4 

particular regulators, for example in response to CO2 levels. [77]. Further facilitation of 5 

transgene expression comes from the use of 2A peptides [78], which cause self-cleavage to 6 

release individual domains from a fusion protein. They thus provide the capacity for operon-7 

like transgene expression within the nucleus. Marker recycling methods for chloroplast 8 

engineering have also been developed for C. reinhardtii [72, 79]. In spite of these developments, 9 

progress remains parallel in nature, and heavily focused upon the development of C. reinhardtii. 10 

For microalgae to develop as a biotechnology platform, rational design to address their current 11 

shortcomings must be achieved through the development of fit-for-purpose metabolic 12 

engineering or synthetic biology resources. The relative immaturity of the field combined with 13 

the enticing potential of integrating predictive design of microalgae with the bioinformatics and 14 

systems biology modeling framework (Figure 2) offers new perspectives for future 15 

improvements in algal biotechnology. The current prominent challenges in algal bioinformatics 16 

and genome-scale modeling are the foundation for overcoming the knowledge barrier to enable 17 

predictive modifications of various algal genomes in the future.  18 

 19 

Figure 2: A multidisciplinary workflow for integrative and systematic understanding of 20 

algae.   21 

Black arrow: in silico data or predictions; white arrow: experimental (wet-lab) data. 22 

  23 
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Concluding remarks 1 

The significant gap of unknown and non-validated gene and protein functions in algae remains 2 

one of the top challenges faced by scientists wanting to tap further into the potential of these 3 

organisms for sustainable biosynthesis. Predictive design of metabolic engineering strategies 4 

for microalgae still has a long journey ahead. An improved understanding of the metabolism, 5 

regulation, and growth of algae, together with their interactions with co-existing bacteria, is a 6 

crucial first step. Extending bioinformatics approaches for function prediction through 7 

incorporation of new methodology, integrated and flexible databases, and combination with 8 

metabolic modeling and model-driven design of experiments at the systems biology level, will 9 

underpin this process, and enable the future era of algal industrial biotechnology. 10 
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Highlights 1 

 Microalgae are potential hosts for industrial biosynthesis of valuable compounds. 2 

 Genome sequences of many microalgae are available, but annotation lags behind. 3 

 We propose an integrative approach to improve algal proteins annotation.  4 

 Systems biology modeling of microalgae is crucial to facilitate algal engineering.  5 
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