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ABSTRACT 

Background The lack of reliable biomarkers to track disease progression is a major 

problem in clinical research of chronic neurological disorders. Using Huntington’s 

disease (HD) as an example, we describe a novel approach to model HD and show that 

the progression of a neurological disorder can be predicted for individual patients.  

Methods Starting with an initial cohort of 343 HD patients that we have followed since 

1995, we used data from 68 patients that satisfied our filtering criteria to model disease 

progression, based on the Unified Huntington's Disease Rating Scale (UHDRS), a 

measure that is routinely used in HD clinics worldwide.  

Results Our model was validated using: a) extrapolating our equation to model the age of 

disease onset, b) testing it on a second patient dataset by loosening our filtering criteria, 

c) cross-validating with a repeated random sub-sampling approach, and d) holdout 

validating with the latest clinical assessment data from the same cohort of patients. With 

UHDRS scores from the past four clinical visits (over a minimum span of two years), our 

model predicts disease progression of individual patients over the next two years with an 

accuracy of 89-91%. We have also provided evidence that patients with similar baseline 

clinical profiles can exhibit very different trajectories of disease progression.  

Conclusion This new model therefore has important implications for HD research, most 

obviously in the development of potential disease-modifying therapies. We believe that 

similar approach can also be adapted to model disease progression in other chronic 

neurological disorders. 
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INTRODUCTION 

The lack of reliable biomarkers to track disease progression is a major problem in clinical 

research of chronic neurological disorders.
1
 This problem has gained prominence as the 

development of disease-modifying therapies starts to enter the clinic,
2
 especially as some 

of these novel therapeutic agents or therapies involve direct delivery into the brain, and as 

such randomised controlled trials (RCT) are not always possible.
3
 Furthermore RCTs in 

neurological disorders with a low prevalence, such as Huntington’s disease (HD), can be 

further complicated by virtue of difficulties in patient recruitment.  

HD is a genetic neurodegenerative disorder that affects 2.71 per 100,000 persons 

worldwide.
4
 The pathology of HD is caused by an expansion in a trinucleotide CAG 

repeat in exon 1 of the Huntingtin gene, and the length of this repeat predicts disease 

onset in patients.
5,6

 Models predicting disease onset enable researchers to study HD 

before the start of overt disease features and by so doing the possibility of delivering 

novel therapies at disease onset.
7
 Whilst useful, we are still poor at modelling disease 

progression once the condition has started. We therefore sought to do this using our 

extensive database of 343 patients that we have followed longitudinally since 1995. We 

propose a model that tracks and predicts the natural progression of manifest HD based on 

the motor and functional components of the Unified Huntington's Disease Rating Scale 

(UHDRS), which are routinely used in HD clinics.  

We have found that patients with similar initial clinical profiles can have very different 

patterns of disease progression, which renders the use of conventional regression analysis 

(that estimates a common slope among groups of patients) inappropriate. In contrast, our 

novel approach enables researchers to predict disease progression of individual patients 

for the next two years, based on assessments from the past four clinical visits (with a 

minimum span over two years). We have interrogated the quality of our prediction by: a) 

extrapolating our equation to model the age of disease onset, b) testing it on a second 

patient dataset by loosening our filtering criteria, c) cross-validating with a repeated 

random sub-sampling approach, as well as d) holdout validating with the latest clinical 

assessment data from the same cohort of patients, which was unavailable at the time of 

our original modelling.  

We believe that our model will benefit clinicians and researchers in studying HD, 

especially for those developing potential disease-modifying therapies. Furthermore, our 

results enable researchers to reassess their existing data based on different profiles of 

patients’ predicted disease progression. Similar approach can also be adapted to model 

disease progression in other chronic disorders. 
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MATERIALS AND METHODS 

Patient recruitment and assessments  

Data was collected from participants who attended the HD clinic at the John van Geest 

Centre for Brain Repair, UK, between 1995- 2013, either as part of their routine clinical 

care, or through participation in related studies. This study was approved by the 

Cambridge University Hospital NHS Foundation Trust, in accordance with the ethical 

standards laid down in the 1964 Declaration of Helsinki and its later amendments. All 

participants consented to their data being shared between research studies in an 

anonymised form. Motor and functional impairments were assessed using the UHDRS 

total motor score, functional assessment, and functional capacity scales, conducted by an 

experienced rater. The UHDRS total motor score ranges from 0 (no motor features 

detected) to a maximum score of 124. Manifest disease was defined as a total motor score 

≥5, as done previously.
8
 Demographic information was collected on patients including 

their CAG repeat size (where available), age and gender. 

 

Modelling methods  

A detailed description can be found in the supplementary file. In short, the initial data 

were filtered using the following three criteria: a) patients beyond the prodromal stage of 

disease with a ≥15 on their Generalised Index (GI) score (explained below) at their last 

clinical visit (up to 2012); b) patients with at least five clinical visits; and c) patients not 

showing a large negative validity score (table S1). The validity score was created to avoid 

potential complications from medications, based on an assumption that patients were not 

expected to improve with time, which is consistent with a recent finding.
9
 The validity of 

patients that showed improvement between two consecutive visits was penalised and 

their data is more prone to exclusion. Most patients were filtered out using criteria a) and 

b) above and at the end of the filtering process 68 patients were eligible for modelling 

(figure S2). 

Clinical data from the UHDRS was then transformed into GI scores, by deducting chorea 

and dystonia that has higher interrater variability,
10

 which in our experience could 

fluctuate over short periods of time, and did not correlate over time in our data (figure 

S1). The GI is normalised to 100, which represents an average of the motor and 

functional components of the UHDRS, and lies between 0 (no features) and 100 (all 

features). The optimum function to data from individual patients was fitted to best 

describe his/her GI progression, using linear (GI=B0+B1*Age), quadratic 

(GI=B0+B1*Age+B2*Age
2
), and exponential (GI=exp[B0+B1*Age]) models. The fitness 

of each model was quantitated as described in the supplementary file and previously.
11

 

We then searched the optimum coefficient for individual patients (B1 for linear, B2 for 

quadratic, both indicates the rate of disease progression) within a range (table S2), 

defined by the maximum and minimum value from the patient data (table S3). 

 

Prediction and model validation 

A detailed description can be found in the supplementary file. In short, the first N 

samples of each patient were used to classify and create a model that would describe the 

disease progression pattern for that patient (figure S3). The optimum coefficient was then 

generated as described above, while the other parameters were derived from the first n 

samples from that particular patient. Prediction is conducted in a moving-horizon sense; 
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as soon as the (n+1)
th 

sample is available, the above algorithm would re-classify and 

refine the model for that patient. Our predictions were validated using four different 

methods. Firstly, we extrapolated our model to predict the age of disease onset and 

compared that with a benchmark model built using large cohorts of patients.
5
 Secondly, 

we included data from the 31 new patients that were previously excluded for failing the 

validity score criteria. Thirdly, we took a repeated random sub-sampling approach by 

partitioning our 68 patients into training groups of 50 patients, with testing groups of 18 

patients. The procedure was repeated 40 times to eliminate selection bias. Finally, 23 out 

of our 58 patients had revisited our clinic in 2013, such that their latest clinical 

assessment data was unavailable at the time of modelling, and we could therefore use 

these data to validate the predicted versus actual GI score of disease progression. 

 

Data analysis 

Normality of data was verified using either the Kolmogorov-Smirnov (>50 samples) or 

the Shapiro-Wilk (≤50 samples) tests. For univariate and multivariate analyses we used 

parametric (e.g. ANOVA, mixed models ANOVA) and nonparametric methods 

(Friedman test, Kruskal-Wallis and Mann-Whitney test) depending on the distribution of 

residuals. For mixed model analyses of variance with multiple levels of repeated 

measures data transformation was performed to obtain normality if required (such as 

square root transformation). Univariate analyses were corrected for multiple comparisons 

(Bonferroni) in order to avoid type I statistical error. Matlab (version 7.9) were used for 

data modelling. SAS (version 9.1) and SPSS (version 21) were used for statistical 

analysis. 
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RESULTS 

The initial dataset contained a total number of 343 patients that we had followed since 

1995. The majority of the patient data failed to meet our filtering criteria were those 

having less than five clinical assessments, followed by those in the premanifest or 

prodromal stage.  

 

Disease progression from the final 58 patients that we were able to model, denoted by the 

GI, representing 85.3% of all eligible patients (n=68), are demonstrated (figure 1). 

Among these patients, 41 of them exhibited disease progression that could be described 

in a linear equation (GI = B0+B1*Age, left panels), while disease progression from the 

other 17 patients could be described in a quadratic equation (GI = B0+B1*Age+B2*Age
2
, 

right panels).  

 
 All 

n=343 

Filtered 

n=68 

Linear 

n=41 

Quadratic 

n=17 

Test 2 

n=31 
P 

Age at last visit 

(up to 2012)
a 52.2±1.0 55.1±1.5 55.7±1.9 53.7±3.3 55.7±2.1 0.267 

Male
 

(%)
b 
 

44.3 

(n=152) 

39.7 

(n=27) 

31.7 

(n=13) 

58.8 

(n=10) 

45.2 

(n=14) 
0.243 

CAG repeat
b 

43 (4) 44 (3) 44 (3) 44 (4) 43 (3) 0.018
c 

Years of follow-up
b 

5.1 (5.0) 6.0 (4.0) 6.6 (3.5) 6.0 (4.0) 5.7 (7.4) 0.009
c 

UHDRS motor score  

at last visit
b 17 (30) 36 (36)

d 
45 (34)

d
 30 (26)

e
 18 (17)

 
<0.001 

UHDRS functional 

score at last visit
b 28 (24) 12 (19)

d 
8.5 (17)

d
 12 (20)

e 
25 (10) <0.001 

Table 1 
a
Data from normally distributed samples was expressed as mean ±SEM; 

b
 data 

from nonparametric samples was expressed as median (interquartile range, IQR); 
c
Post-

hoc Mann Whitney test with Bonferroni correction revealed no true difference;
 d

Post-hoc 

analysis revealed significant differences (P<0.005, after Bonferroni adjustment) from the 

full cohort (n=343) and from the “test two” patients (relaxed validity score, n=31); 
e
Post-

hoc analysis revealed a tendency for a difference (P<0.05, after Bonferroni adjustment) 

between the full and included patients. 

 

We then compared the demographic information between different subgroups of patients, 

including data sets from a further 31 patients used in validation test two by relaxing the 

validity score. Clinically the subgroups could not be distinguished from one another in 

terms of the age of patients at their last clinical assessment (up to 2012, F4,493=1.306, 

P=0.267), gender distribution (H(4)=5.460, P=0.243), CAG repeat size (H(4)=11.953, 

P=0.018), and the average years of follow-up (H(4)=13.543, P=0.009) (table 1, post-hoc 

analysis with the latter two revealed no real difference). There were significant difference 

between patient subgroups in their UHDRS total motor (H(4)=55.216, P<0.001) and 

functional (H(4)=61.724, P<0.001) assessments as measured at the patient’s last clinical 

assessment (table 1). Post-hoc analysis revealed that the data from all patients eligible for 

modelling (n=68), as well as patients exhibiting a linear (n=41), or a quadratic disease 
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progression (n=17) were either significantly, or had a strong tendency to be more 

impaired in their UHDRS total motor and functional assessments, compared with the 

whole cohort (n=343) or those patients who failed the validity score requirement that 

were used for validation test two (n=31). Such a difference could be attributed to the 

presence of the validity score, which assumed gradual deterioration of HD features over 

time and was consistent with previous findings.
9,12

 However there were no inter-group 

differences between all patients eligible for modelling, and those demonstrating linear or 

quadratic disease progressions. Overall this indicates that patients sharing similar clinical 

profiles could exhibit very different patterns of disease progression. 

 

As there is no comparable model to predict HD progression, we started validating our 

approach by extrapolating our model to predict the age of disease onset. Comparison was 

made with the most popular existing model to predict disease onset, constructed using 

large, independent cohorts of patients.
5
 This helps deal with a major limitation of our 

model to predict disease progression, namely that we were only studying a relatively 

small cohort of patients from the east of England. To do this, data was selected from the 

41 patients with linear disease progression and the age of disease onset (T0) was defined 

as T0= . Our predictions were modelled by using an approach similar to Langbehn's, 

as well as by evaluating the maximum fitness criterion. Our resulting equation 

(T0=22.24+exp[9.844-0.156*CAG]), has very similar coefficients to Langbehn's 

(T0=21.54+exp[9.556-0.146*CAG]) (figure 2). This indicates that, despite the fact that 

our model was built using a smaller cohort, our approach is comparable to the benchmark 

disease onset model constructed using 2913 individuals. 

 

Our present modelling approach was based on the assumption that patients were not 

expected to improve over time, consistent with a recent observation.
9
 Therefore patients 

demonstrating large improvements over consecutive clinical assessments were penalised, 

making their data sets prone to exclusion from the filtering stage. We then revisited our 

assumption, by including data from 31 patients who were previously excluded due to 

them having an excessive validity score penalty. The results were analysed in terms of 

the percentage change between the predicted and actual GI score during the latest clinical 

visit, which ranged between <6 months, 6-12 months, 12-18 months, and 18-24 months 

from the last visit used for modelling. Furthermore, we sought to investigate whether the 

number of prior clinical assessments used for modelling affected the accuracy of 

prediction. The prior clinical assessments were grouped in categories ranging from 3 to 

≥8 prior visits, although our classification algorithm requires at least four prior clinical 

assessments to properly assign individual patients to their respective type of disease 

progression. By removing the validity score this represents the maximum level of 

prediction error we would expect from our modelling approach. 

 

We used mixed model analyses of variance to estimate fixed effects of time of prediction 

and number of prior assessments on prediction error. The mean prediction error was 8.4% 

(±5.3%). The multivariate analyses yielded a strong significant main effect of time of 

prediction (F3,73=6.97, P=0.0003), with no interaction between the two factors. In line 

with expectations that increasing time elapsed from the last clinical assessment would 

increase the prediction error, from an average of 5.9% (±4.2%) when predicting <6 
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month time period, to an average of 11.7% (±7.2%) at 18-24 month time prediction 

period (figure 3). Number of prior assessments used for the prediction did not yield a 

significant effect in the model (F5,17=1.70; P=0.19), despite of a tendency for an average 

decrease of 7% in prediction error when ≥8 prior visits were used as compared to 3. This 

was also in accordance with expectations. Our results indicates that the accuracy of 

prediction using our model is dependent on the time elapsed between last clinical 

assessments and is not affected by the amount of prior data used for that prediction. It has 

to be noted that the significant decrease in prediction accuracy of almost 6% in average, 

from the shortest to the longest prediction time period used in our prediction model when 

validity score were removed, is still relatively small as compared to the overall accuracy 

of 91% (±8%). 

 

We then attempted to cross-validate our approach by randomly partitioning the 68 

patients into “training” and “testing” groups, in order to avoid overfitting of our model. 

Patient data from a group of 50 random patients (training) were used to obtain the new 

optimum parameters (B1 for linear, B2 for quadratic), while the remaining 18 patients 

(testing) were used to evaluate the predictive power of these newly derived equations 

using the same statistical models as presented above. This process was repeated 40 times 

to avoid random selection bias. The mean level of error across the 40 random shuffling 

was 8.6% (±1.2%) between predicted vs. actual GI. When the predicted clinical 

assessment was conducted within 6 months of the last visit, the prediction error was on 

average 6.8% (±1%) and increased to only 12.4% (±2.8%) when the prediction time was 

increased to 18-24 month. Nevertheless, this effect was highly significant across the 40 

trials as the median P value was 0.0002 (IQR: 0.004) (figure. 4). In conformity with the 

previous test, the accuracy of prediction did not change when the number of prior visits 

was increased from 3 to ≥8, yielding a median P value of 0.38 (IQR: 0.6) across the 40 

random trials. Similarly there was no interaction between the two factors.  

 

We finally performed a holdout validation, by assessing our model against the latest 

clinical assessment data from patients who had come back to clinic in 2013 that were 

previously unavailable during model training. This holdout dataset consisted of 23 out of 

the original 58 patients we used to construct our model, with a total of 53 new clinical 

assessment data sets. Using a series of non-parametric analysis we could not observe any 

statistical differences between the predicted and the actual GI score in these patients 

(figure 5A). The median prediction error was 11.2 (IQR: 17.1). Using Spearman’s 

coefficient we found a highly significant correlation between the predicted and actual GI 

score ( =0.91, P<0.001, figure 5B). Similar to the previous validation tests, we then 

sought to analyse if there were any differences in the quality of prediction with the 

duration between the last (up to 2012) and present (2013) clinical assessments. However, 

we found no significant effect of time elapsed since last clinical assessment on the 

accuracy of the prediction (figure 5C). 

 

Although the size of CAG repeat length was not used to calculate the GI score, it is the 

major determinant of the age of disease onset, and we were therefore interested to 

examine if the number of CAG repeats affects the rate of disease progression (figure S4, 

table S4). For this, we used data from the 41 linearly progressing patients and calculated 
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the optimum B1 (rate) for each of the motor and functional components of individual 

patients (figure S5).  

 

CAG repeats Motor 

(actual) 

Functional 

(actual) 

Motor 

(normalised) 

Functional 

(normalised) 

40-44 2.79 7.63 0.79 0.94 

45-49 3.97 8.04 1.13 1.00 

>49 6.88 11.63 1.96 1.44 

Table 2 Mean values of B1 for motor and functional indices for different ranges of CAG 

repeat sizes. Both the actual and normalised values are reported. 

 

We divided patients into three subgroups according to their CAG repeat size, and noted 

that patients with longer CAG repeats had more rapid disease progression compared to 

patients with shorter CAG repeats (table 2). This is consistent with what had been 

reported previously.
13,14

 Furthermore, when the CAG repeat size increases, UHDRS total 

motor score deteriorates at a quicker rate as opposed to the functional components (figure 

6). We have also compared medications among different subgroups and did not observe 

any effects on disease progression profile (figure S6). 
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DISCUSSION 

In the present study we describe a novel modelling approach that can be used to track, as 

well as to predict, HD progression in manifest patients. The primary strength of our 

UHDRS-based model is that it is derived from measures routinely assessed in HD clinics 

worldwide, and its quality has been scrutinised using four validation methods. With at 

least four prior clinical assessments over a minimum span of two years, we can faithfully 

predict HD progression for individual patients over the next two years. Patients with 

similar clinical profiles (age, CAG repeat length, UHDRS) can also exhibit very different 

profiles of disease progression, and we can model this along with providing evidence that 

patients with longer CAG repeat size have a quicker rate of disease progression. Further 

studies will however be required to determine the underlying causes for the latter two 

observations. 

Over the past few years much effort has gone into uncovering potential biomarkers to 

track HD progression. For example, the level of striatal brain-derived neurotrophic factor 

(BDNF) was shown to be substantially reduced in HD patients.
15

 Therefore the level of 

plasma BDNF in 398 HD patients was studied, before concluding that neither the serum 

level of BDNF protein nor mRNA could be reliably matched to stages of HD severity.
16

 

On the other hand, Weiss and colleagues
17

  have demonstrated that the level of mutant 

Huntingtin (mtHtt) aggregation in the peripheral immune cells was significantly 

increased, when comparing premanifest to manifest HD patients. In addition, there was 

also a significant correlation between disease burden scores of individual patients with 

the level of mtHtt aggregation in the peripheral immune cells
17

, although there was 

considerable intra-individual variability on the level of aggregation between samples 

from the same participant. Furthermore, Tabrizi and colleagues
18

 have also systemically 

evaluated the utility of a range of biomarkers in large cohorts of patients (TRACK-HD). 

They demonstrated that the rate of changes in the motor and functional components of the 

UHDRS were associated with disease progression.
18

 However, all these studies took a 

categorical approach by grouping patients in accordance to their disease stages for 

analysis. In contrast, patients in our study were tracked longitudinally as disease 

progressed and deteriorated, while the degree of GI changes was analysed on an 

individual basis. We believe that such an approach could better represent the 

heterogeneity of disease progression in individual patients, as we have observed in our 

cohort. Similar longitudinal strategies have also been employed in two very recent 

reports.
7,9

 In the Dorsey study both the motor and functional components of UHDRS, as 

well as several cognitive measures, were found to consistently deteriorate in HD patients 

followed for three years.
9
 In the Tang study, the authors used functional imaging tools to 

demonstrate their potential as biomarkers to track preclinical HD, as the metabolic 

activity of the neural network was linearly associated with disease progression in 

premanifest HD patients.
7
 

There are though limitations to our study. Most notably all our patients were recruited 

from a single centre, and their generalizability remains to be demonstrated. We have 

however demonstrated that the age of disease onset derived from our cohort was very 

similar to that described by an international, multi-centre study using larger cohorts of 

patients.
5
 Furthermore, our approach enables disease modelling and progression to be 

analysed on an individual basis, while the optimum coefficients can be re-defined for 

specific cohorts of patients. Such flexibility could facilitate the translation of our 
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approach to other research centres. Another problem is that all patients in our study were 

examined by a single clinician that removes issues to do with interrater variability, 

although it had previously been shown that there is a high correlation coefficient for the 

UHDRS total motor score between clinicians.
10

 Finally to address the possibility of 

overfitting our model, we have cross-validated our modelling and prediction using a 

repeated random sub-sampling approach, as well as performing a holdout validation 

using data from the patients’ latest clinical assessments, which took place between 2013 

and were unavailable at the time of model training. 

In conclusion, using HD as an example we have developed a model to track the natural 

history of disease progression in manifest patients. With data from the previous four 

clinical visits based on the conventional UHDRS assessment, we can predict disease 

progression that is statistically not different from the actual progression over the next 24 

months. We believe that our model will be an extremely valuable tool, both in terms of 

enabling researchers to reassess their existing data according to patients’ different types 

of predicted disease progression, as well as facilitating the development of novel disease 

modifying therapies in the future. We also believe that similar approaches can be adapted 

to model clinical progression of other chronic neurodegenerative disorders. 
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FIGURE LEGENDS 

 
Figure 1 Spaghetti plot of disease progression (top panels) and the best-fit line (bottom 

panels) of individual HD patients whose disease progression can be described in a linear 

(n=41, left panels) or quadratic (n=17, right panels) fashion. 

 

Figure 2 Comparison of the mean age of disease onset for CAG repeat lengths 40–65, 

between that estimated by the Langbehn et al.,
5
 or from HD patients in our cohort 

exhibiting a linear disease progression (n=41). 

 

Figure 3 The effect of factor time of prediction from the last visit used for modelling 

(four categories) and factor number of data sets from prior clinical visits used for 

modelling (six categories) on prediction error after removing the validation index. 

Vertical bars indicate mean prediction error calculated as percentage change between the 

predicted and actual general index score during the latest clinical visit. Whiskers indicate 

standard error. Post-hoc differences are indicated for factor time of prediction from the 

last visit which yielded a significant main effect. Numbers in the bottom of the vertical 

bars indicate number of data sets (n) within each category. Data was subjected to square 

root transformation prior to analysis. * p<0.05, ** p<0.01, and *** p<0.001, respectively. 

 

Figure 4 The effect of factor time of prediction from the last visit used for modelling 

(four categories) and factor number of data sets from prior clinical visits used for 

modelling (six categories) across 40 random trials during which participants were 

randomly reassigned into either ‘training’ or ‘testing’ groups. Vertical bars indicate mean 

prediction error across the 40 trials calculated as percentage change between the 

predicted and actual GI score during the latest clinical visit. Whiskers indicate mean 

standard error across the 40 trials. Mean Post-hoc differences are indicated for factor time 

of prediction from the last visit which yielded a mean significant main effect. Numbers in 

the bottom of the vertical bars indicate number of data sets (n) within each category. * 

p<0.05, ** p<0.01, and *** p<0.001, respectively. 

 

Figure 5 The association between the actual and predicted GI in the holdout validation. 

(A) The overall mean and standard error of actual and predicted general index. (B) The 

correlation between predicted and general index (Spearman Rho). Calculated 

(continuous) and ideal (dashed) regression lines are indicated. (C) The difference 

between the actual (A) and predicted (P) general index overall and for each participant 

and each category of time elapsed since the last clinical assessment (four categories). (D) 

The ratio between the predicted versus actual GI for all and for each category of time 

elapsed since the last clinical assessment. 

 

Figure 6 Optimum values for B1 (rate of disease progression) versus CAG repeats for 

patients exhibiting linear disease progression (n=41) for motor and functional indices. 

Values of B1 for each index are normalised to the mean B1 value. 
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Spaghetti plot of disease progression (top panels) and the best-fit line (bottom panels) of individual HD 
patients whose disease progression can be described in a linear (n=41, left panels) or quadratic (n=17, right 

panels) fashion.  
98x77mm (300 x 300 DPI)  
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Figure 2 Comparison of the mean age of disease onset for CAG repeat lengths 40–65, between that 
estimated by the Langbehn et al.5, or from HD patients in our cohort exhibiting a linear disease progression 

(n=41).  

50x40mm (300 x 300 DPI)  
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The effect of factor time of prediction from the last visit used for modelling (four categories) and factor 
number of data sets from prior clinical visits used for modelling (six categories) on prediction error after 

removing the validation index. Vertical bars indicate mean prediction error calculated as percentage change 

between the predicted and actual general index score during the latest clinical visit. Whiskers indicate 
standard error. Post-hoc differences are indicated for factor time of prediction from the last visit which 

yielded a significant main effect. Numbers in the bottom of the vertical bars indicate number of data sets (n) 
within each category. Data was subjected to square root transformation prior to analysis. * p<0.05, ** 

p<0.01, and *** p<0.001, respectively.  
51x40mm (300 x 300 DPI)  

 

 

Page 17 of 31

http://mc.manuscriptcentral.com/jnnp

Journal of Neurology, Neurosurgery, and Psychiatry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Confidential: For Review
 O

nly
  

 

 

The effect of factor time of prediction from the last visit used for modelling (four categories) and factor 
number of data sets from prior clinical visits used for modelling (six categories) across 40 random trials 
during which participants were randomly reassigned into either ‘training’ or ‘testing’ groups. Vertical bars 
indicate mean prediction error across the 40 trials calculated as percentage change between the predicted 
and actual GI score during the latest clinical visit. Whiskers indicate mean standard error across the 40 

trials. Mean Post-hoc differences are indicated for factor time of prediction from the last visit which yielded a 
mean significant main effect. Numbers in the bottom of the vertical bars indicate number of data sets (n) 

within each category. * p<0.05, ** p<0.01, and *** p<0.001, respectively.  

51x42mm (300 x 300 DPI)  
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The association between the actual and predicted GI in the holdout validation. (A) The overall mean and 
standard error of actual and predicted general index. (B) The correlation between predicted and general 
index (Spearman Rho). Calculated (continuous) and ideal (dashed) regression lines are indicated. (C) The 

difference between the actual (A) and predicted (P) general index overall and for each participant and each 
category of time elapsed since the last clinical assessment (four categories). (D) The ratio between the 
predicted versus actual GI for all and for each category of time elapsed since the last clinical assessment.  

131x41mm (300 x 300 DPI)  

 

 

Page 19 of 31

http://mc.manuscriptcentral.com/jnnp

Journal of Neurology, Neurosurgery, and Psychiatry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Confidential: For Review
 O

nly
  

 

 

Optimum values for B1 (rate of disease progression) versus CAG repeats for patients exhibiting linear 
disease progression (n=41) for motor and functional indices. Values of B1 for each index are normalised to 

the mean B1 value.  

51x40mm (300 x 300 DPI)  
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Supplementary material: 

1. Introduction  
This supplemental material contains the details of the mathematical tools used for 

analysis of the data. It also explains the choice of model classes and validation criteria. It 

is divided into two parts. The first part discusses the data available and the filtering and 

normalisation criteria, while the second part focuses on the mathematical modelling of 

that data. Model validations can be found in the results section of the main manuscript. 

 

2. Data management  
For this work we used data from regular patient visits collected by Prof. Barker from 

1995 until 2013 for 343 patients. For every visit of a patient, it contains all the scores that 

lead to the total Unified Huntington’s Disease Rating Scale (UHDRS), plus patient ID, 

age, gender, education years, left or right hand sided, CAG minor and major. 

 

2.1 Filtering the data - Mapping to a feature vector  
To increase the robustness and reliability for training the model, some of these 

parameters, such as chorea and dystonia, were removed from modelling since to our 

experience they can show great variations in a relatively short time as well as having high 

inter-rater variability. Furthermore, in our data set there was no significant correlation 

between either the UHDRS total maximal chorea score (r=0.008, P=0.713) or the total 

maximal dystonia score (r=-0.008, P=0.718) over time (figure S1). 

 
Some of the sample sets were incomplete. Hence, we could either interpolate the missing 

data (by using the rest of the data to estimate the missing ones) or just not use these data. 

The latter was chosen, as the interpolation method could introduce undesirable noise. 

From the resulting data, each patient visit was reduced to a feature vector containing the 

information required for our analysis. The feature vector contained the following 

information: 

 

Patient's ID.  

Patient's age at the time the sample was taken.  

The length of their CAG repeats.  

The percentage of symptoms in the UHDRS motor scores at that time.  

The percentage of symptoms in the UHDRS functional scores at that time.  

The General Index (GI), which was the average of motor and functional indices.  
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This feature vector allowed the reduction of the dataset vector, while keeping all the 

information required for classification and prediction. 

 

2.2 Filtering out not suitable patients  
The next step was to choose an appropriate set of patients for training the model. The 

following three criteria were introduced to filter out patients: 

The first criterion was to use patients that were beyond the prodromal stage of the 

disease. Quantitatively, a patient must have at least 15% of all the features at his most 

recent assessment to be considered for modelling. The criterion was introduced after 

noticing that at the prodromal stage of the disease there was not a clear trend in the data. 

This is probably caused by factors independent of the disease that dominate the test 

results, such as ageing and noise (e.g. quantisation of data scores).  

Secondly, in order to maximise the validity of the model, patients were required to have a 

relatively large number of assessments. To make the mathematical modelling problem 

well-posed, it is often required that the number of samples is much larger than that of 

parameters in the model. However, increasing the required number of assessments to 

more than five resulted in having too few patients for modelling.  

 

 

Difference in GI between two consecutive samples (%) Change in validity score 

≥ 5 +5 

0 - 5 +1 

-3 - 0 -5 

≤ -3 -10 

Table S1 Dependence of validity scores on the change of GI between consecutive 

samples. 

 

Thirdly, a validity score was created based on the assumption that a patient was not 

expected to improve with time and was penalising the validity of patients that showed 

improvements. Due to a somewhat random behaviour, patients with low validity were 

harder to model and, hence, were not used for modelling. The validity score was 

calculated as shown in table S1. For each visit, a patient's validity score was updated 

according to the difference between his current and previous GI scores. Patients with a 

validity score of less than -8 were filtered out. This boundary value was selected by 

observing the progression of the disease in several patients and comparing their validity 

score. Patients with scores below that value could not be used for modelling.  
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Figure S2 Schematic of the filtering procedure to obtain suitable for modelling patients. 

 

 

At the end of the filtering stage there were 68 patients from the initial 343 that could be 

used for modelling. Note that the major reason for excluding patients was because of 

them not having enough assessments. The data filtering procedure is summarised in 

figure S2. 

 

3. Modelling, classification and prediction  
This section is dedicated to the modelling aspects of the project. It is divided into two 

subsections that provide the necessary details to repeat our analysis. The first part 

describes how the data was used for the creation of a model. The second part explains 

different methods to validate the models. 

  

3.1 Modelling procedure  
3.1.1 Fitness function  

To understand the quality of a model, we need a way to quantify its performance. 

Adopted from standard system identification textbooks
1
, in this paper we use the 

following measure of how well a curve fits the data 

 

                                             fitness = 1 -     (3.1) 

 

where  is the value of the index as predicted from the model, yk is the real value and  

is the mean value of all the data we have in that sample. Note that we obtain 100% fitness 

for a perfect fit. In a sense, it quantifies how well a certain model fits the data compared 

with a constant model that always equals the mean of these data. In this paper, we 

considered that models with a fitness higher than 70% described reasonably well the data. 

 

3.1.2 Fitting the optimum function for each patient  

To understand the classes required for modelling, we started by modelling individual 

patients, instead of searching for one of a few models that explained all the patients. 

Hence, we isolated each patient's data and tried to find a model that would best describe 

the patient’s GI growth. The candidate models were linear, quadratic and exponential and 

implemented as follows: 
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1. The linear model assumed the General index (GI) was proportional to age. This 

was implemented using the following equation  

 

GI = B0+B1*Age    (3.2) 

  

where, for each patient, the values for B0 and B1 minimum mean squared error and 

maximum fitness. Rewriting the above equation as Ax = B, with appropriate choices for 

A, B and the unknowns x, the problem reduces to a standard least squares minimisation 

problem which has a solution given by 

 

x = (A
T
 A)

-1
  (A

T
 B)    (3.3) 

 

In our case, x is a vector containing the optimum values for B0 and B1, A is an N x 2 

matrix, where N is the amount of samples obtained from a specific patient. The left 

column of A contains only the number 1 while the right column contains the patient's age 

at the time when the sample was taken. Matrix B is of size N x 1 and contains the GI 

index's value for each sample. 

 

2. The quadratic model assumed that the GI index varied with the square of the age 

and is given by the following equation  

 

GI=B0+B1*Age+B2*Age
2
   (3.4) 

 

As in the linear model's case, we estimated the minimum mean squared error values for 

B0, B1, and B2 using equation 3.3. In this case, x contained these three values. 

 

3. Finally, the exponential model assumed that the GI index depended on the 

exponential of the patient's age and is given by  

 

GI=exp[B0+B1*Age]    (3.5) 

 

Again, the optimum coefficients were obtained from equation 3.3. 

 

Patient 

ID 

Fitness Optimum parameters 

Linear 

model 

Quadratic 

model 

Exponential 

model 

Linear Quadratic Exponential 

B1 B0 B2 B1 B0 B1 B0 

4 0.948 0.960 0.897 8.65 -394 -0.62 74 -2102 0.155 0.0168 

15 0.956 0.975 0.970 6.76 -492 0.35 -50 1790 0.139 0.0007 

16 0.973 0.983 0.981 5.41 -319 0.24 -27 858 0.134 0.0053 

51 0.941 0.976 0.972 7.25 -314 0.63 -57 1323 0.130 0.0691 

58 0.798 0.798 0.755 7.45 -410 -0.05 14 -599 0.167 0.0015 

62 0.897 0.914 0.841 5.99 -360 -1.11 147 4819 0.344 0.0000 

79 0.869 0.946 0.780 7.61 -481 -2.90 395 -13451 0.297 0.0000 

Table S2 Table with fitness and optimum coefficients for the three candidate models for 

seven patients. 
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Hence, for each patient we obtained the fitness for each of the three models together with 

the optimum coefficients that produced it. Table S2 shows a sample of seven out of the 

68 patients. 

 

 

3.1.3 Classification of patients to model classes  

After obtaining optimum values for the parameters of the three candidate models, the 

fitness of each model was calculated for every patient, using equation 3.1. We then 

observed the following remarks: 

 

 The fitness of quadratic models was always better than linear ones. This was 

expected, since the extra parameter made the quadratic model more flexible.  

 

 The fitness of the exponential model was always worse than the quadratic. Hence, 

we did not consider this model any further.  

 

 

 
Figure S3 Flow chart of the classification procedure. 

 

The following criteria were used to choose which model (linear, quadratic or others) was 

more appropriate for each patient. The first step was to check if either model could 

capture the data of a particular patient. If not, the patient was classified as “Others”. It 

was decided that the acceptable fitness for this was 70%. Hence, a patient with fitness 

less than 70% on either model was classified as “Others”. For patients with fitness higher 

than 70% on at least one model, the second step was to choose the model that best 

Page 25 of 31

http://mc.manuscriptcentral.com/jnnp

Journal of Neurology, Neurosurgery, and Psychiatry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Confidential: For Review
 O

nly
describes the patient. Since quadratic fitness was always better than linear, we decided 

that quadratic class was chosen only if its fitness was at least 4% greater than the linear 

model's fitness. This is to avoid the likely overfitting, i.e. if the difference was lower than 

4%, the extra fitness did not justify the extra model complexity. Hence, in this case, the 

linear model was selected. The third and last step was to address an issue with quadratic 

models. In some patients with a high fitness in a quadratic class but a negative B2 (recall 

that the quadratic class was given by GI=B0+B1*Age+B2*Age
2
). This predicted that the 

disease would progress at a slower rate for later stages and eventually the patient would 

improve. Hence, it would most likely result in bad predictions. Therefore, patients were 

excluded from the Quadratic class when they had a negative B2. The classification 

algorithm is demonstrated schematically in figure S3. 

 

3.1.4  Aggregate optimal coefficients 

Class Linear Quadratic 

Parameter B1 B0 B2 B1 B0 

Minimum 2.67 -588 0.21 -732 132 

Maximum 12.95 -72 6.62 -10 2030 

 

Table S3 Range of coefficients for each patient's optimum equation. 

 

Linear model: for the linear models, the previous part showed that its coefficients 

exhibited high variability (see table S3 for the range of these values). Hence, an aggregate 

single model resulted in a poor description of the whole linear class so we decided to find 

two subclasses for the linear model class. In the linear models, the parameter B0 is very 

dependent on each patient and is related to the age of onset of the disease. Hence, this 

parameter needs to be calculated for each patient. The most important parameter is, in 

fact, B1 since this captures the rate at which the disease progresses. Hence, this is the 

parameter that aggregated in two subgroups. For a given value of B1, we calculated the 

optimum value of B0 using a similar expression to 3.3, where A is a N-sized vector of 

ones (N is the number of samples for each patient) and B is an N-sized vector consisting 

of the GI index's value minus the value of B1 times the age when the sample was taken. 

The value of x gave the optimum value for B0 for that patient. 

We used a greedy algorithm that computed all possible combinations to simultaneously 

evaluate two linear models with different values for B1 between the range 2.67 to 12.95 

(table S3). This resulted in the globally optimum solution for two linear subclasses. The 

solution was one class with B1 = 6.86, fitting 29 patients well with at least 70% fitness, 

and a second class with B1 = 3.30, fitting well 11 patients. Hence, the linear class was 

divided into two subclasses: Linear A with B1 = 6.86 and Linear B with B1 = 3.30. 

Patients were classified into either Linear A or Linear B, by choosing the corresponding 

highest fitness (always required being above 70%). The dividing point between both 

Linear classes was 4.92, which was chosen to maximise the margin between the two 

classes. It was calculated as the average of the maximum B1 coefficient between the 

patients of the Linear B class and the minimum B1 coefficient between the patients in 

Linear A. We also tried dividing the Linear group into more than two classes. However, 

although the overall fitness increased, the data was over fitted and, in some 

circumstances, resulted in poor predictions. 
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Quadratic model: as above, the most important parameter for the quadratic model is B2, 

which ranges between 0.21 to 6.62 (table S3). The other two parameters, B0 and B1, were 

very dependent on the individual patient. For each value of B2, to obtain the optimum 

coefficients B0 and B1, equation 3.3 was again used with x having the values of B0 and B1, 

vector A containing a column of ones and a column of ages and vector B containing the 

GI index values minus B2 times the age squared. We then optimised over B2, with the best 

value of 0.64, and giving at least 70% fitness for 16 out of 17 quadratic patients.  

 

3.2 Prediction stage  
With models in place, the next step was to check how good the models could predict 

future data. To make a prediction, the first N samples of each patient were used to 

classify the patient and to create a model that would describe the progression of the 

disease. This model was used to make predictions for up to two years (if the amount of 

samples allowed it). The metric used to evaluate the results was the standard error 

between our predicted values and the real ones. This section explains how to classify a 

patient given a number of visits and the criteria that make a prediction trustworthy. 

 

3.2.1 Classification  

Before making any predictions, we first need to classify each patient in one of the groups 

Linear A, Linear B, Quadratic or Others using only the first N samples. The classification 

method was similar to the one in the initial classification (when all the data was 

available). To differentiate patients between Linear A and Linear B classes, patients were 

in Linear A if their optimum coefficient for B1 was greater than 4.92 and Linear B 

otherwise. 

An equation for each patient was then created as follows. Depending on the model class 

of the patient determined from the classification stage, the most significant coefficient 

was fixed to one of the three values: B1 = 6.86 for Linear A, B1 = 3.30 for Linear B and 

B2 = 0.64 for Quadratic group (with B1 as defined in equation 3.2 and B2 as in equation 

3.4). The remaining coefficients were found using the method explained in section 3.1.2. 

  

3.2.2 Developing and evaluating the predictions  

The method was evaluated by calculating the proportion of correctly classified patients 

when only their first N data points were used. We made predictions on all patients except 

those where: 

 

 Only N points were available, since in this case no future data was available to 

evaluate the prediction,  

 

 And the patient was classified in the group Others, since in this case the 

prediction could not be trusted.  

 

Predictions were made for each patient for up to four future time steps. Each time step 

represented a period of six months (hence, the fourth step prediction was for 18 - 24 

months). 
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4. Additional Findings from our Analysis  
4.1 Rate of change for Linear class with CAG length.  

 
Figure S4 Optimum values for B1 versus CAG repeats for the 41 patients of the Linear 

class. 

 

After obtaining the optimum coefficients for each patient (as explained in section 3.1.2) 

and classifying our patients (section 3.1.3), we attempted to create an equation that would 

predict B1 value's for the linear model using only the length of patient's CAG repeats. The 

values for optimum B1 for each patient classified in the Linear class (either Linear A or 

Linear B) with their corresponding lengths of CAG repeats are shown on figure S4. From 

this figure, given the variability of B1 for given CAG repeats, it can be deduced that a 

prediction of B1 based on CAG repeats alone is not possible. 

 

CAG repeats Linear (n=41) Linear A (n=29) Linear B (n=11) 

40-44 6.05 7.44 3.38 

45-49 6.74 7.87 3.93 

>49 10.28 10.28 No data 

Table S4 Mean values of B1 for certain ranges of CAG repeats for classes Linear, Linear 

A and Linear B. 

 

The correlation of B1 values with CAG repeats was found to be 0.42 using Spearman's 

test. The P value to reject the hypothesis that B1 and CAG repeats are correlated was less 

than 1%. Hence, from this analysis, it can be concluded that CAG repeats is one factor 
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that affects the value of B1 but it is not the only one. As table S5 suggests, a higher value 

of B1 is expected when a larger CAG repeats' length is encountered. 

 

 
Figure S5 Optimum values for B1 versus CAG repeats for the 41 patients in the Linear 

class for Motor and Functional indices. 

 

4.2 Analysis of motor and functional symptoms  
Thus far, only the overall GI was considered, obtained as the mean of motor and 

functional indices. Next we investigated how the rate of change of progression of the 

disease differed between the two indices. For this, we used only patients in the Linear 

group and calculated the best fit line for each index and patient. The method to obtain the 

coefficients of this line was described in section 3.1.2. The values of B0 and B1 that 

minimised the mean square error between the data and equation GI = B0+B1*Age were 

then calculated for each index. The optimum coefficient was again B1, which described 

the rate of increase of each index (motor or functional). The results are summarised in 

figure S5, which shows that, in general, the optimum B1 for functional indices were 

larger than the corresponding ones for motor index. The mean value of B1 for motor 

index was 3.62 and for functional index 8.16. We then investigated the following: 

 

 Whether the expected value of B1 increases with an increase in the CAG repeats.  

 Whether the relative increase of B1 between low and high CAG repeats for the  
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To ease the comparison, the values of B1 for the two indices were normalised by their 

averages. This is shown on figure 6 of the main manuscript, where both indices have 

means of 1.0. To get the trends for the two indices, we obtained the average value of B1 

for each index in different ranges of CAG repeats. The results are shown in table 2 of the 

main manuscript. This table reveals that the expected value of B1 for each index increases 

with the length of CAG repeats. Columns four and five, obtained by dividing columns 

two and three by the average of all values for each index, show that the expected value of 

the motor index for B1 becomes almost twice the average when a longer CAG repeat is 

encountered. If this value is compared with the corresponding one for low CAG lengths, 

the ratio becomes almost 250% (1.96 over 0.79). For the functional index, that ratio is 

close to 150%. From these results, we conclude that an increase in CAG repeats has a 

much stronger effect in motor progression than in functional deterioration. 

 

4.3 No difference of medications between patient subgroups 
In order to compare whether there was any difference in medications between subgroups 

of patients (Table 1), the number of times each patient was taking medications was 

divided by his/her number of visits. Hence for each patient, a value between 0 and 1 for 

each medication was obtained. This value was the proportion of visits that the patient 

received that particular medication. The metric used for each medication was the average 

of this value for all patients. We could not observe any difference between medications 

taken among different subgroups of patients (figure S6). Furthermore we did not find any 

evidence how medications taken affected the rate of disease progression. 

 

 
Figure S6 Top 10 medications being taken by patients among different subgroups. 
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