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Summary 

 

 Convergent evolution is a central theme in biology. Birds are an ideal system 

to examine the mechanisms underlying convergent evolution. Although bird 

patterning is diverse, within-feather patterns have repeatedly converged on the same 

four types: mottled patterns, scales, bars and spots. Other avian patterns occur, e.g. 

stripes, but are rare. In my thesis I examine the four main mechanisms underlying 

convergent evolution in plumage patterns: evolutionary genetics, evolutionary 

development, natural selection for signaling and camouflage. Japanese quail 

(Coturnix japonica) is a model system in developmental biology. Examining the 

developmental basis of pattern formation using molecular techniques, the dorsal 

patterning of embryonic quail is likely due to activation of the melanocortin-1 

receptor, which is a highly conserved pathway in vertebrates. I examined whether a 

reaction-diffusion based theoretical model of pattern formation may predict 

developmental constraint in two groups that have different lifestyles and spectacular 

patterns: waterfowl (Anseriformes) and gamebirds (Galliformes). Tracing the 

evolutionary trajectory of pattern evolution with Bayesian comparative modeling there 

was evidence for developmental constraint in pattern evolution. Adaptive 

explanations may also result in convergence. Cuckoo-hawk mimicry has been 

demonstrated in the common cuckoo (Cuculus canorus) and the Eurasian 

sparrowhawk (Accipiter nisus), but may be prevalent in Old World cuckoos. 

Randomly selecting a parasitic cuckoo from each genera of Old World cuckoos and 

<8 sympatric raptors, I quantified their barred patterns using digital image analysis 

and found that parasitism can explain convergent evolution in the patterns of 

parasitic cuckoos and raptors. Patterns may have evolved due to ecological 

selection. Examining the patterns of 80% of all avian species worldwide, I found that 

habitat does not predict patterning, and that all four patterns are found in all habitats. 

These results demonstrate that the mechanisms of convergent evolution are diverse, 

and that development and natural selection have contributed to pattern evolution.      
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Chapter 1: Introduction 

  

 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

“To create is to recombine” (François Jacob, 1977). 
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Summary 

 

 The remarkable diversity of the plumage of birds has captivated observers 

since ancient times. From the time of Charles Darwin and Alfred Wallace, avian 

phenotypes are classically considered to have evolved due to natural selection. 

Within-feather patterns, such as bars and spots, frequently occur in birds. In spite of 

the diversity in avian phenotypes, bird plumage patterns have predominantly 

converged on just four types of patterns: mottled, scaled, barred and spotted 

patterns. Other patterns have evolved in birds but are comparatively rare, e.g. 

stripes, squares, and triangles. The main mechanisms underlying convergent 

evolution in bird plumage patterns are currently unknown. The prevailing view is that 

plumage patterns function in camouflage and/or communication. However, that just 

four patterns have repeatedly evolved in birds implies that there may be 

developmental constraint in plumage pattern evolution. Developmental constraint as 

an evolutionary force is gaining momentum with proponents advocating an equivalent 

importance to natural selection. The relatively new field of evolutionary 

developmental biology (evo-devo) focuses on the means by which developmental 

processes may bias the evolution of morphological diversity. Evo-devo has the 

possibility to enhance our understanding of diversity by combining empirically derived 

principles of cellular and tissue morphogenesis to inform evolutionary processes. 

Natural selection in bird plumage has been studied widely. However, the majority of 

studies have focused on uniform patches of colouration, whereas the number of 

studies on plumage patterns is comparatively few. The main mechanisms underlying 

convergent evolution span the new field of evolutionary development, via modularity 

and developmental constraint, as well as neo-Darwinian theory, which spans natural 

selection for signaling as well as camouflage. In my PhD thesis I investigate how 

each of these major themes has contributed to convergent evolution in the plumage 

patterns of birds.   

  

 

 

  



The mechanisms underlying convergent evolution in the plumage patterns of birds 

 4 

  



The mechanisms underlying convergent evolution in the plumage patterns of birds 

 5 

Introduction 

 

 The plumage of birds has captured the imagination since at least the time of 

Aristotle (384-322 BC) and has caused many an observer to ponder the existence of 

a diversity in the phenotypes of animals (Hunter 1780; Davies 2011). In particular, 

Charles Darwin and Alfred Russell Wallace emphasized the importance of natural 

selection in the evolutionary history of avian plumage. However, Darwin and Wallace 

broadly disagreed in key aspects of natural selection. Darwin emphasized the 

importance of extravagant traits such as the bright spotted train of the male peacock 

as a result of sexual selection (Darwin 1871), whereas Wallace stressed the 

importance of less brightly coloured “drab” plumage for camouflage (Darwin and 

Wallace 1858). Later, Wallace would deviate from his strictly adaptationist approach 

to argue that bright coloration may not in fact be adaptive, but may result from 

aspects of development: “Colour may be looked upon as a necessary result of the 

highly complex chemical constitution of animal tissues and fluids” (Wallace 1889).  

 

 Since Darwin and Wallace, studies of natural selection have attracted a wide 

range of research attention in many animal groups, and birds in particular have been 

studied widely (Andersson 1994). Melanin-based pigmentation is of particular interest 

as the mechanism of melanin synthesis is highly conserved in vertebrate animals. In 

birds, melanin can be uniform or spatially variable within feathers, and a range of 

hypotheses have been proposed to explain the function and evolution of avian 

melanin based traits (e.g. Prum and Williamson 2002; Majerus and Mundy 2003; 

Roulin et al. 2003; Mundy et al. 2004; Mundy 2005; Hill and McGraw 2006a; Hill and 

McGraw 2006b; Gluckman and Cardoso 2010; Emaresi et al. 2013; Emaresi et al. 

2014). Recently, both empirical and macroevolutionary approaches have begun to 

demonstrate that our understanding of the process of natural selection is not always 

as imagined. For example, some studies have failed to find sexual selection on 

sexually dimorphic traits nor heritable genetic variation, that are key components of 

natural selection theory (e.g. Griffith, Owens, and Burke 1999; Hadfield et al. 2006; 

Westneat 2006). 
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 The theory of Darwinian evolution is based on the principles of variation, 

heredity and natural selection (Darwin and Wallace 1858; Darwin 1868; Darwin 1869; 

Darwin 1871; Wallace 1889). At the time of the inception of Darwinian evolution, the 

modern founder of the science of genetics, Gregor Johann Mendel, had begun 

unraveling the rules of heredity (Mendel 1866) but his works remained largely 

unnoticed until their rediscovery in 1900 (Henig 2001). Genetics explained variation 

and heredity and its incorporation into Darwin’s theory of evolution resulted in what is 

now known as the modern synthesis (Huxley 1942; Kutschera and Niklas 2004), 

which is the prevailing paradigm in evolutionary biology. In this current union of ideas, 

natural selection is regarded as the main mechanism of change that acts on the 

phenotype of populations of species’ in the context of their environment. Under this 

model of evolution, the direct units that selection is acting upon are the genes 

involved in phenotypic change. For example, the rate of amino acid change in the 

melanocortin-1 receptor (MC1R) locus in birds is correlated with sexual dichromatism 

in galliform birds (Nadeau, Burke, and Mundy 2007) and changes at this locus are 

also involved in polymorphism which is a sexually selected trait in some avian 

species (Mundy et al. 2004). However, these same traits may be correlated with body 

size across birds, which implies a link between evolution and development in 

melanin-based avian plumage (Riegner 2008).  

 

 The field of evolutionary developmental biology (evo-devo) is a relatively new 

field of biology that studies the evolution of developmental processes and its 

contribution to morphological diversity. Evo-devo focuses on developmental plasticity, 

modularity in evolution and the regulatory mechanisms by which genes can be 

selectively turned on and off (West-Eberhard 2003; Klingenberg 2008). Seemingly 

disparate organisms may use the same genes, but these genes can be regulated 

differently between organisms to produce variation in dissimilar aspects of 

morphology. For example, bone morphogen proteins (BMPs) function in diverse 

aspects of morphology such as teeth and teeth suppression in mice and birds (Chen 

et al. 2000), beak morphology (Fritz et al. 2014) and human melanocortin systems  

(Giraldi et al. 2011). In the field of evo-devo, empirical genetic approaches applied at 

the level of cell and tissue morphogenesis are used to illuminate general principles of 
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development (Haag and Lenski 2011). For example, there are similarities in the 

developmental pathways that produce variation in mouse and avian phenotypes 

(Nadeau et al. 2008; Manceau et al. 2011) which is consistent with the idea of 

molecular economy, where evolution alters developmental processes to create novel 

structures from old or existing gene networks.  

 

 
Fig. 1.1. The prevalent within-feather patterns of birds. In spite of the diversity of 

avian phenotypes, avian plumage patterns have repeatedly converged on the same 

four patterns: Irregular - a) mottled plumage in a female sharp-tailed grouse 

(Tympanachus phasianellus); Regular - b) barred plumage in a male Andean goose 

(Chloephaga melanoptera), c) scaled plumage in a male falcated duck (Anas 

falcata), d) spotted plumage in a male great argus (Argusianus argus). Figure taken 

from Marshall and Gluckman, in review.   

 

 

 Visual patterns, such as bars and spots, are common throughout the animal 

kingdom and are composed of a motif (sub-pattern) that is reiterated within and/or 

between feathers to create a patch of patterning (Fig. 1.1) (Prum and Williamson 

2002; Kenward et al. 2004; Riegner 2008; Gluckman 2014). In birds, within-feather 

patterns are formed via differential control of melanin (Hill and McGraw 2006b) and 
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have predominantly converged on the same four motifs: mottled, scaled, barred, or 

spotted (Fig. 1.1). There are few other regularly repeating patterns in birds with the 

exception of stripes, checkered patterning, and triangles (Fig. 1.2), which are 

relatively rare across the class Aves (T-L. Gluckman unpublished data). Therefore, 

birds can make other types of patterns but instead repeatedly converge on the same 

four motifs. It is currently unknown why bird plumage patterns have repeatedly 

converged on these patterns and this is the subject of this PhD thesis.  

 

 

 

A)            B) 

 

 

 

 

 

 

Fig. 1.2. Plumage patterns that appear to only occur in one species. A) The breeding 

checkerboard plumage pattern on the dorsal surface of the common loon (Gavia 

immer), and B) the triangles in the breast of the male Wood duck (Aix sponsa).  

 

 

 The mechanisms by which closely and distantly related species converge on 

the same phenotype are a central theme in evolutionary biology. Traditionally, the 

mechanisms underlying a similarity in animal phenotypes have been split into 

parallelism and convergence on the basis of whether the species’ in question are 

closely or distantly related (Brakefield 2006; Arendt and Reznick 2008). Under 

parallelism, closely related species evolve a similar phenotype due to similar 

mechanisms. For example, the observed patches of melanin based pigmentation in 

leaf warbler species of the genus Phylloscopus can be explained by developmental 

changes (Price and Pavelka 1996). In contrast, convergence has historically been 

applied to similar phenotypes in distantly related species arising from different 
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genetic mechanisms, for example, winged flight in birds, bats and insects.  

 

 However, it is becoming clear that there is no consistent way of defining 

convergence when mechanisms are taken into account (Brakefield 2006). For 

example, the same genetic mechanism responsible for melanism in birds has also 

been implicated in lizards, cats and woolly mammoths (Majerus and Mundy 2003; 

Mundy et al. 2004; Arendt and Reznick 2008). Additionally, whereas the same locus 

is responsible for pale coloration in some populations of beach mice (Peromyscus 

polionotus), in other populations of the same species the mechanism underlying pale 

colour is unknown (Hoekstra et al. 2006). Here I use “convergent” as a flexible term 

to describe the independent evolution of similar phenotypic traits (Arendt and Reznick 

2008).  

 

 Research into convergent evolution via evo-devo and natural selection is 

required to understand how these two processes lead to the evolution of similar 

phenotypes. The evolutionary developmental biology of bird plumage has largely 

focused on the growth and formation of the feather itself (e.g. Noramly and Morgan 

1998; Prum 1999; Chen and Chuong 2000; Fliniaux, Viallet, and Dhouailly 2004; 

Jiang et al. 2004) rather than within-feather patterning (but see Prum and Williamson 

2002). An understanding of the dynamics of within-feather patterning could clarify the 

function and evolution of this little studied but common avian plumage trait. The 

prevailing view of the function and evolution of plumage patterns has remained 

largely rooted in the perspective of adaptationist ideas, but has seldom received 

research attention. A broad scale analysis of bird plumage patterns from an 

evolutionary and macroevolutionary perspective is overdue.   

 

 In my thesis, I attempt to understand the evolutionary developmental biology 

of within-feather patterns and natural selection for patterning to examine how each 

contributes to convergent evolution. In the first half of my thesis I examine the 

developmental mechanism of patterning and whether the development biology of 

pattern formation may shape plumage evolution. In the second half of my thesis I 

focus on how natural selection has shaped plumage phenotypes to converge on the 
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same patterns for signaling and/or camouflage as per Darwin and Wallace’s 

hypotheses, respectively. In this introductory chapter, I discuss what is known of the 

evolutionary developmental biology of within-feather patterns and natural selection on 

bird plumage. I then discuss how I will study these processes in birds. 

 

 

 

 “We can see why characters derived from the embryo should be of equal importance 

with those derived from the adult, for a natural classification of course includes all 

ages” (Darwin 1869). 

 

 

 

 

Evo-devo of plumage patterns 

 

 

Building avian phenotypes 

 

Plumage coloration can vary over the body and is coordinated into species-

typical phenotypes by individual patches containing up to thousands of feathers 

(Prum and Dyck 2003). For example, the feathers of the peacock’s (Pavo cristatus) 

train are modified covert feathers from the upper tail that are pigmented with spots 

whereas the wing feathers have barred patterns. Patches of feathers that covary in 

coloration generally correspond to seven feather tracts (pterylae) over the body, 

which vary little in anatomical position between birds (Fig. 1.3; Lucas and 

Stettenheim 1972).  
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Fig. 1.3. The seven major individual feather tracts in birds. Field guide terminology, 

and the corresponding feather tracts (pterylae; Lucas and Stettenheim 1972) are as 

follows: a) Nape: interscapular tract, b) Wing (scapular, wing coverts, tertials, 

primaries and secondaries): humeral tract, upper marginal coverts of prepatagium 

and upper wing covert tract, c) Rump and uppertail coverts: dorsopelvic tract and 

dorsal caudal tract, d) Tail: upper major tail covert, upper median tail covert and 

rectrices tract, e) Breast: ventral cervical tract, f) Flanks or side: pecterosternal or 

pectoral tract, g) Vent and undertail coverts: abdominal or lateral and medial 

abdominal tracts. The species illustrated is the Natal francolin (Pternistes 

francolinus). 

 

 

Plumage patterns appear to be determined by feather follicle-level processes 

(Takeuchi et al. 1996; Prum and Williamson 2002; Yoshihara et al. 2011; Oribe et al. 

2012; Yoshihara et al. 2012). The potential to form feather follicles is distributed 

throughout the ectoderm (Harris, Fallon, and Prum 2002). Numerous interactions 

between the epithelium and mesenchyme signal pteryla formation (Chuong 1993; 

Prum 1999; Chuong et al. 2000; Dhouailly et al. 2004; Lin et al. 2013). Epithelial-

mesenchymal recombination in quail-chicken chimeras shows that the dermal cells of 

the ventral and dorsal surface have different origins: the dorsal dermis is of neural 

crest origin whereas the ventral dermis originates from lateral plate mesoderm 



The mechanisms underlying convergent evolution in the plumage patterns of birds 

 12 

(Dhouailly et al. 2004; Fliniaux, Viallet, and Dhouailly 2004; Lin et al. 2006).  

 

From what is currently understood of plumage development, covariation of 

feather pigmentation within patches is indicative of local shared developmental 

mechanisms (Lucas and Stettenheim 1972; Prum and Dyck 2003; Lin et al. 2006; 

Wagner, Pavlicev, and Cheverud 2007). In contrast, it is unknown whether the 

development of pigmentation within one patch of plumage influences the evolution of 

pigmentation in another patch of plumage. For example, the pink-eared duck 

(Malacorhyncus membranaceus), has barred plumage on the flanks and the breast. 

Perhaps barred plumage evolved on the breast first, and the mechanism of pattern 

formation was subsequently recruited by the flanks, or vice versa. An interesting 

issue is whether plumage pattern evolution is segmented and follows an 

anteroposterior gradient or whether plumage pattern evolution is constrained to a 

dorsoventral gradient because the dermal cells of the ventral and dorsal surface are 

of different origins. At the level of the whole body, evolution of a novel plumage 

pattern may occur within the same patch or involve recruitment from other patches, 

or other modules, and might therefore appear relatively unconstrained. These 

considerations indicate that there may be modularity within a larger developmental 

hierarchy from the level of individual patches, to regions, and possibly over the whole 

body. 

 

 

Building a feather 

 

 Feathers vary in type and coloration between chick, juvenile and adult phases 

(Fig. 1.4), as well as over the body and between the sexes. For example, chicks 

hatch with neoptile natal down feathers that are unbranched structures whereas adult 

plumage is predominantly comprised of pennaceous barbed feathers interspersed 

with neoptile down feathers (Prum 1999; Oribe et al. 2012). Both neoptile and 

pennaceous feathers are complex branched keratin structures. The entire plumage is 

replaced by moulting at least once a year 
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Fig. 1.4. Feathers vary in type between chick, juvenile and adult phases (Yu et al. 

2004). During embryogenesis, and at hatching, chicks have unbranched feathers 

known as down feathers. During the first juvenile moult, barbed pennaceous feathers 

emerge and are similar in structure but smaller in comparison to the adult feathers 

that are depicted here are as the third generation of feathers. 

 

 

 The development of neoptile feathers begins early in embryogenesis and is 

indicated by a thickening of the ectoderm by the elongation of epidermal cells, 

forming the epidermal placode (Noramly and Morgan 1998; Jiang et al. 1999). An 

aggregation of dermal cells forms below the epidermal placode that subsequently 

develops into the feather germ and follicle. Elongation of the placode leads to the 

formation of a cylinder of dermis enclosed in a tubular epidermal structure, which is 

the first feather germ, or short bud. The basal epidermis of the feather bud 

invaginates forming the feather follicle (Prum and Dyck 2003). From epidermal 

differentiation of the feather bud, barb ridges of the first natal down are formed.  
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 In adulthood, feathers continue to grow from feather follicles but change 

dramatically in shape. Similar to the development of neoptile feathers, nutrients for 

the pennaceous feather are delivered by the feather pulp, located between and under 

the feather follicle (Fig. 1.5). In contrast with neoptile feathers, the developing barbs 

at the anterior side of the feather follicle of pennaceous feathers fuse to create the 

rachis. The individual barb ridges of the feather are formed by the keratin producing 

cells of feathers (keratinocytes) which take up melanin pigmentation, and is a central 

component of within-feather pattern formation (Prum and Williamson 2002; Prum and 

Dyck 2003).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.5. Helical pennaceous feather growth taken from Lucas and Stettenheim 

(1972). A unique aspect of avian integument structure is the geometry of helical 

feather growth, which is an important consideration in within-feather pattern 

formation.  

 

 

Melanin synthesis and deposition 

 

 From what is currently known, melanin is the most important type of pigment 
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involved in within-feather patterning (Hill and McGraw 2006a). The same types of 

melanin are synthesised in mammals and birds: eumelanin, resulting in dark brown 

or black coloration, and pheomelanin, resulting in yellow to buff brown (Richardson, 

Hornbruch, and Wolpert 1989; Takeuchi and Takahashi 1998; Tobita-Teramoto et al. 

2000; Hill and McGraw 2006b). In addition, white coloration is due to an absence of 

melanin (Mundy et al. 2004). Within-feather patterning is predominantly comprised of 

combinations of eumelanin, pheomelanin and an absence of pigmentation. Alternate 

combinations do occur, such as in the barred plumage of the budgerigar 

(Melopsittacus undulatus), which is additionally pigmented with psittacofulvins that 

are specific to Psittaciformes, but these alternate combinations are rare (Hill and 

McGraw 2006b; T-L. Gluckman unpublished data). 

 

The melanins of feathers are synthesised endogenously and are derived from 

melanocyte pigmentation cells. Feather melanocytes are of neural crest origin. From 

the dermal pulp of the feather germ, melanocytes migrate into the tubular epidermis 

of the developing feather (Fig. 1.6). The organelles within melanocytes that are 

responsible for the synthesis of melanin are melanosomes. Melanocytes transfer 

melanosomes to the feather keratinocytes via pseudopodia, and melanosomes are 

transferred into the keratinocytes by phagocytosis (Lucas and Stettenheim 1972; 

Prum and Williamson 2002). The melanocyte-specific enzyme tyrosinase (TYR) 

catalyses the first steps of both eumelanin and pheomelanin synthesis. Eumelanin 

synthesis additionally requires the tyrosinase-related protein 1 (TYRP1) and 

DOPAchrome tautomerase (DCT) whereas pheomelanin appears to require few 

other proteins, but additionally requires cysteine (Ito, Wakamatsu, and Ozeki 2000; 

Hill and McGraw 2006b; Dessinioti et al. 2009; Galván, Ghanem, and Møller 2012). 

Each type of melanin has its own particular type of melanosome – eumelanosomes 

for eumelanin, and pheomelanosomes for pheomelanin – and it is currently thought 

that only one type of melanosome is contained within each melanocyte. Therefore, 

melanocyte type and distribution in feathers is a key component of within-feather 

pattern formation. However, little is known of the mechanisms underlying the spatial 

distribution of melanocytes. 
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Fig. 1.6. Melanosome transfer of keratinocytes during feather formation taken from 

Prum and Williamson (2002). The differential uptake of melanosomes into feather 

keratinocytes is of crucial importance in within-feather patterning.  

 

   

Melanin type synthesized in melanocytes is due to activity of the 

melanocortin-1 receptor (MC1R) which is a G protein coupled receptor on the cell 

surface (Ling et al. 2003; Takeuchi, Takahashi and Okimoto 2003) (Oribe et al. 

2012). The MC1R locus is important in the evolution of avian coloration, and changes 

at this locus can have a widespread effect on melanin based coloration in birds 

(Ollmann et al. 1998; Kerje et al. 2003; Mundy et al. 2004; Roulin 2004; Mundy 2005; 

Nadeau 2006; Nadeau, Minvielle, and Mundy 2006; Nadeau, Burke, and Mundy 

2007; Ducrest, Keller, and Roulin 2008; Dorshorst and Ashwell 2009; Vidal et al. 

2010; Emaresi et al. 2013). Expression of eumelanin and pheomelanin is due to 
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differential stimulation of MC1R, which regulates the cyclic adenosine 

monophosphate (cAMP) signaling pathway. MC1R is activated by the binding of 

melanocortin peptides to MC1 receptors on the cell surface. Melanocortin peptides 

are generated by post-translational processing of the pro-opiomelanocortin peptide 

(POMC) that is encoded by the POMC gene (Benjannet et al. 1991; Takeuchi, 

Teshigawara, and Takahashi 1999; Yoshihara et al. 2011).The most common 

melanocortins that have a function in animal pigmentation are the adrenocorticotropic 

hormone (ACTH) and α-MSH (Takeuchi et al. 2003; Takahashi et al. 2006; Roulin et 

al. 2011; Yoshihara et al. 2011; Roulin and Ducrest 2013). Binding of melanocortin 

peptides to MC1R elevates intracellular cAMP levels which in turn stimulates the 

synthesis of eumelanin. Conversely, the agouti signaling protein (ASIP) acts as an 

inverse agonist of MC1R lowering intracellular cAMP levels leading to pheomelanin 

synthesis (Nadeau et al. 2008; Oribe et al. 2012; Yoshihara et al. 2012). ASIP has 

been implicated in mammalian (i) dorsoventral patterning, (ii) temporal-specific 

regulation of pigmentation during hair growth leading to banding patterns (Bultman, 

Michaud, and Woychik 1992; Vrieling et al. 1994; Barsh 1996; Fontanesi et al. 2010; 

Kaelin et al. 2012), and (iii) inhibition of melanocyte differentiation (Aberdam et al. 

1998; Linnen et al. 2009). In chicken and quail, ASIP may function in dorsoventral 

patterning as well as within-feather patterning (Nadeau et al. 2008; Yoshihara et al. 

2012).  

Two mechanisms of within-feather pattern formation have been 

demonstrated: melanocyte distribution/differentiation and pigment-type switching via 

the melanocortin-1 receptor (MC1R). For example, the distribution of melanocytes 

can lead to bars and spots in certain breeds of chicken (Lin et al. 2013). The second 

mechanism acts via differential stimulation of the MC1 receptors (Yoshihara et al. 

2012). 

 

 

Models of within-feather pattern formation 

 

The proposed organizing mechanism for within-feather pattern formation in 

birds is reaction-diffusion, based on Alan Turing’s (1952) original proposition 
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describing morphogenesis (Turing 1952; Oster and Alberch 1982; Oster et al. 1988; 

Prum and Williamson 2002). Reaction-diffusion models are comprised of an 

activating morphogen, and an inhibiting morphogen, which is produced by the 

activator. The basis of the reaction-diffusion mechanism is that it interacts with a 

hypothetical gene product level, or morphogen, activating colour-specific enzymes 

(Oster and Alberch 1982; Oster et al. 1988). Reaction-diffusion models have been 

used to model patterns over the body in a variety of taxa including Lepidopterans and 

Zebras. For example, reaction-diffusion can accurately model animal patterning by 

incorporating the geometry and size of the domain on which the initiating reaction-

diffusion mechanism resides, during embryonic development (Oster and Alberch 

1982; Oster et al. 1988).  

 

Reaction-diffusion models can accurately simulate pattern changes over the 

body. For example, where the body and the tail meet, “notch” markings are apparent 

on the tails of striped zebras whereas spotted cheetah’s have striped tails at the 

periphery (Oster et al. 1988). It is thought that these biological examples demonstrate 

developmental constraint in the mechanism of pattern formation: spotted animals can 

have striped tails but striped animals cannot have spotted tails. Although barred, or 

striped, bodies with spotted tails are rare in the avian world (T-L. Gluckman 

unpublished data), a few species exhibit this pattern distribution. For example, 

peacocks have barred wings and spotted upper tail covert feathers. However, 

patches of homogeneous colouration separate each patch of the peacock’s plumage 

patterns, thereby separating localised within-feather plumage patterning 

mechanisms. It is thought that where two adjacent domains with independent 

reaction-diffusion events meet, they will interact to produce a different pattern. For 

example, where the limbs of zebras meet the body, a scapular stripe occurs, which is 

often described as “chevrons” in avian literature (Oster and Alberch 1982; Oster et al. 

1988; Oster and Murray 2005).  

 

Domain size may also be important in animal phenotypes (Oster and Alberch 

1982; Oster et al. 1988; Oster and Murray 2005). For example, a domain size that is 

too small or too large may result in an absence of patterning and a domain of 
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intermediate size is thought to facilitate reaction-diffusion based pigmentation 

patterns (Murray 1981). This is because when the spatial scale of the domain is 

restricted, the spatial structure between the morphogens cannot exist, but that when 

the spatial scale is large enough, the distribution of morphogens has the possibility to 

become uniform again. The repeating absence of patterns in large and small birds in 

avian morphospace supports these model based predictions (Murray 1981; Riegner 

2008). However, reaction-diffusion models also predict a phenotype that shows 

variable pigmentation along the anteroposterior axis, e.g. white/black anterior section 

with a white/black posterior section. This is not observed in birds, which have 

pigmentation differences on the dorsoventral axis, e.g. countershading (Riegner 

2008).  

 

In contrast with models of pattern formation in animals, Prum and 

Williamson’s (2002) reaction-diffusion model incorporates the unique considerations 

of feather growth. By modeling reaction-diffusion in the context of helical feather 

growth, Prum and Williamson (2002) were able to model the formation of all avian 

regular plumage patterns, i.e. scales, bars and spots, but not irregular mottled 

patterns (Fig. 1.1). This model makes explicit predictions as to which plumage 

patterns require the most stringent regulation: the regulation of scales is the least 

stringent, bars require a specific amount of morphogen, and spots have the most 

stringent formation parameters. This may have important implications for plumage 

pattern evolution as it implies that some patterns may be harder to make than others. 

In addition, perhaps the size of the patch of patterning may further constrain the 

mechanism of pattern formation, as some patterns may need smaller or larger 

feather tracts on which to form. Analyses of avian morphospace imply that with 

decreasing body size birds tend to evolve patches of black and white, then bars, then 

spots, before mottled plumage, and finally countershading (Riegner 2008). That avian 

morphospace correlates well with a transition in Prum and Williamson’s model (2002) 

could reflect developmental constraint. However, the previous analysis of avian 

morphospace must be treated cautiously as scales are not included, and phylogeny 

is not accounted for in the statistical methods (Riegner 2008).  
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Reaction-diffusion based models provide testable hypotheses with which to 

explore plumage pattern development and evolution. Currently it is unknown if 

reaction-diffusion controls pattern formation within feathers. The few experimental 

manipulations of plumage patterns in poultry have shown that barred plumage 

patterns can be transplanted or altered by transplanting melanocytes from barred 

hosts into the feather ectoderm of chickens (Willier and Rawles 1938; Willier and 

Rawles 1940). It is potentially significant for reaction-diffusion models that MC1R is 

differentially stimulated by MSH and ASIP resulting in variation in pigmentation 

within-feathers, but it is currently unknown whether MSH and ASIP interact to form 

plumage patterns, and whether reaction-diffusion is the mechanism underlying 

pattern formation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The development of the eyes on the tail-feathers of a peacock (Beebe 1922). 
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Developmental constraint 

 

The possibility to evolve plumage patterns may be constrained by a difficulty 

in developing a particular kind of pattern. For example, spotted patterns may have 

the most stringent regulation parameters (Prum and Williamson 2002) and might be 

harder to make than others. Therefore, development may constraint plumage pattern 

evolution. Price and Pavelka (1996) proposed that the repeated evolution of similar 

avian phenotypes may be explained by developmental constraint with two possible 

consequences: 1) among-species diversity due to the magnification of slight 

differences in ancestors, 2) parallelism (convergence) (Price and Pavelka 1996). The 

former is a plausible explanation, resulting in minor variation to a particular ancestral 

motif. For example, ducks exhibit a diversity of barred plumage, e.g. thick bars in the 

pink-eared duck (Malacorhyncus membranaceus), as well as thin bars 

(vermiculated), as seen in the tufted duck (Aythya collaris). However, diversity due to 

the magnification of slight differences in ancestors does not explain the diversity of 

pattern types in closely related species such as bars, scales and spots in Anatidae, 

or recursion of the same patterns in distantly related families. Therefore, 

convergence due to developmental constraint may better explain similar plumage 

patterns in distantly related taxa, such as the barred plumage of cuckoos, 

woodpeckers and galliform species, and potentially that of closely related species.  

 

 

Natural selection on plumage patterns  

 

Natural selection acts on the phenotype of organisms and a heritable 

reproductive advantage may lead to the selected phenotype becoming prevalent in 

different populations depending on their environment, which includes conspecifics 

and predators (Darwin and Wallace 1858; Darwin 1869; Wallace 1889). Over time, 

the process of natural selection gives rise to populations that are adapted to their 

particular ecological niche. On the basis of an adaptive advantage animal visual 

signals should evolve to be effective for the function that they serve, which can be in 
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communication and/or camouflage (Endler 1978; Endler 1992; Bradbury and 

Vehrencamp 1998; Kenward et al. 2004). It is generally thought that patterning is 

beneficial because patterns allow animals to be less conspicuous against 

heterogeneous backgrounds. The general principle underlying the function of 

patterns in camouflage is that patterns resemble aspects of the background in order 

to evade detection by predators or prey. In the context of signaling, patterns must 

visually diverge from the background to stand out to conspecifics. For example, bold 

patterns on a plain background make an animal standout, having a similar pattern to 

the background allows the animal to blend in, whereas patterns that oppose the 

geometric pattern of the background are conspicuous (Bradbury and Vehrencamp 

1998). 

 

The communication signals of animals, especially sexually selected traits, are 

often visually striking and stand out from the background in which the animal is 

viewed (Andersson 1994). In contrast, the purpose of camouflage is to conceal the 

presence of an animal and this is often achieved by matching the background 

(Poulton 1890; Thayer 1909; Cott 1940). As a consequence of these opposing 

selection pressures there is a functional compromise between signaling and 

camouflage (Andersson 1994). A growing number of studies of animal behavior show 

that patterns can function in communication. In comparison, the number of studies of 

the function avian plumage patterns in camouflage is few, but the similarity of the 

patterns found in birds to other animal groups may be revealing of their protective 

benefit. For example, irregular pigmentation such as mottled patterns (Fig. 1.1) is 

common in many animal groups and has been shown to have a protective benefit in 

invertebrates (Thayer 1909; Cott 1940; Bradbury and Vehrencamp 1998; Stevens 

and Merilaita 2009a; Stevens and Merilaita 2009b). 

 

 

Patterns as signals 

 

In order for traits to serve as a social signal they must elicit a response in the 

receiver and in the context of sexual ornamentation, must be reliable indicators of 
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individual condition, such as through condition dependence (Andersson 1994; 

Bradbury and Vehrencamp 1998), or females that choose those ornaments benefit 

through indirect genetic benefits to their offspring and or improved access to 

resources (Darwin 1871; Fisher 1923). Empirical experiments demonstrate that 

patterns can elicit a social response in a range of species (e.g. Hasson 1991; 

Swaddle and Cuthill 1994; Roulin 1999a; Roulin et al. 2003; Bortolotti et al. 2006). 

For example, in a classical study of sexual selection and visual signalling, the 

number of eyespots on the tail/train of the male peacock (Pavo cristatus) is positively 

associated with mating success demonstrating that females select for males with 

more eyespots (Petrie, Halliday, and Sanders 1991). In addition, patterning can be a 

reliable indicator of individual condition. For example, the size of barred throat 

patterns is positively associated with body condition in female barred buttonquails 

(Turnix suscitator) (Muck and Goymann 2011) and adaptive sex-ratio biases are 

related to the plumage spottiness of parent barn owls (Tyto alba) (Roulin et al. 2010). 

Alternatively, pleiotropic effects, whereby one gene influences multiple phenotypic 

traits (e.g. via metabolic pathways), may also result in correlated responses to 

selection in melanin based traits (Ducrest, Keller, and Roulin 2008). For example, 

female eumelanin based traits in barns owls is correlated with offspring quality, life 

history attributes, physiology and morphology, and this interaction is thought to be 

due to pleiotropic effects of melanin production (Roulin 2004; Ducrest, Keller, and 

Roulin 2008; Emaresi et al. 2013).  
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Types de Plumes Larouss pour tous, Adolphe Philippe Millot (1907). 

 

 

Barred plumage patterns are particularly common in many different species 

and may function in both communication and camouflage (Riegner 2008; Gluckman 

and Mundy 2013). For example, compared to irregular mottled patterns, barred 

plumage is more likely to evolve on the ventral surface of males at sexual maturity, 

which is a more likely location for avian communication (Gluckman and Cardoso 

2010). In contrast with irregular mottled patterns, the regularity of barred patterns 

could perhaps act as a signal of individual quality by making irregularities within the 

pattern perceptually salient (Gluckman and Cardoso 2009). That regular patterns can 

facilitate communication of honest aspects of individual quality may select for 

repeated evolution of these types of patterns on the ventral surface of males 

(Gluckman and Cardoso 2010).  

 

The function of barred plumage patterns appears to be diverse and an 

alternative function of this type of pattern may be in Batesian mimicry (Davies and 

Brooke 1988; Davies 2000; Payne and Sorensen 2005; Davies and Welbergen 2008; 

Davies 2011; Welbergen and Davies 2011). In Batesian mimicry, a harmless species 

(the mimic) mimics a harmful species (the model) in order to avoid detection (Bates 
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1862). The common cuckoo (Cuculus canorus) is thought to mimic the Eurasian 

sparrowhawk (Accipiter nisus) in order to evade detection while laying its parasitic 

egg in the nest of other host species. Its striking resemblance is primarily due to the 

barred plumage patterns that appear to be remarkably similar to its model. Moreover, 

barred plumage patterns evolved with parasitism in Old World cuckoos in five genera 

that implies that cuckoo-hawk mimicry may drive cuckoos to converge on the barred 

plumage patterns of their model raptor species (Kruger, Davies, and Sorenson 2007).  

 

 

A camouflage function of plumage patterns 

 

In contrast with a signal function, patterns could allow animals to be less 

conspicuous against heterogeneous backgrounds (Poulton 1890; Thayer 1909; Cott 

1940). Wallace (1889) was the first to consider that less conspicuous coloration may 

have an adaptive function in concealment. This idea was later taken up by Thayer 

(1909), who observed that countershading might counterbalance the effects of an 

animals own shadow thereby concealing its form, and Cott (1940), who thought that 

animals might modify their colour and pattern to conceal their form.   

 

In spite of the importance of camouflage in natural selection, understanding of 

the function of coloration and patterns in camouflage has progressed slowly since the 

time of Wallace, Poulton, Thayer and Cott. Recent years have seen a steady 

increase in the number of studies that test the function of colour and patterning in 

camouflage due to advances in techniques that allow the incorporation of the visual 

perspective of the receiver (Stevens and Merilaita 2009b). Most studies of 

camouflage are in non-avian animals and directly follow the hypotheses of the 

founding fathers of visual anti-predator defenses. However, the same patterns that 

have been studied in other animal groups, e.g. irregular mottled or stippled patterns 

as well as stripes and spots, are also exhibited in birds. Although there is some 

understanding of visual systems in predators, the main predators of any given avian 

species are often unknown. Given that there is some understanding of anti-predator 

defenses in other animals, it would seem that the best place to start in understanding 
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the camouflage properties of avian visual patterns, and whether camouflage drives 

convergent evolution in bird plumage patterns, is to review what is currently known of 

camouflage in other animal systems.  

 

Pattern-based anti-predator defenses can be diverse in their form and the 

way that they facilitate the evasion of detection by predators. Some types of 

camouflage conceal animals while stationary, e.g. background matching and 

disruptive markings, and other types of camouflage prevent capture during 

movement, e.g. by motion dazzle and flicker fusion (Poulton 1890; Thayer 1909; Cott 

1940; Bradbury and Vehrencamp 1998). Irregular mottled plumage patterns (Fig. 1.1) 

are likely to function in stationary camouflage, where the animal is still, because 

irregular patterns can generally match the patterning of one or several background 

types via background matching. Irregular patterns may also facilitate stationary 

camouflage by seeming to create false sets of edges to prevent recognition by 

predators via disruptive camouflage (Thayer 1909; Cott 1940; Bradbury and 

Vehrencamp 1998; Stevens and Merilaita 2009a; Stevens and Merilaita 2009b). For 

example, in the non-breeding plumage of ducks (e.g. Aythya and Somateria), it has 

been suggested that irregular patterning may facilitate the evasion of detection by 

predators during the flightless period accompanying wing moult (Hohman and 

Richard 1994; Hohman 1996), but this has not been empirically tested.  

 

The other avian plumage patterns of scales, bars and spots (regular patterns) 

may facilitate the camouflage of animals as a second mode of camouflage during 

movement or flight via motion-dazzle and flicker-fusion (Thayer 1909; Jackson, 

Ingram, and Campbell 1976; Pough 1976; Endler 1978; Endler 1980; Brodie 1989; 

Brodie 1992; Brodie 1993; Madsen and Shine 1994; Lindell and Forsman 1996; 

Stevens and Merilaita 2009b; Scott-Samuel et al. 2011; Helversen, Schooler, and 

Czienskowski 2013; How and Zanker 2014). For example, experiments testing 

motion-dazzle using prey capture by human participants on computer screens have 

shown that striped/barred patterns make ‘capture’ of moving stimuli more difficult and 

produce more misdirected attacks than other forms of camouflage and coloration 

(Stevens et al. 2011; Helversen, Schooler, and Czienskowski 2013; How and Zanker 
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2014). The visual mechanism underlying the camouflage benefit of motion dazzle is 

currently unknown, however flicker-fusion may cause fatigue in the motion sensitive 

cells of the eye (Snowden 1998). Under flicker-fusion, regular patterns blur during 

movement and cannot be effectively perceived, for example adders (Vipera berus) 

that have regularly repeating patterns have higher survival rates (Jackson, Ingram, 

and Campbell 1976; Pough 1976; Endler 1978; Brodie 1989; Brodie 1992; Brodie 

1993; Madsen and Shine 1994; Lindell and Forsman 1996). However, it is unknown 

whether this effect is via flicker-fusion or motion-dazzle.   

 

 

Adaptation and convergent evolution 

 

Although studies on the function of animal camouflage have been applied to 

many animal groups, the existing ideas on camouflage have not been applied to the 

function of bird plumage patterns. Studies of convergent evolution in plumage 

phenotypes have predominantly focused on patches of uniform coloration, in 

particular carotenoid coloration, with relatively fewer studies of melanin (Christidis, 

Schodde, and Baverstock 1988; Hackett and Rosenberg 1990; Price and Pavelka 

1996; Kusmierski et al. 1997; Odeen and Bjorklund 2003; Andersson, Prager, and 

Johansson 2007; Bleiweiss 2007; Cardoso and Mota 2008; Jones and Kennedy 

2008; Prager and Andersson 2010; Friedman, Kiere, and Omland 2011). The 

proposed adaptive mechanism of convergence in regional colouration has centered 

on ecology (Crochet, Bonhomme, and Lebreton 2000; Dumbacher and Fleischer 

2001; Omland et al. 2006; Bleiweiss 2007; Weibel and Moore 2007), but several 

studies failed to find an ecological correlate (Omland 1997; Omland and Lanyon 

2000; Omland et al. 2006). Additional suggested mechanisms of convergence are 

sexual selection (Omland and Lanyon 2000; Prager and Andersson 2010), and 

developmental constraint (Price and Pavelka 1996; Omland and Lanyon 2000; 

Majerus and Mundy 2003; West-Eberhard 2003; Prager and Andersson 2010). For 

example, examining the evolution of carotenoid coloration in widowbirds and bishops 

(Euplectes spp.), coupled with the underlying physiological mechanisms, Prager and 

Andersson (2010) found that the ancestral state of carotenoid based coloration is 
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yellow plumage, and that red coloration is a more derived state that has convergently 

evolved multiple times. However, convergent evolution in carotenoid based plumage 

in Euplectes is due to two different mechanisms: ketolase conversion or an increase 

in carotenoid concentration (Prager and Andersson 2010). 

 

 

Conclusions 

 

 The prevailing view of plumage pattern function and evolution has focused on 

adaptationist ideas. There are multiple potential mechanisms underlying convergent 

evolution that are from the new field of evo-devo as well as the prevailing school of 

neo-darwinian theory. In my PhD thesis I explore the main mechanisms underlying 

convergent evolution, from evolutionary developmental biology, as well natural 

selection for signaling as well as camouflage in the plumage pattern of birds. To do 

this I used techniques spanning molecular biology, Bayesian comparative modeling, 

digital image analysis, and ecological selection.  

 

Thesis outline 

 

Chapter 2: An understanding of the molecular basis of within-feather pattern 

formation is lacking and in this chapter I investigate two mechanisms of pattern 

formation using molecular and developmental techniques.  

 

Chapter 3: Previous studies indicate that there may be developmental constraint in 

plumage pattern evolution. Therefore, I investigated whether particular aspects of 

plumage pattern development may shape the direction of plumage pattern evolution 

in two ecologically different groups of birds using Bayesian comparative modeling.  

 

Chapter 4: It has been demonstrated that plumage patterns can function in signaling 

in a number of species of birds. In Old World cuckoos, a signaling function may have 

been co-opted to facilitate deception via Batesian mimicry in many species of birds 

which I investigated using digital image analysis techniques. This chapter was 
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published in Animal Behaviour (2013).  

 

Chapter 5: The plumage patterns of birds have inspired many an observer to 

consider whether they may have evolved to facilitate concealment from predators. 

Given that patterns are viewed in the context of their habitat the natural extension of 

a camouflage benefit is that habitat selects for plumage patterns, which I investigated 

using ecological techniques in all birds worldwide in collaboration with Marius 

Somveille and Kate Marshall.  

 

Chapter 6: In my final chapter I summarise my findings of the mechanisms 

underlying convergent evolution in the plumage pattern of birds, I discuss the 

implications of my results and highlight future areas of research that I will pursue.  
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Chapter 2: Activation or inhibition, MC1R and the developmental basis of 

within-feather pattern formation 

 

 

 

 

 

 

Japanese quail (Coturnix japonica) chick. 
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Abstract 

 

 Pattern development is an important question in biology as it requires precise 

spatiotemporal control. Melanin pigmentation is highly conserved in vertebrates and 

is the basis of feather patterning. Due to shared ancestry with mice, the focus of 

avian pattern formation has been melanocyte distribution/differentiation and inhibition 

of MC1R, whereas activation of MC1R has been relatively understudied. Japanese 

quail is a model system in development biology and has a phenotype comprised of 

pheomelanin on the ventral surface, whereas dorsal feathers occur in alternating 

eumelanin and pheomelanin stripes as well as within-feather patterns. In this study, 

we explored the evolution of regulatory mechanisms underlying differential deposition 

of eumelanin and pheomelanin via inhibition (ASIP and its paralogue AGRP) and 

activation (POMC, PC1 and PC2) of MC1R during quail embryogenesis for 

comparison with adult chicken and adult quail. In situ hybridization using Sox10 

revealed that melanocytes are found in all ventral and dorsal feather follicles (FFs) at 

E8 and E12. RT-PCR results demonstrated some similarity in ASIP alternatively 

spliced transcripts of adult quail and chicken, but also revealed four novel ASIP 

transcripts. ASIP transcripts were variably expressed over the ventral and dorsal 

surfaces. In situ hybridization revealed that ASIP is strongly expressed in ventral FFs 

in E8 and E12, but not dorsally. Additionally, there was no support for a role of AGRP 

in regulating pigmentation. POMC transcripts shared only some similarity with the 

chicken. POMC FF expression was strong at E8 and E12 in both ventral and dorsal 

FFs. PC1 was not found within FFs. At E8 dorsoventral PC2 FF expression was faint, 

but at E12, PC2 was strongly expressed in ventral and dorsal FFs. Therefore, the 

pale-bellied phenotype of quail is due to inhibition of MC1R via ASIP, whereas POMC 

and PC2 probably contribute to dorsal pigmentation and within-feather patterning. 

However, it is unknown how pigment-type switching to pheomelanin is controlled 

dorsally. Nevertheless, our study further supports the role of ASIP in quail pale-

bellied phenotype, and that activation of MC1R via POMC and PC2 may contribute to 

dorsal patterning.  
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Introduction 

 

 The developmental basis of plumage patterns is an interesting question, as it 

is the material that is shaped by natural selection, and the properties of 

developmental mechanisms have implications for the evolution of plumage 

phenotypes. Pigmentation patterns are common in mammals and birds, frequently 

differ between males and females, as well as adults and juveniles, and are derived 

from well-defined hierarchical developmental modules (Lu et al. 1994; Vrieling et al. 

1994; Wilson et al. 1995; Jackson 1997; Krude and Grüters 2000; Prum and 

Williamson 2002; Prum and Dyck 2003; Steingrímsson, Copeland, and Jenkins 2006; 

Anistoroaei and Christensen 2007; Candille et al. 2007; Jackson et al. 2007; 

Fontanesi et al. 2010). The main focus of pattern evolution has been its functional 

significance in communication and camouflage, including background matching and 

aposematism (Ruxton, Speed, and Kelly 2004; Stevens and Merilaita 2009a; Allen et 

al. 2010; Gluckman and Cardoso 2010). Yet, the repeated convergence of these 

patterns within and between animal groups implies that the evolution of pattern 

phenotypes may be subject to developmental constraints (Murray 1981; Price and 

Pavelka 1996; Arendt and Reznick 2008). It is hypothesised that a Turing reaction-

diffusion system of melanin synthesis may be responsible for within-feather 

patterning which relies on the combined action of two molecules (morphogens) (Prum 

and Williamson 2002). However, this has not been demonstrated empirically and it is 

currently unknown what these morphogens may be.    

 Pigmentation patterns can be comprised of patches of feathers that have the 

same pigmentation within feathers, or can be alternately pigmented with different 

types of melanin within-feathers creating visual patterns such as bars and spots. To 

produce within-feather patterns requires both spatial and temporal control of 

pigmentation. The only known type of pigmentation that can be precisely controlled 

by spatiotemporal mechanisms to produce within-feather patterns is melanin, which 

is solely produced by melanocytes. The developmental origins of feather-based 

melanin begin with neural crest cells that follow the dorsolateral migratory pathway 

before entering the ectoderm and developing feather follicles as melanoblasts. 

Melanoblasts develop into mature pigment forming cells, melanocytes, that 
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synthesise melanin in melanosomes and transfer them to keratinocytes via 

pseudopodia (Le Douarin and Kalcheim 1999; Prum and Williamson 2002).  

 Two mechanisms of within-feather pattern formation have been 

demonstrated: melanocyte distribution/differentiation and pigment-type switching via 

the melanocortin-1 receptor (MC1R). For example, the distribution of melanocytes 

can lead to complex patterns such as bars and spots, in certain chicken breeds (Lin 

et al. 2013). The second mechanism acts via differential stimulation of the MC1 

receptors on the surface of melanocytes that determines the type of melanin 

synthesized: inhibition of MC1R leads to pheomelanin (pale yellow/red) whereas 

activation leads to eumelanin (black/brown) (Bilodeau et al. 2001; Tachibana et al. 

2001; Gantz and Fong 2003; Hill and McGraw 2006b). The agouti signaling protein 

(ASIP) is an inverse agonist of MC1R which has been implicated in mammalian (i) 

dorsoventral patterning, (ii) temporal-specific regulation of pigment deposition during 

hair growth leading to banding patterns (Bultman, Michaud, and Woychik 1992; 

Vrieling et al. 1994; Barsh 1996; Fontanesi et al. 2010; Kaelin et al. 2012), and (iii) 

inhibition of melanocyte differentiation (Aberdam et al. 1998; Linnen et al. 2009). In 

chicken and quail, ASIP may function in dorsoventral patterning, within-feather 

patterning and sexual dichromatism (Nadeau et al. 2008; Oribe et al. 2012; 

Yoshihara et al. 2012). Due to the importance of ASIP in patterning in mice, coupled 

with the strong conservation of pigmentation genes in mammals and birds, previous 

studies on the mechanisms of feather patterning via differential stimulation of MC1R 

have focused on inhibition, whereas genes involved in activation have been largely 

overlooked (Yoshihara et al. 2011; Oribe et al. 2012; Yoshihara et al. 2012). The 

agonists of MC1R are melanocortin peptides. Melanocortins are a family of 

structurally related peptides that are generated by post-translational processing of 

the pro-opiomelanocortin peptide (POMC) that is encoded by the POMC gene 

(Benjannet et al. 1991; Takeuchi, Teshigawara, and Takahashi 1999; Yoshihara et 

al. 2011).  

 

 The development of plumage pigmentation in the Japanese quail (Coturnix 

japonica) is a classic model system (Willier and Rawles 1938; Rawles 1939; Willier 

and Rawles 1940; Richardson, Hornbruch, and Wolpert 1989; Richardson, 
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Hornbruch, and Wolpert 1990; Richardson, Hornbruch, and Wolpert 1991). Quail 

embryos develop dorsal stripes of dark and pale feathers, with differential 

pigmentation of eumelanin and pheomelanin within the dark feathers, and a pale 

belly consisting of pheomelanin-containing feathers. In adulthood, Japanese quail 

have pronounced patterns on the dorsal surface and retain a pale belly.  

 

 From early transplantation experiments between several host and donor 

species (e.g. quail, guinea fowl, and chicken breeds) it was thought that the capacity 

of a feather follicle to develop patterning was largely the property of the melanocyte 

(Willier and Rawles 1938; Rawles 1939; Willier and Rawles 1940). For example, the 

transfer of melanoblasts from donors with barred feather patterns into a non-barred 

host resulted in patterned feathers in the host, whereas the transfer of melanoblasts 

from a non-patterned donor into a patterned host did not result in patterns in the host 

(Willier and Rawles 1940). However, a recent landmark study demonstrated that 

within-feather patterning can occur either by alternating the presence/absence of 

melanocytes or by suppression of melanocyte differentiation which is likely due to 

extracellular factors (Lin et al. 2013). Although this represents an important step 

forward, Lin et al.’s (2013) study focused on plumage that is due to either black 

and/or white coloration whereas many plumage patterns, including that of quail, are 

largely due to differential deposition of eumelanin and pheomelanin.   

 

 Melanocyte development and differentiation is controlled by the endothelin B 

receptor (EDNRB), as well as its ligand endothelin 3 (EDN3), and the melanocyte 

initiation transcription factor (MITF). The EDNRB receptor and EDN3 can cause large 

changes in the phenotype of vertebrates and chickens (e.g. White leghorn) and quail 

(Panda mutation) due to impaired differentiation and survival of neural crest cells 

(Jackson 1997; Niwa et al. 2002; Miwa et al. 2006; Miwa et al. 2007; Saldana-

Caboverde and Kos 2010; Kinoshita et al. 2014). Mutations at the MITF locus cause 

widespread changes in quail and chicken coloration e.g. blue in chicken and silver in 

quail (Mochii, Ono, et al. 1998; Niwa et al. 2002; Minvielle et al. 2010; Lin et al. 

2013). Silver homozygotes in quail are entirely white, whereas heterozygotes retain a 

reduced amount of within-feather patterning. The major pathways that influence MITF 
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transcription are the mitogen-active protein kinase (MAPK) pathway, Wnt signalling 

pathway and cyclic adenosine monophosphate pathway (cAMP), all of which are 

known to play a role in pigmentation in mice (Steingrímsson, Copeland, and Jenkins 

2006; Poelstra et al. 2014). MAP protein kinases have diverse functions in cell 

proliferation and gene expression (Cuadrado and Nebreda 2010). However, it is 

unknown whether this pathway affects pigmentation patterns in birds. Transcriptional 

activation via the Wnt signalling pathway also serves diverse functions, and regulates 

transcription of target genes (Mosimann, Hausmann, and Basler 2009). It appears 

that the Wnt signalling pathway is important in feather formation, however little is 

known of its function in avian pigmentation (Chang et al. 2004). Defective transport of 

melanosomes via mutations in the melanophilin gene (MLPH) within follicular 

melanocytes of vertebrates can cause phenotypic changes leading to an overall 

white or pale coloration (e.g. silver mutation) (Matesic et al. 2001; Ishida et al. 2006; 

Anistoroaei and Christensen 2007; Welle et al. 2009). In adult Japanese quail, 

mutations in MLPH result in a paler phenotype, including dorsal within-feather 

patterns, but the pattern is still present (Bed’Hom et al. 2012).  

 

 Melanin synthesis requires the melanocyte-specific enzyme Tyrosinase (TYR) 

to catalyse the first steps of the pathway. TYR catalyses the reaction of the amino 

acid tyrosine to dihydroxyphenylalanine (DOPA), and then catalyses the reaction of 

DOPA to form DOPAquinone (Ito, Wakamatsu, and Ozeki 2000). In chickens, 

mutations in the Tyrosinase gene have an albino phenotype (Tobita-Teramoto et al. 

2000; Chang et al. 2006). Beyond these initial steps of melanogenesis, 

pheomelanogenesis and eumelanogenesis differ. Eumelanin synthesis requires 

tyrosinase-related protein 1 (TYRP1) and DOPAchrome tautomerase (DCT) (Ito, 

Wakamatsu, and Ozeki 2000). In contrast, pheomelanin appears to require few other 

proteins, but additionally requires cysteine for conjugation of dopaquinone (Hill and 

McGraw 2006b; Dessinioti et al. 2009; Galván, Ghanem, and Møller 2012). The main 

physiological reservoir of cysteine is the tripeptide glutathione (GSH) which is 

synthesised by glutathione S-transferase (GST) (Nataf et al. 1995).  

 

 A quail mutant, black at hatch (Bh), has a phenotype that lacks between 
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stripe and within-feather pigmentation on the dorsal surface (Shiojiri et al. 1999). Both 

Bh heterozygotes and homozygotes lack dorsal patterning, which is due to an 

increase in the distribution of eumelanin or pheomelanin, respectively. To elucidate 

the mechanisms underlying phenotypic differences between wildtype and Bh 

mutants, Niwa et al. (2002), examined the expression pattern of genes involved in 

melanocyte development and pigment production, e.g. the Melanoblast/Melanocyte 

early antigen marker (MelEM) and the Melanosomal matrix protein 15 (Mmp115). 

MelEM is an Alpha class subunit of GST and marks early melanoblasts that are 

committed to synthesize eumelanin (Nataf et al. 1995). Mmp115 functions in 

melanosome production (Mochii, Agata, et al. 1988; Mochii, Takeuchi, et al. 1988; 

April, Jackson, and Kidson 1998). Most of the study genes involved in melanocyte 

development (Mitf, MelEm antigen, Kitl, Kit and EdnrB2) did not correlate with 

pigmentation patterns between wildtype and Bh mutants, except for the MelEm 

antigen. Therefore, MelEM may play a role in the dorsal pigmentation of quail, but its 

function in melanin synthesis is currently unknown (Nataf et al. 1995). Of the study 

genes involved in pigment production (Dct, Tyrp1, Tyr and Mmp115), Dct and Tyrp1 

were down-regulated in the melanocytes of homozygote Bh mutants. Mitf actively 

controls Dct and Tyrp1 (Mochii, Mazaki, et al. 1998) and did not vary between 

wildtype or Bh mutants (Niwa et al. 2002). Therefore, the Bh locus may act upstream 

of Dct and Tyrp1, or the Bh locus might be involved in another signaling system that 

regulates the expression of eumelanogenic enzymes independent of Mitf.  

  

 Two G-protein coupled receptors are required for normal melanocyte function: 

EDNRB and MC1R (Jackson 1997). There is currently no evidence to suggest that 

the EDNRB locus may have a function in within-feather patterning (Kinoshita et al. 

2014). However, mutations at the MC1R locus underlie large variation in melanin 

distribution over the body in a wide variety of mammals and birds, including both 

mutants and wild-type polymorphisms (Harding et al. 2000; Kijas et al. 2001; Theron 

et al. 2001; Eizirik et al. 2003; Kerje et al. 2003; Majerus and Mundy 2003; Doucet et 

al. 2004; Rosenblum, Hoekstra, and Nachman 2004; Mundy 2005; Hoekstra et al. 

2006; Nadeau, Burke, and Mundy 2007; Pointer and Mundy 2008; Vidal et al. 2010).  
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 MC1R is expressed on the plasma membrane of follicular melanocytes in 

mammals and birds and differential control of this receptor results in either 

pheomelanin or eumelanin. As mentioned earlier, binding of ASIP to MC1R leads to a 

decrease in intracellular cAMP, leading to pheomelanin production, whereas binding 

of the melanocyte-stimulating hormone (MSH) to MC1R increases cAMP production 

leading to eumelanin synthesis. However, basal activity of MC1R can vary between 

species. For example, in mice the absence of MC1R stimulation in a POMC mutant 

does not result in dramatic changes in eumelanin (Slominski et al. 2005). In contrast, 

activation of MC1R is required for eumelanin synthesis in human hair, because 

MC1R is expressed ten times less in humans than in mice (Krude et al. 1998; 

Steingrímsson, Copeland, and Jenkins 2006; Jackson et al. 2007). Therefore, in 

humans POMC is required for eumelanin pigmentation, whereas in mice it is not. 

However, mice require ASIP to produce the pheomelanin-containing pale-bellied 

phenotype. Chicken MC1R expressed in vitro has low basal activity (measured by 

cAMP production) in the absence of ligands (Ling et al. 2003). Comparing binding 

affinities of ligands to chicken and human MC1R, the chicken receptor has a much 

lower affinity than in humans, e.g. binding affinity of α-MSH to chicken MC1R is 363 

nM compared to 0.210 nM in humans (Ling et al. 2004). Thus, avian MC1R is highly 

likely to require activation although the density of melanocyte receptors in avian 

melanocytes is currently unknown.  

 

 Two genes inhibit MC1R activity: the first to be discovered in birds was the 

agouti related protein (AGRP), followed by its paralogue ASIP. Early in vertebrate 

evolution, AGRP and ASIP arose by gene duplication. In the chicken, AGRP 

expression was first detected in skin tissue, before ASIP had been discovered, and is 

co-expressed with melanocortin peptides in the eye (Takeuchi, Teshigawara, and 

Takahashi 2000). AGRP is expressed in the nervous system of mammals and can 

have a paracrine effect on MCR function (Boswell, Li, and Takeuchi 2002; Klovins 

and Schiöth 2006; Nadeau et al. 2008). Given that AGRP can inhibit melanocortin 

receptors, it is possible that AGRP may play a role in inhibiting MC1R activity in avian 

pigmentation patterns, but this has not been investigated.  
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It has been reported that ASIP may function in phenotypic changes by 

inhibiting differentiation of melanoblasts (Aberdam et al. 1998; Linnen et al. 2009), 

e.g. Felidae, cattle, rabbit, quail and chicken (Eizirik et al. 2003; Girardot et al. 2005; 

Nadeau et al. 2008; Fontanesi et al. 2010; Oribe et al. 2012; Yoshihara et al. 2012). 

Unpigmented areas of plumage on the ventral surface of wings of Japanese quail 

chicks are DOPA-negative indicating an absence of melanoblast maturation 

(Richardson, Hornbruch, and Wolpert 1989). However, this only indicates whether 

pigment forming cells are capable of producing melanin, and does not indicate 

whether melanocytes are present or absent, and therefore, whether embryonic pale 

pigmentation in quail is due to melanocyte distribution and inhibited maturation. A 

more direct assessment of the expression of melanocyte distribution would be to 

trace neural crest cells within feather follicles. One such method is to use Sox10 as a 

marker, for cells of neural crest origin (Cheng et al. 2000). Alternatively, pale 

pigmentation and within-feather patterning may be due to regulation of MC1R activity 

without effects on melanocyte distribution/maturation.  

 

 Different promoter sites of ASIP can lead to spatial and temporal control of 

pigmentation in laboratory mice and naturally occurring colour variants of the genus 

Peromyscus (Bultman, Michaud, and Woychik 1992; Vrieling et al. 1994; Fontanesi 

et al. 2010; Manceau et al. 2011). There are four murine ASIP alternatively spliced 

variants produced by two kinds of promoters – the distal promoter is ventral-specific 

and the other is a hair cycle-specific promoter that causes banded “agouti hairs” 

(Bultman, Michaud, and Woychik 1992; Vrieling et al. 1994; Manceau et al. 2011). In 

rabbits there are two ASIP alternatively spliced transcripts, each with a different 

promoter site (Fontanesi et al. 2010). Birds also have multiple ASIP alternatively 

spliced transcripts, with some evidence to suggest that they contribute to pattern 

formation and that the distal promoter site is also ventral specific (Nadeau et al. 

2008; Yoshihara et al. 2012).  

 

 Nadeau et al. (2008) were the first to document ASIP gene expression in skin 

samples of adult quail, quail mutant Yellow (which has a pale phenotype) and the 

chicken (Gallus gallus). The expression of ASIP was significantly higher on the 
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ventral surface in both phenotypes and species examined (Nadeau et al. 2008). 

Three ASIP alternatively spliced transcripts were reported: 1a is expressed on quail 

dorsal and ventral surfaces but in the chicken 1a is ventral specific, expression of 1b 

and 1c is the same in quail and chicken, where the former is ventral specific and the 

latter is expressed on both the dorsal and ventral surfaces (Nadeau et al. 2008). High 

variability in the expression of ASIP transcripts between the ventral and dorsal 

surfaces of quail and chicken was interpreted as variation due to within-feather 

patterning. An additional four transcripts were subsequently reported in the chicken, 

that corresponded well with the previously described adult quail and chicken ASIP 

transcripts, and are transcribed over three promoter sites (classes) within chicken 

feather follicles: Class 1 consists of five transcripts that have E1S as the non-coding 

leader exon, whereas class 2 has E4 as the leader exon, and class 3 has E5 

(Yoshihara et al. 2012). Of these seven transcripts E1S was consistently expressed 

and all classes of ASIP were found in chicken dorsal feather follicles. In situ 

hybridization revealed that ASIP is present in the dorsal feathers of adult chicken 

where pheomelanin is present, but not eumelanin that indicates that ASIP may have 

a role in pheomelanin synthesis. However, the relative abundance of the different 

transcripts was not described and no comparison was made with ventral plumage.  

 

 ASIP may also play a role in sexual dichromatism in chickens, and it was 

suggested that the most distal promoter (class 1) produces a pale-bellied phenotype 

that may have been conserved in mammals and birds (Oribe et al. 2012). Oestrogen 

treatment of adult male Okayama-Jidori chickens, that have slender barred 

ornamental feathers in the saddle, resulted in males molting into female like plumage, 

which consists of broader unbarred pennaceous feathers heavily pigmented with 

pheomelanin. Up-regulation of class 1 transcripts was correlated with this change in 

phenotype whereas the class 3 ASIP transcript was expressed on both surfaces, and 

class 2 could not be detected. However, barred patterns were still apparent in the 

female induced plumage in males, possibly because males were not castrated 

resulting in continued circulating testosterone. In addition, the electrophoretic figure 

for RT-PCR for class 1 mRNA showed a faint band on the dorsal surface of 1 week 

old chicks and 4 week old juveniles, albeit pale, and class 1 ASIP mRNA was also 
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found in dorsal feathers of the chicken (Yoshihara et al. 2012) demonstrating that 

class 1 is not ventral specific.  

 

 The POMC gene is thought to have co-evolved with the five melanocortin 

receptors (MC1R - MC5R) 500 million years ago (Dores and Baron 2011; Dores 

2013). The receptors serve in a diverse array of physiological functions: MC1R - 

pigmentation, MC2R – steroidogenesis, MC3R – homeostasis, MC4R – regulation of 

food intake as well as sexual function, MC5R – sebaceous gland secretions (Jackson 

1997; Kerje et al. 2003; Hoggard 2004; Boswell 2005; Boswell and Takeuchi 2005). 

The most common melanocortins implicated in pigmentation are adrenocorticotropic 

hormone (ACTH) and α-MSH (Takeuchi et al. 2003; Takahashi et al. 2006; Roulin et 

al. 2011; Yoshihara et al. 2011; Roulin and Ducrest 2013). Chicken ACTH contains 

39 residues and the first 13 amino acids of ACTH contain the α-MSH peptide 

(Hayashi, Imai, and Imai 1991). The endoproteases prohormone convertase 1 (PC1) 

and prohormone convertase 2 (PC2) are responsible for cleavage of POMC 

products. PC1 cleaves the pro-opiomelanocortin peptide to make ACTH as well as 

β-lipotropin whereas PC2 cleaves pro-opiomelanocortin or ACTH to make α-MSH 

or desacetyl-α-MSH (Benjannet et al. 1991; Lu et al. 1994; Ling et al. 2004).  

 

 In vertebrates the main source of circulating MSH is the intermediate lobe of 

the pituitary, which is not well defined in humans and birds (Yoshihara et al. 2011). In 

humans, a lack of a well defined intermediate lobe of the pituitary may have led to the 

evolution of a cutaneous melanocortin system for integument pigmentation, or vice 

versa, and perhaps a similar situation has arisen in birds. ACTH and MSH coexist in 

the same cells in the cephalic half of the anterior lobe of the pituitary in the duck and 

chicken and have also been detected in chicken feather follicles (Yoshihara et al. 

2011). In the chicken it has been found that ACTH binds with a higher affinity to 

MC1R than MSH and it has been proposed that ACTH may have a function in 

pigmentation patterns (Ling et al. 2004; Yoshihara et al. 2011).  

 

 In a study on extracellular MC1R ligands in the silky and Okayama-Jidori 

breeds of chicken, it was discovered that POMC, PC1 and PC2 are expressed within 
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adult feather follicles (Yoshihara et al. 2011). Clear positive signals were found for 

ACTH using dot-blotting, but MSH was only expressed at trace levels. Investigating 

patterns of expression in adult feather follicles, four alternatively spliced POMC 

transcripts were detected that result from two promoter sites (Class a and b), with 

and without a non-coding exon (Yoshihara et al. 2011). Class a transcripts were only 

expressed in feather follicles whereas class b transcripts were expressed in the 

pituitary, hypothalamus, and peripheral tissues, in addition to feather follicles. Given 

that strong positive signals were only found for ACTH, and that ACTH binds with a 

higher affinity to MC1R than MSH, the authors suggested that ACTH might have a 

function in plumage pattern formation. However, the results of this study are difficult 

to interpret given that two different breeds of chickens that have very different 

phenotypes were studied (white plumage vs. barred plumage) yet no comparisons 

were made among the breeds and it is unclear which results related to which breed. 

Nevertheless, this study is the first to demonstrate expression of an avian POMC 

gene with alternatively spliced transcripts in chicken feather follicles. In tawny owls 

(Strix aluco), it was suggested that POMC/PC1/PC2 may mediate a correlation 

between melanin-based coloration and fitness (Roulin et al. 2011). Therefore, the loci 

involved in activation of MC1R may have an important contribution to within-feather 

patterns.   

 

 The previous studies of ASIP and POMC function in the patterning of chicken 

and quail did not control for developmental stage (Nadeau et al. 2008; Yoshihara et 

al. 2011; Oribe et al. 2012; Yoshihara et al. 2012). Embryonic development provides 

the opportunity to strictly control for developmental stage in the mechanism of pattern 

formation. In this study, we aimed to identify how melanocyte differentiation or MC1R 

activity may influence patterning in wild-type quail embryos. In particular, we wanted 

to test if the species-typical plumage patterning of embryonic quail is due to a) 

melanocyte differentiation, b) MC1R inhibition, or c) MC1R stimulation, at two stages 

of feather development. If plumage patterns are due to melanocyte distribution, the 

Sox10 marker will show that melanocytes are not evenly spread within and between 

feather follicles on the dorsal surface and few melanocytes will be present in ventral 

feather follicles. In contrast, if plumage patterns are due to cAMP activity we would 
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expect the following: either ASIP or AGRP will be uniformly distributed in feather 

follicles on the ventral surface to control the pale-bellied phenotype and on the dorsal 

surface, ASIP/AGRP will be displayed between the dorsal stripes, and within-feathers 

that have banding patterns. In addition, we would expect ASIP cycle specific 

transcripts/promoter sites to be variable, whereas the ventral specific 

transcripts/promoter sites would be consistently expressed in all ventral samples. 

Finally, if POMC/PC1/PC2 does have a role in pigmentation patterns it will be 

expressed within the feather follicles, and perhaps these genes will be expressed 

where ASIP/AGRP are not, thereby completing the study of ASIP and pheomelanin in 

the chicken by Yoshihara et al. (2012), or perhaps one gene may be constantly 

expressed and the other varies in a temporal-specific manner. 

 

 

Materials and Methods  

  

 Fertilized wild-type quail (Coturnix japonica) eggs were obtained from 

commercial sources. Plumage pigmentation is first visible between 8-9 days, the 

equivalent of chicken stages 35-36, and is fully developed by 11-12 days, or chicken 

stage 41-42 (Hamburger and Hamilton 1992; Ainsworth, Stanley, and Evans 2010). 

Therefore, we harvested embryos at E8 and E12. As there can be variation in 

developmental stage between individuals, each embryo was checked to ensure that it 

was at the required stage of development. Embryos where the eyelid had begun to 

overgrow the surface of the eyeball and had some feather pigmentation on the dorsal 

surface, but not on the forehead and crown, were considered to be representative of 

E8. Embryos that had prominent pigmentation and white feather germs around the 

eye were considered representative of E12. Some of the E12 embryos did not have 

pigmentation on the feet, a key spotting character. However, all specimens had fully 

developed plumage and were considered representative of well-developed 

embryonic plumage appropriate for E12. Tissue and embryos were harvested in 

phosphate buffered saline (PBS) containing diethylpyrocarbonate (DEPC) treated- 

distilled water. Samples of ventral and dorsal epidermal tissue were dissected and 

stored separately in RNAlater at 4 degrees overnight for increased tissue penetration, 
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and then at -20 until RNA extraction. For RT-PCR, we sampled three embryos of 

developmental stage E8 and three embryos of developmental stage E12, and for in 

situ hybridization we sampled 2-3 individuals of each of these developmental stages.  

 

 

RT-PCR analysis 

 

 Total RNA was extracted from each sample with an RNeasy mini-kit (Qiagen), 

with a final elution in 30μl of RNase free distilled water. RNA integrity, purity and 

concentration (RIN values) were quantified using a BioAnalyser (Agilent). First 

strand cDNA syntheses were conducted with 1-3μg RNA and 1μl of 150ng/μl N6 

primer in a total volume of 10μl using Superscript RT II (Invitrogen) following the 

manufacturer’s instructions.  

 

 Reverse transcription polymerase chain reaction (RT-PCR) was carried 

out to examine which transcripts were expressed in each stage of development 

on samples from the ventral and dorsal surface of each embryo. RT-PCR was 

performed in 25μl total reactions containing 1.0 unit BIOTAQ polymerase 

(Bioline), 2.5μl 10x reaction buffer, 0.75μl 1.5mM MgCl2, 0.2μl 50mM dNTP, 1μl 

10μM each primer and 1μl of first strand synthesis product. PCR reactions were 

performed in a DNA Engine (MJ Research, Watertown, MA), with the following 

cycling parameters: Heated lid 110°C, 94°C for 2 mins.; 40 x 94°C for 30 secs., 55-

64°C for 30-60 secs., 72°C for 1 min; 72°C for 5 mins. PCR products were 

visualised on a 1% agarose gel. Sequencing was performed with Sanger 

sequencing on both strands using the PCR primers.  

  

 We searched for avian transcripts of our genes of interest on Genbank. 

Where possible, we used existing primers documented in other studies. To date, 

no study has demonstrated whether AGRP may have a function in avian 

phenotypes or that there are alternatively spliced transcripts of AGRP that have a 

function in plumage pigmentation. Therefore, we focused our sampling efforts 
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solely on the coding region of AGRP. Alternatively spliced transcripts and/or 

coding regions were amplified using published primers and primers designed 

from available quail and chicken ASIP and AGRP sequences from Genbank 

(Table 2.1; supplementary Table S2.1). Where available quail coding sequences 

were relatively short in comparison to the chicken, we designed primers using 

chicken transcripts to ensure increased sequence coverage, as these sequences 

are likely to be highly conserved between species.  

  

 During the course of amplifying alternatively spliced transcripts of ASIP, 

previously undocumented transcripts emerged: Novel 8a, Novel 8b, Novel 9, 

Novel 10, Novel 11. For these new alternatively spliced ASIP transcripts we 

designed reverse internal primers from the 3’ end of the non-coding region to 

ensure full sequence coverage of the novel exons (Table 2.1). Subsequently, 

we conducted blast searches on Genbank to determine whether homologous 

sequences are present in the chicken genome.  
  

 Similar to our approach to factors inhibiting MC1R, to document the role of 

activation of MC1R in avian pigmentation we conducted blast searches on 

Genbank to determine whether there are alternatively spliced transcripts of 

POMC. Several POMC alternatively spliced transcripts may have a function in 

pigmentation in chicken (Yoshihara et al. 2011). In addition, there are several 

unpublished quail POMC alternatively spliced transcripts available on Genbank 

(Table 2.1). Therefore, we designed primers to amplify the coding region of 

POMC as well as all chicken and quail alternatively spliced transcripts. For PC1 

and PC2, there are no reported alternatively spliced transcripts that function in 

avian pigmentation. In addition, the previous study that demonstrated PC1 and 

PC2 expression in feather follicles focused solely on the chicken and did not 

demonstrate where these genes are being expressed within feather relative to 

pheomelanin and eumelanin. Therefore, we focused our efforts on testing 

whether PC1 and PC2 are expressed in quail feather follicles.   
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 Sequences were aligned and edited using the SeqMan software 

(DNASTAR Inc., Madison WI, USA). Correspondence between quail and chicken 

alternatively spliced transcripts was examined by comparing and aligning 

sequences in Mega 6.06 (Tamura et al. 2013). Primers were subsequently 

optimized and redesigned as necessary. We used the housekeeping gene β-actin 

as a positive control for all RT-PCR reactions. Accession numbers of sequences 

from which the primers were designed, and amplicon size are listed in Table 2.1. 
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Table 2.1. Primers used for amplifying mRNA transcripts. The number of exons out of the total number of coding exons is provided as well as the expected 

sequence length, source of primers, and the accession number of each transcript. 

Target 

sequence Primer Primer sequence 

Non-coding 

exons (bp) 

Coding exons 

(bp) 

Expected 

amplicon 

length 

(bp) Primer source Accession 

β-actin  

       Coding 

sequence ACT1F TGCGTGACATCAAGGAGAAG - Exon 2/2: 250 250 Nadeau 2006 AB199913.1 

 

ACT1R CAGGTCCTTACGGATGTCCA 

   

Nadeau 2006 

 ASIP     

     Coding 

sequence ASIPF2 TCATTTTCATGACAGTGGGATT - Exon 1-3/3: 465 450 Nadeau 2006 NM_001115079.1 

 

ASIPR2.0 CCTTAACATGTTCCTCATTAGGTTTA 

   

Designed 

 E1S E1SF TGAAAAGGAAGCAGAACCAGA 58 Exon 1-3/3: 465 523 Designed AB518061.1 

 

ASIPR2.0 CCTTAACATGTTCCTCATTAGGTTTA 

   

Designed 

 E1L E1LF AGTTTTGGAGGTTCATTTCTAATGT 405 Exon 1-3/3: 465 870 Designed AB518065.1 

 

ASIPR2.0 CCTTAACATGTTCCTCATTAGGTTTA 

   

Designed 

 E2 E2F TAAACACATTGATGGCATTAACAA 64 Exon 1-3/3: 465 529 Designed AB518062.1 

 

ASIPR2.0 CCTTAACATGTTCCTCATTAGGTTTA 

   

Designed 

 E3 E3F GAAGCAGGCAGTCTTCTTGG 72 Exon 1-3/3: 465 470 Designed AB518063.1 

 

ASIPR2.0 CCTTAACATGTTCCTCATTAGGTTTA 

   

Designed 
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E4 ASIPF8 CCAGCATTTTCATATTTTCTGGA 111 Exon 1-3/3: 465 576 Nadeau 2006 AB518066.1 

 

ASIPR2.0 CCTTAACATGTTCCTCATTAGGTTTA 

   

Designed 

 E5 E5F TGAAATCAGTTGTGGCAGGAA 189 Exon 1-3/3: 465 654 Designed AB518067.1 

 

ASIPR2.0 CCTTAACATGTTCCTCATTAGGTTTA 

   

Designed 

 Novel 8a NewE1F GTGTGGTTGTGATGGTGATGG 71 Exon 1/3: 239 310 Designed TBA 

 

NewE1R GGGAGATCTGGGAGGTTCATT 

   

Designed 

 Novel 8b NewE1F GTGTGGTTGTGATGGTGATGG 467 Exon 1/3: 239 706 Designed TBA 

 

NewE1R GGGAGATCTGGGAGGTTCATT 

   

Designed 

 Novel 9 NewE4F GAGATCTTAAACAGCGCTGCA 372 Exon 3/3: 520 892 Designed TBA 

 

E2_R CAGCCTTAACATGTTCCTCATTA 

   

Designed 

 Novel 10 NewE1F GTGTGGTTGTGATGGTGATGG 182 Exon 1/3: 239 421 Designed TBA 

 

NewE1R GGGAGATCTGGGAGGTTCATT 

   

Designed 

 Novel 11 NewE3F TTTTTGGGAGCTGTTGTCCTC 184 Exon 3/3: 520 704 Designed TBA 

 

E2_R CAGCCTTAACATGTTCCTCATTA 

   

Designed 

 AGRP     

     Coding 

sequence AGRPF1 CCAGGACCATGCTGAAC - Exon 2/2: 449 449 Nadeau 2006 AB489990.1 

  AGRPR CAGGAAGATCAGCACCACCT 

   

Designed 

 POMC 

       Coding 

sequence POMCF CTGGGGCTGCTGCTGCTGTGT - Exon 2/2: 717 717 Designed NM_001031098.1 

 

POMCR TGACCCTTCTTGTAGGCGCTTT 

   

Designed 

 Promoter A APOMC CCCATAAGCGACTTGCCTTC 169 Exon 2/2: 711 880 Designed AB593424 
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QER CAGAGTCATCAGCGGGGTCT 

   

Designed 

 

A-2; B-2 POMC B-2 CTCTCCCCCTGCAGCATC 143 Exon 2/2: 711 854 Designed 

AB593425; 

AB593427 

 

QER CAGAGTCATCAGCGGGGTCT 

   

Designed 

 Promoter B BF AGCGCTCCTCTGCAGTTTG 42 Exon 2/2: 711 753 Designed AB593426.1 

 

BR CAGAGTCATCAGCGGGGTCT 

   

Designed 

 T2 QEF2 ACTTCCAGCGTCTCCCAGAG 252 Exon 2/2: 711 963 Designed AB620012.1 

 

QER CAGAGTCATCAGCGGGGTCT 

   

Designed 

 T3 QEF1 GATTTCGGAGGCAAAGGATG 175 Exon 2/2: 711 886 Designed AB620013.1 

 

QER CAGAGTCATCAGCGGGGTCT 

   

Designed 

 PC1     

     Coding 

sequence PC1F CTACGCCAACTATGATCCAAGG - 

Exon 5-10/14: 

847 847 Designed XM_003643060.2 

  PC1R TTTCCATCTTTTGGGATCAGC 

   

Designed 

 PC2 

       Coding 

sequence PC2F GGGAGGGAAAGGAAGCATCT - 

Exon 9-11/12: 

800 800 Designed XM_419332 

  PC2R GGTCTTCTCCCCAAGTGTGTG 

   

Designed 
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Immunohistochemistry 

 

 Tissue preparation and procedures used DEPC-H20 and DEPC-PBS as 

necessary. For in situ hybridization, whole embryos were fixed in modified Carnoy’s 

(60% ethanol, 11.1% formaldehyde, 10% glacial acetic acid) for four hours, 

dehydrated in ethanol and cleared in Histosol (National Diagnostics). E12 embryos 

were cut along the sagittal plane to improve Histosol tissue penetration. Embryos 

were embedded in paraffin wax (Raymond Lamb) and transversely sectioned with a 

rotary microtome (Micron). E8 embryos were sectioned at 10μm, however due to the 

size difference and the extended time required to clear the E12 embryos in Histosol 

(3 weeks), the E12 embryos were more prone to crumbling and were sectioned at 

14μm, which is still adequate for probe tissue penetration. Embryos were cut in serial 

sections and eight serial sections per embryo per slide were mounted in DEPC-H20 

on Superfrost® Plus slides (VWR), and dried overnight at 37°C. All probes were 

initially tested on a sub-sample of each embryonic stage to test whether optimization 

was required e.g. probe dilution, temperature of in situ hybridization, length of MABT 

washes, and temperature in which the colour reaction was applied. All experiments 

represent a minimum of two replicates of E8 and E12 for each probe and the 

experiments were considered representative of development where most sections in 

each slide showed the same result – sections with background or abnormal staining 

that covered most of a section were excluded from the final interpretation or repeated 

if necessary. For each round of in situ hybridization experiments, at least one embryo 

was represented twice, one had the sense probe, and other replicate had the anti-

sense probe. Other than the probe applied, the slide with the sense probe was 

experimentally tested in the same way as the corresponding slide with the anti-sense 

probe, e.g. the colour reaction was applied for the same amount of time at the same 

temperature. The sense probe is provided alongside the anti-sense probe from the 

corresponding tissue from the same section. 

 

 Sox10 plasmids, containing the full-length chicken 2.2kb Sox10 sequence, 

were gifts of M. Bronner (Caltech, Pasadena, CA) to C.V.J Baker. For all other 

probes, primers for the coding sequences used to generate each probe are listed in 

Table 1. PCR product was ligated into One Shot Top10 chemically competent cells 

(Invitrogen) using a PCR cloning kit (Qiagen). PCR products were incubated with 
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cloning reagents and the vector overnight at 4°C in a total volume of 5 μl using the 

following amounts: 2x Ligation Master mix = 2.5μl, PCR product = 2μl, pDrive 

cloning vector = 0.5μl. Cells were transformed and grown according to the 

manufacturers instructions (Invitrogen). Plasmids were extracted using alkaline 

denaturation and stored at -20°C until probe synthesis (Birnboim and Doly 1979). 

To examine the direction of the insert relative to the promoter sites, plasmids 

were sequenced with Sanger sequencing. Probes were linearised using standard 

restriction enzymes and transcribed with DIG RNA labeling mix (Roche). The 

Sox10 anti-sense probe was linearized with HindIII and transcribed from T3. The 

ASIP, PC1, and PC2 anti-sense probes were linearized with NotI and transcribed 

from SP6, and the sense (negative control) probes were linearized with PstI and 

transcribed from T7. The AGRP and POMC anti-sense probes were linearized 

with PstI and transcribed from T7, and the sense probe was linearized with NotI 

and transcribed from SP6.  
 

 In situ hybridization was performed on the paraffin embedded sections with 

Digoxigenin-labelled Sox10, ASIP, AGRP, POMC, PC1 and PC2 probes diluted in 

hybridization mix, separately. Each probe was hybridized overnight at 68-72°C in a 

Boekel slide incubator.  After hybridization, slides were washed twice in 50% 

formamide, 50% 1xSSC and 0.1% Tween-20 at 65°C, then twice in MABT (0.1 M 

maleic acid, 150 mM NaCl, 0.1% Tween-20, pH 7.5) at room temperature. To block 

binding of nonspecific antibody, slides were incubated in 70% MABT, 20% natural 

sheep serum and 10% blocking reagent (Roche) for 2 hours. AP-conjugated anti-

digoxigenin antibody (Roche) was diluted in this blocking solution at a dilution of 

1/1500 and applied to slides, which were covered with parafilm and kept at room 

temperature overnight. Slides were subsequently rinsed in MABT 5 times for a 

minimum of 30 mins each. Slides hybridized with POMC probe were further rinsed in 

MABT overnight to reduce background. Slides were equilibrated in NTMT (100 mM 

NaCl, 50 mM MgCl2, 100 mM Tris pH 9.5, 0.1% Tween-20) twice for 10 mins each. 

To reveal colour, NBT-BCIP stock solution (Roche) was diluted in NTMT at a dilution 

of 1/1500 and applied to slides and covered with parafilm. The colour reaction of all 

probes, except for POMC, was performed at room temperature whereas the POMC 

colour reaction was conducted at 4°C.  
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 The genes examined in our experiments have additional neuroendocrine 

functions as well as a putative function in pigmentation in the epidermis providing 

positive control of the anti-sense probe within sections (Takeuchi and Takahashi 

1999; Takeuchi, Teshigawara, and Takahashi 2000; Ling et al. 2004; Nadeau et al. 

2008; Yabuuchi et al. 2010; Roulin et al. 2011; Yoshihara et al. 2011; Saneyasu et al. 

2013). Sections depicted in the figures are representative of staining between and 

within samples.  

 

 

Results 

 

Melanocyte distribution 

  

 Eumelanin is present in dorsal feather follicles at E8 but is more pronounced 

at E12 whereas pheomelanin is present in ventral feather follicles, with a small 

number of feather follicles in the flanks pigmented with eumelanin. In situ 

hybridization with Sox10 revealed that melanocytes are present at E8 but that there 

is variation in distribution over the ventral and dorsal surface.  On the ventral surface 

of E8 quail embryos, Sox10 staining was apparent only in some feather follicles but 

was present throughout all feather follicles on the dorsal surface. In addition, Sox10 

staining was apparent in the epidermis on both ventral and dorsal surfaces (Fig. 2.1). 

At E12 Sox10 was consistently expressed throughout feather follicles on both the 

ventral and the dorsal surface, as well as in the epidermis. In feather follicles at both 

stages of development, there was Sox10 staining both where melanin is present, as 

well as where it is absent.  
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Fig. 2.1. Melanocyte distribution in Japanese quail feather follicles during embryonic 

development at E8 and E12. At E8 and E12 melanin is rarely present in ventral 

feather follicles (FFs) but is frequently observed in many FFs on the dorsal surface. 

Melanocytes are present within the epidermis and feather follicles. Staining of Sox10 

occurs in areas where individual barbs are developing in feather follicles on both the 

ventral and the dorsal surface of E8 and E12 quail embryos. The distribution of 

melanocytes is not restricted to areas pigmented with melanin but also occurs in 

areas where melanin is absent. 

 

 

Genes inhibiting MC1R in melanocytes 

  

 We investigated 2 loci that inhibit MC1R: ASIP and its paralogue AGRP. 

Previously, it has been reported that adult quail have three ASIP alternatively spliced 

transcripts (1a, 1b, 1c), whereas the chicken has seven ASIP isoforms that are 

distributed among three promoter sites (classes) (Nadeau et al. 2008; Yoshihara et 

al. 2012). Aligning the non-coding regions of these ASIP isoforms reveals that there 

is close correspondence (Fig. 2.2). Quail transcript 1a, although short, matches 

chicken E1L, quail 1b matches chicken E3, and quail 1c matches chicken E4. 

However, neither 1a nor 1b is an exact match to the transcripts in chicken, as E1S is 

not alternatively spliced in either transcript. In contrast, 1c and E4, which are 
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comprised of only one non-coding exon, is an exact match.  

 

 
Fig. 2.2. Correspondence of ASIP alternatively spliced transcripts between 

embryonic Japanese quail, adult quail and chicken. Empty boxes represent non-

coding exons and solid boxes denote coding exons. Chicken promoter sites are 

underlined in green, chicken transcripts begin with “E”, and previously reported adult 

quail transcripts begin with “1” and are denoted with the corresponding chicken 

transcript with “==” (Nadeau et al. 2008; Yoshihara et al. 2012). Green lines and 

green boxes represent promoter sites and transcripts, respectively, that were 

successfully amplified in quail embryonic development, whereas red denotes 

transcripts that were not amplified. A blue line and blue empty boxes indicates a 

novel promoter site and novel alternatively spliced non-coding exons (begins with 

“N”), respectively, that have not been previously documented. 

 

 

 We report four new ASIP alternatively spliced transcripts (Fig. 2.3). Although 

we found 5 new alternatively spliced transcripts (Novel 8a, 8b, 9, 10, 11), we were 

only successful in sequencing Novel 8a once, which is similar in the 5’ non-coding 
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sequence to Novel 8b. As such, we are uncertain if Novel 8a represents a new non-

coding exon and discarded it from the subsequent results. The ASIP gene is located 

on chromosome 20. A refseq_genomic blastn search on Genbank against the Gallus 

gallus genome revealed that most of these novel transcripts are located upstream of 

ASIP. For Novel 8b, we did not find any significant similarity with genes on 

chromosome 20. Novel 9, 10 and 11 are located on the 5’ side of the ASIP locus. The 

distance from the non-coding exons to ASIP is 40kb for novel 10 and 11 (Fig. 2.2, 

2.3). Novel 11 is comprised of a new leader non-coding exon, alternatively spliced 

with the previously described non-coding exon 2 found in chicken, and is located 

between E1L and E2 (Yoshihara et al. 2012).  

 

 

#Novel 8a; #Novel 8b  
CAACGACTTGAAGTCAGGGCCGTCTTCTTGGCTACATGGCTGAG 

CAACGAGCTACCTTCAGGTGGTGTGAGGCTGGCAATGGGGTGCAGATGGGGCCTCATATCTC 

TGAGTAAATGGAACAGGCAGATGAGAAGGGCACAGCTGTGCTCTTCCACCTCAGCATGCTCC 

CTGGACATCCATGCCTCTTGGCTGCCCACTAACCTCAGCTGGAGAGTGCACAGTGATTAATA 

TTAGTGAATCTGATCTAAGCCTATTGCAAACCATTGATCTGAGCGGGCTGCACTGCTCCAAA 

AATAGCCTCACAATATTACTGAGGCATAGCTCTTGGTGTGGTGAGCTGCTCAAGCTGCCTAA 

TCACATACAAGACCCCAGGCTCTGTATGTTCTCAATGCTTTTTTCCTGTGACCACTGCTCAT 

CACACTTGGCTACTGTGGGTTAATACAGCTATGTCATGTTCAGCCAAATCAGCTGTCACATC 

AGCTCTCCATTT 
 

#Novel 9 
Cj CAGTGACTACATCTGGAAAAGAAAAAAGAAGAAACATGAAGATGACCATACGCCGTTGTA                

   ||||||| |||||||||||||||||||  |||||||||||||||||| ||||| ||||||   

Gg CAGTGACAACATCTGGAAAAGAAAAAA--AGAAACATGAAGATGACCGTACGCTGTTGTA 

 

Cj CAGTGACTACATCTGGAAAAGAAAAAAGAAGAAACATGAAGATGACCATACGCCGTTGTA              

   ||||||| ||||||||||||||||||| ||||||||||||||||||| ||||| ||||||   

Gg CAGTGACAACATCTGGAAAAGAAAAAA—-AGAAACATGAAGATGACCGTACGCTGTTGTA 

 

Cj TTTCCTTCTCAGATGAGTTATATTTTGAAAGCAGCAATAAAAAA-TTCTCAGATAAGGGA                    

   |||||||||||||||||||||||||||||||||||||||||||| ||||| | ||||||| 

Gg TTTCCTTCTCAGATGAGTTATATTTTGAAAGCAGCAATAAAAAACTTCTCGGGTAAGGGA    

 

Cj TTGGAGAAGTGATGGATTTGTGGCAGCGGCTGTCTTTTGGTCCTTCGTTGACTGCTTTGG                    

   |||||||||||||||| |||||||||||||||||||||||||||| | |||||  | |||    

Gg TTGGAGAAGTGATGGAATTGTGGCAGCGGCTGTCTTTTGGTCCTTGGCTGACTATTCTGG  



The mechanisms underlying convergent evolution in the plumage patterns of birds 

 51 

 

Cj GGTTGA--ATTTTTCTTTTTAATGTTCACATGTGTGTGCCTTTTTTGGGGGAAATGGGGC                  

   ||||||   ||||||||||| ||||||||| |||||| |||||||| ||| |||||||||   

Gg GGTTGATTTTTTTTCTTTTTGATGTTCACACGTGTGTACCTTTTTT-GGGAAAATGGGGC   

 

Cj CAGATTCCCCCCTGGCTGAGAGTCTACAGCTTCTTAAAGGTGAAGGCTGTTCCAGT                   

   |||||||||||||||||||||| |||||||||||||||||||||||||||||||||  

Gg CAGATTCCCCCCTGGCTGAGAGGCTACAGCTTCTTAAAGGTGAAGGCTGTTCCAGT  

 

#Novel 10 
Cj TTGTGGCAGCGGCTGTCTTTTGGTCCTTCATTGACTGCTTTGGGGTTGA--ATTTTTCTT                       

   ||||||||||||||||||||||||||||   |||||  | |||||||||   |||||||| 

Gg TTGTGGCAGCGGCTGTCTTTTGGTCCTTGGCTGACTATTCTGGGGTTGATTTTTTTTCTT 

 

Cj TTTAATGTTCCACCATGTGTGTGCCTTTTTTGGGGGAAATGGGGCCAGATTCCCCCCTGG                   

   ||| ||||||   || |||||| |||||||| ||| ||||||||||||||||||||||||  

Gg TTTGATGTTC--ACACGTGTGTACCTTTTTT-GGGAAAATGGGGCCAGATTCCCCCCTGG 

 

Cj CCTGAGAGTCTACAGCTTCTTAAAGGTGAAGGCTG-TCCAGT 

    ||||||| |||||||||||||||||||||||||| |||||| 

Gg -CTGAGAGGCTACAGCTTCTTAAAGGTGAAGGCTGTTCCAGT 

 

#Novel 11 + exon 2  
Cj TTCCAGGACCAGCAACTCTTATTTATAAATGCTATACAGCGTATATGTTAAGATTTATAC                   

   |||||| ||||||| |||||||||||||||| ||||| ||||||||||| ||||||||||   

Gg TTCCAGAACCAGCAGCTCTTATTTATAAATGTTATACCGCGTATATGTTCAGATTTATAC  

 

Cj AAGATGTTTTCATGGTACGCATAGAATTCTGAACCCTGTAAACACACTGATGGCATTAAC 

   |||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||| 

Gg AAGATGTTTTCATGGTACGCATAGAATTCTGAACCCTGTAAACACATTGATGGCATTAAC 

 

Cj AAGGACCAGATGTCAGTTGCCTTTCTCATAAAGAAAACAACAAG  

   |||||||||||||||||||||||||||||| |||||||||||||  

Gg AAGGACCAGATGTCAGTTGCCTTTCTCATATAGAAAACAACAAG   

Fig. 2.3. New ASIP alternatively spliced transcripts that have not been previously 

documented in the avian literature. Novel 8b had no significant similarity with the 

chicken genome. The first six base pairs of the 5’ non-coding sequence of Novel 8a 

(base pairs written in grey) and Novel 8b is the same as indicated by an underline. 

We were only able to sequence Novel 8a once and given its similarity to Novel 8b, 

Novel 8a may not represent a new alternatively spliced transcript. Novel 9-11 (Cj: 
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Coturnix japonica) are aligned to the chicken genome (Gg; Gallus gallus). A vertical 

bar - | - indicates matching base pairs and a space indicates no match, whereas 

dashes indicate indels. Novel 11 contains a new leader exon alternatively spliced 

with the existing chicken non-coding exon 2 (Yoshihara et al. 2012) which is 

highlighted in grey. 

 

 

 RT-PCR analyses revealed that ASIP was always expressed on both the 

dorsal and ventral surfaces and in both stages of quail embryonic development 

(Table 2.2). Non-coding exon E3 as well as alternatively spliced transcripts that 

combine more than one non-coding exon, such as the leader exon E1S, could not be 

amplified despite multiple attempts with numerous primer pairs. Of the isoforms that 

we successfully amplified by designing primers based on previously reported 

transcripts, there was considerable variation in expression at both the temporal and 

spatial scale (Fig. 2.2; Table 2.1, 2.2; supplementary Table S2.1).  

 

 Exon E1S was consistently expressed on the ventral surface in both stages of 

development, but was only present on the dorsal surface at E12. Exon E1L was only 

present on the ventral surface at E8 and was not present later in development on 

either surface (Table 2.2). E2 was consistently present on the ventral surface at both 

stages of development, and was variable on the dorsal surface at E8 but was absent 

on the dorsal surface of E12. E4 was variable in expression on the dorsal surface 

early in development but was consistently present on the ventral surface. At E12, E4 

was also consistently present on the ventral surface, but was not expressed on the 

dorsal surface. Similarly, E5 was consistently present on the ventral surface at both 

early and late stages of development, and was consistently present on the dorsal 

surface early in development, but in E12, E5 was variable in expression on the dorsal 

surface. For the primer pairs targeting E1S, E2 or E3, we did not find multiple bands 

in agarose gels, indicating that these exons do not appear to be alternatively spliced 

with other non-coding exons during quail embryonic development, as occurs in the 

chicken. Similar to the existing ASIP alternatively spliced transcripts there was 

variation in the expression of ASIP Novel 8b and Novel 10 within and between 

developmental stages. In contrast, ASIP Novel 11 and Novel 9 were expressed on 

both the ventral and dorsal surfaces in all embryos at stages E8 and E12 (Fig. 2.4; 

Table 2.2). 
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Table 2.2. Patterns of exon expression for ASIP and AGRP in embryonic quail at 

developmental stage E8 and E12 determined by RT-PCR. “+” = present, “-“ = absent, 

“+/-“ = variable expression.  

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Target	  sequence	     E8	   E12	  

β-actin  Dorsal	   +	   +	  

	  	   Ventral	   +	   +	  

ASIP	  coding	  	  

exons	  (6-‐8)	  
Dorsal	   +	   +	  

 

Ventral	   +	   +	  

E1S	   Dorsal	   -‐	   +	  

 

Ventral	   +	   +	  

E1L	   Dorsal	   -‐	   -‐	  

 

Ventral	   +	   -‐	  

E2	   Dorsal	   +	   -‐	  

 

Ventral	   +	   +	  

E4	   Dorsal	   +/- -‐	  

 

Ventral	   +	   +/- 

E5	   Dorsal	   +	   +/- 

	  
Ventral	   +	   +	  

Novel	  8b	   Dorsal	   +	   +/-‐	  

	  

Ventral	   +/-‐	   +	  

Novel	  9	   Dorsal	   +	   +	  

	  	   Ventral	   +	   +	  

Novel	  10	   Dorsal	   +/-‐	   -‐	  

	  

Ventral	   +/-‐	   +/-‐	  

Novel	  11	   Dorsal	   +	   +	  

	  

Ventral	   +	   +	  

AGRP	  coding	  

exons	  (1-‐2)	  
Dorsal	   +/- -‐	  

	  	   Ventral	   +/- +/- 
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Fig. 2.4. mRNA expression, detected by RT-PCR, of the previously undocumented 

ASIP alternatively spliced transcript Novel 11 in Japanese quail. The dorsoventral 

surface is indicated with brackets and the developmental stage is above the gel 

lanes: V = Ventral, D = Dorsal, N = Negative control. RT-PCR results are provided for 

ventral and dorsal surfaces for three samples of each stage, followed by a negative 

control. 

 

 

 The second locus that can inhibit MC1R is the ASIP paralogue AGRP. As 

there is no previous evidence to suggest that AGRP may have a function in patterns, 

or that there are alternatively spliced transcripts that have a role in pigmentation, we 

focused on the expression patterns of the coding sequence. AGRP expression was 

detected a both developmental stages. Expression at E8 was variable on both the 

ventral and dorsal surfaces, whereas at E12, it was not expressed dorsally and had 

variable expression ventrally (Table 2.2). 

 

 In situ hybridization confirmed that ASIP is expressed early in development at 

E8 and continued into later stages of development at E12 (Fig. 2.5). In both early and 

late stages of development, ASIP is strongly expressed within the pulp of developing 

feather follicles on the ventral surface and many ventral cells surrounding the dermal 

pulp in the epidermis exhibit ASIP nascent transcription. Some feather follicles on the 

flanks of the ventral surface near or on the wing have eumelanin pigmentation and a 

minority of these feather follicles had some staining for ASIP in the feather pulp both 

where eumelanin is present as well as where it is absent (Fig. 2.6). In contrast, in 

feather follicles on the dorsal surface of E8 and E12 embryos, there was no staining 

for ASIP in the dermal pulp but there does appear to be faint nascent transcription 

within some cells of the feather pulp and the epidermis. The pattern of expression of 
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ASIP on the dorsal surface did not vary between feather follicles that are pigmented 

with eumelanin and those that are not pigmented.  

 

 

 

 
Fig. 2.5. In situ hybridization results for ASIP and AGRP in quail feather follicles at E8 

and E12. ASIP is expressed in the dermal pulp of ventral feather follicles in E8 and 

E12 embryos, but is not visible on the dorsal surface. AGRP was not expressed in 

the feather follicles in early or late development, either ventrally or dorsally. 

Representative anti-sense and sense probes are shown in the spinal cord of E12 in 

ASIP and E8 in AGRP.  
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Fig. 2.6. ASIP expression in a feather follicle with eumelanin on the flank of an E12 

Japanese quail embryo.  In some feather follicles in the flank or on the wing of E12 

embryos ASIP expression was observed with eumelanin pigmentation.  

 

 

 Staining of AGRP was less prevalent than ASIP (Fig. 2.5). Unlike ASIP, 

AGRP was not strongly expressed in the pulp of developing feather follicles on the 

dorsal or ventral surface, at either stage of development or in the epidermis. 

However, nascent transcription of AGRP was commonly observed on the ventral and 

dorsal surface of E8 as well as E12 in feather follicles that contain melanin as well as 

those that did not have melanin pigmentation (Fig. 2.7).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7. Representative nascent transcription of AGRP in ventral developing feather 

follicles in E8 Japanese quail embryos. Similar staining was found in feather follicles 

on the dorsal surface of quail E8, as well as both the ventral and dorsal surface of 

quail E12, and the epidermis.   
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Genes activating MC1R in melanocytes 

  

 We investigated 3 loci that are involved in activation of MC1R: POMC, PC1 

and PC2. Yoshihara et al. (2011) previously described four alternatively spliced 

transcripts of POMC in chicken encompassing two promoter sites that are 

transcribed with and without an additional non-coding exon: A-1, A-2, B-1, and B-2. 

The chicken distal promoter site A is located 14kb upstream in another gene, 

ANGPTL7, whereas promoter site B is located within the POMC gene. In addition, 

three unpublished adult quail POMC alternatively spliced transcripts are available on 

NCBI: T1, T2, and T3 (Fig. 2.8; Table 2.1). Aligning these sequences, there is no 

correspondence between the chicken POMC A-1 and the quail transcripts. Chicken 

POMC B-1 corresponds well with quail T1 indicating that adult quail possess 

promoter site B. Chicken POMC A-2 and B-2 partially correspond with quail T2 and 

T3 as each possesses a chicken POMC non-coding exon but does not possess the 

corresponding chicken leader exon (Yoshihara et al. 2011). Finally, quail POMC T2 

and T3 are similar in possessing a 5’ quail non-coding exon, as well as the chicken 

non-coding exon, but T3 also possesses an additional 3’ quail non-coding exon 

before the POMC coding region (Fig. 2.8).  
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Fig. 2.8. Correspondence between alternatively spliced transcripts of POMC in 

embryonic Japanese quail and chicken. Adult chicken promoter sites and 

alternatively spliced transcripts are listed on the left, and the corresponding quail 

transcript is listed to the right of the transcript. Quail POMC transcripts that have no 

correspondence with chicken transcripts are listed with the novel promoter site 

(Yoshihara et al. 2011). Empty boxes represent non-coding exons and solid boxes 

denote coding exons. The non-coding exons that were amplified in quail embryonic 

development are represented with green, whereas red denotes the promoter site and 

non-coding exons that we were unable to amplify.  

 

 

 RT-PCR analyses revealed that the coding exons of POMC are always 

expressed on both the dorsal and ventral surfaces in quail E8 and E12 (Table 2.3). 

The chicken POMC non-coding exon POMC A-1 and quail T2 could not be amplified 

despite multiple attempts with numerous primer pairs (Fig. 2.8; Table 2.1; 

supplementary Table S2.1). Transcripts arising from promoter site B were present in 

almost all ventral and dorsal samples, at both E8 and E12, the exception being one 

dorsal sample in E8. The 3’ quail non-coding POMC exon was also variable in its 

expression, as it was amplified in two samples from each of E8 and E12, and was 

expressed in both ventral and dorsal samples.   
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Table 2.3. Patterns of expression for POMC in quail at embryonic stage E8 and E12 

determined by RT-PCR. “+” = present, and “+/-“ = variable expression.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

In situ hybridization revealed that POMC is expressed in the epidermis and 

feather follicles on the dorsal and ventral surface of quail E8 (Fig. 2.9). In addition, 

nascent transcription of POMC is frequently observed throughout feather follicles on 

both ventral and dorsal surfaces, in early and late stages of quail embryonic 

development. Within feather follicles, POMC is apparent in the feather cuticle as well 

as the feather pulp and this pattern of expression is consistent on the ventral and 

dorsal surface, both where melanin is present and where it is absent. This pattern of 

expression is the same in E12 embryos.  

 

 The other loci that are involved in activation of the MC1R pathway are the 

endoproteases PC1 and PC2 that cleave POMC products to make ACTH and MSH, 

respectively. As there is no evidence to suggest that there are alternatively spliced 

transcripts of PC1 and PC2 that have a role in feather follicle pigmentation, we 

focused on the expression patterns of the coding sequence. RT-PCR revealed that 

PC1 was present in nearly all samples on the ventral and dorsal surface at E8 and 

E12, the exception being one ventral sample from E8 (Fig. 2.9). Similarly, PC2 was 

present in all dorsal and ventral samples, in both stages of development examined.  

 

 In situ hybridization demonstrated that there is nascent transcription of PC1 

Target	  

sequence	     
E8	   E12	  

POMC Dorsal	   +	   +	  

	  
Ventral	   +	   +	  

Promoter	  B	   Dorsal	   +/- +	  

	  

Ventral	   +	   +	  

3'	  quail	  non-‐

coding	  exon	  
Dorsal	  

+/-‐	   +/-‐	  

	  	   Ventral	   +/-‐	   +/-‐	  
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within the feather pulp and the feather cuticle on the ventral and dorsal surface in E8 

quail embryos (Fig. 2.9). At E12 the low level of expression of PC1 had not 

progressed further than nascent transcription. PC2 is faintly expressed in feather 

follicles and the epidermis at E8 on both ventral and dorsal surfaces. At E12, PC2 

was also faintly expressed in the epidermis but there was strong expression of PC2 

within the feather pulp as well as the feather cuticle (Fig. 2.9). The patterns of 

expression were consistent in feather follicles over both the ventral and dorsal 

surface where melanin is expressed as well as where it is absent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9. POMC-, PC1- and PC2- Patterns of expression of POMC, PC1 and PC2 in 

feather follicles at E8 and E12. POMC is expressed in the dermal pulp of ventral and 

dorsal feather follicles in E8 and E12 embryos. Nascent transcription of PC1 was 

observed in developing feather follicles but did not develop further at E12. Similarly, 

there is nascent transcription of PC2 at E8 on both ventral and dorsal surfaces, but 

when feather development is more progressed (e.g. E12), PC2 is strongly expressed 
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in feather follicles on both the ventral and dorsal surface. Representative anti-sense 

and sense probes are shown in the dorsal epithelium of E12 in POMC and PC1, as 

well as in the spinal cord of E12 in PC2. 

 

 

Discussion 

 

 Our data provide some of the first evidence that extracellular ligands involved 

in MC1R activation and inhibition are involved in producing phenotypic variation over 

the ventral and dorsal surfaces in quail embryogenesis. Sox10 staining demonstrated 

that the species-typical dorsal pigmentation in embryonic quail is not due to 

melanocyte distribution. We discovered novel quail ASIP transcripts, that have not 

been previously described that may indicate evolution in the mechanism of inhibition 

of MC1R (Nadeau et al. 2008; Yoshihara et al. 2012). Similar to previous studies, we 

found that the pale-bellied phenotype of quail is consistent with inhibition of MC1R via 

ASIP, and that this mechanism has been conserved between mammals and birds. In 

contrast with mice, dorsal temporal specific patterning within-feathers does not 

appear to be due to regulation of ASIP. Of the six POMC transcripts previously 

described, only one is conserved between quail and chicken whereas the other 

POMC transcript possessed a 3’ non-coding exon that may be quail specific. Both of 

these transcripts showed variable expression over the ventral and dorsal surface. 

Nevertheless, the POMC coding region is expressed within dorsal and ventral feather 

follicles demonstrating that activation of MC1R may be required to produce 

eumelanin. In quail embryonic development, there is little expression of PC1 within 

feather follicles whereas PC2 is expressed strongly in later quail embryonic 

development. Therefore, it may be that POMC products are directly cleaved by PC2 

to make MSH. Together, this suggests that MC1R is differentially stimulated across 

the ventral and dorsal surface to create variation in phenotypes. 

 

  There was considerable variation in the expression of the seven previously 

described alternatively spliced transcripts of ASIP, between adult quail, chicken and 

embryonic quail (Nadeau et al. 2008; Yoshihara et al. 2012). Of these seven, only 

three transcripts were observed in embryonic quail, and only one of these three has 

previously been reported in adult quail (E4). In rabbits and mice, the distal ASIP 

promoter leads to ventral specific coloration, and the proximal promoter performs 
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temporal control of coloration during hair development (Bultman, Michaud, and 

Woychik 1992; Vrieling et al. 1994; Fontanesi et al. 2010; Manceau et al. 2011). Two 

of the three ASIP transcripts identified in adult quail have a leader exon of E1S, 

which corresponds to the chicken distal promoter, and these transcripts are 

expressed both dorsally and ventrally in adult quail. In embryonic quail, only one 

alternatively spliced transcript out of nine has a leader exon comprised of E1S (Fig. 

2.3). Of the alternatively spliced sequences expressed in quail embryonic 

development, similar to the chicken but dissimilar to adult quail, the ASIP non-coding 

exon E1L is ventral specific but lacks the leader exon E1S. However, unlike adult 

quail and chicken, ASIP E3 could not be amplified in embryos (Fig. 2.3).  

 

 We report on four undescribed alternatively spliced transcripts of ASIP, one of 

which is alternatively spliced with E2 and three out of four of these transcripts are 

also on the chicken genome (Fig. 2.3, 2.4). The novel non-coding exon N9 is 

positioned next to E2, with which it is alternatively spliced, whereas two of the novel 

non-coding exons are located a further 40kb upstream of ASIP on chromosome 20 

(N10 and N11) and the position of N8b is unknown. Annotation of the quail genome is 

likely to reveal a similarity in exon position in the genome and should improve the 

resolution of N8b. However, as our intention was to document the distribution of 

existing ASIP transcripts between embryonic quail, adult quail and the chicken, we 

did not perform 5’ RACE that would clarify the number of ASIP transcripts, and which 

promoter sites initiate transcription. Nevertheless, our findings indicate surprising 

variation in the expression of ASIP alternatively spliced transcripts between 

embryonic quail, adult quail, and chicken breeds which could indicate that there is 

variation between developmental stages in quail, as well as evolution within the 

mechanism of the pale-bellied phenotype between different species/breeds of 

chicken that may be lineage specific. We anticipate that there may be further 

variation in ASIP transcripts in other species of birds.  

 

 The other locus we examined that may inhibit MC1R, AGRP, did not appear 

to influence ventral pigmentation or within-feather patterning (Fig. 2.5). RT-PCR 

results demonstrated that AGRP is variable in expression over the ventral and dorsal 

surface of developing quail embryos, which would be consistent with a temporal 

specific function (Table 2.2). Although nascent transcription of AGRP in E8 feather 

follicles was found, this did not progress further than nascent transcription at E12 
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(Fig. 2.7). If AGRP has a ventral specific function in inhibiting MC1R the expectation 

would be that it would have been expressed in all ventral samples, but this was not 

the case (Table 2.2).  

 

 In situ hybridization with the ASIP and AGRP probes failed to demonstrate 

expression of these genes on the dorsal surface of embryos, in contrast to RT-PCR 

results. This may be due to a difference in the sensitivity of these techniques (Fig. 

2.7; Table 2.2). RT-PCR results demonstrated that ASIP is consistently expressed on 

both the dorsal and ventral surface of E8 and E12 embryos, yet in situ hybridization 

revealed that ASIP was strongly expressed within developing feather follicles only on 

the ventral surface of embryos of both developmental stages. Perhaps ASIP 

expression on the dorsal surface of quail embryos is important in pigmentation 

patterns but was not detected by in situ hybridization or perhaps ASIP has a more 

prevalent function in dorsal epidermis, which we did not control for in RT-PCR. 

However, a difference in the sensitivity between RT-PCR and in situ hybridization is 

unlikely to be the cause of a discrepancy between techniques in the case of AGRP 

given that the expression of the AGRP coding sequence was variable within and 

between samples (Table 2.2).  

 

 The gene involved in activation of MC1R, POMC, appears to have few 

alternatively spliced transcripts (Fig. 2.2, 2.8; Table 2.1, 2.3). Similar to ASIP, we 

found that POMC transcripts varied in their patterns of expression between quail 

embryonic development and the chicken. Of the POMC transcripts expressed, we did 

not find any that are dorsal specific. However, this may be due to a lack of detailed 5’ 

information. A future study will investigate POMC alternatively spliced transcripts and 

promoter sites utilizing 5’ RACE in quail. To definitively test whether MC1R activation 

can occur without POMC peptides, experimental downregulation of POMC is 

required, but given the low basal activity of MC1R in chicken in comparison with mice 

and humans (Jackson 1997; Ling et al. 2003; Ling et al. 2004) it is likely that POMC 

is required for activation. In addition, an important follow up study would be to 

examine the distribution of MC1R within feather follicles.   

 

 Our main finding, that POMC is transcribed in feather follicles on the dorsal 

surface of early and late quail embryonic development, indicates that the generation 

of within-feather patterning may require activation of MC1R. It has been reported that 
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ACTH has a higher binding affinity to MC1R than MSH (Ling et al. 2003). However, in 

the feather follicles of quail embryos in early and late stages of plumage development 

PC2, but not PC1, is expressed (Fig. 2.9). The patterns of expression of PC2 

correlates well with pigmentation in embryogenesis: both pigmentation and PC2 are 

less prevalent at E8 whereas pigmentation and PC2 are strongly expressed at E12 

(Fig. 2.9). Therefore MSH, not ACTH, is probably responsible for activation of MC1R 

to produce dorsal pigmentation patterns in quail. In contrast chicken breeds express 

PC1, PC2 and POMC within feather follicles (Yoshihara et al. 2011). However, the 

results of the chicken study are unclear given that the two breeds used in the study 

are apigmented (Silky chicken) and barred (Okayama-Jidori) and there was no 

comparison made between the patterns of gene expression between these 

phenotypes. Nevertheless, it is interesting that PC1 is expressed within chicken 

feather follicles and this suggests differences in the colour mechanism between 

wildtype quail and chicken breeds. But it is unclear if these differences are 

representative of evolution or artificial selection in the chicken.  

 

 There are three avian MSH peptides, α-MSH, β-MSH and γ-MSH, which vary 

in similarity to human peptides (Ling et al. 2004). The amino acid residues of α-MSH 

are identical in human and chicken, whereas β-MSH varies in three positions, and γ-

MSH is the most variable. It is thought that the ACTH peptide may have been an 

important ligand for all MCRs in the ancestral vertebrate but that during vertebrate 

evolution, the other MSH subtypes evolved specificity for MCR types. For example, 

α-MSH has evolved specificity for MC1R in humans. There are three forms of α-

MSH: desacetyl-, monoacetyl-, and diacetyl-α-MSH and the MC1 receptors of 

chicken have a slightly higher affinity for the desacetylated peptide, which is the 

product that is directly cleaved from POMC peptides. Given that activation of MC1R 

may be required for melanin synthesis, similar to humans, perhaps the desacetylated 

α-MSH peptide functions in plumage pattern formation.  

  

 Our major finding, that POMC and PC2 are expressed in feather follicles, 

contrasts with the emphasis of previous studies of within-feather patterning (Nadeau 

et al. 2008; Yoshihara et al. 2012; Lin et al. 2013). It is interesting that both ASIP and 

PC2 are expressed within feather follicles of quail embryos on the ventral surface. It 

is currently unknown what concentrations of ASIP and MSH are found in the ventral 

feather follicles of quail embryos. The affinity of MC1R for ACTH/MSH is lower in 
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birds than humans and mice indicating that a significantly higher concentration of 

ligands would be required for MC1R activation (Ling et al. 2004). 

 

 We showed that activation of MC1R may be required for melanogenesis on 

the ventral and dorsal surface, but it is unknown what mechanism may inhibit MC1R 

to create the species typical dorsal stripes and within-feather pigmentation. There are 

several possible candidate genes that downregulate MC1R activity. Alternatively, 

perhaps the β-defensin ligand may down-regulate cAMP in the dorsal plumage 

between stripe and within-feather patterns in quail. β-defensin is a member of a 

family of secreted peptides that are structurally similar to agouti. In vertebrates, β-

defensin is highly polymorphic in sequence and copy number and has the potential 

for extensive cross-talk with the melanocortin system but its function in avian 

plumage coloration has not been demonstrated (Candille et al. 2007).  

 

 Several other candidate genes may inhibit MC1R to create quail dorsal stripes 

and within-feather patterning. In mice Corin appears to suppress the ASIP pathway 

and modulates temporal banding patterns. The Corin gene encodes a 

transmembrane protease that acts in the dermal papilla in mice (Enshell-Seijffers, 

Lindon, and Morgan 2007), but does not appear to have an effect in domestic and 

wild cats (Kaelin et al. 2012). Alternatively, attractin, a single-transmembrane-domain 

protein, interacts with melanocortin receptors to regulate energy metabolism and 

pigmentation (Gunn et al. 1999; Gunn and Barsh 2000). In mice, a lack of attractin 

produces little or no yellow pigmentation, and acts downstream of ASIP but upstream 

of MC1R, and prevents follicular melanocytes from responding to ASIP. Similarly, 

mice that lack intracellular ubiquitin ligase mahogunin also lack a pigmentary 

response to ASIP (He et al. 2003). Thus there are many different loci that could 

differentially inhibit the MC1R pathway to produce dorsal between stripe and within-

feather patterning.   

 

 It is thought that plumage patterns may be a result of reaction-diffusion 

dynamics (Prum and Williamson 2002) but given that reaction-diffusion relies on an 

activator that syntheses its own inhibitor, it is unclear how the molecular mechanisms 

of pigmentation might relate to this model. Our data are consistent with previous 

reports that, similar to mice, ASIP is required to produce a pale-bellied phenotype in 

quail whereas, we found little evidence for a pigmentation function of AGRP. In 
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contrast with previous research on avian pigmentation, we showed that POMC and 

PC2 are likely to play a greater role in pigment patterning than hitherto realised.  
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Chapter 3: Evolutionary pathways to convergence in plumage pattern 

phenotypes 
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Abstract 

  

 Avian plumage is ideal for investigating phenotypic convergence because of 

repeated evolution of the same within-feather patterns. In birds, there are three major 

types of regular patterns within feathers: scales, bars and spots.  Existing models of 

within-feather pattern development, suggest that scales have the simplest 

developmental mechanism, bars require more stringent regulation than scales, and 

spots have the strictest developmental parameters. We hypothesized that increasing 

stringency in the mechanism of pattern formation predicts the evolutionary trajectory 

of patterns, and hence scales evolve first, followed by bars and finally spots. Here, 

using Bayesian phylogenetic modeling we reconstructed pattern evolution in the most 

spectacularly patterned avian clades – aquatic waterfowl (Anseriformes) and 

terrestrial gamebirds (Galliformes). Independent analyses of seven feather patches 

reveal that spots evolve after bars and scales. However, bars evolve more frequently 

from an absence of patterns than scales, contradicting our predictions. Analyses of 

larger body regions support a dorsoventral axis of modularity. Over the whole body, 

many constraints are conserved, e.g. spots are derived. Overall there was 

remarkable similarity in the evolutionary trajectories of plumage pattern evolution in 

Galliformes and Anseriformes, suggesting that developmental constraint is similar in 

these two orders, despite large ecological differences.   
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Introduction 

 

 Comparative studies are a powerful tool for understanding the underlying 

processes behind similarity in animal forms and have revealed that the mechanisms 

underlying convergent evolution are diverse as well as surprising (Parra-Olea and 

Wake 2001; Prud'homme et al. 2006; Arendt and Reznick 2008; Fritz et al. 2014). 

Phenotypic convergence may arise from similar selective regimes, but may also be at 

least partly explained by developmental constraint. This latter view is gaining 

momentum with proponents advocating an equivalent importance to natural selection 

(Maynard Smith et al. 1985; Gould 2002). Under developmental constraint, some 

phenotypes may be developmentally more readily accessible than others, thereby 

biasing evolution to follow particular pathways.  

 

 The spectacular plumage phenotypes of birds have been subject to 

considerable attention due to their diversity, functional significance and ease of study  

(Price and Pavelka 1996; Kimball and Ligon 1999; Chuong et al. 2000; Omland and 

Lanyon 2000; Badyaev et al. 2001; Price and Bontrager 2001; Harris, Fallon, and 

Prum 2002; Prum and Williamson 2002; Widelitz et al. 2003; Chang et al. 2004; 

Jiang et al. 2004; Harris et al. 2005; Badyaev and Landeen 2007; Pointer and Mundy 

2008; Riegner 2008; Kimball, Mary, and Braun 2011). Plumage coloration can vary 

over the body and is coordinated into species-typical phenotypes by individual 

patches containing up to thousands of feathers (Prum and Dyck 2003). For example, 

the tail of the peacock (Pavo cristatus) has coloured spots whereas the wings have 

bars. Patches of feathers that covary in coloration generally correspond to feather 

tracts (pterylae), which vary little in anatomical position between birds, and are 

indicative of local shared developmental programs or modules (Lucas and 

Stettenheim 1972; Wagner, Pavlicev, and Cheverud 2007).  

 

 Plumage patches may be comprised of feathers of uniform coloration or 

feathers that are patterned. For example, the distinct patches of coloration on the 

crown and rump in the genus Phylloscopus are made up of uniform pigmentation, 

with little variation within individual feathers (Price and Pavelka 1996). In contrast, the 

patch of spotted plumage on the flanks of the male Zebra finch (Taeniopygia guttata) 

is due to regular within-feather patterning, which is composed of spatially variant 

pigmentation within the vane of each feather (Prum and Williamson 2002; Kenward 
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et al. 2004; Riegner 2008; Gluckman and Cardoso 2009; Gluckman and Cardoso 

2010). While plumage coloration has been extensively studied, the evolution of 

within-feather patterning has received less attention despite abundant interspecific 

variation (Fig. 3.1) (Riegner 2008; Gluckman and Cardoso 2010).  

 

 

 

 

 
 

Fig. 3.1. The most frequent regular plumage patterns found in birds and the 

hypothesis of developmental constraint in plumage pattern evolution on the basis of 

increasing complexity. a) Scales - king eider (Somateria spectabilis), b) Bars - snow 

partridge (Lerwa lerwa), c) Spots - great argus (Argusianus argus). If there is 

developmental constraint in plumage pattern evolution on the basis of increasing 

stringency, then perhaps scales evolve from the ancestral state of uniform coloration, 

followed by bars, and finally spots. Images were taken at the University Museum of 

Zoology, the University of Cambridge, by T-L. Gluckman and are copyright of the 

University Museum of Zoology.  

 

 

 Within-feather patterning can be split into two types based on the distribution 

of pigmentation: irregular pigmentation (mottled plumage), where the vane is 

heterogeneously pigmented, and regular patterns, which are comprised of the same 

recurring motif (Gluckman and Cardoso 2010; Gluckman 2014). Regular within-

feather patterns have largely converged on the same strikingly simple set of 

repeating geometric patterns in birds: scales - where the feather border is regularly 

pigmented with a different shade of melanin (Fig. 3.1a); bars - alternating bars of 

lighter and darker pigmentation perpendicular to the feather’s axis (Fig. 3.1b); and 

spots - one or more regular spots of pigmentation within feathers (Fig. 3.1c) (Fig. 1 in 
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Prum and Williamson 2002). There are a few other regular motifs in birds, including 

chevrons and stripes, that are relatively rare, and two types of patterning that 

apparently occur in single species: checkered patterning in the common loon (Gavia 

immer), and triangles in the breast of the wood duck (Aix sponsa). This demonstrates 

that although other types of patterns are possible plumage patterns repeatedly 

converge on the same three motifs. 

 

 Bird plumage is predominantly pigmented with melanins and carotenoids (Hill 

and McGraw 2006b). Melanins are of key importance for feather patterning since 

they are the only pigment that can be differentially deposited in precise spatio-

temporal sequence during feather growth to create within-feather patterns (Prum and 

Williamson 2002; Hill and McGraw 2006b). In contrast, carotenoid-based coloration is 

typically confined to feather tips and so only contributes to uniform patches of 

coloration over the body. In a comparative survey encompassing 90% of avian 

species worldwide there were no observed cases of plumage patterns where melanin 

appeared to be absent, and additional types of coloration in patterning (e.g. 

psittacofulvins and carotenoids) were rare (T-L. Gluckman unpublished data).   

 

 Studies of convergent evolution in plumage phenotypes have largely focused 

on patches of uniform coloration, in particular carotenoid coloration, with fewer 

studies of melanin (Christidis, Schodde, and Baverstock 1988; Hackett and 

Rosenberg 1990; Price and Pavelka 1996; Kusmierski et al. 1997; Omland and 

Lanyon 2000; Odeen and Bjorklund 2003; Hofmann, Cronin, and Omland 2006; 

Andersson, Prager, and Johansson 2007; Bleiweiss 2007; Jones and Kennedy 2008; 

Cardoso and Mota 2010; Prager and Andersson 2010; Friedman, Kiere, and Omland 

2011). The proposed mechanisms underlying convergence in uniform coloration have 

focused on ecological explanations (Crochet, Bonhomme, and Lebreton 2000; 

Dumbacher and Fleischer 2001; Bleiweiss 2007; Weibel and Moore 2007), although 

several studies failed to find an ecological correlate (Omland 1997; Omland and 

Lanyon 2000; Omland et al. 2006). Additional suggested mechanisms of 

convergence are sexual selection (Omland and Lanyon 2000; Prager and Andersson 

2010), and developmental constraint (Price and Pavelka 1996; Omland and Lanyon 

2000; Majerus and Mundy 2003; West-Eberhard 2003; Prager and Andersson 2010). 

 

 The proposed mechanisms shaping the evolution of uniform plumage 
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coloration may also influence the evolution of regular within-feather patterning. In 

particular, ecological factors may select for convergence in phenotypes, for example 

to provide crypsis to evade detection by predators (Shine and Madsen 1994; Lindell 

and Forsman 1996; Marshall 2000; Stevens and Merilaita 2009b). Ecological 

selection for plumage patterns is likely to be dependent on habitat and how the 

patterns are perceived against their background (Bradbury and Vehrencamp 1998; 

Endler 1998). Therefore, selection for camouflage in avian phenotypes is likely to 

differ between species due to variation in habitat. However, different types of patterns 

are found in sympatric species of birds that occupy the same habitat demonstrating 

that ecological selection may not necessarily result in convergent evolution, e.g. the 

barred warbler (Sylvia nisoria) and the red-backed shrike (Lanius collurio) (Polak 

2012). In addition, the same patterns are frequently found in avian orders that live in 

different habitats (Gluckman and Mundy 2013). For example, waterfowl, which are 

aquatic, frequently have barred plumage, but so do many non-aquatic birds, such as 

raptors. 

 

 In several species of birds, plumage patterns have a social function, such as 

the spots of the male peacock (Pavo cristatus) and the barred plumage of the red-

legged partridge (Alectoris rufa) (Petrie, Halliday, and Sanders 1991; Bortolotti et al. 

2006; Muck and Goymann 2011; Pérez-Rodríguez, Jovani, and Mougeot 2013). 

More broadly, barred patterns appear to have generally evolved for camouflage, but 

have also evolved under sexual selection on the ventral surface of males (a more 

likely location for signalling to conspecifics) and may function as a social signal in 

many species of birds (Gluckman and Cardoso 2010). As a communication signal, 

the same type of plumage patterns may converge on the same motif due to sensory 

exploitation or cognitive receiver biases. For example, perhaps barred patterns have 

frequently evolved under sexual selection because they are conspicuous to 

conspecifics (Gluckman and Cardoso 2009; Gluckman and Cardoso 2010). 

Additionally, barred plumage may have evolved as a specialised adaptation to 

facilitate cuckoo-hawk mimicry in Old World cuckoos (Gluckman and Mundy 2013). 

However, it is thought that signal evolution is likely to be habitat and context 

dependent, which can vary considerably between species (Bradbury and 

Vehrencamp 1998; Endler 1998). 

 

 Developmental constraint in uniform coloration has been studied in the genus 
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Phylloscopus by employing a Turing reaction-diffusion model (Price and Pavelka 

1996). Turing reaction-diffusion systems form morphological patterns from the 

combined action of two molecules (morphogens), an activator and an inhibitor. 

Chemical gradients of the morphogens induce spatially explicit patterns that are 

controlled by four key parameters per morphogen: the rates of production, decay and 

diffusion, as well as the overall strength of the interaction (Turing 1952). Price and 

Pavelka (1996) showed that the evolution of patches of white plumage (unmelanized 

feathers) could be attributed to increasing and decreasing rates of morphogen 

production. For mammalian coloration, the application of Turing models could explain 

why mammals that have a spotted tail with a striped body are not found (Murray 

1981), thus implying a form of developmental constraint, best considered as relative 

constraint (Price and Pavelka 1996).   

 

 In a landmark study, all regular within-feather patterns were successfully 

simulated with a reaction-diffusion based model (Prum and Williamson 2002). By 

modeling differential pigment uptake by keratinoctyes during feather development, 

Prum and Williamson found that regular plumage patterns could be produced by 

manipulating spatial and temporal periodicity. According to this model, the production 

of scales has a low rate of morphogen decay and is governed by spatial periodicity of 

melanin uptake. The production of bars requires a higher rate of morphogen decay 

resulting in temporal periodicity of melanin uptake. Notably, the formation of spots is 

distinct as it is comprised of simultaneous spatial and temporal differentiation and 

has the narrowest range of parameters (Fig. 6 in Prum and Williamson 2002) 

 

 From Prum and Williamson’s model (2002), we hypothesised that the 

mechanism of within-feather pattern formation may bias the production of pattern 

variation during evolution in a stepwise order from decreasing to increasing 

stringency, thereby acting as a constraint. Our interpretation of this model of within-

feather pattern formation is that scales have the least stringent conditions, bars have 

more stringent parameters than scales, and spots have the narrowest range of 

parameters. Therefore, our hypothesis of within-feather pattern evolution is that 

scales evolved first, followed by bars whereas spots are the most derived pattern 

(Fig. 3.1).  

 

 From what is currently understood of plumage development, covariation of 
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feather pigmentation within patches is indicative of local shared developmental 

mechanisms and hence patches are a logical focus to study evolutionary pathways 

(Fig. 3.2) (Lucas and Stettenheim 1972; Prum and Dyck 2003; Wagner, Pavlicev, and 

Cheverud 2007). In contrast, it is currently unknown whether the development of 

pigmentation within one patch of plumage influences the evolution of pigmentation in 

another patch of plumage, although it seems likely that this may be the case. For 

example, the pink-eared duck (Malacorhyncus membranaceus), has barred plumage 

on the flanks and the breast. Perhaps barred plumage evolved on the breast first, 

and the mechanism of pattern formation was subsequently recruited by the flanks, or 

vice versa. An interesting issue is whether such recruitment across patches may be 

more favoured within developmental compartments, or modules, which may in 

principle occur along the dorsoventral axis or anteroposterior axis. At the level of the 

whole body, evolution of a novel plumage pattern may occur within the same patch or 

involve recruitment from other patches, or other modules, and might therefore appear 

relatively unconstrained. Analysis of the whole body is confounded by the co-

occurrence of multiple different pattern types, e.g. species in both Anseriformes (e.g. 

Hottentot teal, Anas hottentoti) and Galliformes (e.g. Elliot’s pheasant, Syrmaticus 

ellioti) have separate patches with all four pattern phenotypes considered here: 

absence, scales, bars and spots. Scoring of patterns over the whole body thus 

necessitates prioritizing particular patterns over others. 

 

 These considerations lead to the development of a hierarchical approach in 

which we first consider evolution within patches, then evolution within regions, and 

finally evolution over the whole body. Evolutionary pathways within patches provide 

basic evidence for mechanisms occurring within a developmental unit. Directionality 

would demonstrate that some transitions are preferred over others and allow a direct 

test of our hypotheses. Similarity among patch models and particular regional models 

would indicate modularity in pattern development. Similarity at the level of the whole 

body would suggest an absence of other mechanisms at this level.  
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Fig. 3.2. The plumage patches sampled in this study and combinations of patches 

analysed to investigate regional modularity. (1) The seven individual patches. Field 

guide terminology, and the corresponding feather tracts (pterylae; Lucas and 

Stettenheim 1972) are as follows: a) Nape: interscapular tract, b) Wing (scapular, 

wing coverts, tertials, primaries and secondaries): humeral tract, upper marginal 

coverts of prepatagium and upper wing covert tract, c) Rump and uppertail coverts: 

dorsopelvic tract and dorsal caudal tract, d) Tail: upper major tail covert, upper 

median tail covert and rectrices tract, e) Breast: ventral cervical tract, f) Flanks or 

side: pecterosternal tract in Anseriformes or pectoral tract in Galliformes, g) Vent and 

undertail coverts: abdominal tract in Anseriformes or lateral and medial abdominal 

tracts in Galliformes. (2) In regional analyses, patches are grouped into regions that 

may represent developmental modules (similarly coloured patches form part of the 

same region), with either three regions arranged on an anteroposterior axis (2a) or 

two regions arranged on a dorsoventral axis (2a). (3) In the whole body analysis, all 

patches are analysed together. The species illustrated is the Natal francolin 

(Pternistes francolinus). 
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 The avian orders with the most spectacular plumage patterns are the 

waterfowl (Anseriformes) and gamebirds (Galliformes), which together form a 

monophyletic group (Galloanserae) (Mindell et al. 1999; van Tuinen, Sibley, and 

Hedges 2000; Livezey and Zusi 2007; Morgan-Richards et al. 2008). Each order 

includes iconic examples of patterns such as the spotted plumage of the great argus 

(Argusianus argus; Galliformes, Fig. 3.1C). Anseriformes and Galliformes have 

dramatically different lifestyles, comprising waterbirds and landbirds, respectively (del 

Hoyo, Elliott, and Sargatal 1992), and are thus likely to be subject to a host of 

different selection pressures. Variation in selection pressure is ideal for testing our 

hypothesis of developmental constraint in these two orders because a similarity in 

developmental constraint should lead to similar evolutionary pathways. Here, we 

examine directionality in within-feather pattern evolution, using Bayesian 

phylogenetic modeling in Anseriformes and Galliformes separately, with patterning 

identified from museum skins. We traced pattern evolution in a hierarchical order to 

assess whether there may be generalities in these ecologically diverse orders and 

examine whether there is a) directionality in pattern evolution, b) whether the 

direction of evolution provides support for increasing complexity in within-feather 

patterning developmental mechanisms, c) whether convergence follows similar 

pathways in both orders, d) whether there is evidence for regional modularity, and e) 

whether global models of plumage pattern evolution differ from the developmental 

models of within patch and regional modularity.  

 

 

Materials and Methods 

 

Phylogenies 

 

 We searched the literature for published species level relationships. The best 

available phylogenies on the basis of species coverage, inclusion of both mtDNA and 

nuclear DNA, and inclusion of branch length information, are as follows: 

Anseriformes, 188 spp. (73%) (Gonzalez, Düttmann, and Wink 2009); Galliformes, 

170 spp. (59%) (Kimball, Mary, and Braun 2011). Together these phylogenies cover 
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all families and 63% of extant species across the two orders (Howard, Dickinson, and 

Moore 2003). We collected plumage pattern information from each species (nominate 

subspecies where applicable) represented in these phylogenies from museum skins 

at the Natural History Museum at Tring and the University Museum of Zoology, 

Cambridge.  

 

 

Data collection and coding 

 

 Current developmental evidence suggests that the default plumage 

phenotype in males and females in Anseriformes and Galliformes is the male 

plumage (Owens and Short 1995). Therefore, we collected plumage pattern 

information for the seven patches of plumage over the body for the males of each 

sample species (Fig. 3.2). We assigned the character state of each of the seven 

feather patches as scales, bars, spots, or an absence of patterns, following the 

description by Prum and Williamson (2002). Some species exhibit what appear to be 

longitudinal stripes along feathers, but on closer inspection are an angular version of 

scales with a central pigment patch, and were scored as scales, e.g. the breast and 

nape plumage of the vulturine guineafowl (Acryllium vulturinum) (Fi.g 1a in Prum and 

Williamson 2002). A small number of species in this study have chevron patterns – 

Anseriformes – 2 spp., Galliformes – 5 spp.. Given that chevrons are rare in these 

orders and that they are similar to patterns made of bars, in that the borders do not 

meet to create a central pigment patch, we scored chevrons as bars (Fig. 1e and Fig. 

6e in Prum and Williamson 2002). 

 

 For most species sampled, the type of within-feather patterning across the 

vane of each feather, as well as between individuals of the same species, was the 

same for each patch considered. However, in a rare number of cases there was 

variation between individuals. To focus on the most developmentally relevant 

patterns in these rare cases we recorded the pattern that covered the majority of the 

feathers, in the patch under consideration, and where relevant, the predominant 

pattern in the majority of individuals sampled. For example, in the Natal francolin 

(Pternistes francolinus), the feathers in the flanks can have both bars and scales 

(Fig. 3.2). In the example depicted, bars cover the majority of the feathers in the 

flanks, and this individual would have been assigned as having bars. However, in 
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most individuals of the sample population of the Natal francolin, scales predominantly 

covered most of the feathers in the flanks, and were considered representative of this 

species. 

 

 An additional type of pattern, mottled plumage, is present in many birds. It is 

currently unknown whether all mottled patterns can be considered homologous, or 

whether they may be classified into discrete types based on the size, shape and 

distribution of pigmentation across the vane of the feather. Therefore, mottled 

plumage was scored as unknown.  

 

 To summarize our findings of local pattern evolution within all seven patches 

of plumage, we report on the frequency with which each transition between patterns 

occurs out of the total number of patches. The most probable model of evolution 

could then be compared with our hypothesis as well as the full (null) model of 

evolution.  

 

 To investigate whether within-feather pattern evolution in one patch of 

plumage may precede and/or promote evolution of patterning in other patches, we 

conducted our analyses by combining patterns into body regions in three ways (Fig. 

3.2). Each body region (e.g. ventral surface) was coded as the most derived pattern 

for each patch it contained as indicated by the summary model of local evolution. For 

example, if a body region consisted of patches containing both bars and spots, it was 

coded as having spots. 

 

 In Anseriformes, in the summary model of local evolution within patches there 

is no conflict in the order of transitions and the most derived pattern is clear. 

However, in Galliformes, bars evolve from an absence of patterns and the next 

pattern to evolve from bars could be either scales or spots (see Results). We took 

this uncertainty into account by examining each possible trajectory for each body 

region separately for comparison in Galliformes. For example, males of the satyr 

tragopan (Tragopan satyra) have scales on the flanks and vent, and spots on the 

breast. In the analysis of the ventral region of Galliformes, where the flanks, breast 

and vent are collapsed into one character, we compared whether assigning either 

scales or spots as the most derived character created conflict in the analysis.  
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 Similar to the summary model of local evolution within-patches, we derived 

models of regional modularity by reporting on the frequency of each transition 

between plumage patterns out of the total number of regions. The mode of regional 

modularity that is most plausible should contain the same transitions as the summary 

model of evolution within-patches of plumage.  

  

 Finally, to derive a global model of plumage pattern evolution over the whole 

body, we used the same approach for scoring each species as used in the models of 

regional modularity, but incorporating information from all patches.  

 

 

Modelling of plumage pattern evolution 

 

 We modeled plumage pattern evolution over the phylogeny to estimate which 

patterns evolve into one another, allowing us to derive a model of the probable 

evolutionary pathways to current plumage pattern phenotypes. Anseriformes and 

Galliformes have a wide distribution and live in different habitats, which may alter the 

evolutionary trajectory of each order (Gluckman 2014). Therefore, we examined each 

order separately to assess for similarity and differences in their evolutionary history. 

To estimate plumage pattern evolution in each order, we used the Reversible Jump 

Markov Chain Monte Carlo Multistate option in BayesTraits v.2 (Pagel, Meade, and 

Barker 2004; Pagel and Meade 2006). 

 

 Markov Chain Monte Carlo (MCMC) is based on the proposition that traits can 

repeatedly evolve between any possible state on any branch of the tree.  To estimate 

the rate of change between states, the Markov chain samples the plumage patterns 

at the internal nodes of the tree, in proportion to their probability, which is conditioned 

on the values at the tips. New rate parameter values are proposed in successive 

steps in the Markov chain resulting in a posterior sample distribution of rate 

coefficients and ancestral states. Each model of pattern evolution rate coefficients is 

visited in direct proportion to its posterior probability in the sample distribution (Pagel, 

Meade, and Barker 2004). Given that there are four pattern states, which in turn offer 

many parameters that describe evolution between plumage patterns, we used 

Reversible Jump MCMC (RJMCMC).  
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 RJMCMC integrates rate restrictions by searching the posterior distributions 

of model parameters to avoid over parameterization. As such, we allowed 

BayesTraits to propose transition rates of plumage pattern evolution without 

restriction (e.g. we did not constrain any rate parameters to equal 0 based on a priori 

predictions) thereby making the analysis conditional on the data rather than our 

hypothesis (Gluckman 2014). For example, we hypothesized that spots are the most 

derived pattern as a consequence of having the strictest developmental parameters 

and therefore do not evolve directly from an absence of patterns (Fig. 3.1). In 

transition rate models that support this hypothesis, a rate parameter between an 

absence of patterns and spots equals 0, and therefore does not occur. This allows 

both incremental and non-sequential changes to occur in any direction and avoids 

imposing potentially false hypothesis based predictions. By making the analysis 

conditional on the data, this approach uses the best data currently available to 

assess the most probable models of plumage pattern evolution.  

 

 Potential models of plumage pattern evolution visited by the Markov chain are 

distinct from the most probable model of plumage pattern evolution. The former 

describes the proposed models of plumage pattern evolution that make up the 

posterior sample distribution, whereas the latter is derived from statistically 

evaluating the posterior sample distribution. Each model of plumage pattern evolution 

is composed of a unique combination of transition rate parameters with values fixed 

to zero or are sampled as free parameters with positive values. Rate parameters 

fixed to zero were interpreted as an evolutionary transition that does not occur, and 

free rate parameters with a positive value were interpreted as evidence for an 

evolutionary transition that does occur. Therefore, qualitatively, each unique model of 

plumage pattern evolution is composed of transitions that do not occur, and 

transitions that do occur.  

 

 Null model testing and model comparisons were conducted by assessing the 

posterior distribution of unconstrained models. If there were no developmental 

constraint, such as where natural selection drives plumage patterns to evolve in any 

direction, forward and backward evolutionary transitions between all pattern states 

would occur – the full (null) model. Therefore, if there were no directionality in 

plumage pattern evolution, the full model would be visited more frequently than 

expected by chance.  Conversely, if sequential or non-sequential evolutionary 
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transitions were more probable, then models with these transitions would be most 

probable. In assessing the models of evolution without constraining any transitions, 

each unique model of pattern evolution is compared with every other possible model 

of pattern evolution (statistical methods are described in the next section).  

 

 In BayesTraits we modeled the rates of plumage pattern evolution using a 

hyperprior with a gamma distribution defined by an empirical Bayes estimator (Pagel, 

Meade, and Barker 2004). For each analysis, we discarded the burn-in and the 

Markov chain was run until convergence across four independent runs (<1 lnHM). 

After convergence was reached, we thinned the sample distribution to remove 

autocorrelation. In analyses of within patch pattern evolution, we sampled 10,000 

generations, per patch, per phylogeny. For the analyses of regional modularity, we 

sampled 2,000 generations, per region, per phylogeny. The average rate for each 

transition could not be averaged across feather tracts or body regions, as it is 

statistically incorrect. Instead, the average transition rates for each patch of plumage 

and body region are presented in the supplementary material. 

 

 

Model priors and modelling parameters 

 

The prior density on the free transition rate parameters were estimated using 

an empirical Bayes estimator (where the interval of the hyperprior is defined by the 

average and standard deviation of the maximum likelihood of all rate parameters) to 

reduce bias and uncertainty in choice of priors (Pagel, Meade, and Barker 2004). We 

used a hyperprior approach with a gamma distribution as our empirical Bayes 

estimator values had an intermediate range. The intervals were estimated for each 

analysis, for each patch of plumage, and for each region, in each group separately. 

For the analysis of independent evolution within patches of plumage, in each 

phylogeny, the Markov chain was run for 250 million generations sampling every 

10,000th generation (7 x 2 = 14 individual analyses). The first 120,000 generations of 

RJMCMC (burn-in) were discarded to ensure parameter space was sufficiently 

explored. For the analysis of regional modularity the Markov chains were less stable 

and were run for 500 million generations sampling every 50,000th generation, 

discarding the first 150,000 generations as burnin (6 x 2 = 12 individual analyses). 

Each analysis of within-patches patches and modular feather regions, per order, was 
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run four times to ensure convergence had been reached within analyses as indicated 

by a stable harmonic mean of the log-likelihood that varied by <1 lnHM across all four 

runs. We checked for autocorrelation using the Ljung-box test statistic in SPSS v19.0 

at lag 1 (IBM Corp.). A Ljung-box P > 0.05 was interpreted as indicating no 

autocorrelation. There was autocorrelation and we thinned the posterior sample 

distribution of models of plumage pattern evolution in each analysis, preserving the 

order of the models in which they were visited. For the analyses of both within 

patches and modular feather regions we thinned the sample distribution to every 

100,000th model resulting in a posterior sample distribution of 10,000 models (2,500 

models per independent run) for the analyses of within patches, and 2,000 models 

(500 models per independent run) for the analyses of modular feather regions.  

 

 

Statistical analysis 

 

 The most probable models of plumage pattern evolution, each with their own 

most probable ancestral state of patterning, are visited in proportion to their Bayesian 

posterior probability. To qualitatively summarize whether each transition probably 

does not occur, or occurs, and account for model variation and uncertainty in the 

posterior sample distribution of models proposed, we employed multimodal inference  

(Burnham and Anderson 2002; Gluckman 2014). To assess which models of 

plumage pattern evolution are visited more frequently than expected by chance, we 

compared the prior odds of seeing each model of plumage pattern evolution, with the 

posterior odds derived from the posterior sample distribution. Final comparisons were 

made using Bayes Factors. Given that there are four states of patterning in this 

analysis, twelve possible evolutionary transitions can occur, but each can also have a 

transition rate of zero. To account for the varying numbers of zero and non-zero 

transitions, we calculated the prior odds of encountering each unique model of 

plumage pattern evolution in the sample distribution. Prior odds were calculated 

using binomial numbers for the number of transitions that do not occur, as well as 

bell numbers for transitions that occur, combined (supplementary Table S3.1, S3.2; 

see Currie et al. 2010 for a detailed explanation of calculations used). To assess the 

most probable model of plumage pattern evolution, we derived a top model set using 

a threshold approach of a BayesFactor of >=2, which is considered positive evidence 

(Kass and Raftery 1995; Burnham and Anderson 2002).  
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 Due to variation in the total collection of models sampled in the posterior 

distribution, some ancestral states as well as rate parameters vary widely in whether 

they are fixed to zero, or sampled as free parameters with positive values. Therefore, 

we investigated what ancestral states and free parameters were favored in the top 

model subset of the posterior distribution, accounting for sampling variation. The 

marginal probability (MP) per ancestral pattern, as well as the unique model of 

pattern evolution, was calculated from the entire posterior sample distribution. For 

example, the ancestral for each type of pattern MP = (models in which this pattern is 

ancestral/10,000), and for each unique model of plumage pattern evolution MP = 

(Unique model/10,000).  

 

 

Fig. 3.3. The marginal probability of evolutionary transitions between plumage 

patterns in the feather tract of the breast in Anseriformes and Galliformes. Next to 

each transition is the marginal probability of a transition not occurring, followed by the 

marginal probability of it occurring. The width of the transition line is proportional to 

the rate of transition. Where the probability of a transition occurring is less than the 

probability of the transition not occurring, the transition line is grey indicating that it 

most probably does not occur. Conversely, where the marginal probability of it 

occurring is higher than not occurring, the transition line is black indicating that the 

transition probably occurs. The marginal probability of occurring and not occurring 

does not equal due to variation in the transitions represented in the top model set.  

 

 

 The final marginal probability was calculated by cumulatively adding the MP 

of models in the top model set for each ancestral state of patterning and for each 
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evolutionary transition where it does not occur, as well as where it occurs, for 

comparison (Burnham and Anderson 2002). For example, in the breast of the 

galliform birds, the marginal probability (MP) of an absence of patterning not being 

the most probable ancestral state is 0.00 in the top model set whereas the MP of an 

absence of patterning being the most probable ancestral state is 0.89 (Table 3.1). In 

addition, the MP of scales, bars and spots not being the most probable ancestral 

state is 0.89 versus 0.00 of being the ancestral state. Assessing a transition from an 

absence of patterns to spots, the MP of the transition rate parameter describing it as 

not occurring is 0.87 and its MP of being non-zero is 0.01 (Fig. 3.3). Together this 

shows that an absence of patterns is most probably the ancestral state in the breast 

of galliform birds, and a transition from an absence of patterns to spots most 

probably does not occur.   

 

 The marginal probability in the top model set accounts for variation in the 

entire posterior sample distribution, therefore the sum of the marginal probability of a 

transition not occurring and occurring rarely equals 1 as this requires every model in 

the posterior sample distribution to have the same result for that transition.  

 

 

Results 

 

Taxonomic distribution of patterns 

 

 All of the different types of regular plumage patterns were represented in the 

seven plumage patches, with the exception of spots on the rump, nape and tail, as 

well as bars on the tail in Anseriformes, and scales on the tail in Galliformes (Table 

3.1; see supplementary Fig. S3.1 for a taxonomic distribution of plumage patterns). In 

all body regions (dorsoventral and anteroposterior), and over the whole body, all 

plumage patterns were represented in both orders. We first present analyses of 

plumage pattern evolution within individual patches, followed by regions and finally 

the whole body.  
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Evolution within patches of plumage 

 

  For individual patches of plumage that have more than two pattern states, 

there was variation in the number of unique models supported in the top model set 

(Table 3.1; supplementary Table S3.3). Plumage patches with only three pattern 

states (Anseriformes: nape, rump; Galliformes: tail) had less variation in the number 

of unique models in the top model set, than plumage patches with four pattern states. 

In the plumage patch with just two pattern states (Anseriformes: tail), only the full 

model was present in the entire posterior sample distribution. In contrast, in all 

models of patches of plumage with more than two pattern states, the full model was 

not visited more than expected by prior odds (Table 3.1; supplementary Table S3.3). 

 

 In six out of seven patches of plumage in Anseriformes, and in all patches in 

Galliformes, the ancestral plumage was an absence of patterns (Table 3.1; 

supplementary Table S3.3). Both the average probability and the MP supported an 

absence of patterns in three patches in Anseriformes, and across all patches in 

Galliformes. Four patches in Anseriformes have equivocal support - rump, breast, 

vent and tail. However, the MP, which integrates model support, unlike the average 

probability, indicated that pattern absence is the most probable ancestral plumage in 

the rump, breast and vent. In only the tail of Anseriformes was there an equivocal 

ancestral state, which is probably due to having only two pattern states – barring and 

an absence of patterns (Table 3.1; supplementary Table S3.3).  

 

 In all models of plumage evolution, except for the tail of Anseriformes, there 

was evidence of directionality as some transitions probably occurred and others did 

not (Fig. 3.4, supplementary Fig. S3.2). Examining the order of pattern evolution 

within-patches, bars evolve more frequently from an absence of patterns 

(Anseriformes: 4/6; Galliformes: 5/7) than scales (Anseriformes and Galliformes: 2/6) 

(Fig. 3.4). Indeed, in all models of plumage pattern evolution, the average transition 

rate from an absence of patterns to scales is low (supplementary Fig. S3.2). In both 

orders there are strong bidirectional transitions between scales and bars, and spots 

evolved more frequently from scales (Anseriformes: 5/5; Galliformes: 6/6) than bars 

(Anseriformes: 3/5; Galliformes: 5.5/6). The latter transition from bars to spots in 

Anseriformes includes equivocal transitions in two patches (supplementary Fig. 

S3.2). Finally, transitions from an absence of patterning to spots were rare and had 



The mechanisms underlying convergent evolution in the plumage patterns of birds 

 89 

the lowest rate of transition where they occur (Anseriformes: 1.5/5; Galliformes: 1/7; 

supplementary Fig. S3.2). Therefore, within-patches the predominant order of 

plumage pattern evolution is bars, followed by scales and finally spots.  

 

 

Fig. 3.4. The summary model of local evolution within-patches across all seven 

plumage patches in Anseriformes and Galliformes. Next to each transition is the 

number of plumage patches in which the transition occurs out of the total number of 

plumage patches. The total number of plumage patches can vary from the maximum 

(seven) because in some patches particular patterns do not occur e.g. in 

Anseriformes no species have evolved spots on the tail or the rump, so the total 

number of plumage patches in which it can evolve is five. Where transition lines have 

an intermediate value, e.g. 1.5/5 for a transition from absence to spots in 

Anseriformes, this indicates that the transition was equivocal in one of the models of 

pattern evolution within plumage patches. The weight of each transition probably 

occurring is represented on a scale of pale grey (occurs rarely) to black (occurs in 

every plumage patch possible).  

 

Regional modularity in plumage pattern evolution 

 

 Pattern evolution across body regions showed variation in the number of 

unique models supported in the top model set (Table 3.1; supplementary Table 

S3.3). For all body regions in both orders, the full model was not visited more than 

expected by prior odds, and, in some cases, was not visited in the entire posterior 

sample distribution (Table 3.1; supplementary Table S3.3). In three out of six body 

regions in Anseriformes, and in all analyses in Galliformes, both the average 
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probability and the MP support an absence of patterning as the ancestral state of 

plumage (Table 3.1; supplementary Table S3.3). The source of uncertainty in the 

ancestral state of Anseriformes is in three body regions - middle, posterior and 

ventral - however, the MP for each supports pattern absence as the most probable 

ancestral plumage.  

 

 Incorporating uncertainty in the order of pattern evolution in Galliformes 

resulted in conflict in five transitions spanning four out of five body regions (Fig. 3.5; 

supplementary Fig. S3.3). There were varying degrees of similarity between the 

summary model of local evolution within-patches and all three modes of regional 

modularity. However, the mode of regional modularity that most resembled the 

summary model of within patch pattern evolution in both orders was a dorsoventral 

axis (Fig. 3.4, 3.5).  

 

 

Fig. 3.5. Regional models of plumage pattern evolution in the proposed modes of 

modularity in Anseriformes and Galliformes. Next to each transition is the number of 
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body regions in which the transition occurs out of the total number of body regions for 

that mode of modularity. The weight of each transition probably occurring is 

represented on a scale of pale grey (does not occur) to black (occurs in every 

modular feather region for that analysis). A dashed grey line indicates an equivocal 

transition - where the marginal probability was equally in favor of not occurring and 

occurring (0.5).  

 

 

 Across both orders, there was disagreement between the summary model of 

within-patch evolution and the anteroposterior mode of modularity. In the 

Anseriformes anteroposterior model, scales evolve from an absence of patterns more 

frequently than bars, opposite to the summary of local patch evolution. Furthermore, 

in Galliformes a transition from spots to an absence of patterns is equivocal whereas 

in the summary model of location evolution it is a strong transition. In the dorsoventral 

axis model, in Anseriformes all transitions are qualitatively the same as the summary 

model of pattern evolution within-patches, the exception being a transition from 

scales to bars only occurring on one surface. In Galliformes, the dorsoventral axis 

model of pattern evolution does not conflict with the summary model of within-patch 

evolution (Fig. 3.4, 3.5). Together these results demonstrate support, for a regional 

dorsoventral axis of modularity.  

 

 

Global model of plumage pattern evolution 

  

 The global models of plumage pattern evolution showed some important 

similarities with within-patch models. First, in both orders, a direct transition from an 

absence of patterns to spots probably does not occur.  Second, there are strong 

bidirectional transitions between bars and scales in both orders (Fig. 3.6, 

supplementary Fig. S3.4). Third, in Galliformes bars evolve first. However, there were 

some differences between the global model and the summary model of evolution 

within-patches: in the Anseriformes global model, scales evolve first and the model 

lacks bidirectional transitions between bars and spots, while in Galliformes the whole 

body model does not have a transition from spots to an absence of patterns (Fig. 3.4, 

3.6).  
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Fig. 3.6. The most probable evolutionary transitions between plumage patterns over 

the whole body in Anseriformes and Galliformes (where spots are derived – see 

Methods). Next to each transition is the marginal probability of a transition not 

occurring, followed by the marginal probability of it occurring. The width of the 

transition line is proportional to the rate of transition. A grey transition line indicates 

transitions that probably do not occur and black transition lines indicate transitions 

that probably occur. The marginal probability of occurring and not occurring does not  

equal 1 due to variation in the top model set.
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Table 3.1. The frequency of the different types of patterns in the seven plumage patches over the body, the number of unique models in the 

entire posterior sample distribution as well as the top model set, and the average probability and marginal probability of the ancestral state of 

patterns, in Anseriformes and Galliformes.  

        
 

        Ancestral state 

  
Plumage pattern frequency within plumage 

patches 
Posterior sample distribution  Average probability Marginal probability 

 

Absence 

of 

patterns 

Scales Bars Spots Mottled 
Unique 

models 

Top model 

set 

(BF>=2) 

Full (null) 

model 

 

Absence 

of 

patterns 

Scales Bars Spots 

Absence 

of 

patterns 

Scales Bars Spots 

Anseriformes 

(N = 118)                 

Nape 78 16 19 3 2 464 257 
118: BF = 

0.08 
0.31 0.25 0.20 0.24 0.02; 0.78 

0.80; 

0.01 

0.79; 

0.01 
0.80; 0.00 

Wing 105 5 5 1 2 698 454 57: BF = 0.04 0.27 0.26 0.23 0.23 0.11; 0.67 
0.75; 

0.03 

0.70; 

0.08 
0.77; 0.01 

Rump 100 12 4 - 2 15 4 
1435: BF = 

0.72 
0.33 0.33 0.33 N/A 0.30; 0.38 

0.38; 

0.29 

0.68; 

0.00 
N/A 

Tail 109 7 - - 2 1 1 All 0.5 0.5 N/A N/A 0.50; 0.50 
0.50; 

0.50 
N/A N/A 

Breast 74 14 12 13 5 379 218 
207: BF = 

0.14 
0.25 0.27 0.22 0.26 0.44; 0.36 

0.61; 

0.19 

0.77; 

0.03 
0.65; 0.15 

Flanks 65 11 34 5 3 339 164 68: BF = 0.05 0.26 0.25 0.24 0.25 0.12; 0.76 0.88; 0.77; 0.88; 0.00 
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0.00 0.11 

Vent 86 9 14 4 5 379 229 
106: BF = 

0.07 
0.2 0.25 0.29 0.26 0.45; 0.34 

0.72; 

0.07 

0.50; 

0.29 
0.70; 0.09 

 

Galliformes 

(N = 170) 
                

Nape 75 18 29 10 38 229 121 11: BF = 0.01 0.72 0.13 0.11 0.05 0.01; 0.93 
0.94; 

0.00 

0.94; 

0.00 
0.94; 0.00 

Wing 81 14 13 9 53 475 292 40: BF = 0.03 0.66 0.14 0.13 0.07 0.00; 0.87 
0.87; 

0.00 

0.87; 

0.00 
0.87; 0.00 

Rump 83 11 25 8 43 305 178 12: BF = 0.01 0.8 0.09 0.08 0.03 0.00; 0.93 
0.93; 

0.00 

0.93; 

0.00 
0.93; 0.00 

Tail 93 - 24 8 45 36 7 
454: BF = 

0.20 
0.78 N/A 0.09 0.13 0.08; 0.63 N/A 

0.71; 

0.00 
0.63; 0.08 

Breast 105 16 17 13 19 265 134 34: BF = 0.02 0.48 0.19 0.2 0.13 0.00; 0.89 
0.89; 

0.00 

0.89; 

0.00 
0.89; 0.00 

Flanks 79 21 29 14 27 399 235 
101: BF = 

0.07 
0.69 0.16 0.09 0.06 0.05; 0.76 

0.78; 

0.03 

0.80; 

0.01 
0.81; 0.00 

Vent 139 6 11 4 10 312 191 10: BF = 0.01 0.48 0.2 0.23 0.09 0.00; 0.95 
0.95; 

0.00 

0.95; 

0.00 
0.95; 0.00 
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Discussion 

 

 

 Studies of phenotypic convergence in bird plumage have mostly focused on 

coloration, although regular patterns within feathers are widespread across the class 

Aves. Our analyses suggest that the ancestral state of plumage is an absence of 

patterns, a consistent finding in Galliformes, but with some variability in Anseriformes 

(Table 3.1). Contrary to our predictions of pattern evolution, bars largely evolved first 

rather than scales. However, our analysis confirms that spots are derived from other 

pre-existing patterns (scales), and therefore, as hypothesized, reaction-diffusion 

based spatiotemporal differentiation may constrain spots to evolve from an absence 

of patterning by a minimum of two transitions (Fig. 3.1, 3.4). Our analyses also 

suggest that the potential for patches of plumage to develop patterning is not equally 

spread over the body. Instead there is regional modularity over the dorsoventral axis, 

but not the anteroposterior axis, such that evolutionary trajectories of patches within 

the same dorsoventral region are similar. This occurs in two avian orders that have 

very different lifestyles, illustrating the importance of development in evolution. 

Finally, the models over the whole body demonstrate that many mechanisms are 

conserved from the level of patches, including the highly derived nature of spots, but 

also highlight some interesting differences. 

 

 There is consistent support for directionality in plumage evolution at all levels 

of analysis, including all patches of plumage with more than two pattern states, all 

body regions and the whole body. (Fig. 3.4, 3.5, supplementary Fig. S3.2, S3.3). 

From an absence of patterning, bars predominantly evolved first, followed by scales, 

and finally spots, in both Anseriformes, and Galliformes (Fig. 3.4-3.6). The 

evolutionary trajectory of within-feather patterns demonstrates that with increasing 

complexity in the mechanism of pattern formation, different types of patterns become 

developmentally more accessible. These results are congruent with developmental 

constraint in this system, but the main pathway, that bars evolve first, does not follow 

our predictions and may indicate that the developmental basis of scales is more 

complex than that of bars.  

 

 Some support for a relative lack of mutational constraint on bar formation 

comes from genetic studies. Several independent mutations, both autosomal and Z-
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linked, can lead to bars from an absence of patterning (Muscovy duck - Hollander 

1968; chicken - Crawford 1990). In the best studied case, the sex-linked barred 

mutation in chickens, controlled by the CDKN2A/B locus, is associated with pale 

bands devoid of melanocytes (Hellström et al. 2010). Thus a different locus, ASIP, 

controls temporally-related patterning in mammalian hairs (Tamate and Takeuchi 

1984; Bultman, Michaud, and Woychik 1992; Barsh 1996; Kaelin et al. 2012), and is 

a potential candidate for within-feather patterning. Mutations at this locus in quail 

affects bar width in individual feathers (N.I. Mundy and F. Minvielle unpublished 

data), and ASIP expression in developing chicken feathers is spatially variable (Oribe 

et al. 2012; Yoshihara et al. 2012). Thus the evolutionary origin of bars may be more 

straightforward than inferred from the reaction diffusion model. Currently, a large gap 

in our understanding is a plausible mechanism for how these loci are involved in a 

reaction-diffusion mechanism.  

 

 A transition from an absence of patterning to spots occurred in the flanks in 

both orders but in none of the other six patches. It has been demonstrated that spots 

can have a social function (Petrie, Halliday, and Sanders 1991; Kose, Mänd, and 

Moller 1999; Roulin 1999a; Roulin, Riols, and Dijkstra 2001) and sexually selected 

traits evolve quickly potentially masking a signal of constraint (Pomiankowski and 

Iwasa 1998). It therefore seems likely that this rare transition is a result of strong 

selection pressure circumventing developmental constraint. 

 

 Results from regional models showed that constraint was still present at this 

level of analysis, and that the summary model of patch evolution showed greater 

similarity to the dorsoventral axis than anteroposterior axis models, in both orders 

(Fig. 3.5). This provides evidence that the dorsoventral regions are behaving as 

hierarchical developmental units or modules, each composed of multiple patches 

evolving in a similar manner. The similarity was particularly strong for Galliformes, 

while in Anseriformes there was one major difference – the dorsoventral model lacks 

a transition from bars to scales in the ventral region (Fig. 3.3, 3.5).  

 

 The striking overall similarities between the summary model of local pattern 

evolution within-patches and the dorsoventral axis model of patterning imply an 

additional layer of developmental constraint in plumage pattern evolution. We 

currently know little about the interaction between pteryla formation and modularity in 
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phenotypes. Numerous interactions between the epithelium and mesenchyme are 

known to signal pterylae formation (Chuong 1993; Prum 1999; Chuong et al. 2000; 

Dhouailly 2004; Lin et al. 2006). Epithelial-mesenchymal transplant experiments in 

quail-chicken chimaeras show that there are important dorsoventral differences in 

integument development: the dorsal trunk dermis originates from the dermomyotome 

of the somites whereas the ventral dermis originates from lateral plate mesoderm 

(Mauger et al. 1982; Fliniaux, Viallet, and Dhouailly 2004). In addition, the feather 

dermal progenitors of the dorsal and ventral regions are specified by different signals 

(Lin et al. 2006). Therefore, the differential dorsoventral origins of dermis cells may 

have lasting developmental and evolutionary effects on the phenotype of birds.  

  

 As for patches and regions, the whole body models showed evidence for 

directionality in plumage pattern evolution. If recruitment of patterning mechanisms 

across local patches and regions were common, this would lead to more transitions 

occurring in the whole body model. However, evidence for this is limited. For 

Galliformes it is striking that the main features of the patch and dorsoventral models, 

including a stronger transition from an absence of patterning to bars than scales, 

occur in the whole body model. For Anseriformes, the picture is mixed – whereas a 

transition from absence of patterns to scales occurs in the whole body, the transition 

from absence to bars does not, even though this is strongly supported in the within-

patch models. Most strikingly, in both orders, spots can only evolve from pre-existing 

patterns and not from an absence of patterns for the whole body. Given the evidence 

for sexual selection acting on spots, this reinforces the view that there is overall 

developmental constraint on spot development.  

  

 We have carried out a broad level analysis of two large sister taxa that are 

ecologically distinct, and the decision to analyse them separately receives post hoc 

justification from the finding of differences among them. It is of course possible that 

different transition rates of plumage patterns occur among different clades within 

these taxa. This is an interesting issue for future investigation. Although we analysed 

most extant species within Anseriformes and Galliformes (63% combined), 37% of 

species were excluded because of a lack of robust phylogenetic information. The 

effects of this on our results are unknown, but we note that the absence of these taxa 

is not different in principle to the absence of an unknowable number of extinct taxa in 

the dataset. Hybridization is common in both orders: an estimated 41.6% species of 
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Anseriformes and 21.5% species of Galliformes hybridize (Grant and Grant 1992). 

Hybridization can lead to rapid shifts in phenotype that could cause uncertainty in 

estimating model transitions. The effect of categorizing mottled plumage as missing 

data is also unknown. Given that mottled patterns do not appear to have a regular 

motif, categorizing these patterns is plagued by uncertainties. Having many 

categories for different types of mottled patterns would likely obscure a signal of 

directionality in evolution, whereas using a single category for a pattern that exists in 

many states, might overly constrain the model. Therefore, using a category of 

“unknown” is representative of what is currently known about plumage pattern 

formation, and using robust Bayesian based analyses based on multi-model 

inference should largely control for uncertainty (Pagel, Meade, and Barker 2004).  

  

 An issue for future consideration will be the potential influence of female 

patterning on the evolution of patterning in males. In both orders studied, there is 

sexual dimorphism in plumage patterns (Gluckman 2014), which is estrogen-

dependent (Owens and Short 1995; Kimball and Ligon 1999). As a consequence, it 

was thought that elaborate coloration initially evolved in both sexes via genetic 

correlation (Lande 1980; Owens and Hartley 1998; Kimball and Ligon 1999; 

Kraaijeveld, Kraaijeveld-Smit, and Komdeur 2007). However, currently there is little 

evidence to suggest that there is genetic correlation in plumage pattern evolution 

between males and females in Anseriformes and Galliformes (Gluckman 2014). 

Hence the possibility that particular patterns evolve first in females and are later 

acquired by males remains, and will be considered in future studies.  

 

 Similar plumage patterns have evolved in many distantly and closely related 

species of birds (Riegner 2008; Stern and Orgogozo 2009; Gluckman and Cardoso 

2010). We demonstrated directionality in plumage pattern evolution that is congruent 

with developmental constraint. Overall there was remarkable similarity in the 

trajectories of pattern evolution in Galliformes and Anseriformes, suggesting that the 

constraint is similar in the two orders, despite large ecological differences. As 

suggested by Price and Pavelka (1996) the role of natural selection may be “fine-

tuning the appearance of the pattern, fixing and maintaining pattern elements at a 

given level of expression, and modifying behavioral and other features to maximize 

the patterns’ utility” on the basis of the order that patterns evolve. We suggest that 

directionality in plumage pattern evolution may be caused by the underlying 
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dynamics of the developmental system of patterning, which may be of general 

significance to birds.  
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Chapter 4: Cuckoos in raptors’ clothing, barred plumage illuminates a 

fundamental principle of Batesian mimicry 

 

This chapter was published in the journal of Animal Behaviour, DOI: 

10.1016/j.anbehav.2013.09.020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Banded bay cuckoo          Japanese sparrowhawk 

        (Cacomantis sonneratii)             (Accipiter gularis)  
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Abstract 

 

 A fundamental principle of Batesian mimicry is that it pays to look like a local 

harmful species that is recognizable to other local species (receivers). Mimicking an 

allopatric species confers no benefit, as it is not recognizable to local species. It is 

thought that the common cuckoo, Cuculus canorus, is a Batesian mimic of the 

Eurasian sparrowhawk, Accipiter nisus, predominantly via its barred plumage, which 

facilitates access to host nests to deposit eggs. Barring is widespread in five genera 

of Old World cuckoos, unlike nonparasitic cuckoos, and evolved after the evolution of 

parasitism. Although barred plumage is predominant in parasitic cuckoos, it is 

unclear whether it may have a widespread function in cuckoo-hawk mimicry. If 

widespread, there should be a visual similarity between all five genera of Old World 

parasitic cuckoos and sympatric raptors. In addition, given that it pays to look like a 

local harmful species, sympatry should predict the degree of similarity. We compared 

barred plumage from all five genera of parasitic Old World cuckoos and up to eight 

sympatric raptors using digital image analysis. Cuckoos predominantly matched most 

raptors for at least one pattern attribute. In addition, three out of five cuckoos closely 

resembled a sympatric raptor for all barred pattern attributes examined, and potential 

model species were not confined to sparrowhawks. Habitat did not appear to 

influence plumage pattern similarity in most species studied. Finally, the barred 

plumage of sympatric species was more similar in appearance than those in 

allopatry. Together this demonstrates that cuckoos look like a local harmful species, 

which is congruous with Batesian mimicry.  
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Introduction 

 

 In Batesian mimicry, a harmless species mimics an unpalatable or a harmful 

one. For example, Dismorphia butterflies (mimics) vary their colour pattern according 

to the local species of toxic Neotropical Heliconius butterflies (models; Bates 1862). 

By looking like a familiar unpalatable model, the mimic avoids detection. Therefore, a 

fundamental principle of Batesian mimicry is that there is an advantage to looking like 

a local unpalatable or harmful species that is recognizable.  

 

 Parasitic cuckoos are an extraordinary example of mimicry with diverse 

strategies to trick hosts into rearing their young (Davies 2011). Some cuckoos closely 

mimic the eggs of their hosts (Brooke and Davies 1998; Moskát et al. 2008; 

Spottiswoode 2010; Stoddard and Stevens 2010), and others mimic host nestlings 

(Langmore et al. 2011). Studies of brood parasitism in cuckoos have predominantly 

focused on egg as well as chick mimicry, and have highlighted the drastic impact on 

host reproductive potential that has set the scene for a well-documented 

coevolutionary arms race (Davies, Brooke, and Kacelnik 1996; Davies 2000; Soler 

and Soler 2000; Grim 2006; Spottiswoode and Stevens 2011). However, given that 

parasitism begins with depositing eggs in a host nest, blocking access to the nest 

has the greatest potential to minimize reproductive costs (Moksnes et al. 2000; 

Davies and Welbergen 2009; Feeney, Welbergen, and Langmore 2012). As a 

consequence, brood-parasitic cuckoos appear to have evolved a range of strategies 

to gain access to host nests. For example, in the genera Clamator, Eudynamys and 

Scythrops it is reported that males elicit a mobbing response to distract hosts while 

females discreetly lay their eggs in host nests (Gaston 1976; Davies 2000). However, 

given the costs that hosts can impose on parasitic cuckoos, inconspicuousness 

should be favoured to evade detection (Davies and Brooke 1988; Davies and 

Welbergen 2008; Požgayová, Procházka, and Honza 2009; Langmore et al. 2011). 

 

 Brood-parasitic cuckoos dupe hosts into treating the parasite as if it is 

something it is not by looking like either a harmless species (aggressive mimicry) or 

a harmful species (Batesian mimicry). Aggressive mimicry is suspected among 

drongo cuckoos (Surniculus spp.) that form foraging flocks with multiple species of 

small passerines, and contribute to the flock by acting as a predator sentinel 

(Feeney, Welbergen, and Langmore 2012). Batesian mimicry in cuckoos has been 
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suspected since the time of Aristotle owing to their remarkable resemblance to 

raptors, especially Accipiter hawks (Wallace 1889). Their striking visual similarity is 

derived from their yellow eyes and legs, their size and shape, flight patterns and 

barred underparts (Honza et al. 2006; Davies and Welbergen 2008; Payne 2010; 

Welbergen and Davies 2011; Trnka, Prokop, and Grim 2012). In addition, it has been 

suggested that the rufous morph of the common cuckoo, Cuculus canorus, might 

represent mimicry of the Eurasian kestrel, Falco tinnunculus (Trnka and Grim 2013). 

Some species additionally possess polymorphisms in the colour of their barred 

plumage to thwart hosts that can see past the cuckoos’ disguise. These polymorphic 

species are likely to possess multiple hawk-like features demonstrating that the host-

parasite arms race probably also occurs in the adult phenotype of parasites 

(Thorogood and Davies 2012; Trnka and Grim 2013) and the alternative morph may 

represent frequency-dependent mimicry for an additional model, the Eurasian kestrel 

(Honza et al. 2006; Thorogood and Davies 2012; Trnka and Prokop 2012; Trnka and 

Grim 2013).  

 

 In Old World cuckoos, barred plumage evolved within the context of host-

parasite coevolution, suggesting that it is an adaptive strategy to facilitate access to 

host nests (Kruger, Davies, and Sorenson 2007). This type of plumage pattern 

covers most of the ventral surface and is composed of within-feather alternating light 

and dark pigmentation, transversal to the feather’s axis (Payne and Sorensen 2005; 

Bortolotti et al. 2006; Gluckman and Cardoso 2010; Payne 2010). Studies of 

Batesian mimicry in parasitic cuckoos have focused on the common cuckoo, which is 

thought to mimic the Eurasian sparrowhawk, Accipiter nisus (Davies and Welbergen 

2008; Davies and Welbergen 2009; Welbergen and Davies 2011). Field experiments 

measuring host responses to models of the common cuckoo demonstrate that 

barring can constrain host aggression at close range and that polymorphisms in 

barred plumage coloration can thwart detection by hosts (Honza et al. 2004; Grim 

2005; Moksnes et al. 2007; Thorogood and Davies 2012; Trnka and Prokop 2012; 

Trnka and Grim 2013). By looking like a harmful model, the common cuckoo can 

facilitate access to host nests in which to place its eggs and when hosts learn to 

discriminate, altering the phenotype can be a successful strategy. In Old World 

parasitic cuckoos (Cuculidae) 35 species out of 58 have barred plumage, which is 

also common in both sparrowhawks (Accipiter) and other raptor genera (Payne and 

Sorensen 2005; Christie and Ferguson-Lees 2010). Given that resembling a local 
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dangerous species has allowed the common cuckoo to flourish, Batesian mimicry via 

barred plumage patterns may be widespread in Old World cuckoos to facilitate 

access to host nests, and many types of raptors may be the dangerous model.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1. Barred plumage patterns. Although barred plumage is a common and easily 

identifiable pattern, it can vary extensively as shown on the same scale in (a) 

Cuculus saturatus and (b) Aviceda cuculoides. Photographs of plumage within the 

figure are copyright of the Natural History Museum and were taken by Thanh-Lan 

Gluckman. 

 

 

 Barred plumage may have multiple functions in brood parasitism. It has been 

well documented that avian brood parasites monitor host nests discreetly from 

nearby perches (Alvarez 1993; Hauber and Russo 2000; Begum et al. 2011). At a 

distance, barred plumage may provide camouflage while the parasite is searching for 

and watching potential hosts, but when detected at close range it may contribute to 

hawk mimicry and constrain aggression; however, it has also been suggested that it 

may increase aggression by some hosts towards parasites (Honza et al. 2006; 

Welbergen and Davies 2008; Payne 2010; Welbergen and Davies 2011; Trnka and 

Prokop 2012). Barred plumage can vary extensively in size, spacing, contrast and 
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relative importance of the main marking size to the overall pattern (Fig. 4.1). If barred 

plumage patterns function in mimicry in brood-parasitic cuckoos, recognition of local 

raptors as predators by hosts (i.e. host discrimination and response) should drive a 

similarity in plumage pattern attributes to be geographically specific (Bates 1862; 

Briskie, Sealy, and Hobson 1992; Lindholm and Thomas 2000; Hale and Briskie 

2007; Pfennig and Mullen 2010).  

 

 

Materials and Methods 

 

 We sampled representatives of Old World parasitic cuckoos with barred 

plumage on the basis of taxonomy and geographical distribution. According to 

Howard and Moore (2003) there are six genera containing parasitic cuckoos with 

barred plumage: Cuculus, Chrysococcyx, Eudynamys, Cacomantis, Cercococcyx 

and Scythrops. The genus Scythrops has limited barring on the lower part of the 

ventral surface and, given its orientation when the bird is flying towards hosts, the 

barring is unlikely to function in mimicry; we thus removed this genus from further 

consideration. We focused our sampling efforts on cuckoos and raptors with a 

restricted distribution range in the tropics of Africa and Oceania (Asia and eastern 

Australia), where parasitic cuckoos are concentrated (Yom-Tov and Geffen 2005). 

North and South American species are not represented in this study as only a few 

brood-parasitic cuckoos are found on these continents and they do not have barred 

plumage (Payne and Sorensen 2005). To assess overlap of distributions we scanned 

maps from Raptors of the World (Christie and Ferguson-Lees 2010) and The 

Cuckoos (Payne and Sorensen 2005) for comparison by eye. For the purposes of 

this study it was important to establish approximate geographical range overlap, but 

not precise estimates of the extent of overlap. Therefore, we scored the overlapping 

distribution of raptors on the basis of up to 25%, 50%, 75% and 100% of that of 

cuckoos (Table 4.1). We aimed to sample all sympatric raptors for the cuckoos 

chosen. Where possible, most raptors that have a distribution overlap of greater than 

0.25 were sampled. All raptors with the largest overlapping distribution category were 

sampled, except for Hieraaetus kienerii, which could not be sampled (Table 4.1). To 

ensure that these results are representative of geographical range overlap, we 

compared a subset of African species with a regional field guide and although there 

was some variation in the extent of overlap, both guides described sympatry for each 
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pair considered (supplementary Table S4.1; Sinclair and Ryan 2010).  

 

 In this study we aimed to sample each genus, while controlling for pattern 

similarity resulting from phylogeny. Therefore, we randomly selected a species to 

represent one barred parasitic genus from Africa and similarly a barred parasitic 

species to represent a separate genus from Oceania, for which there was a minimum 

of five undamaged museum skins at the Natural History Museum at Tring, U.K. An 

additional cuckoo from a separate genus was then selected that had an overlapping 

distribution with the first cuckoo selected, to test whether cuckoos from separate 

genera resembled the same raptor. The first randomly selected cuckoo representing 

each genus had an adequate number of undamaged specimens. This sampling 

design also allowed us to model whether sympatry and allopatry predict pattern  

similarity and dissimilarity by comparing species within and between geographical 

areas. Where species exhibited multiple subspecies, for example Eudynamys 

scolopacea, we sampled the nominate subspecies. One cuckoo species in this study, 

Cuculus saturatus, is polymorphic and we focused our sampling efforts on the 

primary (more frequent) morph (Voipio 1953). We sampled sympatric raptors with 

subspecies and polymorphisms in the same way.  

 

 Raptor species were selected on the basis of sympatry and the presence of 

barred plumage (Table 4.1). Only raptors that prey on live birds were included in the 

study - vultures were excluded as they are carrion eaters (supplementary Table 

S4.2). In some instances, raptors were illustrated with barred plumage in the books, 

but on inspection of specimens had little or negligible barring (i.e. barring only on the 

legs) and were thus removed from the study. In addition, some raptors could not be 

sampled owing to a lack of specimens and/or access (Table 4.1, species marked 

with an asterisk). This resulted in six raptors for the African cuckoos, and eight 

raptors for the Oceanian cuckoos, representing seven genera in total.  
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Table 4.1. Approximate distribution overlap between cuckoos and their respective 

raptor. 

*Species not represented owing to a lack of access/intact specimens. 

 

 

Species 
Eudynamys 

scolopacea 

Chrysococcyx 

flavigularis 

Cacomantis 

sonneratii 

Cercococcyx 

mechowi 

Cuculus 

saturatus 

Aviceda cuculoides - <1 - <1 - 

*Aviceda subcristata <0.25 - - - <0.25 

Aviceda leuphotes <0.50 - <0.50 - <0.50 

*Henicopernis longicauda <0.25 - - - <0.25 

Pernis ptilorhyncus <0.50 - <0.50 - <0.50 

*Pernis celebensis <0.25 - - - <0.50 

*Circaetus cinereus - <0.25 - <0.50 - 

Polyboroides typus - <1 - <1 - 

*Circus assimilis <0.25 - - - <0.25 

Micronisus gabar - <0.25 - <0.50 - 

Accipiter trivirgatus <0.50 - <0.50 - <0.50 

Accipiter tachiro - <1 - <0.75 - 

Accipiter soloensis <0.50 - <0.50 - <0.75 

Accipiter fasciatus <0.25 - - - <0.25 

Accipiter gularis <0.50 - <0.50 - <0.75 

Accipiter virgatus <0.25 - <0.50 - <0.25 

Accipiter ovampensis - <0.25 - <0.25 - 

*Accipiter melanoleucus - <0.75 - <0.75 - 

*Accipiter meyerianus <0.25 - - - <0.25 

*Megatriorchis doriae <0.25 - - - <0.25 

Kaupifalco monogrammicus - <1 - <1 - 

*Harpyopsis novaeguineae <0.25 - - - <0.25 

*Hieraaetus morphnoides <0.25 - - - <0.25 

*Hieraaetus kienerii <0.25 - <0.50 - <0.75 

Spizaetus nanus <0.25 - <0.50 - <0.50 

*Falco moluccensis <0.25 - <0.25 - <0.50 

*Falco longipennis <0.25 - - - <0.25 



The mechanisms underlying convergent evolution in the plumage patterns of birds 

 
112 

 Currently, there is little information on how barred plumage functions in host-

parasite interactions outside of the common cuckoo (Payne and Sorensen 2005). For 

example, it is unknown whether the male attracts a mobbing response from hosts 

while the female lays her eggs, or perhaps females approach the nest by 

themselves. Therefore, we sampled both males and females in species that have 

barred plumage (Table 4.2). Given that birds approach a nest facing forwards, it is 

more likely that the most important part of the patterning, where used in mimicry, is 

the ventral surface as well as the flanks. Therefore, we focused our sampling on 

these body regions, except in Chrysococcyx flavigularis for which we could sample 

only the ventral surface to avoid damage to the flanks/wing. Patterning can vary 

within barred plumage so we sampled from the top, middle and bottom of the ventral 

and left flank area of specimens, avoiding the brood patch, to assess pattern 

variation (Gluckman and Cardoso 2009).  

 

 Following Stevens et al. (2007) and Stoddard and Stevens (2010), we 

collected digital images of museum specimens with a Fujifilm IS Pro UV-sensitive 

camera with known spectral sensitivity, equipped with a quartz CoastalOpt UV lens 

(Coastal Optical Systems). Images were captured with a human pass filter (Baader 

UV/IR cut filter: 400-700 nm) as well as a UV pass filter (Baader U filter: 300-400 nm) 

at a standard distance (173 cm) at eye level with constant illumination provided by a 

Kaiser RB260 digital lighting unit. All images were linearized to control for a nonlinear 

response to changes in radiance prior to image analysis (Stevens, Parraga, et al. 

2007). Current evidence shows that avian pattern perception occurs via achromatic 

(luminance) vision, which is encoded in the double cones (Jones and Osorio 2004; 

Osorio and Vorobyev 2005). To assess which visual system is most representative of 

hosts we collated information on host and prey species for cuckoos and raptors of 

these regions. Although the information available is limited, from what is recorded, 

the hosts and prey species of all cuckoos and raptors sampled are predominantly 

passerines (supplementary Table S4.2). The blue tit, Cyanistes caeruleus, has the 

best-studied visual system of any passerine (Hart and Hunt 2006; Hart et al. 2012) 

and has been widely used as a model for passerine vision in previous studies 

(Spottiswoode and Stevens 2010; Stoddard and Stevens 2010; Spottiswoode and 

Stevens 2011). Therefore, to account for passerine vision, all images were 

transformed from camera colour space to the relative photon catches of the double 

cones of a blue tit (Stevens et al. 2006; Stevens, Parraga, et al. 2007).  
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Table 4. 2. Female and male sample size for each cuckoo and raptor represented.  

    Female Male Total 

 Cuckoos    

 Eudynamys scolopacea 11 N/A 11 

 
Chrysococcyx flavigularis 3 2 5 

 
Cacomantis sonneratii  5 5 10 

 
Cercococcyx mechowi  5 5 10 

 
Cuculus saturatus  5 5 10 

 Raptors    

 Aviceda cuculoides  4 3 7 

 
Aviceda leuphotes  5 5 10 

 
Pernis ptilorhyncus  N/A 4 4 

 
Polyboroides typus  5 5 10 

 
Micronisus gabar 5 5 10 

 
Accipiter trivirgatus  5 5 10 

 
Accipiter tachiro  5 5 10 

 
Accipiter soloensis  5 N/A 5 

 
Accipiter fasciatus  5 5 10 

 
Accipiter gularis 10 10 20 

 
Accipiter virgatus  4 5 9 

 
Accipiter ovampensis  3 5 8 

 
Kaupifalco monogrammicus  5 5 10 

  Spizaetus nanus  N/A 5 5 

 

  

	  

 Barred plumage is a relatively simple pattern that consists of the same 

regularly repeating motif, which is found in many species of birds worldwide 

(Kenward et al. 2004; Riegner 2008; Gluckman and Cardoso 2009; Gluckman and 

Cardoso 2010). As such, there is likely to be an inherent degree of similarity in 

plumage pattern attributes. Therefore, we employed a granularity analysis to 

objectively quantify multiple aspects of patterning in the transformed images of each 

specimen, following methods employed to quantify the camouflage of cuttlefish as 
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well as mimicry in egg patterning (Barbosa et al. 2008; Chiao et al. 2009; 

Spottiswoode 2010; Stoddard and Stevens 2010; Spottiswoode and Stevens 2011). 

A granularity analysis is akin to early-stage visual processing, which breaks down 

information into different spatial scales depending on the receptive fields (Godfrey, 

Lythgoe, and Rumball 1987). To simulate this process, we fast Fourier transformed 

each image with seven octave-wide isotropic band-pass filters. Each filter size, or 

granularity band, captures information at different spatial scales where large filter 

sizes correspond to small markings with high spatial frequency, and small filter sizes 

correspond to large markings with low spatial frequency. Information from each 

spatial scale is represented by the granularity spectra for an image, from which 

aspects of patterning can be measured (Fig. 4.2).  

 

 Several absolute objective aspects of patterning were calculated from the 

granularity spectra (Fig. 4.2): the main marking size (the peak of the line), the 

importance of the main marking size to the overall pattern (proportion of power 

across all filter sizes that matches the peak value) and pattern contrast (overall 

amplitude of the spectrum across all spatial scales) (Stoddard and Stevens 2010). In 

addition, given that barred plumage is made up of a regularly repeating sub-pattern 

(Kenward et al. 2004; Gluckman and Cardoso 2009), we calculated the overall 

standard deviation of the main marking size over all spatial scales as a measure of 

pattern uniformity.  

 

 Barred plumage attributes can vary within patches of patterning (Gluckman 

and Cardoso 2009). To assess whether the pattern attributes measured in this study 

varied within species, we compared patterns from the ventral surface and flank area, 

as well as the top, middle and bottom of each surface sampled. As the results were 

qualitatively similar within and between patches of plumage patterns within species 

(supplementary Fig. S4.1), we averaged the total values for each patch per individual 

for the final analysis. To ensure that the age of the museum specimens did not affect 

the integrity of the pattern data (Doucet and Hill 2009), we correlated each measure 

of pattern with year of collection (when available) where there was a minimum of 

eight individuals to ensure that a low sample size did not bias the correlation, 

resulting in a sample size of 79 individuals. The data were not normally distributed so 

we report the median rather than the mean. To estimate robust confidence intervals, 

we used 1000 bootstrap bias-corrected and accelerated simulations (BCA) using the 
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bootstrap module in PASW 20 (supplementary Fig. S4.2) (Ruscio and T. Mullen 

2012).  

 

 

 

 

 
 

Fig. 4.2. Granularity spectra for an individual specimen of Aviceda cuculoides and 

Accipiter trivirgatus (representative samples of plumage are on the same scale). The 

granularity spectra of patterning are made up of the normalized energy at each filter 

size and indicate different aspects of patterning. For example, the granularity spectra 

peak at a marking filter size of two for A. trivirgatus, and four for A. cuculoides, which 

shows that A. trivirgatus has larger markings. The amplitude of the spectrum for the 

granularity spectra of A. cuculoides is much lower than that for A. trivirgatus 

indicating that A. trivirgatus has more contrast in its patterns than A. cuculoides. 

Photographs of plumage within the figure are copyright of the Natural History 

Museum and were taken by Thanh-Lan Gluckman. 

 

 

 To compare similarity between the barred plumage of each cuckoo-raptor 

pair, as well as assess the extent of overlap in pattern attributes, we used a 
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nonparametric measure of effect size: probability of superiority (PS), also known as 

stochastic superiority (Nakagawa and Cuthill 2007; Ruscio and Mullen 2012). PS is 

the probability that an individual from species A has a higher scoring pattern variable 

(i.e. main marking size) than an individual from species B. A PS value between 0.5 

and 0.71 indicates that the sample populations are highly similar for the trait 

measured (Grissom 2004). We used the slightly increased threshold of 0.73 as it is 

still within the realm of biological importance (Nakagawa and Cuthill 2007). For 

example, a PS value of 0.6 for main marking size in a cuckoo-raptor pair indicates 

that the two species being assessed have plumage patterns that overlap in size and 

match well for this attribute. To have a high degree of similarity the cuckoo-raptor pair 

must match in all four pattern attributes measured. 

 

 Habitat may select for plumage pattern attributes to be similar in sympatric 

cuckoos and raptors to evade detection by prey and hosts alike. A posteriori, to 

examine whether habitat may be a confounding factor we compared the habitat of 

each species to assess its influence on cuckoo plumage patterns. If habitat shapes 

the plumage patterns of cuckoos, cuckoo-raptor pairs that have the highest number 

of overlapping habitat types should be most similar. Information on habitat was 

collated and tabulated for final comparison (Payne and Sorensen 2005; Christie and 

Ferguson-Lees 2010). No statistical tests were applied to these data owing to the 

small sample size per habitat type. Nevertheless, this represents the maximum 

available information for each cuckoo sampled and is indicative of the selection 

habitat may pose on plumage patterns. 

 

 Finally, to assess whether cuckoos look more like a local dangerous model 

than an allopatric raptor, we modeled sympatry/allopatry as a predictor of pattern 

similarity. As mentioned previously, barring is a ubiquitous pattern that is likely to 

exhibit a basic degree of similarity in birds that express this trait because it is a 

relatively simple pattern. However, it is unlikely that barred plumage will vary in all 

four measures described simultaneously as a result of the inherent simplicity of the 

pattern. Therefore, we measured the four-dimensional Euclidean distance between 

each specimen of cuckoo and every individual raptor in plumage pattern phenotypic 

space, which also accounts for within-species variation (Spottiswoode and Stevens 

2011). A large Euclidean distance between individuals indicates dissimilarity, and a 

small distance indicates similarity. In addition, given that some similarity in patterning 
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was expected, and that we sampled multiple cuckoo and raptor species, as well as 

individuals within species, we modeled these data using generalized linear mixed 

modeling using the glmer function in the lme4 package in R (R Development Core 

Team 2012). To model whether geographical overlap predicts pattern 

similarity/dissimilarity, we compared the relative fit of sympatry and allopatry as a 

predictor variable for comparison with a model without a predictor variable: 

glmer(Euc_distance~Symp_Allopatric+(Raptor|Raptor_ID)+(Cuckoo|Cuckoo_ID)), 

glmer(Euc_distance~+(Raptor|Raptor_ID)+(Cuckoo|Cuckoo_ID)), respectively. 

Together this represents the hypothesis that cuckoos look more similar to a local 

sympatric raptor and the alternative, that geographical overlap does not fit the data 

well and that there may be an alternative reason for a similarity in barred plumage 

between cuckoos and raptors. Finally, we used the Akaike information criterion (AIC) 

and the evidence ratio statistic (ER), to assess which model is a better fit for the data 

as well as assess the magnitude to which the better fitting model explains the 

variation (Burnham and Anderson 2002; Symonds and Moussalli 2010). We used 

AIC rather than AICc as the number of observations was more than 40 times the 

number of explanatory variables (Anderson et al. 2001).  

 

 

Results 

 

 There was no correlation between year of collection and any measure of 

patterning between or within species (main marking size: 0.277 < R < 0.622, P > 

0.055; proportion of power: 0.303 < R < 0.983, P > 0.116; contrast: 0.340 < R < 

0.771, P > 0.091; marking size deviation: 0.342 < R < 0.821, P > 0.046). Granularity 

spectra differed between most of the cuckoo species sampled although there was 

some similarity between Cacomantis and Cercococcyx. In addition, there was 

substantial variation among the granularity spectra of raptors sampled (Fig. 4.3). 

Cuckoos predominantly matched sympatric raptors for between one and three 

pattern attributes. In three of the five cuckoos, there was matching for all four pattern 

attributes with at least one raptor (Fig. 4.3, Table 4.3).  

  

 For most cuckoo species, there was no pattern matching in at least one 

raptor, except in the African Chrysococcyx, but for Eudynamys, there were two 

raptors with no pattern overlap (Fig. 4.3, Table 4.3). Two of the four closely matched 
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raptor species were Accipiter species. In addition, cuckoos closely resembled 

species of the genera Aviceda and Polyboroides (Table 4.3). There was variation in 

which pattern attribute was most matched across sympatric raptors: Cercococcyx 

matched most raptors for contrast, Chrysococcyx and Cacomantis predominantly 

matched raptors in main marking size and proportion of power, Cuculus matched 

most raptors for main marking size, whereas Eudynamys predominantly matched 

raptors for proportion of power (Table 4.3). In addition, there was no pattern matching 

between any allopatric cuckoo-raptor pair (Table 4.4).  
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Fig. 4.3. Granularity spectra for cuckoos and sympatric raptors, with pattern matching 

in four attributes on the basis of the probability of superiority. Spectra are shown for 

each cuckoo and its sympatric raptors: (a) African spp.; (b) Oceanian spp. The black 

line indicates the cuckoo. A grey dotted line indicates no pattern matching over any 
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attribute, a solid grey line indicates matching for one attribute, green for two 

attributes, blue for three attributes and red for all four pattern attributes. The 

measures of probability of superiority are in Table 4.3, and the median and sample 

sizes used for these calculations are in Table 4.2.  

 

  

 The habitat types inhabited by each cuckoo and raptor were variable between 

species, as were the number of overlapping habitat types (Table 5, supplementary 

Table S4.3, S4.4). The number and type of habitats used by each pair predicted 

plumage pattern similarity only in Cacomantis and Accipiter fasciatus (Fig. 4.3, Table 

4.5).  
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Table 4.3. Comparison of barring attributes of plumage patterns between each 

cuckoo and sympatric raptor on the basis of probability of superiority (PS).  

Cuckoo Sympatric raptor 

Main 

marking 

size 

Proportion 

of power 
Contrast 

Marking 

size 

deviation 

Number of 

matching 

attributes 

Eudynamys 

scolopacea 
Aviceda leuphotes 1 0.63 0.61 0.6 3 

 
Pernis ptilorhyncus 0.65 0.98 0.65 0.8 2 

 
Accipiter trivirgatus 1 0.57 0.6 0.52 3 

 
Accipiter soloensis 0.9 1 1 1 0 

 
Accipiter fasciatus 0.66 0.67 0.97 0.93 2 

 
Accipiter gularis 0.81 0.63 0.94 0.91 1 

 
Accipiter virgatus 0.93 0.92 0.94 0.96 0 

 
Spizaetus nanus 0.82 0.54 0.7 0.7 3 

Chrysococcyx 

flavigularis 
Aviceda cuculoides 0.6 0.6 1 1 2 

 
Polyboroides typus 0.72 0.6 0.72 0.5 4 

 
Micronisus gabar 0.58 0.6 1 0.98 2 

 
Accipiter tachiro 0.52 0.6 1 0.98 2 

 

Accipiter 

ovampensis 
0.75 0.6 1 1 1 

  
Kaupifalco 

monogrammicus 
0.68 0.6 1 1 2 

Cacomantis 

sonneratii  
Aviceda leuphotes 0.82 0.56 0.96 0.97 1 

 
Pernis ptilorhyncus  0.58 0.93 0.9 0.6 2 

 
Accipiter trivirgatus 0.82 0.62 0.9 0.89 1 

 
Accipiter soloensis 0.87 1 1 1 0 

 
Accipiter fasciatus 0.7 0.52 0.6 0.54 4 

 
Accipiter gularis 0.54 0.65 0.55 0.65 4 

 
Accipiter virgatus 0.69 0.9 0.53 0.59 3 

 
Spizaetus nanus 0.6 0.58 1 1 2 

Cercococcyx 

mechowi 
Aviceda cuculoides 0.6 0.73 0.57 0.52 4 

 
Polyboroides typus 0.97 0.51 0.89 0.89 1 
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Micronisus gabar 0.93 0.86 0.66 0.76 1 

 
Accipiter tachiro  0.75 0.66 0.57 0.61 3 

 

Accipiter 

ovampensis 
0.99 0.98 0.73 0.78 1 

  
Kaupifalco 

monogrammicus 
0.99 0.99 0.72 0.77 1 

Cuculus 

saturatus  
Aviceda leuphotes 0.65 0.9 0.72 0.65 3 

 
Pernis ptilorhyncus 0.97 1 0.94 0.98 0 

 
Accipiter trivirgatus 0.67 0.92 0.67 0.6 3 

 
Accipiter soloensis 0.65 1 1 1 1 

 
Accipiter fasciatus 0.97 0.7 1 1 1 

 
Accipiter gularis 0.71 0.87 0.98 0.98 1 

 
Accipiter virgatus 0.68 1 0.99 1 1 

  Spizaetus nanus 0.63 0.83 0.63 0.4 3 
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Fig. 4.4. Box plot of the Euclidean distance in four-dimensional plumage pattern 

space between each individual cuckoo and raptor. Allopatric and sympatric cuckoos 

and raptors are presented in separate box plots with their individual mean, 

interquartile ranges and outliers.  The 25th to 75th quartiles are encapsulated in the 

box and dashed lines indicate the lower 25th and upper 75th quartile ranges.   
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Table 4.4. Comparison of barring attributes of plumage patterns between each 

cuckoo and allopatric raptor on the basis of probability of superiority (PS). A range of 

PS values of 0.5–0.71 indicates overlap and therefore a high degree of similarity, 

therefore a PS value of 0.5 - 0.73 was considered to have an effect (Nakagawa and 

Cuthill 2007). 

 

Cuckoo Allopatric raptor 

Main 

marking 

size 

Proportion 

of power Contrast 

Marking 

size 

deviation 

Number 

of 

matching 

attributes 

Eudynamys 

scolopaceus Aviceda cuculoides 1.00 1.00 0.99 1.00 0 

 

Polyboroides typus 1.00 1.00 1.00 1.00 0 

 

Micronisus gabar 1.00 1.00 1.00 1.00 0 

 

Accipiter tachiro 1.00 1.00 0.99 1.00 0 

 

Accipiter 

ovampensis 1.00 1.00 1.00 1.00 0 

 

Kaupifalco 

monogrammicus 1.00 1.00 1.00 1.00 0 

Chrysococcyx 

flavigularis Aviceda leuphotes 1.00 1.00 1.00 1.00 0 

 

Pernis 

ptilorhynchus 0.99 1.00 1.00 1.00 0 

 

Accipiter trivirgatus 1.00 1.00 1.00 1.00 0 

 

Accipiter soloensis 1.00 0.97 0.99 0.97 0 

 

Accipiter fasciatus 1.00 1.00 1.00 1.00 0 

 

Accipiter gularis 1.00 1.00 1.00 1.00 0 

 

Accipiter virgatus 1.00 1.00 1.00 1.00 0 

  Spizaetus nanus 1.00 1.00 1.00 1.00 0 

Cacomantis 

sonneratii Aviceda cuculoides 1.00 1.00 0.99 1.00 0 

 

Polyboroides typus 1.00 1.00 0.99 1.00 0 

 

Micronisus gabar 1.00 1.00 1.00 1.00 0 

 

Accipiter tachiro 1.00 1.00 0.99 0.99 0 

 

Accipiter 1.00 1.00 1.00 1.00 0 
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ovampensis 

 

Kaupifalco 

monogrammicus 1.00 1.00 1.00 1.00 0 

Cercococcyx 

mechowi Aviceda leuphotes 1.00 1.00 1.00 1.00 0 

 

Pernis 

ptilorhynchus 0.98 1.00 1.00 0.99 0 

 

Accipiter trivirgatus 1.00 1.00 1.00 1.00 0 

 

Accipiter soloensis 1.00 1.00 1.00 1.00 0 

 

Accipiter fasciatus 1.00 1.00 1.00 0.99 0 

 

Accipiter gularis 1.00 1.00 1.00 1.00 0 

 

Accipiter virgatus 1.00 0.99 0.99 0.99 0 

  Spizaetus nanus 0.99 1.00 1.00 1.00 0 

Cuculus 

saturatus Aviceda cuculoides 0.99 1.00 1.00 1.00 0 

 

Polyboroides typus 1.00 1.00 1.00 1.00 0 

 

Micronisus gabar 1.00 1.00 0.99 1.00 0 

 

Accipiter tachiro 1.00 1.00 1.00 1.00 0 

 

Accipiter 

ovampensis 1.00 1.00 1.00 1.00 0 

  

Kaupifalco 

monogrammicus 1.00 1.00 0.99 1.00 0 
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Table 4.5. The number of overlapping habitat types between cuckoos and raptors. 

The number of habitats inhabited by each cuckoo is given after the species name.   

 

 

 

  

Raptor 

Eudynamys 

scolopacea, 13 

Chrysococcyx 

flavigularis, 3 

Cacomantis 

sonneratii, 7 

Cercococcyx 

mechowi, 3 

Cuculus 

saturatus, 7 

Aviceda cuculoides - 1 - - - 

Aviceda leuphotes 6 - 5 - 2 

Pernis ptilorhyncus 2 - 3 - 1 

Polyboroides typus - 1 - 1 - 

Micronisus gabar - - - - - 

Accipiter trivirgatus 4 - 3 - 2 

Accipiter tachiro - 3 - 1 - 

Accipiter soloensis 6 - 5 - 1 

Accipiter fasciatus 6 - 5 - 1 

Accipiter gularis 4 - 3 - 1 

Accipiter virgatus 3 - 2 - 1 

Accipiter 

ovampensis - - - - - 

Kaupifalco 

monogrammicus - 1 - 1 - 

Spizaetus nanus 3 - 3 - 1 
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Discussion 

 

 Previous work on the function of barred plumage in the common cuckoo 

revealed that it can reduce aggression in some hosts, which is congruent with 

Batesian mimicry (Davies and Welbergen 2008; Welbergen and Davies 2011; 

Thorogood and Davies 2012; Trnka and Prokop 2012; Trnka, Prokop, and Grim 

2012; but see Honza et al. 2006). In Old World cuckoos, barring appears to have 

evolved with brood parasitism, but it was previously unknown whether this is 

perceptually relevant from the perspective of birds (Kruger, Davies, and Sorenson 

2007). Although barring is common, it can vary greatly in a number of pattern 

attributes. Here, using objective digital image analysis we have shown that represen-

tative species from all five genera of barred Old World parasitic cuckoos have barring 

that resembles that of raptors. Of these five cuckoo species, three are remarkably 

similar to a sympatric raptor; the potential models came from the genus Accipiter as 

well as Aviceda and Polyboroides. This demonstrates that the putative mimic need 

not be constrained to the genus Cuculus in Old World cuckoos and the model can be 

from multiple raptor genera. Finally, we found evidence that distribution overlap 

predicts plumage pattern similarity, suggesting that cuckoos resemble sympatric 

raptors more than allopatric raptors. Together these results demonstrate that 

cuckoos from all five genera of barred parasitic Old World cuckoos resemble a local 

dangerous model, conforming to a fundamental principle of Batesian mimicry. 

Therefore, barred plumage may function in cuckoo-hawk mimicry in many more 

species than the common cuckoo.  

 

 Although barred plumage is an easily recognizable pattern, it can vary in 

multiple dimensions and the variation can be subtle (Fig. 4.3, supplementary Fig.  

S4.1). This underscores the importance of objectively quantifying patterns. Akin to 

other lines of the cuckoo-host coevolutionary arms race, if barred plumage broadly 

functions in cuckoo-hawk mimicry, there appears to be a range of mimicry strategies 

employed from matching multiple local models to specializing on one (Stoddard and 

Stevens 2010; Davies 2011). All cuckoos studied resemble a sympatric raptor, in 

some cases very closely (Fig. 4.3). Moreover, no allopatric cuckoo and raptor 

matched for any pattern attribute (Table 4.4). This indicates that Batesian mimicry, if 

indeed widespread, may be a well-developed strategy in the host-parasite arms race. 

There may not, however, be one clear strategy, similar to egg mimicry. For example, 
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C. flavigularis most closely resembles Polyboroides typus, whereas C. saturatus 

resembles multiple sympatric raptors over a range of pattern attributes (Fig. 4.3, 

Table 4.3). Perhaps in the former, hosts have evolved to become more discerning, 

whereas in the latter, cuckoo-hawk mimicry may be a relatively recent event akin to 

other stages of the host-parasite arms race (Stoddard and Stevens 2010; Davies 

2011). Eudynamys scolopacea also resembles multiple raptors over a range of 

pattern attributes, which could reflect that males may use distraction displays to lure 

potential hosts from nests and perhaps in this system hosts are also less discerning 

than those of C. flavigularis. However, further study will be required to assess 

whether distraction displays are the predominant strategy in this species.  

 

 We should also consider that Batesian mimicry might have evolved over a 

long period of time and that the present overlap of populations may not be 

representative of the historical distribution of each species. Although the current 

distribution of each species may not describe where and with which raptors and 

hosts cuckoo-hawk similarity evolved, once plumage patterns evolve they appear to 

be evolutionarily labile, which indicates that they may be easy to modify in relatively 

short periods of time (T-L. Gluckman and N.I. Mundy unpublished data). Therefore, 

although current distribution is not indicative of historical distribution overlap, 

discrimination behaviour by hosts could drive plumage pattern similarity in short 

periods of evolutionary time (Thorogood and Davies 2012; Trnka and Grim 2013) and 

in this study we could only analyse the best of what is currently known about their 

overlap.  

 

 Hosts should be able to recognize broadly sympatric raptor species, which 

may not occur in precisely the same habitat on a finer scale (Pfennig and Mullen 

2010). However, habitat may select for a similarity in barred plumage patterns (Thery 

2001; Grim 2005; Endler 2007; Endler and Thery 2010). If this occurs, it would be 

expected that cuckoo-raptor pairs with the highest number of overlapping habitat 

types would be the most similar. However, this was not the case with the exception of 

Cacomantis sonneratii and A. fasciatus (Fig. 4.3, Table 4.4, 4.5, supplementary 

Table S4.3). These results, although crude in terms of characterization of habitat 

types, imply that selection for hawk mimicry, rather than camouflage, may be at least 

as important as habitat in driving the evolution of barred plumage in brood-parasitic 

cuckoos (Voipio 1953). Moreover, camouflage through barred plumage should 
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benefit both cuckoos and raptors, but similarly it should also benefit host and prey 

species, and other birds living in the same habitat. Yet many bird species sympatric 

with the study species do not have barred plumage, for example other raptors and 

passerine birds (supplementary Table S4.2). A link between barring and sedentary 

lifestyle in raptors has been proposed (Christie and Ferguson-Lees 2010), but there 

do not appear to be any studies showing statistical support for this, nor for a 

suggested link between barring and crypsis (Kruger, Davies, and Sorenson 2007). 

Future studies will need to characterize habitat attributes, or conduct field 

experiments, to elucidate the extent to which camouflage influences the evolution of 

barred plumage.  

 

 Alternatively, a similarity in phenotypes may arise from phylogenetic 

constraint or random matching (Grim 2005). Convergence from phylogenetic 

constraint is unlikely given that barring is more prevalent in parasitic cuckoos (35/58) 

than in nonparasitic cuckoos (4/83) and evolved after the evolution of parasitism in 

the Cuculidae (Kruger, Davies, and Sorenson 2007). Random matching is also 

unlikely given that allopatry/sympatry better predicted plumage pattern similar-

ity/dissimilarity than chance alone (Fig. 4.4).  

  

 It has been suggested that variation in strategy is due to developmental 

constraint or progression in the arms race (Davies 2000; Stoddard and Stevens 

2010). The current understanding of the mechanisms of plumage pattern formation is 

poor, and an added layer of complexity in cuckoo-hawk mimicry is that selection 

occurs via a third party, the host (Prum and Brush 2002). In this study we focused on 

barred plumage. However, other hawk-like features such as eye and leg coloration 

as well as polymorphisms are likely to represent important adaptations. Although 

these additional features may evolve via apostatic selection in some instances and 

selection for hawk mimicry in others, mimicry dynamics encompassing all features of 

hawk-like attributes is likely to be an important component of future research (Davies 

2000; Thorogood and Davies 2012; Trnka and Prokop 2012; Thorogood and Davies 

2013; Trnka and Grim 2013). In addition, this study encompasses only patterning but 

not colour, which will be investigated in a future study. Other important areas 

requiring investigation include selection on the host or prey to recognize barring as a 

threat in the systems we presented here. Our study has shown that there is a 

remarkable similarity of barred plumage in all genera of Old World barred parasitic 
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cuckoos and their sympatric raptors from the perspective of the host/prey. We hope 

this fosters further research beyond the common cuckoo and Eurasian sparrowhawk 

relationship.  
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Chapter 5: Ecological selection for bird plumage patterns worldwide 

 

 This project was conducted in collaboration with Marius Somveille and Kate 

Marshall, two current PhD students at the University of Cambridge. I conceived the 

project, collected all of the plumage pattern data, contributed to the literature review 

of the function of patterns in camouflage and communication, conducted all 

comparative testing as well as contributed some philosophical aspects of the 

ecological analysis. Marius designed and conducted the ecological analyses, and 

Kate contributed most of the literature review of the function of patterns in 

camouflage.  

 

Supplementary Table S5.3 is supplied on a CD-ROM on the back cover of 

this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbott H. Thayer, Peacock in the Woods (1907). 

 

  



The mechanisms underlying convergent evolution in the plumage patterns of birds 

 
133 

  



The mechanisms underlying convergent evolution in the plumage patterns of birds 

 
134 

Abstract 

  

It is thought that animal coloration matches the background in which it is 

viewed to minimize detection by predators. In particular, patterns, e.g. bars and 

spots, may function in camouflage because patterns are less conspicuous against 

heterogeneous backgrounds. Avian plumage patterns have converged on just four 

types: irregular - mottled patterns; regular - scales, bars and spots. Little is known 

about the camouflage function of avian patterns. To infer the potential utility of bird 

plumage patterns we conducted a literature survey of patterns in animals. Our 

literature survey revealed remarkable similarity in pattern-based anti-predator 

defences in aquatic and terrestrial, and vertebrate and invertebrate animals: irregular 

patterns facilitate concealment when motionless in cluttered backgrounds, whereas 

regular patterns (e.g. bars) prevent capture during movement and probably require 

open habitats for movement. However, regular patterns also function in 

communication and are likely to evolve on the ventral surface of males and to be 

independent of habitat. There are 16 types of habitats worldwide that vary in 

structural composition, e.g. closed habitats are cluttered whereas open habitats are 

less visually noisy, and perhaps habitat may explain convergent evolution in bird 

plumage patterns. Alternatively, similar patterns may have evolved due to shared 

ancestry. We considered adult plumage patterns in each sex, including breeding and 

non-breeding plumages, in 8008 spp. of birds, and juvenile plumages of 2603 spp., to 

examine whether patterns a) evolved due to shared ancestry, and b) whether habitat 

has selected for convergent evolution in plumage patterns. Shared ancestry 

predominantly explained <30% of pattern evolution. All four patterns are found in all 

combinations of age/sex/breeding/dorsoventral plumages in all 16 habitats of the 

world. The rare significant association between patterns and the eco-regions of 

habitats was dominated by all patterns together (7.65% eco-regions) in contrast with 

individual patterns (1.69% eco-regions). Significant associations between eco-

regions and patterns predominantly occurred in <25% of 15/16 habitats worldwide 

and patterns were not clustered in particular habitats. The rare significant 

associations between eco-regions and irregular and regular patterns were found in 

both closed and open habitats. A lack of association of the ventral breeding plumage 

of males and habitats is congruent with sexual selection. Therefore, habitat does not 

predict convergence in bird plumage patterns at the macroevolutionary scale.  
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Introduction 

  

The prevailing view of signal evolution is that animal coloration matches the 

background in which it is viewed to minimize detection by predators (Wallace 1889; 

Poulton 1890; Bradbury and Vehrencamp 1998) but that sexually selected traits 

stand out (Darwin 1871; Andersson 1994). Animal phenotypes may be comprised of 

uniform coloration, such as the entirely black plumage of the common raven (Corvus 

corax), or spatially variant pigmentation, such as the barred and spotted patterns of 

the male Zebra Finch (Taeniopygia guttata). In comparison to uniform coloration, our 

understanding of the function of patterns is less well understood. It is generally 

thought that patterning is beneficial because patterns allow animals to be less 

conspicuous against heterogeneous backgrounds (Fig. 5.1). The general principle 

underlying the function of patterns in camouflage is that patterns resemble aspects of 

the background in order to evade detection by predators or prey. In the context of 

signaling, patterns must visually diverge from the background to stand out to 

conspecifics.  

 

 

      A)             B)    C) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. The hypothesis of animal pattern strategies. Considering animal patterns in 

the context of habitat, patterns can A) stand out, B) conceal the animal if its pattern is 

similar to its background, and C) stand out if the pattern is dissimilar to its 

background pattern (Fig. 8.16 in Bradbury and Vehrencamp 1998).  
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Signal evolution theory predicts that a visual signal will evolve to be effective 

for the function it serves (Endler 1978; Bradbury and Vehrencamp 1998; Kenward et 

al. 2004). It is thought that animals exploit the visual patterning of their background, 

including vegetation and the substrate, to either camouflage themselves or to stand 

out to conspecifics. For example, bold patterns on a plain background make an 

animal standout, having a similar pattern to the background allows the animal to 

blend in, whereas patterns that oppose the geometric pattern of the background are 

conspicuous (Fig. 5.1). Birds are an ideal system in which to test ecological selection 

for patterns as they have evolved multiple pattern types (Fig. 5.2) and inhabit a wide 

variety of habitats on all major landmasses. In spite of the diversity of avian 

phenotypes, plumage patterns have repeatedly converged on the same four types: 

Irregular - mottled plumage where the vane is heterogeneously pigmented; Regular – 

scales where pigmentation follows the edge of the vane and may be concentric, bars 

which are made of alternating dark and light pigmentation transversal to the feathers 

axis, and spots where one or more spots pigment each feather (Fig. 5.2). Feather 

patterns mostly consist of combinations of neutral colours comprising brown, buff, 

cream, black and sometimes grey (T-L. Gluckman unpublished data), which are all 

formed from melanin, as well as white, which is due to an absence of melanin 

(Mundy et al. 2004). More striking coloration, including green, red and blue are 

infrequent in the patterns of birds.  

 

Other types of patterns, such as the stripes of the vulturine guineafowl 

(Acryllium vulturinum), are comparatively rare. In addition, there is a pattern that is 

only found in one species of bird, the checkerboard pattern of the common loon 

(Gavia immer), and another pattern is found in less than ten species, the triangles in 

the breast of the male Wood duck (Aix sponsa) (T-L. Gluckman unpublished data). 

Therefore, birds can make other types of patterns but repeatedly converge on just 

the same four types (Fig. 5.2). Perhaps convergence in bird plumage patterns has 

arisen because these patterns are the most effective in camouflage and/or 

communication relative to the habitat in which each species’ lives (Poulton 1890; 

Thayer 1909; Cott 1940; Endler 1978).   
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Fig. 5.2. The prevalent feather patterns of birds. In spite of the diversity of avian 

phenotypes, feather patterns have repeatedly converged on the same four patterns: 

Irregular - a) mottled plumage in a female sharp-tailed grouse (Tympanachus 

phasianellus); Regular - b) barred plumage in a male Andean goose (Chloephaga 

melanoptera), c) scaled plumage in a male falcated duck (Anas falcata), d) spotted 

plumage in a male great argus (Argusianus argus). Figure taken from Marshall and 

Gluckman, in review.   

 

 

 The main physical characteristics of visual signals are 1) intensity of the 

signal (brightness), 2) colour, 3) spatial characteristics, and 4) temporal variability of 

these three attributes (Bradbury and Vehrencamp 1998). Bird plumage patterns are 

dominantly composed of neutral colouration and current evidence suggests that 

texture (patterns) are detected by achromatic vision (Jones and Osorio 2004). Spatial 

and temporal characteristics of the pattern are likely to be important attributes in the 

context of the background in which they are viewed. For example, the relationship 

between spatial attributes of the pattern and the habitat changes in different 

combinations (Fig. 5.1) because pattern type can vary among juveniles and adults, 

and between breeding and non-breeding phenotypes (Björklund 1991; Gluckman and 

Cardoso 2010). Brightness and coloration are likely to have an important function in 

camouflage, but as a first attempt at ecological selection for plumage patterns we 

focused on the most prominent aspect of patterning: the spatial arrangement of 

pigmentation into the four types of patterning in relation to the spatial characteristics 
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of the background in which they are viewed (Fig. 5.2).  

 

 Currently, there is little empirical evidence for the function of bird plumage 

patterns. To assess the function of animal patterns, we conducted a broad survey of 

the literature spanning over 80 studies from vertebrates and invertebrates, including 

aquatic and terrestrial animals. Our literature review illustrates that the function of 

patterns is type and context dependent, but is nonetheless similar in many animal 

groups (Table 5.1; supplementary S5.1). Pattern-based anti-predator defenses can 

be subdivided into those that conceal while stationary and those that prevent capture 

during movement (Poulton 1890; Thayer 1909; Cott 1940; Bradbury and 

Vehrencamp 1998; Stevens et al. 2006; Mäthger et al. 2008; Stevens, Yule, and 

Ruxton 2008; Hanlon et al. 2009; Stevens and Merilaita 2009a; Stevens and Merilaita 

2009b; Stevens et al. 2011). Patterns used in communication are likely to repeat a 

motif (sub-pattern, e.g. bars and spots) because repetition increases the likelihood 

that a signal will be received (Kenward et al. 2004). Accordingly, there is a growing 

body of evidence demonstrating that regular patterns function in communication 

(Hasson 1991; Petrie, Halliday, and Sanders 1991; Swaddle and Cuthill 1994; 

Omland 1996; Roulin 1999a; Roulin 1999b; Gluckman and Cardoso 2010; Muck and 

Goymann 2011).  

 

 

Table 5.1. The number of species for which empirical, comparative and correlational 

evidence has demonstrated the function of irregular or regular patterns in camouflage 

and/or communication, spanning vertebrates and invertebrates, as well as terrestrial 

and aquatic species (see supplementary Table S5.1 for source studies). Table 5.1 

and corresponding data taken from Marshall and Gluckman, in review.   

 

 

 

 

 

 

 

 It is likely that irregular patterns function in the camouflage of stationary 

animals as they appear to generally match the irregular pattern of one or several 

 

Irregular Regular 

Camouflage 8 7 

Communication 1 7 
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background types (background-matching) and/or seem to create false sets of edges 

(disruptive camouflage) to evade detection by predators (Thayer 1909; Cott 1940; 

Endler 1978; Bradbury and Vehrencamp 1998; Stevens and Merilaita 2009a; 

Stevens and Merilaita 2009b). For example, it has been suggested that non-breeding 

plumage in ducks, which often consists of irregular patterning (e.g. the genera Aythya 

and Somateria), facilitates concealment of females during nesting and of both sexes 

during the flightless period accompanying wing moult (Batt 1992). Although there are 

few empirical studies demonstrating the role of irregular plumage patterns in the 

camouflage of birds, there is substantial evidence from studies in 8 species spanning 

amphibians, insects, crabs, cephalopods, and bird eggs (Table 5.1; supplementary 

Table S5.1). For instance, in colour-changing organisms, the irregular mottled, 

stippled and disruptive patterns of cuttlefish (Sepia officinalis) facultatively match 

their backgrounds for crypsis (Chiao, Kelman, and Hanlon 2004; Chiao, Chubb, and 

Hanlon 2007; Hanlon et al. 2007; Barbosa et al. 2008; Mäthger et al. 2008; Hanlon et 

al. 2009; Chiao et al. 2010; Chiao et al. 2013), octopuses exhibit irregular body 

patterns that imitate nearby background objects (Josef et al. 2012), and the colour-

changing fiddler crab (Uca vomeris) exhibits irregular, mottled patterns under 

predation to be cryptic against their mud background (Hemmi et al. 2006). Thus, 

static camouflage patterns are likely to consist of irregular pigmentation. In birds 

irregular mottled plumage is common in many species (Fig. 5.2), and is more 

frequently found in females and juveniles in comparison to regular barred plumage 

patterns (Gluckman and Cardoso 2010). 

 

Current evidence suggests that regular patterns, such as bars and spots, 

facilitate camouflage during movement and therefore function as a secondary 

defence during the escape of prey by exploiting specific features of receiver visual 

acuity, e.g. motion-dazzle and flicker-fusion (Thayer 1909; Pough 1976; Endler 1978; 

Endler 1980; Brodie 1989; Brodie 1992; Brodie 1993; Shine 1994; Lindell and 

Forsman 1996; Stevens, Hopkins, et al. 2007; Stevens, Yule, and Ruxton 2008; 

Stevens and Merilaita 2009b; Scott-Samuel et al. 2011; Allen et al. 2013; Helversen, 

Schooler, and Czienskowski 2013; How and Zanker 2014). The underlying 

mechanisms of motion-based camouflage can be explained by the repetitive nature 

of regular patterns whereby repetition causes perceptual lag or fatigue in vision 

based motion-sensitive cells (Snowden 1998) or illusions of motion (Stevens, Yule, 

and Ruxton 2008). Evidence for motion-based camouflage via regular patterning has 
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been demonstrated in at least 7 species comprising fish, snakes, mammals and 

cephalopods (Table 5.1; supplementary Table S5.1). For example, bars or stripes 

have been shown to reduce the ability of predators to estimate the speed and 

direction of moving prey via motion-dazzle, allowing prey to evade capture after 

being detected (Stevens, Yule, and Ruxton 2008; Scott-Samuel et al. 2011; Stevens 

et al. 2011; How and Zanker 2014). Regular patterns may also facilitate motion-

based background matching via flicker-fusion camouflage, where patterns blend 

during movement to match the background (Jackson, Ingram, and Campbell 1976; 

Pough 1976; Endler 1978; Brodie 1989; Brodie 1992; Brodie 1993; Shine 1994; 

Lindell and Forsman 1996). Evidence for flicker-fusion comes from behavioural and 

survivorship correlations between regular colour patterns and anti-predator escape 

behaviour in garter snakes (Thamnophis ordinoides) (Brodie 1989; Brodie 1992; 

Brodie 1993).  

 

However, regular patterns may have a dual function in visual communication 

with conspecifics at close range (Marshall 2000). Comparative and empirical 

experiments show that regular patterns function in communication in a range of 

species (Hasson 1991; Petrie, Halliday, and Sanders 1991; Swaddle and Cuthill 

1994; Omland 1996; Roulin 1999a; Bortolotti et al. 2006; Gluckman and Cardoso 

2010; Roulin et al. 2010; Muck and Goymann 2011). Out of the 14 species that 

exhibit regular patterns that have been investigated (Table 5.1), 7 use patterns in 

communication. Signal obstruction, via objects such as trees and branches in a 

forest, may select for regularly repeating patterns, because repetition of a message 

increases the chances that the signal is detected by their intended receivers 

(Kenward et al. 2004). A comparative study in birds showed that, compared to 

irregular mottled patterns, barred plumage is more likely to evolve on the ventral 

surface of sexually mature males – a likely location for visual communication 

(Gluckman and Cardoso 2010). Empirical evidence demonstrates that barred 

patterns are positively associated with body condition in female barred buttonquails 

(Turnix suscitator; Muck and Goymann 2011), and the barred flanks of the red-

legged partridge (Alectoris rufa) appear to function as a social signal (Bortolotti et al. 

2006), whereas spots on tail feathers of barn swallows (Hirundo rustica) appear to be 

a reliable signal of phenotypic quality in males (Kose, Mänd, and Moller 1999), and 

plumage spottiness in female barn owls (Tyto alba) appears to be a signal of mate 

quality (Roulin 1999b). Moreover, a classical study shows that the number of 
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eyespots on male peacock (Pavo cristatus) tails is positively associated with mating 

success (Petrie, Halliday, and Sanders 1991).  

 

 There is currently little evidence to suggest that irregular patterns may 

function in motion-based camouflage (supplementary Table S5.1). In addition, given 

that motion-dazzle or flicker-fusion camouflage strategies appear to be reliant on 

repetition of a regular motif to cause illusions of motion (Snowden 1998; Stevens, 

Yule, and Ruxton 2008) it seems unlikely that irregular mottled patterns function in 

motion-based camouflage. Therefore, the function of bird plumage patterns in 

camouflage and communication is likely to be linked to whether the pattern is 

irregular or regular (Table 5.1). The distribution of plumage patterns on the basis of 

age class (juvenile or adult), gender and on which surface the pattern is distributed 

can be indicative of function (Björklund 1991). Dorsal patterns are likely to function in 

camouflage in adults of both sexes, and juveniles, as shown in birds and lizards 

(Stuart-Fox and Ord 2004; Gluckman and Cardoso 2010; Garcia, Rohr, and Dyer 

2013). In contrast, a communication function is likely to evolve on the ventral surface 

of males (Gluckman and Cardoso 2010). Such an arrangement provides a solution to 

antagonistic selection pressures in the form of signal partitioning where the signal is 

separated from the camouflage component, such as in Bicyclus butterflies and 

agamid lizards (Endler 1992; Stuart-Fox and Ord 2004; Oliver, Robertson, and 

Monteiro 2009), but is likely to be dependent on which background the animal is 

viewed against (Fig. 5.1).  

  

 Across the world the main visual difference between habitats is structural 

composition. Given the function of patterns (Table 5.1), and that patterns are viewed 

in the context of their environment (Fig. 5.1), pattern type and pattern location over 

the body may be associated with habitat. Static irregular camouflage patterns are 

harder to detect when viewed against more cluttered backgrounds with distractors 

and other moving conspecifics (Dimitrova and Merilaita 2009; Dimitrova and Merilaita 

2012; Hall et al. 2013). Therefore, perhaps background-matching/disruptive 

camouflage occurs in more visually complex environments such as closed habitats, 

but probably not in open habitats such as aqueous environments and deserts (Fig. 

5.1). The motion-based camouflage function of regular patterning has been 

demonstrated where prey/target is in motion (Stevens, Yule, and Ruxton 2008; Scott-

Samuel et al. 2011; Stevens et al. 2011; How and Zanker 2014). Given that space is 
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required for movement, perhaps motion-based camouflage patterns are favoured in 

more open habitats such as sparse woodland (Fig. 5.1).  

 

Similar plumage patterns may occur in closely related species due to 

phylogenetic relatedness rather than for adaptive reasons (Felsenstein 1985; Revell, 

Harmon, and Collar 2008). Therefore, we tested whether plumage patterns may have 

been retained due to shared ancestry in 8009 spp. of adult birds and 2603 spp. of 

juveniles. We then tested whether ecology selects for convergent evolution in bird 

plumage patterns. The majority of avian species across the world are land birds. A 

small number of avian species are marine (0.02% - 217 spp.) and their distribution, 

especially during the non-breeding season when marine birds are at sea, is not well 

known (The Nature Conservancy, http://maps.tnc.org/gis_data.html). In addition, their 

distribution is coarse and covers a wide area making inferences from these species 

difficult. Therefore, we focussed solely on land birds. A camouflage function is likely 

on both the ventral and dorsal surface of females and juveniles, and the dorsal 

surface of males (Houston, Stevens, and Cuthill 2007) whereas regular patterns that 

have a social function are likely to be displayed on the ventral surface of males 

(Gluckman and Cardoso 2010). Given that cluttered habitats may also select for 

regularly repeating patterns (Kenward et al. 2004), but that regular patterns may also 

stand out on uniform backgrounds (Fig. 5.1), male ventral patterns may be 

independent of habitat type. Based on our literature review and a current 

understanding of natural selection we expect to find a significant association between 

closed and open habitats with irregular and regular patterns, respectively (Table 5.1).  

 

 

 

Methods and materials 

 

Data collection 

 

 The best phylogenetic reconstructions for the class Aves are those by Jetz et 

al. (2012) on the basis of species coverage and breadth of data. 10,000 trees are 

available for this phylogeny, which is drawn from a single Bayesian analysis. To 

control for phylogenetic uncertainty we randomly selected 100 phylogenetic trees 

provided by Jetz et al (2012) on which to run our analyses. To collect plumage 
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pattern information we referred to field guides covering all major landmasses: North 

and Central America (Sibley 2000; van Perlo 2006), South America and Antarctica 

(De La Pena and Rumboll, 1998; Restall et al. 2007), sub-Saharan Africa and 

Madagascar (Langrand 1990; Sinclair and Ryan 2003), Europe, North Africa and 

Central Asia (Heinzel et al. 1995; Grimmett et al. 1999; Arlott 2007, 2009; Brazil 

2009), East and South-East Asia (MacKinnon and Phillips 1993; Coates and Bishop 

1997; Robson 2005), and Oceania (Beehler et al. 1986; Pratt et al. 1987; Simpson 

and Day 2004; Robertson and Heather 2005). Where multiple subspecies were 

present, we collected information on the nominate subspecies, resulting in a sample 

size of adults of 8008 spp.. Juvenile plumages are less frequently drawn in field 

guides resulting in a sample size of 2603 spp. 

 

 We scored the plumage of both sexes as well as juveniles of each study 

species (where applicable) for an absence of patterns, mottled, scaled, barred and 

spotted patterns on the ventral and dorsal surface separately (Fig. 5.2). Some 

species have multiple patterns on either the ventral and/or dorsal surface, e.g., the 

male zebra finch (Taeniopygia guttata) has barred patterns on the breast and spotted 

flanks. In such species, all of the different types of plumage patterns on each surface 

were scored and each pattern type was analysed separately. Where species 

exhibited variable patterns between molts we collected the breeding and non-

breeding plumage given that there may be variation in selection pressure on the 

different types of patterns exhibited. Squares, triangles and stripes also occur within 

the feathers of birds, but are comparatively rare (e.g. stripes - 43 spp.), and were 

excluded from the analysis.  

 

 

Measuring phylogenetic signal 

 

 The tendency of species to resemble related species, more than randomly 

selected species from a tree can be measured as phylogenetic signal (Pagel 1999). 

The best statistical approach to estimating phylogenetic signal is an area of ongoing 

debate but simulation studies indicate that with a large number of species Pagel’s λ 

is the most robust test statistic (Münkemüller, Lavergne, and Bzeznik 2012). To 

examine whether plumage patterns have evolved due to phylogenetic inertia we 

estimated Pagel’s λ in the package phylosig (Revell 2011)  using 100 optimization 
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iterations in R (R Development Core Team 2012). In Phylosig, Pagel’s λ is estimated 

as 0 or 1, where a value of 0 indicates that trait evolution is independent of the 

phylogeny, whereas 1 indicates a signal of phylogenetic inertia. We estimated 

phylogenetic inertia in each pattern, in each sex and age class, as well as breeding 

and non-breeding plumages, on the ventral and dorsal surface, over 100 randomly 

selected phylogenetic trees (see Data Collection; Jetz et al. 2012). We present the 

proportion of trees out of 100 in which λ = 1.  

 

  

Ecological selection for plumage patterns 

 

 To examine whether habitat selects for plumage patterns at the global scale, 

we analysed the distribution of avian species across the main habitat types 

worldwide. We used a global dataset of the distribution of bird species which is 

described elsewhere (Somveille et al. 2013). Briefly, polygons representing the global 

distribution of 9783 non-marine bird species were obtained from BirdLife International 

and NatureServe (2012). Breeding distributions (polygons corresponding to the areas 

where a species is present during the breeding season) were estimated separately 

from non-breeding distributions (polygons where a species is present during the non-

breeding season). Terrestrial eco-regions are defined as units of land with a distinct 

assemblage of natural communities and species, and are nested within biomes, 

which provide identification of habitats (Olson et al. 2001). To investigate how avian 

species are distributed in eco-regions, we used a global map of terrestrial eco-

regions made available by The Nature Conservancy 

(http://maps.tnc.org/gis_data.html). After removing eco-regions that contained no 

avian species, 810 eco-regions remained. A species was classed as occurring in a 

given eco-region if its mapped range overlaps with any part of the eco-region. Given 

the coarseness of the species distribution data, this is not always true, but represents 

a good approximation of occurrence given the spatial resolution of the eco-regions 

(Hurlbert and Jetz 2007). Species richness was measured as the number of species 

occurring in a given eco-region (Figure 5.3a). 

 



The mechanisms underlying convergent evolution in the plumage patterns of birds 

 
146 

  

Fig. 5.3. Total avian species richness worldwide as well as the global distribution of 

terrestrial habitats containing avian species. A) The global distribution of avian 

species richness. B) Each habitat type encompasses multiple eco-regions (numbers 

in brackets). Each type of habitat may be classified as either closed or open as 

indicated by colour: green and blue = mostly closed; red, orange and yellow = mostly 

open. Mangroves are indicated with grey, as they cannot be classified as either open 

or closed. T = Temperate; and T/S - Tropical and Subtropical.  

 

 

Across the world there are 16 major types of habitats as follows: 1) Tropical 

and subtropical moist broadleaf forests; 2) Tropical and subtropical dry broadleaf 

forests; 3) Tropical and subtropical coniferous forests; 4) Temperate broadleaf and 

mixed forests; 5) Temperate coniferous forests; 6) Boreal forests/taiga; 7) 

Mediterranean forests, woodlands and scrub; 8) Tropical and subtropical grasslands, 

     Global habitats 
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savannas and shrublands; 9) Temperate grasslands, savannas and shrublands; 10) 

Flooded grasslands and savannas; 11) Montane grasslands and shrublands; 12) 

Tundra; 13) Deserts and xeric shrublands; 14) Mangroves; 15) Inland water; and 16) 

Rock and ice. Each of these habitats occurs in multiple eco-regions. Given that a 

major hypothesis of this study is that irregular mottled patterns are associated with 

closed habitats whereas regular patterns, in particular barred patterns, may occur in 

more open habitats, we additionally categorized habitat type into open and closed. 

Closed habitats comprise habitats 1-7 described above which are dominated by 

dense forests. Open habitats are comprised of the other habitats (8-16) that typically 

consist of short vegetation that is often sparsely distributed. Mangroves cannot be 

easily classified as either closed or open and were removed from the comparison of 

closed and open habitats.  

 

Each of the analyses was conducted for a subset of data comprised of each 

combination of patterns (all patterns, mottled, scaled, barred and spotted) and 

gender/age/body location class: male/female/juvenile, breeding/non-breeding, 

ventral/dorsal (herein subset). Each habitat occurs in multiple eco-regions (Fig. 5.3b). 

To determine whether habitat has an effect on the distribution of each subset of 

pattern data, we examined the geographical variation in the proportion of species that 

have a) any type of pattern, and b) each individual type of pattern. For each pattern 

data subset we compared the proportion of patterned species within each eco-region 

to the global proportion of patterned species. If the proportion within eco-regions was 

significantly above or below the global proportion this was interpreted as selection for 

or against patterning, respectively. However, if the proportion at the eco-region level 

was the same as the global level this indicated support for a uniform or random 

distribution of the subset of pattern data. The corresponding null expectations in our 

experimental approach are a) the eco-region has the same proportion of patterned 

species as the global proportion of patterned species, e.g. if half of the species of 

birds in the world are patterned then half of the species in the local eco-region will be 

patterned, b) the eco-region has the same proportion of species with a particular 

subset of pattern data as the global proportion of species with that pattern subset, 

e.g. if half of the patterned species of birds in the world have a mottled pattern then 

half of the species in the eco-region will be mottled.  

 

To test whether the observed proportion of patterned species was 
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significantly higher or lower than the null hypothesis per eco-region we used a 

hypergeometric probability distribution around the null value in each eco-region. We 

obtained a cumulative probability distribution of the observed proportion of patterned 

species as well as an associated p-value for the observed value. If the p-value is 

significant and the cumulative probability is close to 0, this indicates that patterns 

appear less than expected by chance, and if the p-value is significant and the 

cumulative probability is close to 1, this indicates that patterns appear more than 

expected by chance. We allowed for some flexibility in variation of the cumulative 

probability and where the value was either <=0.02 or >=0.98, we considered this 

range of values as significant for selection against or for patterns, respectively. To 

correct for multiple testing, which can lead to pseudo-replication, we corrected the p-

values of the eco-regions of each habitat using a multiple testing correction. We 

initially used a standard p-value significance threshold of 0.05 with a Bonferroni 

correction, which is the p-value threshold divided by the number of eco-regions. This 

correction can be overly stringent. For example, for 810 eco-regions this is 0.05/810 

= 0.000062. Accordingly, a Bonferroni correction resulted in no significant results in 

any of our analyses (data not shown). Due to potential issues of power, we used a 

Benjamini-Hochberg   correction per subset of patterns analysed, as it is the least 

stringent correction for multiple tests (Benjamini and Hochberg 2010).  

 

Our analysis depended on comparing the local proportion of patterned 

species within an eco-region with the global proportion of patterned species. In a 

small number of eco-regions, there were no species with any type of patterning and 

we could not calculate the proportions for our test statistic. However, the geographic 

distribution of eco-regions that have a complete absence of patterned species may 

be important. Therefore, we present the cases where there are no avian species with 

any kind of patterning separately. 
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Results 

 

 

Plumage pattern evolution due to shared ancestry 

 

All types of plumage patterns are found in all combinations of females, males 

and juveniles, for breeding and non-breeding plumage on both the ventral and dorsal 

surface (Table 5.2). Mottled plumage is the most prevalent type of pattern in birds 

and is found on the dorsal surface more frequently than on the ventral surface in all 

sex and age classes, and is least frequent in males. Barred patterns are also 

common and are frequently found on the ventral surface of breeding adult males, but 

also in juveniles. In comparison, scaled and spotted patterns are less prevalent and 

are frequently biased towards the dorsal surface of adults and the ventral surface of 

juveniles. However, spotted patterns are also frequently found on the ventral surface 

of breeding males and females. 
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Table 5.2. The presence of plumage patterns in the class Aves (adults: 8008 species, juveniles: 2603 species). Plumage pattern information 

was collected from field guides covering all major landmasses – see Methods for references. 

 

 

 

 

 

 

 

 

 

 

    Mottled Barred Scaled Spotted 

Class Season Ventral Dorsal 

Both 

surfaces Ventral Dorsal 

Both 

surfaces Ventral Dorsal 

Both 

surfaces Ventral Dorsal 

Both 

surfaces 

Female Non-breeding 860 1081 1508 533 679 539 163 269 163 127 291 314 

Female Breeding 864 1085 1514 500 624 978 162 202 321 300 157 427 

Male Non-breeding 689 954 1288 530 876 535 153 277 162 122 385 314 

Male Breeding 674 936 1261 514 478 975 161 156 320 305 104 427 

Juvenile Juvenile 873 914 1368 886 325 627 274 158 203 385 223 157 
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Table 5.3. The proportion of times that Lambda is estimated as 1 using 100 randomly selected phylogenetic trees for all types of plumage in 

80% of avian species worldwide. In most cases, the proportion of times that λ = 1 was <0.3. 

    Mottled Barred Scaled Spotted 

Class Season Ventral Dorsal 

Both 

surfaces Ventral Dorsal 

Both 

surfaces Ventral Dorsal 

Both 

surfaces Ventral Dorsal 

Both 

surfaces 

Female Non-breeding 0.28 0.26 0.28 0.25 0.33 0.20 0.28 0.29 0.27 0.22 0.22 0.20 

Female Breeding 0.39 0.28 0.29 0.27 0.23 0.24 0.22 0.29 0.27 0.28 0.34 0.66 

Male Non-breeding 0.32 0.25 0.21 0.26 0.26 0.18 0.29 0.20 0.28 0.25 0.22 0.17 

Male Breeding 0.25 0.30 0.29 0.21 0.24 0.23 0.26 0.28 0.35 0.31 0.23 0.28 

Juveniles Juveniles 0.23 0.27 0.25 0.27 0.27 0.32 0.28 0.21 0.22 0.24 0.28 0.26 
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For most of the 60 combinations of plumage pattern, sex, gender and 

dorsoventral patterning, λ = 1 in less than 30/100 randomly selected phylogenetic 

trees. Seven out of the 60 combinations of pattern/sex/age/breeding class, λ = 1 in 

over 40/100 phylogenetic trees, and only one combination, female breeding plumage 

comprised of spots where both ventral and dorsal surfaces were combined, λ = 1 in 

over 50/100 (0.66; Table 5.3).  

 

 

Ecological selection for plumage patterns 

 

All four plumage patterns are found in all habitats. Each individual 

combination of pattern type and age/sex/breeding/dorsoventral subset occurs within 

each of the global 16 habitats regardless of whether they are closed or open (Fig. 

5.3; supplementary Table S5.2). For example, mottled and barred patterns occur on 

the dorsal surface of juveniles and breeding females in open habitats such as Inland 

water as well as Rock and ice in addition to closed habitats such as Temperate 

broadleaf and mixed forests as well as Tropical and subtropical coniferous forests. 

 

In the analyses of an association between individual eco-regions and subset 

of plumage pattern data, the cumulative probability was 0 or 1 in 5.19% (414) and 

53.02% (4229) of the 7976 individual analyses, respectively (eco-regions x subset of 

interest). 9.34% (745/7976) of the analyses had a significant association between 

plumage pattern subset and eco-region (where the cumulative probability was or 

close to 0 or 1 and the p-value was less than the adjusted significance threshold) 

(Table 5.4; supplementary Table S5.3 [CD-ROM]). Where there was a significant 

association with an eco-region, the results were dominated by a classification of all 

patterns together (7.65%) and an association with individual patterns was rare 

(1.23% + 0.01% + 0.39% + 0.06% = 1.69%).  
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Table 5.4. The patterns and number of eco-regions that is significantly different from 

the null expectation as well as the number of local patterned terrestrial species. All 

results are supplied in supplementary Table S5.3 [CD-ROM]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

An association between all patterns together and eco-regions spans 15 out of 

the 16 habitats of the world across all age/sex/breeding classes (Table 5.5). In all 

age/sex/breeding classes, all plumage patterns appeared to be influenced by habitat 

on the ventral surface less than the dorsal surface. However, this significant 

association was predominantly in <25% of the eco-regions of each type of habitat. In 

only 4 habitats the number of eco-regions with a significant association with all 

patterns was >25%, and two of these habitats are comprised of only three eco-

regions.  

 

  

 

Raw number of 

eco-regions that 

have significant 

results 

Proportion of eco-

regions that have 

significant results % 

All patterns 610 7.65 

Mottled 98 1.23 

Scaled 1 0.01 

Barred 31 0.39 

Spotted 5 0.06 

Total 745 9.34 
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Table 5.5. The habitats and eco-regions that deviate from the null expectation with all 

patterns in land birds. The number of eco-regions is given in brackets per habitat as 

well as the maximum percentage of eco-regions within habitats that have a 

significant association per pattern data subset. T = Temperate; and T/S - Tropical 

and subtropical. 

Sex/Age Male Female Juvenile 

Season Breeding Non-breeding Breeding Non-breeding N/A 

Location Ventral Dorsal Ventral Dorsal Ventral Dorsal Ventral Dorsal Ventral Dorsal 

Total eco-regions 78	   43	   67	   17	   111	   54	   106	   51	   44	   33	  

Boreal forest/taiga (22) 

<18% 
4 - - - - 1 - 1 - - 

Desert and xeric 

shrubland (95) <5% 
- - 4 - 5 1 5 1 1 1 

Flooded grassland and 

savanna (26) <12% 
3 - 3 - 2 2 2 2 - - 

Inland water (3) <33% - - - - - - - - - 1 

Mangrove (19) 2 - 1 - 4 1 4 - 1 - 

Mediterranean forest, 

woodland and scrub (39) 

<8% 

3 - 1 - - - - - - - 

Montane grassland and 

shrubland (50) <22% 
7 3 8 - 11 2 11 2 4 4 

Rock and ice (3) <33% - - - - - - - - 1 - 

T broadleaf and mixed 

forests (88) <7% 
6 3 5 1 4 3 4 2 4 3 

Temperate conifer forest 

(48) <10% 
5 4 4 2 3 2 3 2 3 1 

T grassland, savanna and 

shrubland (48) <4% 
- - - - - 2 - 2 - 2 

T/S coniferous forest (17) 

<6% 
1 - 1 - 1 - 1 - - 1 

T/S dry broadleaf forest 

(55) <16% 
5 5 4 1 9 8 9 8 4 3 

T/S grasslands, savannas 

and shrublands (48) <4% 
1 - 1 - 8 3 8 3 4 2 
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Ecological selection for mottled, scaled, barred or spotted patterns 

 

The individual patterns of mottled, scaled, barred and spotted rarely had a 

significant association with eco-regions (Table 5.4). In most cases, as the number of 

species increased, the number of eco-regions with a significant association 

decreased, e.g. where there is only one patterned species there are many eco-

regions with a significant association, whereas few eco-regions had a significant 

association where the number of species >5 (Fig. 5.4). The rare cases of a significant 

association between patterns and eco-regions were not clustered in a particular 

plumage pattern subset and a particular habitat. For example, mottled breeding 

dorsal patterns in females occur more than expected by chance within the 

Amsterdam and Saint-Paul Islands temperate grasslands (cumulative p = 1, 

probability of cumulative p < 0.000063; supplementary Table S5.3 [CD-ROM]) that is 

one eco-region of the temperate grasslands, savannas and shrublands habitat. There 

are 39 other eco-regions within the temperate grasslands, savannas and shrublands 

habitat that have females with breeding dorsal mottled patterns and in none of these 

eco-regions does the species of this subset of data occur more (or less) than 

expected by chance.  

 

  

T/S moist broadleaf 

forests (230) <26% 
41 28 35 13 64 29 59 28 22 15 

Tundra (28) 0% - - - - - - - - - - 
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Fig. 5.4. The number of eco-regions that deviate from the null expectation with either 

mottled, scaled, barred or spotted patterns plotted against the local number of 

patterned species in land birds. Across all permutations of 

sex/age/breeding/dorsoventral class per pattern, there were few significant 

associations and where there was a significant association, it was predominantly 

where the number of species <=5.  

 

 

A comparison of ecological selection between closed and open habitats 

 

Based on the prevailing view of camouflage and communication, the patterns 

that should demonstrate an association with closed and open habitats (Fig. 5.1, 5.3) 

are mottled and barred patterns (Gluckman and Cardoso 2010). The distribution of 

both mottled and barred patterns, on the dorsal and ventral surface of breeding and 

non-breeding females, as well as juveniles, is similar in the eco-regions of closed and 

open habitats and rarely differed from the null hypothesis (Fig. 5.5; supplementary 

Table S5.3 [CD-ROM]). Similarly, the proportion of species where males have 

patterns on the ventral surface, but also on the dorsal surface, in the breeding 

season was similar and did not differ from the null hypothesis in both closed and 

open habitats.  
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Fig. 5.5. Comparison of the proportion of species with mottled and barred patterns in 

breeding males and females, as well as juveniles, over the dorsal and ventral surface 

of land birds. Significant associations between mottled and barred patterns with eco-

regions are rare (Table 5.4). The Patterned boxplots correspond to the proportion of 

patterned species in the pool of all avian species, the Mottled and Barred boxplots 

correspond to the proportion of these plumage patterns in the pool of patterned 

species for the indicated age/sex class. The boxplots in red correspond to closed 

forest habitat and the red boxplots correspond to open habitat. Mangroves (habitat 

14; Fig. 5.3) do not easily fit into a closed or open classification and are not 

represented in this figure.  

 

 

Mottled and barred patterns rarely had significant associations with eco-

regions (Table 5.4) and the patterns of association did not vary between open and 

closed habitats or subset of data. For example, the dorsal mottled patterns of 

breeding females had a significant association with the Amsterdam and Saint-Paul 

Islands temperate grasslands eco-region which is found in open Temperate 

grasslands, savannas and shrublands as well as the Bermuda subtropical conifer 

forests eco-region which is found in closed Tropical and subtropical coniferous 

forests (Fig. 5.3; supplementary Table S5.3 [CD-ROM]). In addition, the dorsal barred 

patterns of breeding females had a significant association with the Ascension scrub 
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and grasslands eco-region which is found in open Tropical and subtropical 

grasslands, savannas and shrublands, as well as the San Félix-San Ambrosio 

Islands temperate forests eco-region which is found in the closed Temperate 

broadleaf and mixed forests habitat.  

 

 Finally, in 6 out of the 16 habitats worldwide there are 17 eco-regions that do 

not have avian species with any type of pattern (Fig. 5.3; Table 5.6). However, four of 

these habitat types have <=5 total species. In the other two habitats, few eco-regions 

had significant associations: Temperate and subtropical moist broadleaf - 6 eco-

regions out of 230 (2.6%); Tundra - 2 eco-regions out of 28 (7.1%). 
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Table 5.6. Eco-regions that do not have any avian species with any type of  

pattern in land birds. T = Temperate; and T/S - Tropical and subtropical. The number 

of eco-regions per habitat type is given brackets. 

 

 

 

  

Habitat Eco-region 

Avian 

species 

richness 

T grasslands, savannas and 

shrublands (40) Amsterdam and Saint-Paul islands temperate grasslands 1 

 

Ascension scrub and grasslands 3 

T/S coniferous forests (17) Bermuda subtropical conifer forests 2 

T/S grasslands, savannas and 

shrublands (48) St. Helena scrub and woodlands 1 

T/S moist broadleaf forests (230) Central Polynesian tropical moist forests 6 

 

Fernando De Noronha-Atol das Rocas moist forests 5 

 

Marquesas tropical moist forests 16 

 

Rapa Nui subtropical broadleaf forests 2 

 

Society Islands tropical moist forests 17 

 

Trindade-Martin Vaz Islands tropical forests 1 

 

Tuamotu tropical moist forests 18 

 

Tubuai tropical moist forests 8 

 

Western Polynesian tropical moist forests 8 

Tundra (28) Marielandia Antarctic tundra 5 

 

Maudlandia Antarctic desert 2 

 

Scotia Sea Islands tundra 8 

  Southern Indian Ocean Islands tundra 6 
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Discussion 

 

 All types of plumage patterns have evolved in juveniles, females and males in 

non-breeding and breeding plumage, on both the ventral and dorsal surface (Table 

5.1). In the majority of pattern types, shared ancestry only explained <30% of 

plumage pattern evolution (Table 5.3) indicating that convergent evolution in bird 

plumage patterns is unlikely to be predominantly due to phylogenetic relatedness. All 

types of patterns, in all age, breeding, sex and dorsoventral locations are found in all 

habitats (supplementary Table S5.2). Contrary to the existing hypotheses of the 

function of patterns in camouflage, the habitats in which patterns are viewed did not 

predict convergence in bird plumage patterns across either age or sex classes, 

breeding and non-breeding plumages, or the dorsoventral distribution of patterns 

(Fig. 5.4, 5.5; Table 5.4, 5.5). Congruent with the hypotheses of the function of 

plumage patterns in communication, habitat type did not predict the patterns found on 

the ventral surface of breeding males. However, the independence between plumage 

patterns and habitat was also found on the dorsal plumage of breeding males, as 

well as their non-breeding plumage. The rare significant associations between eco-

regions and irregular and regular patterns were found in both closed and open 

habitats, irrespective of age/sex/breeding/dorsoventral class. In addition, there were 

few eco-regions where there are no patterned species and these were not clustered 

within a particular type of habitat (Table 5.6). Together this indicates that avian 

plumages appear to have converged on the same types of patterns independent of 

habitat (Fig. 5.5; Table 5.3).  

 

 Our analyses indicate that phylogenetic inertia has contributed <30% of 

plumage pattern evolution in most cases. Although this represents a minority of the 

overall number of trees tested, this result was similar across all pattern data subsets 

indicating that there was variation in the estimation of lambda across trees (Table 

5.3). That the variation was relatively similar between pattern subsets indicates that 

the source of this variation may be due to adaptive radiation in a specific part of the 

avian tree of life (Jetz et al. 2012). However, the results from the large majority of 

phylogenetic trees in this analysis indicate phylogenetic uncertainty is unlikely to be 

the cause of convergent evolution in bird plumage patterns. The only subset of data 

where there appeared to be phylogenetic inertia, female breeding spotted patterns 

over the whole body, may not be representative given that in the separate analyses 
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of ventral and dorsal female breeding spotted patterns λ = 1 in 28/100 and 34/100 

trees, respectively. The 100 phylogenetic trees in this analysis were randomly 

chosen to control for bias as well as represent the uncertainty in a current 

understanding of avian phylogenetic relatedness. Also, the package Phylosig used to 

compute Pagel’s lambda is a binary statistic rather than continuous which may 

oversimplify the results, but given a limitation in the computational power required to 

run this analysis in other software packages such as BayesTraits, this approach 

represents the best available option.  

 

Adaptive radiation may cause an erroneous inflation of the test statistic. 

Conducting analyses at the genus level can control for erroneously inflated results, 

but would require an adequate sample size of genera within eco-regions to avoid 

losing statistical power. The species level results, combined with the number of 

species present within eco-regions that had a significant result, indicated that a 

genus level analysis was not required (Fig. 5.4; Table 5.4). Most of the significant 

results for individual patterns was where there were <=5 species within an eco-

region. This indicates that there may have been inflation of the test statistic due to a 

low number of species in these cases and may not be representative (Table 5.6). 

 

Selection for any type of patterning was not clustered within eco-regions 

(Table 5.5). In addition, there did not appear to be an association between age, 

gender, breeding class or dorsoventral patterning with any type of habitat (Fig. 5.5; 

supplementary Table S5.3 [CD-ROM]). All of the different types of patterns were 

rarely found more or less than expected by chance on the ventral and dorsal surface 

of breeding and non-breeding females, as well as juveniles, per eco-region and per 

habitat (Table 5.4, 5.5; supplementary Table S5.3 [CD-ROM]). Similarly, all plumage 

patterns were found on the ventral and dorsal surface of the breeding and non-

breeding plumages of males (p = > Benjamini-Hochberg corrected threshold; 

supplementary Table S5.3 [CD-ROM]). This could be due to low statistical power in 

our analyses. However, we used the least stringent correction possible to increase 

statistical sensitivity to ecological signal. In addition, regardless of the ecological 

techniques used, all of the different types of patterns, across all age, gender, 

breeding and dorsoventral classes are found in every type of habitat around the 

world, which is incongruent with camouflage-based predictions (Table 5.1; 

supplementary Table S5.2). Our analyses did not incorporate the extent to which a 
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pattern(s) may contribute to the overall phenotype of each avian species and as a 

result this analysis is necessarily coarse. However, this would not result in the 

prevalence of all pattern types in all habitats irrespective of age, gender, 

breeding/non-breeding and dorsal/ventral plumage.   

 

We could not statistically calculate whether a complete absence of any type of 

patterning might be significantly associated with habitats (Table 5.6). However, the 

distribution of the number of eco-regions without any species with patterning was not 

biased towards a particular type of habitat. For example, Tropical and subtropical 

moist broadleaf forests are a closed type of habitat and Tundra is an open type of 

habitat and each of these habitats have the most number of eco-regions that have 

species with no patterns (Fig. 5.3; Table 5.6). In addition, both of these habitats 

frequently have patterned species in other eco-regions (supplementary Table S5.2, 

S5.3 [CD-ROM]). Therefore, these rare cases where patterns are absent are unlikely 

to be representative of selection against patterns.  

 

If patterns evolved strictly for camouflage and/or signaling based on the way 

that the pattern is viewed in the context of its habitat, then it would be expected that 

patterns would be biased towards a particular gender and body surface. Under this 

expectation regular patterns in males should be independent of habitat on the ventral 

surface, but not necessarily on the dorsal surface, and patterning should have been 

biased towards the dorsal surface of females and juveniles, but were not (Fig. 5.1, 

5.5; supplementary Table S5.2, S5.3). Comparing the mottled and barred patterns of 

breeding males and females as well as juveniles in closed and open habitats, there 

was little difference in their distribution between age and sex classes or the dorsal 

and ventral surface (Fig. 5.5). If patterns indeed make an animal stand out against its 

background then there should have been strong selection against regular patterns on 

the dorsal surface of females and juveniles in closed habitats, which was not the 

case. A lack of association in juvenile plumage patterns could be due to a low sample 

size (2603 spp.) but this would have resulted in either an absence of some types of 

plumage patterns, or an erroneous significance value of selection for or against some 

types of patterns in some habitats, which was not found (Table 5.2; supplementary 

Table S5.3 [CD-ROM]).  

 

 Based on previous research and hypotheses, irregular patterns would be 
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expected in cluttered environments and regular patterns would be expected in open 

environments (Table 5.1, supplementary Table S5.1). However, irregular patterns 

were found throughout all types of habitats, including less noisy open habitats where 

it would be expected that they would stand out, e.g. deserts (Fig. 5.1; supplementary 

Table S5.2, S5.3). Moreover, regular patterns were also found throughout all types of 

habitats, including more noisy and closed habitats where it would be difficult to invoke 

motion-dazzle/flicker-fusion camouflage through movement. Breeding females with 

regular patterns, which would be constrained to take care of nests, as well as 

juveniles, were also found in closed habitats, which is contrary to motion-

dazzle/flicker-fusion camouflage which is dependent on movement (Fig. 5.5). 

Alternatively, perhaps similar to reef fish, regular patterns might become blurred at a 

distance and match the background (Marshall 2000).  

 

 A lack of association of the ventral surface of males with regular patterns, in 

particular barred patterns (Gluckman and Cardoso 2010), and habitats would be 

expected under sexual selection. However, visual signals should diverge in biological 

hotspots due to species recognition/sexual selection (Bradbury and Vehrencamp 

1998). Habitat may influence whether the pattern stands out against its background, 

for example by standing out against a uniform background or opposing the geometric 

pattern of the background (Fig. 5.1). Other factors, such as whether the pattern is 

able to convey aspects of individual quality, would influence their evolution 

independent of the viewing background. This perhaps may explain why barred 

patterns have repeatedly evolved independently on the ventral surface of males 

(Gluckman and Cardoso 2010) (Fig. 5.5). Conceivably, the same forces of sexual 

selection/species recognition may have shaped the evolution of the other types of 

patterns in males, such as spotted patterns (Roulin et al. 2000; Roulin, Riols, and 

Dijkstra 2001; Petrie and Halliday 2008; Muck and Goymann 2011; Pérez-Rodríguez, 

Jovani, and Mougeot 2013).  

 

 Perhaps the use of different strata in the vegetation, e.g. ground-dwelling vs 

arboreal, may present different visual microhabitat backgrounds that alter the 

selection for pattern type. For example, the tops of trees are more open and may 

allow for more movement required for motion-dazzle/flicker-fusion regular patterns 

whereas ground-dwelling species may benefit from background matching irregular 

patterning. However, it is difficult to reconcile this idea with the distribution of all 
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pattern types, in all age/sex/breeding/dorsoventral, in habitats that do not have strata, 

e.g. desert and tundra. The role of specific behaviours, such as whether a species is 

gregarious, combined with habitat use, may explain our results. Perhaps there is less 

selection for camouflage patterns in gregarious species because they share social 

information to evade predation rather than rely on visual patterning. For example, 

Artiodactyls that are solitary are significantly associated with dense forest habitats 

(Caro 2005). However, information on gregariousness, breeding habits as well as 

specific anti-predator behaviours are lacking in many avian species of the world and 

could not be controlled for in this analysis. Data on avian anti-predator and social 

behavior as well as major predators per species would be an invaluable contribution 

to the literature.  

 

 Caro (2005) reports that although that there is a camouflage function in the 

patterns of many artiodactyl species, many studies did not appear to demonstrate an 

association with habitat. The reality is that we do not know how many studies have 

shown a negative result but remain unpublished. Perhaps a coarse granular 

approach to ecological selection for plumage patterns may explain our results. For 

example, many of the empirical studies that demonstrate a camouflage function in 

patterns conducted their analyses at short viewing distances and demonstrated an 

association at the scale of microhabitats (Table 5.1; supplementary Table S5.1). 

Therefore, perhaps an analysis at the habitat and eco-region scale contains too 

much variation in microhabitats. However, raptors, which are the main predators of 

birds, have excellent long range vision in many different types of habitats and it 

would seem unlikely that they would need short viewing distances to act as a 

selection pressure on the camouflage function of patterns (Tucker 2000; Christie and 

Ferguson-Lees 2010; O'Rourke et al. 2010).  

 

 An alternative explanation is that microevolution is too labile to be captured at 

a macroevolutionary scale, unless the adaptation of the pattern has a long 

evolutionary history. Perhaps a better approach would be to consider patterning in 

the context of a coevolutionary process between signaler and receiver (Thompson 

and Cunningham 2002; Thompson, Nuismer, and Gomulkiewicz 2002; Thompson 

2005). In particular, an alternative hypothesis is that perhaps four patterns are 

enough to provide a camouflage benefit to a community of species. The previous 

empirical studies of camouflage predominantly examined the interaction between the 
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visual form of a species in the context of one or two background types. However, in 

reality species live in communities of other species, regardless of whether they are 

gregarious or social. Recently it was demonstrated that there may be frequency-

dependent selection on alternative morphs of Tetrix subulata grasshoppers, where 

each morph has varying amounts of mottled patterns in varying colours. In this study 

it was demonstrated that when all morphs are present in a population, all morphs 

benefit by providing variation in the search image of predators (Karpestam, Merilaita, 

and Forsman 2014). In the case of birds, perhaps the four different types of patterns, 

in the context of a community of avian species that may also comprise uniform 

coloration without patterns, may benefit all member species. Although intraspecific 

polymorphism is quite different to interspecific variation, perhaps intraspecific 

polymorphism may be the first step to speciation leading to interspecific variation.  

 

 There are potentially three major reasons that may predict that the number of 

patterns increases with community size, assuming that phenotypes are mostly for 

crypsis: 1) More patterns reduces predation by increasing the number of predator 

search images, which may also favour polymorphisms within species, 2) niche 

differentiation via dietary specialisms and/or microhabitat use may lead to variation in 

the background in which predators view prey resulting in selection for different types 

of patterns, which may also have implications for polymorphisms, and 3) if some 

parts of the pattern phenotype are used in species recognition then there will be 

selection on patterns to diverge to facilitate recognition. In addition, it has been found 

that sexual dimorphism/monomorphism in avian phenotypes is not always indicative 

of breeding systems (Gluckman 2014) and perhaps these processes may also favour 

sexual dimorphism to reduce the chance of predator search images and/or facilitate 

gender recognition. Alternatively, all of these selection pressures may be operating 

on avian phenotypes simultaneously and this will be investigated in a future study.  

 

 It may also be the case that developmental constraint may explain repeated 

convergence of the four types of plumage patterns independent of function. For 

example, based on a theoretical model of reaction-diffusion based plumage pattern 

formation (Prum and Williamson 2002), the evolutionary trajectory of plumage in 

Anseriformes and Galliformes followed the same trajectories within and between 

plumage patches of plumage over the body (see Chapter 4). Given that Anseriformes 

and Galliformes are diverse in life history attributes, this result warrants further 
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investigation at the macroevolutionary scale. In addition, it has been demonstrated 

that some plumage patterns shift along a trajectory correlated with body size in most 

avian species of the world (Riegner 2008). However, these results should be treated 

with caution, as the analysis did not control for phylogeny. Nevertheless, these 

studies indicate that there may be developmental constraints in plumage pattern 

evolution that may have implications for natural selection. A future study will 

investigate whether allometric relationships may predict plumage pattern evolution in 

a controlled comparative framework.  

  

 Bradbury and Vehrencamp (1998) note that in regards to strategies for 

maximizing contrast in visual communication that “A serious problem… is that they 

are based on human perception”. Similarly, the predominant paradigm of the function 

of patterns in camouflage stem from a time when there were few, if any, objective 

approaches for quantifying patterning. Comparing the frequency of patterns per 

habitat type, we did not find that habitat predicts the presence of plumage patterns. 

The fact that all patterns are found in all habitats around the world is an intriguing 

result that implies that plumage pattern evolution does not conform to the prevailing 

views of selection for camouflage.  
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Chapter 6: Discussion and Conclusion 
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Concluding thoughts 

 

 In my concluding chapter I bring together the findings of each chapter and 

highlight possible avenues for future research. My work on the development of 

pigmentation in embryonic Japanese quail has implications for evolutionary genetics 

and evolutionary-development. The finding that activation of MC1R is important in 

avian melanin based plumage colouration demonstrates that there is variation in 

pigmentation dynamics between mice and birds. This finding highlights the 

importance of considering evolution, in addition to conservation, of the mechanism of 

pigmentation between vertebrates and birds. Activation of MC1R via POMC and PC2 

is a promising area of research in avian pigmentation dynamics and raises the 

possibility of directly investigating activation of MC1R in the developmental basis of 

plumage patterns in birds. Reaction-diffusion dynamics appear to have played a role 

in the evolution of within-feather patterning in Anseriformes and Galliformes and 

spots appear to be a derived trait. Given that patterns are known to have both a 

signaling and camouflage function, it may be that reaction-diffusion based systems 

have influenced the evolutionary developmental biology of trait diversity as well as 

speciation. Comparing the evolution and diversity of barred plumage patterns in 

parasitic cuckoos demonstrates that plumage patterns can be additionally refined for 

a specific signaling function. This underscores the importance of considering the 

visual perspective of the receiver as well as objective methods with which to analyse 

visual patterns. Although patterns are known to function in camouflage and 

communication, it is interesting rather than disappointing that ecology did not appear 

to predict plumage patterns. Perhaps this points to the reality that animals, 

regardless of whether they are social or not, live in a community of other animals 

which presents an exciting opportunity to re-examine what camouflage means, and 

also, whether evolutionary-development has had a further hand in plumage pattern 

evolution via allometric constraints.  
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Developmental explanations 

 

 Japanese quail is a model system in understanding developmental 

mechanisms. An interesting feature of the developmental biology of pigmentation in 

quail is the variation in the patterns of expression between embryos and adults. This 

implies that there may be evolution in the developmental basis of phenotypes 

between different developmental stages within a species. Future studies could 

examine whether the novel ASIP alternatively spliced transcripts discovered here are 

expressed in adult quail, and whether similar patterns of variation in alternatively 

spliced transcripts might be found in other avian species. It would seem plausible that 

there may be variation between embryonic and adult stages given the different types 

of plumage involved (neoptile vs pennaceous) and variation in selection pressure at 

different life stages, e.g. juvenile and adult.  

 

 The finding that ASIP does not appear to be involved in dorsal patterns 

within-feathers demonstrates that there has been evolution in the developmental 

basis of phenotypes between mice and birds and highlights the importance of 

considering divergence in developmental mechanisms as well as conservation. 

Although the mechanism down-regulating dorsal within-feather and between-stripe 

pigmentation patterns in wildtype quail is currently unknown, there are several 

avenues of research (Walker and Gunn 2009; Walker and Gunn 2010). In particular, 

Corin affords an exciting prospect to examine divergence and conservation in the 

developmental basis of phenotypic evolution given that this loci, as well as ASIP and 

MC1R, explain variation in phenotypic evolution of two populations of Peromyscus 

mice (Manceau et al. 2010). This will be explored in the coming year. 

 

 The major finding of the developmental basis of embryonic wildtype quail 

pigmentation is that activation of MC1R appears to be required for eumelanin 

pigmentation. This is in contrast with previous findings because existing research on 

the developmental basis of plumage patterns has been on understanding 

developmental similarity based on shared evolutionary history between mice and 

birds (Nadeau et al. 2008; Oribe et al. 2012; Yoshihara et al. 2012) despite hints that 

POMC and PC2 have a function in avian pigmentation (Yoshihara et al. 2011). 

However, there were dissimilarities between wildtype quail and chicken in that PC1 

was only expressed in feather follicles of chicken breeds. This may be indicative of 
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the effects of artificial selection rather than natural selection but PC1 should 

nevertheless be tested alongside POMC and PC2 on other wildtype avian 

phenotypes such as the northern bobwhite (Colinus virginianus) and the common 

quail (Coturnix japonica), and will be presented in a future study. There does 

however appear to be confusion in the literature as to the possibility that PC2 can 

directly cleave POMC (e.g. Takeuchi et al. 2003; Yoshihara et al. 2011), even though 

it has been previously reported that PC2 directly cleaves POMC in mice (Benjannet 

et al. 1991). An important future step will be to understand the biochemistry of 

POMC, PC1 and PC2 products in birds. In addition, 5’ RACE of POMC transcripts 

may reveal promoter sites that are dorsoventral specific, and perhaps may be 

temporal-specific. Similarly perhaps there are PC2 alternative splice transcripts that 

may also be dorsoventral/temporal specific and this will also be explored in future 

studies. These results have opened several new avenues of research into the rich 

tapestry of the evolutionary developmental biology of avian phenotypes. However, 

the organizing mechanism of within-feather patterning is currently unknown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 9-day old White Leghorn chick showing barred plumage on the right wing, 

produced by grafting limb-bud mesoderm from a Barred Plymouth Rock embryo 

(Willier and Rawles 1938) 
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Developmental constraint  

 

 Although it is unknown whether reaction-diffusion based mechanisms govern 

within-feather pattern formation, the significant similarity of the trajectory of plumage 

pattern evolution in two avian groups that have different life history attributes is 

predictable from a hypothetical model of pattern formation (Prum and Williamson 

2002). This affirms the power of biologically relevant models. Coupling biological 

modeling with sophisticated comparative modeling techniques demonstrates the 

possibility to evaluate the relevance of hypothetical models of developmental 

dynamics before the time consuming task of confirming that the model itself 

represents reality. Of course, this is fraught with potential false positives/negatives, 

but given that biological modeling as well as comparative modeling can be 

undertaken in a fraction of the time required to test molecular and developmental 

biology hypotheses in live systems, this solution provides a promising preliminary 

step in examining the potential of developmental dynamics.  

 

 The similarity in the trajectory of plumage pattern evolution within and 

between patches in two different groups is remarkable and lends weight to “the 

following role for natural selection: fine-tuning the appearance of the pattern, fixing 

and maintaining pattern elements at a given level of expression, and modifying 

behavioral and other features to maximize the patterns’ utility” (Price and Pavelka 

1996). In spite of the strong directionality in plumage pattern evolution in 

Anseriformes and Galliformes, there were frequent and strong evolutionary 

transitions to other types of patterns, similar to other studies (Gluckman 2014). It 

would therefore seem that once plumage patterns have evolved, patterns are a labile 

trait that can adapt quickly to environmental changes.  

This may have multiple important evolutionary consequences: i) if patterning 

has not evolved in an ancestral lineage then development may constrain trait 

evolution, ii) if patterning has evolved in an ancestral lineage of a species then it may 

be easier to adapt to changes in the environment, iii) together this implies that 

evolutionary-development may constrain or facilitate speciation. However, it is 

currently unknown whether this same evolutionary trajectory is the same in the most 

speciose part of the avian tree – Passeriformes. Additionally or alternatively, 
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allometric constraints may play a role in plumage pattern evolution (Riegner 2008) 

which may add an additional layer to mechanisms of plumage pattern speciation and 

evolution. A study examining whether plumage pattern evolution follows a similar 

evolutionary trajectory in all birds worldwide, whether evo-devo constrains or 

facilitates speciation, as well as whether there is an allometric relationship in avian 

pattern evolution (accounting for phylogeny and phylogenetic uncertainty) will be 

undertaken next year.   

  

  

Adaptive explanations 

 

 Signal evolution in the barred plumage patterns of Old World parasitic 

cuckoos is apparent at both the macroevolutionary and microevolutionary scale 

(Kruger, Davies, and Sorenson 2007; Gluckman and Mundy 2013). In addition, 

parasitic cuckoos could mimic one or more models from multiple genera of raptors. 

This remarkable precision in sympatric similarity demonstrates that although it is 

possible that there may be developmental constraint in plumage pattern evolution, 

natural selection has adaptively modified this type of patterning to be parasite-

specific. This has important implications for our understanding of signal evolution as 

a principle as it demonstrates that signals can be refined to be receiver specific, 

within a given type of signal. This underscores the importance of using objective 

based methods to examine visual traits.  

 

 

 

 

 

 

  

 

 

 

The common cuckoo (Cuculus canorus) and the Eurasian sparrowhawk 

(Accipiter nisus) 
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The study of cuckoo-hawk mimicry was representative of five genera of 

parasitic cuckoos but there are many other barred parasitic cuckoos as well as 

barred non-parasitic species (Payne and Sorensen 2005). An interesting future study 

would be to investigate whether these variations in barred plumage patterns are 

indeed specific to parasitic cuckoos compared to non-parasitic species. Barred 

plumage patterns can additionally function in communication (Swaddle and Cuthill 

1994; Bortolotti et al. 2006; Gluckman and Cardoso 2010) and melanin based traits 

have pleiotropic effects in the Tawny owl (Roulin 2004; Ducrest, Keller, and Roulin 

2008; Emaresi et al. 2013). It would be interesting to examine whether barred 

plumage patterns can additionally function in communication in parasitic species, as 

well as non-parasitic species.  

 

 From a broader perspective, the prevailing view of the camouflage function of 

within-feather patterns did not predict where plumage patterns have evolved from a 

habitat perspective. In recent years there has been an increase in studies of the 

camouflage function of visual patterns in animals. It is an exciting finding that all 

pattern types are found in all habitat types across the world. This is congruent with 

the idea that patterns may fill visual niches, similar to ecological niches. To study this 

question would require examining all aspects of phenotypic diversity, including 

uniform colouration, in relation to habitat. In addition, as demonstrated in parasitic 

cuckoos, the same pattern may be refined in multiple ways, which may also add an 

additional layer of complexity. Therefore, such a study would require digital image 

analysis of all avian plumages worldwide, rather than scoring images from field 

guides. This type of question is timely given that the collection of avian plumages in 

the class Aves worldwide has begun using digital image analysis techniques, and is 

the part of a macroevolutionary project that I have begun managing.       
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Supplementary material 

 

Table S2.1. Primer sequences tested for RT-PCR.  

Target sequence Name Sequence 

AGRP AGRP  F1 ACA CAG GAC CAT GCT GAA CG 

AGRP AGRP  F2 GAC ATC GAG GCA GAG CGA CT 

AGRP AGRP  R1 CCT CTG CGG CTC CAA TAA AG 

AGRP AGRP  R2 CCT CTG CGG CTC CAA TAA AG 

AGRP AGRPF1 CCC AGG ACC ATG CTG AAC 

AGRP AGRPF1 CCC AGG ACC ATG CTG AAC 

AGRP AGRPF16 GTG GAC CAT GAG CCT CCT CT 

AGRP AGRPF17 CCA GCT CCC CAG CAC TAA G 

AGRP AGRPF4 ATG CTG AAC GTG CTG CTG 

AGRP AGRPR1 CCA CAT GGG AAG GTG GTG 

AGRP AGRPR16 GGA TTC TCC TCT TCC CAT CC 

AGRP AGRPR17 TGA GCA CAA TGG ACC TAT GG 

AGRP AGRPR4 AGG TGG TGC TGA TCT TCC TG 

ASIP E2 ASIP E2_R CAG CCT TAA CAT GTT CCT CAT TA 

ASIP E3 ASIP E3R AGT AAA CAC TGG CAG ATT GTC TGA 

ASIP E4 ASIP E4R CAG CCT TAA CAT GTT CCT CAT TAG GTT 

ASIP NE1 ASIP NEW EXON 1F GGG AGA TCT GGG AGG TTC ATT 

ASIP ASIP R TTT GGG GGT GTC TTC AGT TC 

ASIP ASIP R2 CCT TAA CAT GTT CCT CAT TAG GTT TA 

ASIP ASIPF5 CCA ACA ATG AAA AGG AAG AAC C 

ASIP ASIPR5 GAT TTG GTT TAA CAC TTT GGG TTT 

ASIP ASIPF2 TCA TTT TCA TGA CAG TGG GAT T 

ASIP ASIPR6 TTT GGG GGT GTC TTC AGT TC 

ASIP E1L ASIP E1LF  TCT CCT CGG CTA TAT GGC TGA G 

ASIP E1L ASIP E1LF  AAG CCA GAA CTG GTG GTC AA 

ASIP E1L ASIP E1LF_2.0 AGT TTT GGA GGT TCA TTT CTA ATG T 

ASIP E2 ASIP E2F  TCA TTT TCA TGA CAG TGG GAT T 

ASIP E2 ASIP E2F_2.0 TAA ACA CAT TGA TGG CAT TAA CAA 

ASIP E3 ASIP E3F  GAA GCA GGC AGT CTT CTT GG 

ASIP E3 ASIP E3F  TGA AAA GGA AGC AGA ACC AGA 

ASIP E4 ASIP E4F GTT CTT TTG GCT CAG TGG TAT CTC A 

ASIP E4 ASIP E4F  CCA GCA TTT TCA TAT TTT CTG GA 

ASIP E5 ASIP E5F  TGA AAT CAG TTG TGG CAG GAA 
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ASIP NEW EXON 1 ASIP NEW EXON 1F GTG TGG TTG TGA TGG TGA TGG 

ASIP INTERNAL 1 INT1 AGC AGC TCC AGC CTT TCA TC 

ASIP INTERNAL 2 INT2 TCT GGC GTA ACT GGA ACA GC 

PC1 PC1 F ACG GGC TGG AAA TTC AGG AT 

PC1 PC1 R AAC CCA AAT CGG CTG TTG AC 

PC1 PC1F.1 CTA CGC CAA CTA TGA TCC AAG G 

PC1 PC1F.2 GGG ACT CAC ACT GGG ACC TC 

PC1 PC1R.1 TTT CCA TCT TTT GGG ATC AGC 

PC1 PC1R.2 CCA AAT CCA AAT CGG CTG TT 

PC2 PC2F GGG AGG GAA AGG AAG CAT CT 

PC2 PC2F.1 GCT GGG ATA CAC AGG GAA GG 

PC2 PC2F.2 GGA GAG ACA TGC AGC ATC TGA 

PC2 PC2R GGT CTT CTC CCC AAG TGT GTG 

PC2 PC2R.1 CAT AGC TGG CTT TGG CAT TG 

PC2 PC2R.2 CCC AAC GCA GTG GAA TCT CT 

PC2 X2 PC2_X2F.1 CAG CCG TCT ACA CCA ACC AG 

PC2 X2 PC2_X2F.2 CCT TCG TCC TCC TCC TT 

PC2 X2 PC2_X2R.1 TGA ATG TGG AGG CTA GGG TTG 

PC2 X2 PC2_X2R.2 GGA AGC CCA GAC GTA GAT GC 

PC2 X3 PC2_X3F.1 GGC ATT GCC AAG GTC AGA A 

PC2 X3 PC2_X3F.2 CCT TCG TCC TCC TCC TCC TT 

PC2 X3 PC2_X3R.2 GCC CAG ACG TAG ATG CTT CC 

PC2 X3 PC2_X3 R TGT AGC CAC ACC AGC CTC TG 

PC2 X4 PC2_X4 F.3 GCA TTG CCA AGG TCA GAA GA 

PC2 X4 PC2_X4 R GGA AGC CCA GAC GTA GAT GC 

POMC POMCF CTG GGG CTG CTG CTG CTG TGT 

POMC POMCF.1 GTA TCC CAA TGG CGT GGA TG 

POMC POMCR TGA CCC TTC TTG TAG GCG CTT T 

POMC POMCR.1 CAG AGT CAT CAG CGG GGT CT 

POMC POMCR.2 CAT GGG GTA ACT CTC AGC CGA CT 

POMC A PROMOTER POMC A PROMOTER CCC ATA AGC GAC TTG CCT TC 

POMC A PROMOTER POMC A PROMOTER.FV2 CCC ATA AGC GAC TTG CCT TC 

POMC A PROMOTER POMC A-1 CAC CCC TCG CCA GTA GGT T 

POMC A PROMOTER R POMC AF CAA AGA ACT GAC CAT CCA CCA CAT T 

POMC A PROMOTER R POMC_AR.1 GGT ACG AGC CAC CAT CCT TC 

POMC A PROMOTER R POMC_AR.2 CCT CAC CCT CCT CCT CCT CT 

POMC A PROMOTER R POMC_AR.3 CCT CAC CCT CCT CCT CCT CT 

POMC B PROMOTER POMC B PROMOTER GGA GAC GGG GAA GGT GGT 



The mechanisms underlying convergent evolution in the plumage patterns of birds 

 
216 

POMC B PROMOTER POMC B-1 CAC CCC TCG CCA GTA GGT T 

POMC B PROMOTER POMC T1F.V2 GCC ACT GAG GCT GGA GTT TT 

POMC B PROMOTER POMC T1R CCC CTC ACT GAC CCT TCT TG 

POMC B PROMOTER F POMC BF GAA GGT GGT GGC TGC GCT CCA A 

POMC B PROMTER POMC T1 AGC GCT CCT CTG CAG TTT G 

POMC CHICKEN NCE POMC A-1F.V2 CAC CCC TCG CCA GTA GGT T 

POMC CHICKEN NCE POMC A-2 CTC AGG AGG GGC AGA AAT CC 

POMC CHICKEN NCE POMC A-2F.V2 CTC TCC CCC TGC AGC ATC 

POMC CHICKEN NCE POMC B-2 CTC TCC CCC TGC AGC ATC 

POMC QUAIL NCE 1 POMC QE R ATC TCC CTC CGG AAC TCC AT 

POMC QUAIL NCE 1 POMC QEF.2 ACT TCC AGC GTC TCC CAG AG 

POMC QUAIL NCE 1 POMC QEF.1 TCT CTT GCC TGT GGC TCT CA 

POMC QUAIL NCE 2 POMC QEF.3 GAT TTC GGA GGC AAA GGA TG 
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Fig. S3.1a. Distribution of 

plumage patterns per patch 

of plumage in 

Anseriformes. 

Empty boxes indicate that 

the type of pattern is 

unknown and/or is mottled 

plumage. Each type of 

pattern is found in extant 

species and although there 

is some variation in the 

most probable ancestral 

state, where there is 

support it is for an absence 

of patterns.   
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Fig. S3.1b. Distribution of 

plumage patterns per patch of 

plumage in Galliformes.  

Empty boxes indicate that 

the type of pattern is unknown 

and/or is mottled plumage. 

Each type of plumage pattern 

is found in extant species and 

the most probable ancestral 

state of plumage is an absence 

of patterns.  
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Vent 

 

 

 

 

 

 

 

 

Fig. S3.2. Local pattern evolution within patches, in Anseriformes and Galliformes.  

The width of each evolutionary step is proportional to the average rate in the top 

model set. Beside each evolutionary step is the marginal probability of each transition 

not occurring, followed by the marginal probability of it occurring. Where the transition 

probably does not occur, the transition line is grey. Conversely, where the transition 

probably does occur, the transition line is black. Equivocal transitions, where the 

marginal probability is =< 0.05 difference between not occurring and occurring, are 

indicated by a grey dashed line.  
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Scales are derived 
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Scales are derived 
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Fig. S3.3. Regional pattern evolution within regions in Anseriformes and Galliformes.  

To examine the effects of uncertainty in the order of plumage pattern evolution in 

Galliformes we modeled the effect of scales and spots being more derived. The width 

Spots are derived 
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of each evolutionary step is proportional to the average rate in the top model set. 

Beside each evolutionary step is the marginal probability of each transition not 

occurring, followed by the marginal probability of it occurring. Where the transition 

probably does not occur, the transition line is grey. Conversely, where the transition 

probably does occur, the transition line is black. Equivocal transitions, where the 

marginal probability is =< 0.05 difference between not occurring and occurring, are 

indicated by a grey dashed line.  
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Scales are derived 
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Fig. S3.4. Pattern evolution over the whole body, in Anseriformes and Galliformes.  

To examine the effects of uncertainty in the order of plumage pattern evolution in 

Galliformes we modeled the effect of scales or spots being more derived. The width 

of each evolutionary step is proportional to the average rate in the top model set. 

Beside each evolutionary step is the marginal probability of each transition not 

occurring, followed by the marginal probability of it occurring. Where the transition 

probably does not occur, the transition line is grey. Conversely, where the transition 

probably does occur, the transition line is black. Equivocal transitions, where the 

marginal probability is =< 0.05 difference between not occurring and occurring, are 

indicated by a grey dashed line.  
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Table S3.1. Prior probability of encountering models of <12 parameters. 

Calculations are comprised of binomial for Z (where Z = n parameters that are set to 

0 i.e. do not occur) and Bell numbers for models with 12 possible transition rates.  

 

 

  

No. 

Zeros (z) 

Binomial 

for z 12 - z 

Bell number for 

12 - z 

Binomial for z x bell 

number for 12 - z Prior 

0 1 12 4213597 4213597 0.1524211599 

1 12 11 678570 8142840 0.0245463499 

2 66 10 115975 7654350 0.0041952384 

3 220 9 21147 4652340 0.0007649641 

4 495 8 4140 2049300 0.0001497589 

5 792 7 877 694584 0.0000317243 

6 924 6 203 187572 0.0000073432 

7 792 5 52 41184 0.0000018810 

8 495 4 15 7425 0.0000005426 

9 220 3 5 1100 0.0000001809 

10 66 2 2 132 0.0000000723 

11 12 1 1 12 0.0000000362 
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Table S3.2. Prior probability of encountering models of <6 parameters. 

Calculations were comprised of binomial for Z (where Z = n parameters that are set 

to 0 i.e. do not occur) and Bell numbers for models with three pattern states 

encompassing 6 possible transitions.  

 

No of 

zeroes 

Binomial 

for z 6-z 

Bell number 

for 6-z 

Binomial for z x 

bell number for 

6-z Prior 

0 1 6 203 203 0.23173516 

1 6 5 52 312 0.04577465 

2 15 4 15 225 0.01381216 

3 20 3 5 100 0.00514933 

4 15 2 2 30 0.00221239 

5 6 1 1 6 0.00113507 
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Table S3.3. The number of unique models as well as the ancestral state of patterns per body region in Anseriformes and Galliformes. 

 

  
   

Ancestral state 

  Unique models 
 

Average probability Marginal probability 

  
Posterior 

sample 

Top 

model 

set 

(BF>=2) 

Full model 

Absence 

of 

patterns 

Scales Bars Spots 

Absence 

of 

patterns 

Scales Bars Spots 

Anseriformes 

	   	   	   	   	   	   	   	   	   	   	  Whole body  142 88 98: BF = 0.34 0.3 0.24 0.27 0.2 0.11; 0.75 0.84; 0.02 0.79; 0.08 0.85; 0.01 

Anterior  219 158 35: BF = 0.12 0.3 0.25 0.22 0.23 0.23; 0.56 0.79; 0.00 0.72; 0.07 0.64; 0.15 

Middle 216 144 13: BF = 0.04 0.25 0.25 0.25 0.25 0.31; 0.59 0.89; 0.01 0.62; 0.28 0.87; 0.03 

Posterior 199 140 2: BF = 0.00 0.25 0.25 0.25 0.25 0.34; 0.59 0.92; 0.00 0.64; 0.29 0.88; 0.05 

Ventral  181 190 43: BF = 0.14 0.23 0.27 0.22 0.28 0.37; 0.41 0.71; 0.07 0.74; 0.04 0.52; 0.26 

Dorsal 273 191 23: BF = 0.08 0.28 0.25 0.22 0.24 0.05; 0.79 0.82; 0.02 0.82; 0.02 0.82; 0.02 

Galliformes 
        

	   	   	  Whole body 

(scales) 
114 76 7: BF = 0.023 0.88 0.05 0.05 0.02 0.00; 0.92 0.92; 0.00 0.92; 0.00 0.92; 0.00 

Whole body (spots) 95 63 6: BF = 0.020 0.84 0.09 0.06 0.01 0.00; 0.92 0.00; 0.00 0.00; 0.00 0.00; 0.00 

Anterior (scales) 149 99 11: BF = 0.04 0.72 0.13 0.09 0.06 0.00; 0.92 0.00; 0.00 0.00; 0.00 0.00; 0.00 

Anterior (spots) 139 89 12: BF = 0.04 0.71 0.14 0.1 0.05 0.00; 0.93 0.00; 0.00 0.00; 0.00 0.00; 0.00 

Middle 129 82 14: BF = 0.05 0.84 0.06 0.07 0.03 0.00; 0.87 0.00; 0.00 0.00; 0.00 0.00; 0.00 
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Posterior (scales) 145 112 1: BF = 0.003 0.82 0.09 0.07 0.02 0.01; 0.97 0.97; 0.01 0.97; 0.01 0.97; 0.01 

Posterior (spots) 129 92 0 0.81 0.1 0.07 0.02 0.01; 0.96 0.96; 0.01 0.96; 0.01 0.96; 0.01 

Ventral (scales) 186 113 112: BF = 0.38 0.76 0.11 0.07 0.06 0.00; 0.74 0.00; 0.00 0.00; 0.00 0.00; 0.00 

Ventral (spots) 203 122 86: BF = 0.28 0.74 0.13 0.07 0.06 0.00; 0.74 0.00; 0.00 0.00; 0.00 0.00; 0.00 

Dorsal (scales) 129 84 0 0.79 0.1 0.08 0.03 0.00; 0.93 0.93; 0.00 0.93; 0.00 0.93; 0.00 

Dorsal (spots) 106 73 5: BF = 0.02 0.78 0.11 0.09 0.02 0.00; 0.94 0.94; 0.00 0.94; 0.00 0.94; 0.00 
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Fig. S4.1. Granularity spectra of the ventral and flank area of each species sampled.  

Black lines indicate ventral patterns, and grey lines indicate the flank. To assess the 

variability of patterning within each patch of patterning sampled, we compared the 

top, middle and bottom section for the ventral and flank area respectively. A 

continuous line represents the top section, a dashed line represents the middle, and 

the dotted line represents the bottom section.  
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Fig. S4.2a. Median pattern attributes for Eudynamys scolopacea. 

Confidence intervals are bootstrapped values and the grey line indicates the median 

of Eudynamys scolopacea. 
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Fig. S4.2b. Median plumage pattern attributes for Chrysococcyx flavigularis. 

Confidence intervals are bootstrapped values and the grey line indicates the median 

of Chrysococcyx flavigularis. 
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Fig.  S4.2c. Median plumage pattern attributes for Cacomantis sonneratii. 

Confidence intervals are bootstrapped values and the grey line indicates the median 

of Cacomantis sonneratii. 
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Fig. S4.2d. Median plumage pattern attributes for Cercococcyx mechowi.  

Confidence intervals are bootstrapped values and the grey line indicates the median 

of Cercococcyx mechowi. 
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Fig. S4.2e. Median plumage pattern attributes for Cuculus saturates. 

Confidence intervals represent bootstrapped values and the grey line indicates the 

median of Cuculus saturatus. 
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Table S4.1. Comparison of distribution overlap from a taxonomic source  

(Payne and Sorensen 2005; Christie and Ferguson-Lees 2010) with a regional field 

guide (Sinclair and Ryan 2010). 

 

  Chrysococcyx flavigularis Cercococcyx mechowi 

  

Taxonomic 

source 

Field 

guide 

Taxonomic 

source 

Field 

guide 

Aviceda cuculoides <1 <1 <1 <1 

Polyboroides typus <1 <1 <1 <1 

Micronisus gabar <0.25 <0.25 <0.50 <0.25 

Accipiter tachiro <1 <0.25 <0.75 <0.25 

Accipiter ovampensis <0.25 <0.25 <0.25 <0.25 

Kaupifalco monogrammicus <1 <1 <1 <1 
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Table S4.2. Cuckoo and raptor host prey species  

(Brown et al. 1982; Del Hoyo et al. 1994; Payne 2005). 

 

 CUCKOOS Species Host/prey 

 

Eudynamys scolopacea 

 

Crows (Corvus splendens, C. macrorhynchos, C. enca, C. 

florensis, Urocissa erythrorhyncha) 

 
 

Drongo (Drongo macrocercus) 

 
 

Common starlings 

 
 

Mynas (Acridotheres tristis, A. grandis, Gracula religious) 

 

Chrysococcyx 

flavigularis 
Tit-flycatcher (Myioparus griseigularis) 

 

Cacomantis sonneratii Loras (Aegithina tiphia, A. viridissima) 

 
 

Bulbuls (Pycnonotus jocose) 

 
 

Yuhinia (Yuhinia zantholeuca) 

 
 

Cuckoo-shrike (Pericrococtus flames) 

 

  Babblers (Stachyris)  

 

Cercococcyx mechowi Illadopsis (Trichastoma fulvescens) 

 
 

Forest robin (Stiphrornis erythrothorax) 

 
 

Monarch-flycatcher (Trochocercus nitens) 

 

Cuculus saturatus 
Warblers (genus Seicercus, Phylloscopus occipitals, P. 

reguloides) 

RAPTORS Aviceda cuculoides Small birds 

 

Aviceda leuphotes Asian palm swift (Cypsiurus batasiensis) 

 

Pernis ptilorhyncus Small birds (Passerines) 

 

Polyboroides typus Weavers 

 
 

Swifts 

 
 

Herons 

 
 

Barbet 

 
 

Roller 

 
 

Kingfisher 

 

  Birds eggs - sparrow to darter (Anhinga melanogaster). 

 

Micronisus gabar Pipits 

 
 

Weaver birds 

 
 

Starlings 
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Barbets 

 
 

Thrush 

 
 

Coucals 

 
 

Francolins 

 

Accipiter trivirgatus Small birds 

 

  Pigeon (Treron) 

 

Accipiter tachiro Doves (Streptopelia semitorquata) 

 
 

Cuckoo (Chrysococcyx klaas)  

 
 

Mousebirds 

 
 

Trogon  

 
 

Hornbills 

 

Accipiter soloensis Pigeon (Columba livia) 

 

Accipiter fasciatus Oriole (Oriolus chinensis) 

 
 

Pigeons 

 
 

Ducks 

 
 

Herons 

 
 

Rails 

 
 

Poultry 

 

Accipiter gularis Fruit doves (Ptilinopus)  

 
 

Sparrows (Passer montanus) 

 
 

Buntings (Emberiza) 

 
 

Tits (Parus) 

 
 

Warblers 

 
 

Nuthatches (Sitta) 

 

  Magpie (Cyanopica cyanea) 

 

Accipiter virgatus Gamebirds (nudifigous young Gallus) 

 
 

Warblers 

 
 

Thrushes 

 
 

Barbets 

 

Accipiter ovampensis Doves 

 
 

Bee-eaters 

 
 

Hoopoes 

 
 

Woodpeckers 

 
 

Pipits 

 
 

Weaver birds 
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  Prinia 

 

Kaupifalco 

monogrammicus 
Rarely small birds 

 

Spizaetus nanus Young or injured birds including Blackbirds (Turdus merula) 

    Some birds 
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Table S4.3a. The individual types of habitat inhabited by cuckoos and sympatric raptors of Africa  

(Payne and Sorensen 2005; Christie and Ferguson-Lees 2010).  

Habitat 

Chrysococcyx 

flavigularis 

Cercococcyx 

mechowi 

Aviceda 

cuculoides 

Polyboroides 

typus 

Micronisus 

gabar 

Accipiter 

tachiro 

Accipiter 

ovampensis 

Kaupifalco 

monogrammicus 

Primary forest  Yes - Yes - - Yes - Yes 

Secondary and 

gallery forest Yes - - Yes - Yes - - 

Lowlands Yes - - - - Yes - - 

Lowland mature 

forest - Yes - - - Yes - - 

Montane forest - Yes - - - - - - 

Forest edge - Yes - Yes - - - Yes 

Riverside gallery - - Yes Yes Yes Yes - Yes 

Savannah  - - Yes Yes Yes Yes Yes Yes 

Eucalyptus and 

pine plantations - - Yes Yes - Yes Yes - 

Suburban gardens - - Yes - Yes Yes - Yes 

Dry woodland - - - - - Yes Yes Yes 

Mountain 

woodland - - - - - Yes - - 
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Tropical rainforest - - - - - Yes - - 

Mangroves - - - - - Yes - - 

Broadleaf 

woodland - - - - - - - Yes 

Open woodland - - - - Yes - - - 

Moist woodland - - - Yes - - - - 

Hill country - - - Yes - - - - 
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Table S4.3b. The individual types of habitat inhabited by cuckoos and sympatric raptors of Oceania  

(Ferguson-Lees and Christie 2001; Payne 2005).  

Habitat 

Eudynamys 

scolopacea 

Cacomantis 

sonneratii 

Cuculus 

saturatus 

Aviceda 

leuphotes 

Pernis 

ptilorhyncus 

Accipiter 

trivirgatus 

Accipiter 

soloensis 

Accipiter 

fasciatus 

Accipiter 

gularis 

Accipiter 

virgatus 

Spizaetus 

nanus 

Primary forest  Yes Yes Yes Yes - Yes - Yes - - Yes 

Lowlands Yes Yes - - Yes Yes Yes - Yes - Yes 

Forest edge Yes Yes - Yes - - - Yes - - - 

Secondary forest Yes Yes - Yes - Yes - Yes Yes Yes Yes 

Remnant woodlands 

with large trees Yes - - - - - Yes - - - - 

Monsoon forest Yes - - - - - 

 

- - - - 

Riverine scrub Yes - - - - - Yes - - Yes - 

Cultivated/plantations Yes Yes - Yes Yes Yes Yes Yes Yes Yes - 

Heath forest Yes - - - - - - Yes - - - 

Gardens Yes Yes - Yes - - Yes Yes - - - 

Mangrove/swamp Yes - - Yes - - Yes - Yes - - 

Coniferous-deciduous 

forest - - Yes Yes - Yes - - Yes Yes - 

Larch taiga - - Yes - - - - - - - - 

Broad-leafed forest - Yes Yes - Yes - - - - - - 
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Thickets - - Yes - - - - - - - - 

Oak rhododendron 

forests - - Yes - - - - - - - - 

Subtropical 

woodlands - - Yes - - - Yes - - - - 

Mountain forest - - - - - Yes - - Yes Yes - 

Savannah - - - - - - - Yes - - - 

Rainforest - - - - Yes - - - - - - 

Coastal plains Yes - - - - - - - - - - 

Wooded hills Yes - - - - - - - - - - 
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Table. S5.1. A representative sample of literature of pattern type and pattern function in different contexts (stationary or moving) in animals. 

Literature cited covers birds, mammals, fish, reptiles, insects, cephalopods, crustaceans, and amphibians. Literature is categorized as 1) 

Hypotheses (theoretical hypotheses), 2) Experimental (direct empirical evidence), 3) Correlational/observational, 4) Comparative phylogenetic 

analyses, and 5) Methodological (proposing and/or testing new methods). Camouflage mechanisms cover the following: Stationary camouflage 

(Background matching [BM], disruptive camouflage [DC]) and motion camouflage (motion-dazzle [MD]), flicker-fusion [F-F]).  

 

Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

Irregular Stationary X  BM N/A N/A (Poulton, 1890) Hypotheses 

 Stationary X  BM and DC N/A N/A (Thayer, 1909) Hypotheses 

 Stationary X  DC N/A N/A (Cott, 1940) Hypotheses 

 
Stationary X 

 
BM and DC 

Juvenile cuttlefish 

(Sepia officinalis) 
N/A 

(Hanlon & 

Messenger, 1988) 
Experimental 

 

Stationary X 

 

DC 

Frogs 

(Limnodynastes 

tasmaniensis) 

Garter snake 

(Thamnophis 

sirtalis) 

(Osorio & 

Srinivasan, 1991) 
Experimental 

 
Stationary X 

 
BM 

Aythya and 

Somateria ducks 
N/A 

(Hohman et al., 

1992) 
Hypotheses 
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Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

 

Stationary X 

 

DC 

Marine isopod Idotea 

baltica (white-

spotted phenotype 

albafusca) 

N/A (Merilaita, 1998) Experimental 

 
Stationary X 

 
BM 

Artificial paper 

moths 

Captive trained 

birds 

(Merilaita et al., 

2001) 
Experimental 

 

 

 

 

 

Irregular  

 

 

 

 

 

 

 

Stationary 

 

 

Stationary 

 

 

X 

 

 

X 

 

 

 

BM and DC 

 

 

BM and DC 

 

 

Cuttlefish (Sepia 

officinalis) 

 

Cuttlefish (Sepia 

officinalis) 

 

 

Fish predators 

 

 

Fish predators 

(Akkaynak et al., 

2013; Chiao et al., 

2013; Hanlon et 

al., 2013) 

 

E.g. (Chiao & 

Hanlon, 2001; 

Barbosa et al., 

2004; Chiao et al., 

2005; Barbosa et 

al., 2007; Chiao et 

al., 2007; Mäthger 

et al., 2007; 

Shohet et al., 

2007; Barbosa et 

al., 2008; Mäthger 

 

 

Experimental 

 

 

Experimental  
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Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

 

 

 

 

et al., 2008; Chiao 

et al., 2010; Chiao 

et al., 2011; 

Akkaynak et al., 

2013; Chiao et al., 

2013; Hanlon et 

al., 2013) 

S 

 
Stationary X 

 
BM 

Artificial paper 

moths 
Wild birds (Cuthill et al., 2005) Experimental 

 
Stationary X 

 
BM and DC 

Artificial paper 

moths 

Captive trained 

birds 

(Merilaita & Lind, 

2005) 
Experimental 

 
Stationary X 

 
DC 

Artificial paper 

moths 
Wild birds 

(Stevens & Cuthill, 

2006) 
Experimental 

 
Stationary X 

 
DC 

Artificial paper 

moths 
Wild birds 

(Stevens et al., 

2006) 
Experimental 

Irregular  Stationary X 
 

BM and DC Artificial paper Wild birds (Cuthill et al., 2006) Experimental 
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Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

moths 

 

Stationary X 
 

BM and DC 

Artificial paper 

moths (modelled on 

Thyatira batis) 

Wild birds 
(Schaefer & 

Stobbe, 2006) 
Experimental 

 
Stationary X 

 
BM 

Fiddler crabs (Uca 

vomeris) 

Wild and dummy 

birds 

(Hemmi et al., 

2006) 
Experimental 

 
Stationary X 

 
DC 

Computer-generated 

moth images 
Humans 

(Fraser et al., 

2007) 
Experimental 

 
Stationary X  

DC (surface 

disruption) 

Artificial paper 

moths 
Wild birds 

(Stevens et al., 

2009) 
Experimental 

 Moving and 

stationary 
X 

 
DC/MD 

Cuttlefish (Sepia 

officinalis) 
N/A 

(Zylinski et al., 

2009) 
Experimental 

 
Stationary X 

 
BM and DC 

Artificial paper 

moths 

Captive trained 

birds 

(Dimitrova & 

Merilaita, 2010) 
Experimental 

 
Stationary X 

 
BM 

Octopuses (Octopus 

cyanea & O.vulgaris) 
N/A (Josef et al., 2012) 

Experimental 
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Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

 
Stationary X 

 
DC 

Computer-generated 

moth images 
Humans 

(Troscianko et al., 

2013) 
Experimental 

 

 

 

 

Stationary X 
 

BM and DC 
Computer-generated 

moth images 
Humans 

Webster et al., 

2013) 
Experimental 

 Moving and 

stationary 
X 

 
BM and DC 

Computer-generated 

stimuli 
Humans (Hall et al., 2013) Experimental 

Irregular 
Stationary X 

 
BM 

Japanese quail 

(Coturnix japonica) 
N/A (Lovell et al., 2013) Experimental 

 

Stationary X 
 

BM and DC 
Moths (Jankowskia 

fuscaria) 
N/A 

(Kang et al., 2012, 

2013a, 2013b; 

Kang et al., 2014) 

Experimental 

 

N/A 
 

X N/A 

Red-legged 

partridge (Alectoris 

rufa) 

Red-legged 

partridge 

(Alectoris rufa) 

(Pérez-Rodríguez 

et al., 2013) 
Experimental 

 Stationary X  BM Artificial paper Captive trained (DImitrova & Experimental 



The mechanisms underlying convergent evolution in the plumage patterns of birds 

 
251 

Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

moths birds Merilaita, 2014) 

 
Stationary X  BM 

Artificial paper 

moths 

Captive trained 

birds 

(Merilaita & 

DImitrova, 2014) 
Experimental 

Irregular 

TOTAL 

Stationary = 

42 

Moving & 

stationary = 

2 

44 1 

BM = 35 

DC = 33 

MD = 1 

9 species: birds, 

insects, 

cephalopods, 

crustaceans, 

amphibians 

4 groups: birds, 

fish, snakes, 

humans 

Ca. 45+  

Experimental 

= 41/45 (91%) 

Hypotheses = 

4/45 (8%) 

         

Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

Regular  

Moving X 
 

F-F 

Brightly-coloured 

snakes, e.g. coral 

snakes 

N/A (Pough, 1976)  Hypotheses 

 Moving X 
 

F-F North American N/A (Jackson et al., Correlational/ 
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Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

snakes (132 spp.) 1976)  observational 

Regular 
Moving X 

 
F-F 

Guppies (Poecilia 

reticulata) 
N/A (Endler, 1980) Experimental 

 

Moving X 
 

MD and F-F 

Garter snakes 

(Thamnophis 

ordinoides) 

N/A 

(Brodie, 1989, 

1992, 1993) but 

see Allen et al. 

2013) 

Correlational/ 

observational  

 

 

 

N/A X  BM 
Tiger (Panthera 

tigris) 
N/A 

(Godfrey et al., 

1987) 
Experimental 

 
N/A 

 
X N/A 

Peafowl (Pavo 

cristatus) 

Peafowl (Pavo 

cristatus) 
(Petrie et al., 1991) 

Correlational/ 

observational 

 N/A X  BM Zebra, tigers N/A (Kiltie et al., 1994) Methodological  

 

Moving X 
 

F-F Vipera snakes N/A 

(Shine & Madsen, 

1994) but see Allen 

et al. (2013) 

Hypotheses 
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Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

 

N/A 
 

X N/A 

Zebra finches 

(Taeniopygia 

guttata) 

Zebra finches 

(Taeniopygia 

guttata) 

(Swaddle & Cuthill, 

1994) 
Experimental 

 
Moving X 

 
F-F 

Adders (Vipera 

berus) 
N/A 

(Lindell & Forsman, 

1996) 

Correlational/ 

observational 

 

N/A 
 

X N/A 
Mallard ducks (Anas 

platyrhynchos) 

Mallard ducks 

(Anas 

platyrhynchos) 

(Omland, 1996) 
Correlational/ 

observational 

 
N/A X  BM 

Mammalian 

carnivores 
N/A (Ortolani, 1999) 

Comparative 

phylogenetic  

Regular 
N/A 

 
X N/A 

Barn owls 

(Tyto alba) 

Barn owls 

(Tyto alba) 
(Roulin, 1999) Experimental  

 
N/A X  N/A Artiodactyls N/A 

(Stoner et al., 

2003) 

Comparative 

phylogenetic  

 
N/A 

 
X N/A N/A N/A 

(Kenward et al., 

2004) 

Comparative 

phylogenetic  

 Moving and X X Private UV Damselfish N/A (Siebeck, 2004) Experimental 
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Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

stationary signals (Pomacentrus 

amboinensis) 

 

Stationary X 
 

DC 

Clay models of 

adders 

(Vipera latastei 

gaditana) 

Wild birds 
(Niskanen & 

Mappes, 2005) 
Experimental 

 

N/A 
 

X N/A 

Red-legged 

partridge 

(Alectoris rufa) 

Red-legged 

partridge 

(Alectoris rufa) 

(Bortolotti et al., 

2006) 

Correlational/ 

observational 

 
Moving X 

 
MD 

Cuttlefish 

(Sepia officinalis) 
N/A 

(Shohet et al., 

2006) 
Experimental 

 
Moving X 

 
MD and F-F 

Computer-generated 

moving stimuli 
Humans 

(Stevens et al., 

2008) 
Experimental 

 

Stationary X 
 

DC 

Artificial paper 

butterflies (modelled 

on Limenitis camilla) 

Wild birds 
(Stobbe & 

Schaefer, 2008) 
Experimental 
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Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

 

Stationary X 
 

Coincident 

disruptive 

camouflage 

Artificial paper 

moths/computer-

generated stimuli 

Wild 

birds/humans 

(Cuthill & Székely, 

2009) 
Experimental 

 

N/A 
 

X N/A N/A N/A 
(Gluckman & 

Cardoso, 2009) 

Methodological 

and 

Experimental 

Regular 

 

N/A 
 

X N/A 
Barn owls 

(Tyto alba) 

Barn owls 

(Tyto alba) 

(Roulin et al., 

2010) 

Correlational/ 

observational, 

Experimental 

and 

Comparative 

phylogenetic 

 
N/A X  BM Felidae N/A (Allen et al., 2011) 

Comparative 

phylogenetic 

 

N/A 
 

X N/A 
Barred buttonquails 

(Turnix suscitator) 

Barred 

buttonquails 

(Turnix suscitator) 

(Muck & Goymann, 

2011) 

Correlational/ 

observational 
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Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

 

 

 

 

Moving X 
 

MD and F-F 
Computer-generated 

moving stimuli 
Humans 

(Scott-Samuel et 

al., 2011) 
Experimental 

 

Stationary X  BM 

The least killfish 

(Heterandria 

formosa) 

Predatory fish 
(Kjernsmo & 

Merilaita, 2012) 
Experimental 

 
Moving X 

 
MD 

Computer-generated 

moving stimuli 
Humans 

(von Helversen et 

al., 2013) 
Experimental 

 

Moving X  MD 
Computer-generated 

moving stimuli 

Locusts 

(Schistocerca 

gregaria) 

(Santer, 2013) Experimental 

 
Moving X 

 
MD 

Computer-generated 

moving stimuli  

Motion detection 

algorithm 

(How & Zanker, 

2013) 
Experimental 

Regular 

TOTAL 

Stationary = 

4 

Moving = 14 

24 10 

F-F = 8 

MD = 7 

BM = 5 

Ca. 13 species: 

birds, reptiles, 

cephalopods, fish, 

4 groups: fish, 

insects, birds, 

humans 

Ca. 33+ 

Experimental 

= 17/33 (52%) 

Correlational 
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Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

Moving & 

stationary = 

1 

DC = 3 

Private 

signals = 1 

mammals comparative = 

14/33 (42%) 

Hypotheses = 

6% 

Irregular 

and 

regular 

N/A X  BM 

Juvenile plaice 

(Pleuronectes 

platessa) 

N/A 
(Kelman et al., 

2006) 
Experimental 

 

Moving and 

stationary 
X 

 

MD, F-F, 

BM, DC 

Computer-generated 

moving and static 

stimuli 

Humans 
(Stevens et al., 

2011) 
Experimental 

 
Stationary X 

 
BM 

Artificial paper 

moths 

Captive trained 

birds 

(Dimitrova & 

Merilaita, 2012) 
Experimental 

 N/A X  BM and DC 
Galaxias nebula fish 

(Galaxiidae) 
N/A 

(Magellan & 

Swartz, 2013) 
Experimental 

 Moving X  

MD, F-F, 

BM, 

distractive 

Computer-generated 

moving stimuli 
Humans 

(Hughes et al., 

2014) 
Experimental 
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Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

markings 

Irregular 

and 

regular 

TOTAL 

Stationary = 

2 

Moving & 

stationary = 

1 

5 0 

BM = 5 

DC = 2 

MD, F-F = 3 

2 species (fish) 

 

2 groups (birds 

and humans) 
Ca. 5+ 

Experimental 

= 5/5 (100%) 

         

Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

Bimodal 
Moving and 

stationary 
X X 

Camouflage 

vs. signal 

efficacy 

Guppies (Poecilia 

reticulata) 

Various aquatic 

predators 
(Endler, 1978) 

Hypotheses 

and 

Experimental 

 
Moving and 

stationary 
X X 

Predator 

avoidance 

vs. signal 

N/A N/A (Endler, 1987) Experimental 



The mechanisms underlying convergent evolution in the plumage patterns of birds 

 
259 

Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

efficacy 

 
Moving and 

stationary 
X X 

Distance-

dependence 

Reef fish (e.g. 

Pygoplites 

diacanthus) 

Predatory fish (Marshall, 2000) Experimental 

Bimodal 
Stationary X X 

Signal 

partitioning 

Australian agamid 

lizards (Agamidae) 
N/A 

(Stuart-Fox & Ord, 

2004) 

Comparative 

phylogenetic 

 
N/A X X 

Signal 

partitioning 
Bicyclus butterflies N/A (Oliver et al., 2009) 

Comparative 

phylogenetic 

 
N/A X X 

Signal 

partitioning 
Birds N/A 

(Gluckman & 

Cardoso, 2010) 

Comparative 

phylogenetic  

 

Stationary X X 

Background-

matching vs. 

conspicuous 

signalling 

Giant cuttlefish 

(Sepia apama) 
N/A 

(Zylinski et al., 

2011) 
Experimental 

 

N/A X X 

Predator 

avoidance 

vs. sexual 

Australian dragon 

lizards (Agamidae) 
N/A (Chen et al., 2012) 

Comparative 

phylogenetic  
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Pattern 

type 

Behavioural 

context 
Camouflage Communication 

Camouflage 

mechanism 

Prey or signaller 

(where tested) 

Predator or 

signal receiver 

(where tested) 

References 

Type of 

literature/ 

evidence 

dichromatis

m 

 

Stationary X X 
Signal 

partitioning 

Australian mallee 

dragon lizards 

(Ctenophorus fordi) 

Avian predators 
(Garcia et al., 

2013) 
Experimental 

Bimodal 

TOTAL 

Stationary = 

3 

Moving & 

stationary = 

3 

9 9 

Multiple 

function = 5 

Signal 

partitioning

=4  

Ca. 4+ species: 

reptiles, cuttlefish, 

birds, insects, fish 

2 groups (fish, 

birds) 
Ca. 9+ 

Experimental

= 5/9 (55%) 

Comparative 

= 4/9 (45%) 
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Table S5.2. The number of bird species with plumage patterns in the 16 habitat types of the world across the class Aves.  

Plumage patterns represent breeding and non-breeding plumage of males and females, as well as juveniles, on the ventral and dorsal surface. 

Species numbers are averaged across eco-regions for each habitat. T = Temperate; and T/S - Tropical and Subtropical. 

Sex/ 

age Season Location Pattern 

Boreal 

forest 

/taiga 

Desert  

and xeric 

shrubland 

Flooded 

grassland 

and 

savanna 

Inland 

water Mangrove 

Mediterranean 

forest, 

woodland and 

scrub 

Montane 

grassland 

and 

shrubland 

Rock 

and 

Ice 

T 

broadleaf 

and mixed 

forest 

T conifer 

forest 

T 

grassland 

savanna 

and 

shrubland 

T/S 

coniferous 

forest 

T/S  

dry 

broadleaf 

forest 

T/S 

grassland 

savanna 

and 

shrubland 

T/S  

moist 

broadleaf 

forests Tundra 

Male Breeding Ventral All 23.4 33.5 39.7 96.7 66.4 27.3 49.9 32.0 27.4 32.4 30.3 49.4 49.7 72.8 54.2 12.1 

   

Mottled 11.9 16.6 19.1 40.3 32.2 13.1 23.0 15.7 14.0 16.5 15.1 23.6 22.3 34.1 25.3 5.4 

   

Scaled 1.0 3.8 5.2 12.7 9.0 3.6 5.7 2.0 3.2 3.3 3.0 7.2 7.6 9.0 7.6 0.5 

   

Barred 11.4 12.0 13.7 41.0 22.4 9.8 19.1 14.7 10.4 12.7 11.6 16.9 17.0 26.1 18.9 6.8 

   

Spotted 1.6 3.3 4.0 8.3 6.1 3.3 4.7 2.3 1.9 2.9 2.4 5.4 5.6 6.9 5.1 0.8 

  

Dorsal All 26.5 44.8 51.7 110.7 83.4 37.1 65.3 39.3 35.3 41.7 36.9 60.2 62.0 90.8 67.5 13.5 

   

Mottled 14.5 24.9 29.6 60.0 47.8 22.2 37.4 23.0 21.0 23.6 21.2 31.1 34.3 52.8 38.0 7.6 

   

Scaled 2.2 4.4 4.2 11.7 8.5 3.6 6.7 4.0 4.2 4.3 3.8 6.1 6.1 7.3 6.7 0.7 

   

Barred 8.1 10.7 13.2 36.0 21.5 9.1 18.0 13.7 9.5 11.4 8.7 16.7 16.5 26.4 19.0 5.3 

   

Spotted 6.5 10.4 10.8 18.3 15.5 8.1 12.3 7.3 6.6 8.6 7.8 13.9 12.1 15.4 12.0 3.0 

 

Non-

breeding Ventral All 23.7 33.7 39.9 96.7 66.9 26.9 49.8 32.0 27.5 32.8 30.3 50.1 50.0 72.2 54.4 12.3 

   

Mottled 12.3 16.7 19.6 40.7 33.4 13.1 23.3 16.0 14.5 16.9 15.3 24.4 23.1 34.6 26.1 5.6 

   

Scaled 0.9 3.5 4.9 12.3 8.2 3.3 5.3 1.3 2.9 3.1 2.8 7.2 7.0 8.6 7.0 0.5 

   

Barred 11.2 12.5 14.0 41.3 23.2 9.8 19.3 15.7 10.5 13.2 11.6 18.1 18.0 25.7 19.4 6.7 

   

Spotted 1.6 3.1 3.6 8.0 5.4 3.2 4.4 1.7 1.8 2.5 2.3 4.3 4.7 6.7 4.5 0.8 

  

Dorsal All 27.1 45.8 52.5 112.7 86.5 37.2 66.2 40.0 35.9 42.6 37.3 64.2 64.9 91.5 69.4 13.8 

   

Mottled 15.7 25.5 30.6 62.3 49.7 22.4 38.0 23.0 21.5 24.0 21.5 33.3 36.2 53.7 39.2 8.3 
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Sex/ 

age Season Location Pattern 

Boreal 

forest 

/taiga 

Desert  

and xeric 

shrubland 

Flooded 

grassland 

and 

savanna 

Inland 

water Mangrove 

Mediterranean 

forest, 

woodland and 

scrub 

Montane 

grassland 

and 

shrubland 

Rock 

and 

Ice 

T 

broadleaf 

and mixed 

forest 

T conifer 

forest 

T 

grassland 

savanna 

and 

shrubland 

T/S 

coniferous 

forest 

T/S  

dry 

broadleaf 

forest 

T/S 

grassland 

savanna 

and 

shrubland 

T/S  

moist 

broadleaf 

forests Tundra 

   

Scaled 2.0 4.6 4.0 10.7 8.1 3.7 6.3 4.0 4.1 4.8 3.9 7.0 6.1 6.5 6.5 0.6 

   

Barred 8.0 11.1 13.5 36.3 22.8 9.0 18.8 14.3 9.6 11.3 8.5 17.8 17.6 27.1 20.1 5.1 

   

Spotted 6.5 10.4 11.1 18.7 16.1 8.2 12.6 7.3 6.7 8.7 7.9 14.0 12.2 16.0 12.1 3.0 

Female Breeding Ventral All 32.4 43.3 49.5 117.0 81.3 37.7 61.9 43.3 36.6 43.8 40.0 61.1 59.5 89.4 66.9 17.3 

   

Mottled 16.2 21.3 24.4 51.3 41.4 18.5 30.2 21.7 18.4 21.9 19.0 29.9 27.5 45.1 32.2 7.8 

   

Scaled 4.2 5.4 7.0 15.7 10.4 5.1 7.1 3.3 4.9 4.9 5.1 8.6 8.8 10.8 9.1 2.2 

   

Barred 13.2 14.7 15.8 45.3 26.2 12.5 21.5 18.0 12.9 16.6 14.4 20.4 20.4 29.1 23.0 8.2 

   

Spotted 2.3 4.4 4.7 11.0 6.7 4.7 5.8 3.3 3.3 3.9 3.9 5.6 5.9 7.9 5.8 0.9 

  

Dorsal All 29.2 49.9 56.8 121.7 94.5 40.6 71.8 45.0 39.1 46.5 39.6 71.4 70.1 99.1 75.7 15.2 

   

Mottled 17.5 28.9 34.5 69.3 56.8 23.8 43.7 27.3 23.4 27.0 23.8 39.2 40.3 61.4 44.6 9.3 

   

Scaled 1.6 4.4 4.3 11.0 8.1 4.1 5.9 3.7 3.7 4.1 3.1 6.9 6.4 7.1 6.7 0.4 

   

Barred 10.5 12.7 14.3 36.7 23.7 11.1 18.2 15.3 12.5 14.2 10.7 19.8 18.9 26.1 20.9 6.2 

   

Spotted 5.8 9.8 10.3 19.0 15.4 7.6 12.7 7.0 6.1 7.7 6.9 13.4 11.9 16.2 11.8 3.1 

 

Non-

breeding Ventral All 32.1 43.2 49.4 116.7 81.5 37.4 61.7 43.3 36.2 43.5 39.5 61.2 59.7 89.3 67.1 17.1 

   

Mottled 15.9 21.2 24.2 51.3 41.5 18.4 30.2 21.7 18.2 21.7 18.8 30.1 27.8 45.0 32.3 7.6 

   

Scaled 4.2 5.4 7.0 15.7 10.3 5.1 7.0 3.3 4.9 4.9 5.1 8.6 8.8 10.8 9.1 2.2 

   

Barred 13.2 14.6 15.8 45.0 26.3 12.4 21.4 18.0 12.6 16.5 14.0 20.4 20.3 29.1 22.9 8.2 

   

Spotted 2.3 4.4 4.7 11.0 6.7 4.7 5.8 3.3 3.3 3.9 3.9 5.6 5.9 7.9 5.8 0.9 

  

Dorsal All 28.9 49.9 56.8 121.3 94.5 40.4 71.7 45.0 38.7 46.2 39.2 71.4 70.0 99.1 75.6 15.0 

   

Mottled 17.2 28.9 34.6 69.3 56.8 23.7 43.7 27.3 23.2 26.8 23.6 39.2 40.3 61.4 44.6 9.1 

   

Scaled 1.6 4.4 4.3 11.0 8.0 4.1 5.9 3.7 3.7 4.1 3.1 6.9 6.4 7.1 6.7 0.4 
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Sex/ 

age Season Location Pattern 

Boreal 

forest 

/taiga 

Desert  

and xeric 

shrubland 

Flooded 

grassland 

and 

savanna 

Inland 

water Mangrove 

Mediterranean 

forest, 

woodland and 

scrub 

Montane 

grassland 

and 

shrubland 

Rock 

and 

Ice 

T 

broadleaf 

and mixed 

forest 

T conifer 

forest 

T 

grassland 

savanna 

and 

shrubland 

T/S 

coniferous 

forest 

T/S  

dry 

broadleaf 

forest 

T/S 

grassland 

savanna 

and 

shrubland 

T/S  

moist 

broadleaf 

forests Tundra 

   

Barred 10.5 12.6 14.2 36.3 23.8 10.9 18.1 15.3 12.3 14.1 10.3 19.8 18.8 25.9 20.9 6.2 

   

Spotted 5.8 9.8 10.3 19.0 15.4 7.6 12.7 7.0 6.1 7.7 6.9 13.4 11.9 16.2 11.8 3.1 

Juvenile N/A Ventral All 24.7 38.7 44.7 102.0 74.1 32.6 54.3 33.3 30.2 36.0 31.8 57.8 55.6 76.1 59.7 12.3 

   

Mottled 15.6 23.6 27.2 59.3 45.1 17.7 31.7 19.3 19.0 22.8 19.8 36.0 31.8 43.7 33.7 7.3 

   

Scaled 2.4 3.4 4.8 9.0 6.3 3.1 4.4 1.7 2.7 2.8 3.2 4.8 5.1 8.2 5.4 1.3 

   

Barred 7.7 11.2 11.7 32.7 20.7 11.5 17.1 13.7 10.1 12.4 9.9 16.1 16.0 22.2 18.2 4.3 

   

Spotted 1.6 2.7 3.2 7.0 5.0 2.8 3.5 1.0 1.5 1.9 1.8 4.2 4.7 5.1 4.5 0.9 

  

Dorsal All 23.1 39.8 46.7 96.7 75.9 36.1 57.9 35.0 31.3 36.0 31.2 53.9 54.1 84.0 61.6 12.0 

   

Mottled 14.8 25.4 31.6 62.7 49.4 21.2 38.1 22.0 20.2 23.4 20.9 36.7 35.7 53.0 38.3 7.7 

   

Scaled 0.9 4.3 4.9 9.3 8.6 4.2 4.9 2.7 3.0 3.3 2.4 5.2 6.5 8.6 7.4 0.4 

   

Barred 6.7 7.1 7.0 19.0 12.7 7.0 10.4 10.0 7.3 7.9 5.6 8.9 7.9 16.9 11.2 3.5 

      Spotted 3.6 6.0 6.3 12.7 9.4 6.9 8.3 4.7 4.2 4.6 5.0 6.6 6.9 10.9 8.0 1.7 
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Dearest Africa, thank you for being my inspiration for change. Sorry I did not come 

back permanently, I ended up getting a PhD instead.  

Ngorongoro crater, 2002. 


