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MALT1 is the only known paracaspase and is a critical mediator of B and T cell receptor 

signaling. The function of the MALT1 gene is subverted by oncogenic chimeric fusions arising 

from the recurrent t(11;18)(q21;q21) aberration, which is the most frequent translocation in 

mucosa-associated lymphoid tissue (MALT) lymphoma. API2-MALT1-positive MALT 

lymphomas manifest antibiotic resistance and aggressive clinical behavior with poor clinical 

outcome. However, the mechanisms underlying API2-MALT1-induced MALT lymphomagenesis 

are not fully understood. Here we show that API2-MALT1 induces paracaspase-mediated 

cleavage of the tumor suppressor protein LIMA1. LIMA1 binding by API2-MALT1 is API2-

dependent and proteolytic cleavage is dependent on MALT1 paracaspase activity.  Intriguingly, 

API2-MALT1-mediated proteolysis generates a LIM domain-only (LMO) containing fragment 

with oncogenic properties in vitro and in vivo.  Importantly, primary MALT lymphomas 

harboring the API2-MALT1 fusion uniquely demonstrate LIMA1 cleavage fragments. Our 

studies reveal a novel paracaspase-mediated oncogenic gain-of-function mechanism in the 

pathogenesis of MALT lymphoma. 
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The mucosa-associated lymphoid tissue translocation gene 1 (MALT1) gene encodes the only 

known paracaspase in the human genome1,2. The MALT1 protein is a scaffold protein as well as 

a unique paracaspase involved in antigen-induced nuclear factor-kappa B (NF-κB) signaling, and 

promotes lymphocyte proliferation and survival through cleavage of its substrates3-6. Upon 

antigen stimulation, the B cell receptor (BCR)-associated scaffold protein CARD-containing 

MAGUK protein 1 (CARMA1), also known as caspase recruitment domain-containing protein 

11 (CARD11) is activated to recruit B cell lymphoma/leukemia 10 (BCL10) and MALT1 

forming CARMA1-BCL10-MALT1 (CBM) signalosome via two immunoglobulin (Ig ) domains 

at the N-terminus of MALT13,7-9. The paracaspase domain of MALT1 exhibits proteolytic 

activity by targeting arginine/lysine residues of its substrates, tumor necrosis factor alpha-

induced protein 3 (TNFAIP3) also referred to as A204, BCL106, v-rel avian reticuloendotheliosis 

viral oncogene homolog B (RelB)10, Cylindromatosis (CYLD)11 and Regnase-112. BCR 

stimulation by bacterial antigens such as H. pylori leads to constitutive activation of MALT1 in 

the CBM signalosomes and cleavage of these substrates. While the full consequence of these 

cleavage events is not yet understood, each of the known substrates plays a prominent role in 

regulating NF-κB13 and JNK11 signaling. MALT1-null animals exhibit B and T cell functional 

defects14. On the other hand, constitutive expression of MALT1 in murine models produces a 

disease resembling human MALT lymphoma15. Notably, the paracaspase activity of MALT1 has 

been demonstrated to be essential for proliferation and survival in some human B cell lymphoma 

subtypes16-19.  

MALT lymphoma is the most common subtype of malignant lymphoma involving extranodal 

sites20. The t(11;18)(q21;q21)  is the most frequent recurrent chromosomal translocation present 

in MALT lymphomas, and this aberration is associated with antibiotic resistance  and aggressive 

clinical behavior in gastric MALT lymphomas1,21-24. The translocation leads to the juxtaposition 

of apoptosis inhibitor 2 (API2)(11q21) to MALT lymphoma translocation gene 1 (MALT1) 

(18q21) and the creation of a chimeric fusion API2-MALT1 protein in which the N-terminus of 

API2 is fused to the C-terminus of MALT120,25,26. The API2 gene, also known as cIAP2 for 

cellular inhibitor of apoptosis 2, is a member of the inhibitor of apoptosis protein (IAP) E3 ligase 

family. API2 protein contains three baculovirus IAP repeat (BIR) domains, an ubiquitin-

associated (UBA) domain, a caspase recruitment (CARD) domain and a really interesting new 

gene (RING) finger domain. After binding to BIR domains, the substrates of API2 are degraded 
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through ubiquitin-proteasome pathways27. API2 putatively exerts oncogenic activity through 

substrate degradation to activate NF-κB and inhibit apoptotic signaling27-30.  

The API2-MALT1 chimeric protein exhibits constitutive paracaspase activity via the auto-

oligomerization mediated by the API2 moiety that is independent of CBM signalosome 

formation5,31. There are four main breakpoints in the MALT1 gene, including Exon 3 (9%), 5 

(42%), 7 (32%) and 9 (17%) which are translocated onto Exon 7 (93%) of the API2 gene to form 

E7-E3, E7-E5, E7-E7 and E7-E9 API2-MALT1 fusions. The E7-E3 and E7-E5 fusions still 

retain one or two Ig domains, while the MALT1 moiety of E7-E7 and E7-E9 fusions lack these 

domains and thus bypass CBM signalosome-mediated signaling. All of the fusion proteins 

contain three BIR domains from the API2 N-terminus juxtaposed to the paracaspase and Ig 

domain of MALT1 C-terminus20 and retain the ability to recruit most substrates of API2 

including SMAC, HtrA2/Omi and caspases32,33. However, despite detailed characterization of the 

structural aberrations underlying subversion of MALT1 protease function, the mechanisms of 

API2-MALT1 fusion-induced lymphomagenesis are not well understood.  We hypothesized that 

given the retention of the BIR domains in the API2-MALT1 fusions, the BIR domains of API2 

could recruit atypical substrates to the chimeric API2-MALT1 protein and that these could be 

cleaved by the C-terminal MALT1 paracaspase to promote MALT lymphomagenesis via hitherto 

unknown mechanisms. 

In this study, we employed an unbiased tandem mass spectrometry-based strategy and 

discovered that the tumor suppressor LIM domain and actin-binding protein 1 (LIMA1) also 

known as Epithelial protein lost in neoplasm (EPLIN) is a novel API2-MALT1 interactor. We 

further show that LIMA1α is a novel paracaspase substrate of API2-MALT1 and that its 

cleavage disrupts the tumor suppressor function of LIMA1α. Specifically in this regard, API2-

MALT1 paracaspase-mediated proteolysis produces a novel fragment with neo-oncogenic 

properties in B cells. Our studies indicate a role for LIMA1 deregulation in B cell 

lymphomagenesis and highlight a previously unappreciated role of proteolysis in the neomorphic 

conversion of a tumor suppressor to an oncogenic fragment in the pathogenesis of MALT 

lymphoma. 
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Results  

LIMA1 is a novel binding partner of API2-MALT1 

To identify novel mechanisms of API2-MALT1-mediated lymphomagenesis, we generated 293T 

cells stably expressing FLAG-tagged fusions of API2-MALT1, the paracaspase-inactive API2-

MALT1C464A mutant and wild-type MALT1 (Fig. 1a). We then analyzed immunocomplexes 

associated with the tagged proteins by liquid chromatography-tandem mass spectrometry (LC-

MS/MS) to identify interacting partners of API2-MALT1, the paracaspase-inactive API2-

MALT1C464A mutant4 and MALT1. We confirmed the expression of FLAG fusions 

(Supplementary Fig. 1a) and the expected cleavage of the known substrate A20 (Supplementary 

Fig. 1b)4, 34.  One-dimensional SDS-PAGE analysis revealed that several bands were shared in 

the API2-MALT1 and API2-MALT1C464A immunocomplexes (Fig. 1b). LC-MS/MS analyses 

of both API2-MALT1 and API2-MALT1C464A complexes demonstrated efficient co-

precipitation of known interactors of API2; SMAC and HtrA2/Omi and TRAF2 (Fig. 1c). 

BCL10 failed to be co-precipitated by the fusion proteins which lack both of the N-terminal Ig 

domains of MALT1, but was co-precipitated by MALT1 (Supplementary Fig. 1c). Importantly, 

we observed additional distinct bands that repeatedly co-precipitated with catalytically active 

API2-MALT1 that were absent in the immunoprecipitates of API2-MALT1C464A (25kDa, and 

50kDa; Fig. 1b). LC-MS/MS analysis identified these bands with high-confidence peptide 

assignments corresponding to LIMA1 in repeated co-precipitation assays (Fig. 1b, c and 

Supplementary Fig. 1d, e) and with mass spectral counts comparable to Omi (Fig. 1c), but not in 

immunoprecipitates of MALT1 alone (Supplementary Fig. 1c). Taken together, these results 

suggest that LIMA1 interacts with and is a novel candidate substrate of API2-MALT1. 

 

Two AKAS motifs at the C-terminus mediate LIMA1α binding to the API2 moiety of 

API2-MALT1  

To validate the specific interaction between LIMA1 and API2-MALT1, co-immunoprecipitation 

and reciprocal immunoprecipitation were performed with anti-FLAG M2 and anti-V5 beads. 

Endogenous LIMA1α and LIMA1β both co-precipitated with anti-FLAG in cells expressing 

FLAG-API2-MALT1 and FLAG-API2-MALT1C464A, but not FLAG-alone (Fig. 1c and 2a). 

The FLAG-tagged chimeric fusion proteins were reciprocally co-immunoprecipitated by V5-
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LIMA1α (Fig. 2b). V5-LIMA1α co-immunoprecipitated with FLAG-API2-MALT1 and FLAG-

API2 (aa1-442), but not with FLAG-MALT1 (full length) and FLAG-MALT1 N-terminal 

deleted (aa321-824) mutant (Fig. 2c and Supplementary Fig. 2a, b). These results indicate that 

LIMA1α interacts with API2-MALT1 via the API2 moiety and not with MALT1. LIMA1 

contains three known functional domains; a central LIM domain flanked by an actin binding 

domain at the N-terminus and another actin binding domain at the C-terminus35 (Supplementary 

Fig. 2b). LIMA1α binds to the API2 moiety of API2-MALT1 via its C-terminus since the 

interaction was abrogated in two C-terminal deletion mutants, but not in the N-terminal actin 

binding domain deletion mutant of LIMA1α (Fig. 2d and Supplementary Fig. 2b). Interestingly, 

we observed that there are two AKAS motifs (alanine-lysine-alanine-serine, aa350-353 and 

aa479-482) (Supplementary Fig. 2b, c, d) located in two putative protrusions at the C-terminus of 

LIMA1α (Supplementary Fig. 2c). To investigate whether these AKAS motifs represent critical 

recognition sites in LIMA1α necessary for API2-MALT1 binding, we performed co-

immunoprecipitation experiments which revealed that compared to LIMA1αWt, the mutants 

(AKAS1-(A350M), AKAS2-(A479M) and AKAS1-/AKAS2-(A350M/A479M) double-mutants, 

in which small alanine residues are substituted with large hydrophobic methionine amino acid 

residues36, exhibited dramatically reduced binding to API2-MALT1C464A (Fig. 2e and 

Supplementary Fig. 2b). From these results, we conclude that the C-terminus of LIMA1α 

contains critical residues for the binding of LIMA1α with the API2 moiety of the API2-MALT1 

fusion, and that this interaction is independent of the MALT1 moiety and API2-MALT1 

paracaspase activity (Fig. 1c, 2c-f). 

 

API2-MALT1 cleaves LIMA1α at Arg206 and Lys289 generating a LIM domain only 

(LMO) fragment 

The MALT1 moiety of API2-MALT1 contains the paracaspase catalytic domain which mediates 

enzymatic cleavage of substrates at arginine/lysine residues following a serine residue (SR/K)5. 

There are numerous SR/K motifs and post-translational modification (PTM) sites located both N- 

and C-terminal to the central LIM domain within the LIMA1α protein (Supplementary Fig. 2d, 

3a).  To further investigate if LIMA1α is a cleavage substrate of API2-MALT1, V5-tagged 

LIMA1 was transfected into 293T cells stably expressing FLAG, FLAG-API2-MALT1 or 

FLAG-API2-MALT1C464A. These experiments revealed that V5-LIMA1α  co-precipitated with 
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API2-MALT1 and API2-MALT1C464A, but was cleaved only in the precipitates with API2-

MALT1 (Fig. 3a). When progressively increasing doses of API2-MALT1 were transiently 

expressed in cells stably expressing V5-LIMA1α, cleaved LIMA1α fragments were observed in 

a dose-responsive manner to the levels of API2-MALT1 (Fig. 3b). From these data, we surmised 

that LIMA1α is a novel substrate of the API2-MALT1 oncogenic paracaspase.  

 

Based on the apparent molecular weights of the LIMA1α fragments observed in cell lysates 

expressing both API2-MALT1 and LIMA1α (Fig. 3a, b and Supplementary Fig. 3b), we 

postulated that paracaspase-mediated cleavage may occur at two sites, one within the vicinity of 

amino acid residue 200 and the other within of the vicinity of amino acid residue 290. These 

positions directly flank the LIM domain and both closely neighbor SR/K sites that could 

represent the precise sites of cleavage (amino acids 206 and 289, respectively). Indeed, when co-

expressed with API2-MALT1, R206A substitution in LIMA1α abolished the ~40kDa cleaved 

fragment (Supplementary Fig. 3c), and K289A substitution prevented formation of the ~50kDa 

cleaved fragment, respectively (Supplementary Fig. 3d).  Using an in vitro cleavage assay in a 

kosmotropic buffer we observed that LIMA1αWt was only cleaved by purified API2-MALT1, 

but not API2-MALT1C464A (Fig. 3c, Supplementary Fig. 3e). While the ~40kDa and ~50kDa 

cleaved fragments were not observed in the cells with R206A and K289A mutations respectively, 

the mutant carrying LIMA1αR206AK289A double mutation completely blocked the proteolytic 

generation of both of these cleaved fragments by purified API2-MALT1 (Fig. 3c). API2-MALT1 

cleaved LIMA1α at Arg206 and Lys289 generating a LMO fragment evidenced by a band 

detected at 10kDa in API2-MALT1 expressing cells co-transfected with V5-LIMAα1Δ1-206 that 

still contains the LIM domain at the N-terminus (Supplementary Fig. 2b, 3f). The LMO fragment 

of LIMA1α generated by specific cleavage is further confirmed by co-expression of API2-

MALT1 fusion with LIMA1α (aa1-289) tagged with HA at the N- or C-terminus of the protein 

(Supplementary Fig. 3g). As expected, the 40kDa fragment (aa1-206) and 10kDa fragment 

(aa207-289) were detected only when API2-MALT1 was co-expressed with LIMA1α (aa1-289) 

(Fig. 3d, e). In the same experiment, expression of the LIMA1α (aa1-289) R206A mutant along 

with API2-MALT1 abrogated the observed 40kDa fragment (aa1-206) and 10kDa LMO 

fragment (aa207-289). Taken together, these data indicate that API2-MALT1 cleaves LIMA1α at 
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Arg206 and Lys289 with SR/SK motifs (Supplementary Fig. 3h) generating a LMO fragment 

(Supplementary Fig. 3i). 

 

LIMA1α silencing and proteolytic cleavage by API2-MALT1 result in loss of its tumor 

suppressor function  

LIMA1α is a putative tumor suppressor ubiquitously expressed in a variety of tissues and 

cultured cells (Supplementary Fig. 4a)37.  To investigate LIMA1α protein expression in B cells, 

we surveyed its expression by western blotting and observed that LIMA1α is expressed in 

primary human B cells and a broad panel of B cell lymphoma-derived cell lines (Fig. 4a, 

Supplementary Fig. 4a). To investigate the biological consequences of functional inactivation of 

LIMA1α in B cells, we used short hairpin RNA (shRNA) to knockdown the expression of 

LIMA138. LIMA1 shRNA-mediated stable knockdown resulted in approximately 90% reduction 

of LIMA1α expression in L428 B cells and 4-fold increase in cell growth (Fig. 4b i). Further, 

LIMA1α knockdown resulted in significant increase in colony formation in semi-solid media 

(~2-fold; p<0.05) (Fig. 4b ii). LIMA1α depletion also significantly increased fibronectin-

mediated L428 cell adhesion (>2-fold; p<0.01) (Fig. 4b iii) and L1236 cell adhesion (~2-fold; 

p<0.05) (Supplementary Fig. 4b) and increased L428 B cell invasiveness (~2-fold; p<0.05) 

(Supplementary Fig. 4c). These data support a tumor suppressor role of LIMA1α in B cells 

similar to its known function in epithelial cells37,39-41.  

Next we demonstrated using 2 B cell lymphoma cell lines that cleavage of LIMA1α by API2-

MALT1 mimicked the biological effects observed with shRNA-mediated LIMA1α depletion 

with significantly increased L428 cell proliferation (~3-fold; p<0.05) (Fig. 4c i) and colony 

formation (~2-fold; p<0.05) (Fig. 4c ii). This cleavage also significantly increased both L1236 

cell fibronectin-mediated adhesion (p<0.05) and colony formation (p<0.05) (Supplementary Fig. 

4d i, ii and iii). Overexpression of API2-MALT1C464A slightly decreased L428 cell 

proliferation and colony formation which may be due to the dominant negative effect which 

inhibit the endogenous activity of MALT1 in B lymphoma cells17,42. Interestingly, we observed 

that L428 cells expressing API2-MALT1 proliferated much faster than the LIMA1α-depleted 

L428 cells (Fig. 4c iii). We hypothesized that this is due to an autonomous growth promoting 
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activity intrinsic to the LMO fragment generated by API2-MALT1-mediated cleavage of 

LIMA1α (Fig. 3e, and Supplementary Fig. 3f and i).  

 

The LMO fragment of LIMA1α generated by API2-MALT1 cleavage is an LMO-like 

oncoprotein 

Comparative sequence analysis revealed that the LMO fragment exhibits 21-29% homology to 

the N-terminal LIM domain of oncogenic LMO family proteins (Supplementary Fig. 5a). Indeed, 

LMO oncogenes are recurrently targeted by genomic alterations such as translocations and copy 

number gains43-50 resulting in inappropriate expression of the LMO oncoproteins, and associated 

with tumorigenesis51-53. To investigate the biologic effects of the LMO fragment generated by 

API2-MALT1 in B cells, we expressed the LMO fragment in two different B cell contexts. We 

observed that expression of the LMO fragment increased cell proliferation, colony formation, 

and fibronectin-mediated adhesion in L428 B cells (Fig. 5a i, ii, iii). As observed in human 

primary B cells (Fig. 4a i), primary mouse splenic B cells also express LIMA1 that contains a 

LIM domain sharing 91.6% identity of the LMO (Supplementary Fig. 5b, c). To further establish 

the oncogenic activity of the LMO-like protein generated by API2-MALT1 cleavage, we directly 

introduced HA tagged-LMO into freshly isolated primary B cells from C57BL/6 mouse spleens 

(Fig. 5b i, Supplementary Fig. 5d, e). Remarkably, while the primary B cells transduced with the 

control vector were predictably unsustainable in culture and died, the Lenti-LMO transduced 

cells survived and divided continuously beyond three weeks (Fig. 5b ii, iii).  The ability to 

transform mouse primary B cells is strong supportive evidence that the LMO-like protein is neo-

oncogenic. Taken together, these results suggest that API2-MALT1 promotes B cell 

lymphomagenesis by cleaving LIMA1α to abrogate its tumor suppressor function and by 

generating a novel LMO fragment that exerts its own intrinsic transforming activity. 

 

Cleavage-resistant LIMA1α suppresses API2-MALT1-induced lymphomagenesis 

To further establish the significance of LIMA1α cleavage in API2-MALT1-mediated 

lymphomagenesis, we reconstituted LIMA1α and its proteolytic-resistant mutant in BJAB B 
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cells in which endogenous LIMA1α is expressed at very low levels (Fig. 4a i). BJAB cells were 

stably transduced to express API2-MALT1 using an inducible Tetracycline-responsive system 

(BJAB-AM-Tet-On)34 (Supplementary Fig. 6a). In the absence of API2-MALT1 induction, both 

C-terminal GFP-LIMA1αWt and LIMA1αMut exhibited a predominantly membranous 

localization when expressed in BJAB-AM-Tet-On cells (Fig. 6a) that is consistent with the 

distribution of endogenous LIMA1 staining in L428 cells (Fig. 4a ii). By contrast, API2-MALT1 

induction resulted in a diffuse and predominantly cytoplasmic localization of LIMA1αWtGFP, 

but did not change the membrane localization of LIMA1αMutGFP (Fig. 6a). As expected, API2-

MALT1-mediated cleavage reversed the suppressive effects of LIMA1αWt on colony formation 

(~4-fold, p<0.001) (Fig. 6b i, ii). Conversely, API2-MALT1 expression did not reverse the 

growth suppression or colony formation (p>0.05, Fig. 6b i, ii) in the Doxycycline-treated 

LIMA1αMutGFP-transduced BJAB-Tet-On cells. API2-MALT1 is required for the biologic 

transforming effects of LIMA1α cleavage since MALT1 overexpression alone fails to affect the 

tumor suppression activities of ectopically expressed wild type LIMA1α in BJAB-Tet-On cells 

(Supplementary Fig. 6b, c).  We sought to explore the effects of API2-MALT1 expression on 

cell cycle progression in the context of LIMA1αWt and LIMA1αMut expression. We found that 

API2-MALT1 increased the G2/M fraction in LIMA1αWt expressing B cells, but failed to revert 

LIMA1αMut-induced retardation of cell cycle progression (Supplementary Fig. 6d i). Taken 

together, these results indicate that API2-MALT1-mediated proteolytic cleavage of LIMA1α 

contributes to MALT lymphomagenesis. 

 

API2-MALT1 cleaves LIMA1α to promote B cell lymphomagenesis in vivo 

To establish the significance of LIMA1α cleavage in API2-MALT1 mediated lymphomagenesis 

in vivo, we performed experiments using two different B cell derived lines in two different in 

vivo xenograft models. In this regard, we observed that the proteolytically resistant LIMA1α 

mutant also retained its tumor suppressive effect in BJAB B cell lymphoma xenografts in 

athymic nude mice. In this inducible system, tumor formation and volumes were significantly 

higher in BJAB-AM-Tet-On cells transduced with LIMA1αWtGFP than in cells transduced with 

the cleavage-resistant LIMA1αMutGFP under continuous Doxycycline induction (Fig. 6c i, ii, 

iii). To further confirm the consequences of loss-of-function of LIMA1α and gain-of-function 
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effect of the LMO fragment generated by API2-MALT1 in vivo, we explored the biologic effects 

of API2-MALT1, LIMA1αWt and LIMA1αMut in another xenograft model using L428 cells in 

SCID-BEIGE mice. In these experiments, L428 cells transduced to express scrRNA, shLIMA1, 

API2-MALT1 and LMO, as well as API2-MALT1-LIMA1αWt and API2-MALT1-LIMA1αMut 

were injected subcutaneously into both dorsal flanks of SCID/BEIGE mice. The volumes of the 

tumors formed from injected shLIMA1, API2-MALT1, LMO, and API2-MALT1-LIMA1αWt 

transduced L428 cells were significantly greater than in mice injected with scrRNA or API2-

MALT1-LIMA1αMut transduced L428 cells (Fig. 7a i, ii p<0.05, and Supplementary Fig. 7a, b). 

These in vivo results using L428 cells in SCID-BEIGE mice corroborate the findings observed 

using the inducible API2-MALT1 model with BJAB cells xenografted in athymic nude mice, 

and confirm that API2-MALT1 promotes B cell lymphomagenesis by cleavage of LIMA1α. 

Finally, to demonstrate the clinical relevance of API2-MALT1 targeting LIMA1 in B cell 

oncogenesis, LIMA1 proteolytic cleavage was examined by Western blot in cell lysates obtained 

from patient-derived API2-MALT1 positive MALT lymphoma biopsies. As shown in Fig. 7b 

and Supplementary Fig. 7c, we detected cleaved LIMA1 only in API2-MALT1 positive 

lymphomas, but not in MALT lymphomas lacking the t(11;18)(q21;q21) chromosomal 

aberration. Furthermore, ectopic expression of API2–MALT1 in the t(11;18)(q21;q21) negative 

marginal zone B cell lymphoma–derived SSK41 cell line54 also cleaved LIMA1 and this 

cleavage was blocked by the paracaspase inhibitor zVRPR-fmk6 (Supplementary Fig. 7d).  In 

parallel, despite abundant expression of endogenous LIMA1α in the MALT1 up-regulated but 

API2-MALT1-negative SSK41 cells, there was no evidence of LIMA1 proteolysis in cells 

without API2-MALT1 overexpression (Supplementary Fig. 7d).  Taken together, these results 

indicate that the API2-MALT1-mediated specific cleavage of LIMA1α and the generation of 

LMO fragments mechanistically contribute to MALT lymphomagenesis (Fig. 7c). 

 

Discussion 

Using a subtractive mass spectrometry driven proteomic strategy, we discovered that the API2-

MALT1 encoded by the t(11;18)(q21;q21) translocation interacts with the LIMA1 tumor 

suppressor. The recruitment domain of MALT1 at its N-terminus replaced by the N-terminus of 

API2 is required for this novel interaction. This interaction is specific since no binding was 
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observed between LIMA1α and MALT1 which interacts with its substrates after formation of the 

CBM signalosome in response to appropriate stimuli3,7. We further demonstrated that LIMA1α  

is proteolytically processed by the paracaspase-mediated activity of API2-MALT1 after binding 

to the API2 moiety.  The API2 moiety in the chimeric fusion recruits LIMA1α via AKAS motifs 

at its C-terminus and MALT1-dependent paracaspase action affects cleavage of LIMA1 resulting 

in loss of tumor suppressor function.  

MALT1 is regarded as an arginine-specific protease based on biochemical substrate profiling 

studies that demonstrate that it cleaves tetrapeptide substrates after arginine residues55,56. These 

observations are supported by structural studies of C-terminus of MALT156,57. However, it has 

also been shown that lysine residue substitution switches the major cleavage site of A20 (R439) 

to a minor cleavage site, and minor and/or potential cleavage sites to dominant major cleavage 

sites56,58.  Our studies suggest that API2-MALT1 cleaves LIMA1α at major cleavage site R206 

and minor cleavage site K289 (Fig. 3b). Cleavage at K289 by API2-MALT1 may be enhanced 

by binding of the API2 moiety of the fusion protein to LIMA1α (Fig. 1b and 3a, c). Indeed, 

API2-MALT1 cleavage may occur at additional less preferred sites (Fig. 3a, c), but with less 

catalytic efficiency (Fig. 3b).  Importantly, we showed that API2-MALT1-induced cleavage 

disrupts the tumor suppressor function of LIMA1α in vitro (Fig. 4 and 6b) and in vivo (Fig. 6c 

and 7a). Moreover, we observed that API2-MALT1-mediated cleavage of LIMA1α generates an 

LMO-like protein that demonstrates independent tumorigenic properties in multiple in vitro and 

in vivo models.   While API2-MALT1 cleaves NIK, a regulator of the non-canonical NF-κB 

signaling pathway34, our current demonstration of LIMA1α proteolysis by API2-MALT1 

represents the first evidence of a paracaspase-mediated mechanism wherein a wild-type tumor 

suppressor is cleaved to produce a proteolytic fragment that exhibits its own autonomous 

oncogenic activity.  

LIMA1 is a cytoskeleton-associated protein encoded by a gene on band 12q13 and contains a 

single centrally located lin-11, isl-1, and mec-3 (LIM) domain, flanked by two actin binding 

domains each located at the N- and C- termini of the wild-type protein59. LIMA1 has been 

recognized as a tumor suppressor based on the multiple mechanisms by which it is targeted for 

inactivation37,39,41,60.  LIMA1 protein is preferentially expressed in human epithelial cells and has 

been observed to be transcriptionally down-regulated in epithelial malignancies37. Genomic 
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deletions encompassing LIMA1 at the 12q12-13 locus are recurrent in human bronchial and 

salivary adenoid cystic carcinomas61. Further, expression of LIMA1 has been demonstrated to 

suppress anchorage-independent growth59. The biologic significance LIMA1 in cancer is 

underscored by the fact that loss of expression of LIMA1 in various cancers is correlated with 

adverse clinical outcomes and inferior survival37,39. We demonstrated in two B cell-derived cell 

lines that LIMA1α depletion mediated by shRNA promotes cell proliferation, colony formation 

and ligand-dependent cell adhesion, as did cells ectopically expressing wild type API2-MALT1, 

but not those expressing the catalytically-defective paracaspase mutant (API2-MALT1C464A). 

LIMA1α cleavage-dependent tumorigenicity was also diminished in cells co-expressing 

proteolytically resistant LIMA1α and API2-MALT1 in both in vitro and in vivo xenograft 

models. The promotion of B cell oncogenicity observed by API2-MALT1-mediated cleavage of 

LIMA1α and/or shRNA depletion suggests that LIMA1α functions as a putative tumor 

suppressor in B cells similar to its known function in epithelial cells. 

LMO proteins are interacting modules that form multiprotein complexes involved in the 

regulation of multiple biological processes including erythropoiesis, angiogenesis, growth 

control, and apoptosis62. The LIM domain is a cysteine-rich domain composed of two specialized 

Zinc fingers that are connected by a 2-amino acid spacer and functions as a modular interface to 

facilitate protein-protein interactions63-65. LMO proteins functioning as candidate oncogenes are 

known to be recurrently targeted by structural chromosomal alterations including translocations 

t(11;14)(p15;q11); (LMO1/-TCRα/δ), t(11;14)(p13;q11);(LMO2-TCRα/δ) and 

t(7;11)(q35;p13);(LMO2-TCRβ) occurring in childhood T-cell acute lymphoblastic leukemias. 

These translocations are thought to contribute to inappropriate expression of the LMO proteins 

resulting in leukemogenesis.  

The LMO fragment produced by API2-MALT1 exhibits 28% and 26% homology with the N-

terminus of LIM domains LMO2 and LMO4, respectively (Supplementary Fig. 5a), which are 

recognized oncogenes known to contribute to the pathogenesis of T cell leukemia or B cell 

lymphoma and breast cancer66. This observation is in keeping with our experimental 

demonstration of the tumorigenic effects of the LMO fragment generated by API2-MALT1-

mediated paracaspase cleavage, and suggests that this conversion of a growth suppressor into a 

growth promoting oncoprotein contributes to API2-MALT1-induced MALT lymphomagenesis.  
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The oncogene-specific nature of this mechanism is supported by our detection of LIMA1 

cleavage fragments selectively in t(11;18)(q21;q21) API2-MALT1 expressing patient-derived 

lymphomas and not in the t(11;18)-negative cases. Our studies highlight novel loss-of-function 

and gain-of-function mechanisms wherein the normal proteolytic function of a protein is 

subverted by the juxtaposition of a protein-protein interaction module that recruits unnatural 

substrates for cleavage, yielding a protein with an independent and opposite biologic effect to 

that of the intact full-length protein from which it was derived. Specifically in this regard, we 

demonstrate that LIMA1α is a novel interactor and substrate for the API2-MALT1 chimeric 

paracaspase. While our studies show absence of MALT1 interaction with LIMA1 under basal 

conditions, it is formally possible that such an interaction may occur after proximal activation 

and dimerization within the CBM complex. Our findings indicate that in API2-MALT1 

expressing lymphomas, the API2 moiety of the chimeric fusion recruits LIMA1 and the MALT1 

protease domain cleaves LIMA1α. Cleavage of LIMA1α disrupts its tumor suppressor activity 

and generates a LMO-containing protein which promotes B cell growth, adhesion and 

tumorigenicity (Schematic model in Fig. 7c). Overall, these findings suggest that specific 

inhibition of the interaction between API2 and LIMA1 could lead to the development of targeted 

therapies for the treatment API2-MALT1 positive lymphomas. 

 

Methods 

General chemicals and reagents: Puromycin (Sigma); Doxycycline (Sigma); DNA marker, 

protein marker, paracaspase inhibitor, protease inhibitors (Roche); Arginine (Sigma);  Protein 

A/G agarose beads (Santa Cruz);  FLAG-M2 beads (Sigma), V5 beads, restriction enzymes; cell 

culture components RPMI1640, DMEM, FBS, antibiotics, glutamine, trypsin and fetal bovine 

serum (FBS) were purchased from Invitrogen.  

Antibodies: FLAG conjugated with HRP and rabbit anti-LIMA1 were purchased from Sigma. 

Anti-V5 conjugated with HRP (Invitrogen), anti-HA conjugated with HRP (Thermo Scientific), 

Donkey HRP-conjugated secondary antibodies against rabbit and mouse as well as FITC-

conjugated anti-mouse B220 (Jackson ImmunoResearch Inc.), Fluorescence-labeled anti-rabbit 

and mouse secondary antibodies (Invitrogen) 
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Plasmids: shRNA against LIMA1 (shLIMA1) and scramble RNA (scrRNA) were purchased 

from Open Biosystems. FLAG-API2-MALT1 was inserted into pIRESpuro2 Nhel and NotI 

cloning sites (University of Cambridge, UK). In the plasmid pIRESGFP bearing FLAG-API2-

MALT1, the IRES-controlled puromycin gene was replaced with IRES-controlled GFP. 

Lentiviral vector pLentiLox RSV was obtained from the viral vector core at the University of 

Michigan. The packaging plasmids Gagpol, VSVg and Rev were purchased from Invitrogen. 

Plasmid DNA concentrations were measured using Nanodrop quantitation (Thermo Scientific).  

Cell culture and establishment of cells stably expressing transduced genes: U2-OS, 293T cells 

(ATCC) and 293FT (Invitrogen) were grown in DMEM containing 10% heat inactivated FBS. 

BJAB cells (ATCC) were maintained in RPMI 1640 containing 10% heated-inactivated FBS. 

293T cells stably expressing FLAG, FLAG-MALT1, FLAG-API2-MALT1 and FLAG-API2-

MALT1C464A mutant were developed by the continuous selection with 1μg/ml puromycin 

(Sigma) after Fugene6 (Roche) mediated transfection. BJAB Tet-On cells stably expressing 

FLAG, FLAG-MALT1 and FLAG-API2-MALT1 were generated at University of Cambridge. 

The SSK41 cell line was kindly provided by Dr. Martin Dyer (University of Leicester, U.K.). 

Mouse B cells were isolated with mouse B cell isolation kit (Miltenyi Biotec) by following 

manufacture’s protocol and were cultured in RPMI1640 containing 15% FBS. 

Plasmid construction and site-directed mutagenesis  

Human LIMA1α cDNA was purchased from Open Biosystems. After amplification by PCR 

(primers: sense 5’- atggaaaattgtctaggag-3; anti-sense 5’-tca ctcttcatcctcatcctc-3), the forward 

orientation LIMA1α ORF was inserted into pGW8topo vector and then transferred into pcDNA3 

N-V5 gateway vector (Invitrogen). V5-LIMA1αΔ1-206 was constructed by generating a BamHI 

site between R206 and A207 using the GeneTailor™ Site-Directed Mutagenesis System 

(Invitrogen) by following the manufacturer’s manual with primer sense 5’-

caagccactaagtccagattcggatccctccagtctt-3’, 5’-gaatctggacttagtggcttgggatggacag-3’. V5-LIMA1α 

aa1-206 and 1-289 were prepared by generating stops after R206 and K289 using site-directed 

mutagenesis with the primers 1-206 sense 5’-cactaagtccagattccaga tag tccagtctt-3’, antisense 5’-

tctggaatctggacttagtggcttgggatggac-3’; 1-289 sense 5’-caatcaactc tttaaatctaagtgaaactatgatg-3’, 

antisense 5’-cttagatttaaagagttgattgaagtgaggcttac-3’. LIMA1α R206A sense 5’-
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caagccactaagtccagattccgcagcctccagtc-3’; anti-sense 5’-ggaatctggacttagtggcttgggatggac-3’. 

LIMA1α K289A sense 5’-cttcaatcaactctttaaatctgcgggcaactatg-3’; anti-sense 5’-

agatttaaagagttgattgaagtgaggcttac-3’. LIMA1α AKAS1-sense 5’-

tcctggctgcaagtatggaaatgaaggcctcctc-3’, antisense 5’-ttccatacttgcagccaggacacccaccttag-3’; 

LIMA1α AKAS2- sense 5’-gaaaggaaacaggtggaaaatatgaaggcttctaag-3’, antisense 5’-

attttccacctgtttcctttctgcaactcttcc-3’. LIMA1αR206K289A and LIMA1αAKAS1-AKAS2- 

multiple mutations were carried out one by one using the primers described above. API2 

fragment (1-442): sense 5’- ctgaggaaaaagaatcaaattagttattattaatc-3’; anti-sense 5’-

atttgattctttttcctcagttgctctttctctc-3’. MALT1 fragment (321-824) was prepared by generating a 

BamHI site before the fusion point and then all base pairs between this BamHI site and another 

BamHI site located downstream of FLAG tag at the N-terminal of FLAG-MALT1 were removed 

(University of Cambridge, UK) : sense 5’-gatgaggcagtggagtgcactggatccgaattaaataatc-3’; anti-

sense 5’-agtgcactccactgcctcatctgttcttcctatgatg-3’. The overlapping primers used for the mutations 

are as follow: API2-MALT1C464A: sense 5’-aatgtgttcttattggatatggctaggaaaagaa-3’; anti-sense 

5’-catatccaataagaacacattaagtccagtttc-3’.  

N-terminal HA-LIMA1α aa1-289 (HA1-289): sense, 5’-

ggatccatgtatccatatgatgttccagattatgctgaaaattgtctaggag-3’, anti-sense: 5’-

gcggccgcctacttagatttaaagagttg-3’. The anti-sense primer for C-terminal HA-LIMA1α aa1-289(1-

289HA): 5’-gcggccgcctaagcataatctggaacatcatatggatacttagatttaaagag-3. HA-LIM domain only 

sense 5’-ggatccatgtatccatatgatgttccagattatgctgcctccagtctttctg-3’. LIMA1αWt, LIMA1αMut, 

LIMA1α HA1-289 and R206A, LIMA1α 1-289HA and R206A were subcloned into modified 

pLentiLox RSV at BamHI and Not I sites. LIMA1αWtGFP fusion and LIMA1αMutGFP fusion 

were created by fused GFP at the C-terminal of LIMA1α cloned into BamHI site of the modified 

pLentiLox RSV.  All the PCR fragments and plasmids bearing the mutations were confirmed by 

DNA sequencing in the DNA Sequencing Core at the University of Michigan. 

 

FLAG one-step immunopurification and mass spectrometry analyses 

Protein lysates from cell lines stably expressing FLAG, FLAG-API2-MALT1 and FLAG-API2-

MALT1C464A mutation were prepared with a FLAG-fusion protein purification kit (Sigma) by 



 

17 
 

following the manufacturer’s guidelines. Briefly, cultured cells were harvested, washed three 

times with ice-cold PBS and resuspended with two volumes of ice-cold Cellytic TMM Cell Lysis 

Reagent (Sigma, C2978-BULK) containing protease inhibitor cocktail (Roche). After sonication, 

the protein lysates were obtained by centrifugation at full speed for 30 minutes at 4oC and were 

sequentially filtered with 0.45 μm then 0.2 μm low-protein binding filters (Millipore, Millex-HV 

and Millex-GV). The protein lysates were resuspended at 20mg/ml and pre-precipitated with 

agarose-conjugated normal mouse IgG1a. In FLAG precipitation assays, FLAG-tagged API2-

MALT1 and API2-MALT1C464A added to the protein lysates at 20mg/ml determined by BCA 

protein assay kit (Thermo Scientific) were immunoprecipitated with 50μl FLAG-M2 beads after 

incubation at 4oC overnight. The FLAG-M2 beads were washed 5 times with washing buffer 

(Sigma), then eluted with washing buffer containing 30μg 3 x FLAG peptides (Sigma) and 

analyzed on SDS-PAGE gel stained with Bio-SafeTM Coomassie G-250 Stain (Bio-Rad). The 

binding proteins in the SDS-PAGE were analyzed by LC-MS/MS67,68. 

 

Protein expression and in vitro paracaspase cleavage assay  

V5-tagged LIMA1αWt and LIMA1αMut were synthesized using HeLa cell extracts for high-

fidelity cell-free system coupled transcription, translation, recombinant protein expression and 

post-translational modification in vitro (Thermo Scientific). Briefly, the BamHI-NotI fragments 

of LIMA1αWt and mutant DNAs were subcloned into the pT7CFE1 vector. The recombinant 

LIMA1αWt and mutant were prepared by following the manufacturer’s protocol. In vitro 

paracaspase cleavage assay was performed as previously described34. The purified FLAG-API2-

MALT1 fusions from the stably transduced cell lines were co-incubated at 30°C for 2 hours with 

purified V5-LIMA1α in 50 μl kosmotropic salt buffer [50 mM MES (pH 6.8), 150 mM NaCl, 

10% (w/v) sucrose, 0.1% (w/v) CHAPS, 10 mM dithiothreitol and 1 M (NH4)3citrate]. After 

incubation at 37°C for 30 minutes with constant rotation, an aliquot of the reaction mixture was 

used for Western blotting with a FLAG antibody to verify equal FLAG-MALT1 concentrations. 

The streptavidin beads were collected, washed with 1X PBS and boiled for 10 min in 1X SDS 

gel loading buffer (with a final concentration of 4% SDS and 300 mM β-mercaptoethanol).  

Western blotting was performed using the V5 antibody (sc-58052). 
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VSVg pseudotyped recombinant lentivirus-mediated gene transduction and GFP reporter-

based flow cytometry sorting 

U2-OS cells and 293T cells were transfected either with Fugene6 (Roche) or Polyjet (SignaGen 

Lab) by following the manufacturer’s guidelines. L428 cells were transfected by electroporation. 

Briefly, 105 cells per ml were cultured in antibiotic free RPMI1640 containing 10% FBS for 48 

hours. For each single transfection, 107 cells were harvested by centrifugation, the pelleted cells 

were resuspended in 250 μl antibiotic free RPMI 1640. Before electroporation, the prepared cells 

were co-incubated for 10 minutes at room temperature with 50 μl DNA solution (15 μg 

endotoxin-free DNA in plain RPMI 1640 containing 10 mM HEPES at pH7.4). The mixture was 

transferred to a cuvette with a gap of 0.4 cm and electroporated at 230 V and 950 μF with a 

Biorad Gene Pulser (Bio-Rad)69. 

VSVg pseudotyped recombinant lentivirus production and lentiviral vector mediated gene 

transduction: Recombinant lentiviruses were produced in 293 FT cells (Invitrogen) by following 

the manufacturer’s protocol. The packaging plasmids Gagpol, VSVg and Rev were purchased 

from Invitrogen. The resulting recombinant viruses were concentrated by ultracentrifugation at 

25000 rpm (82700g) at 4oC for 2 hours. The titers of the recombinant lentiviruses harboring 

reporter GFP were scored by dividing the number of GFP-positive foci at 48 hours post-

transduction by the dilution factor. The cells were transduced with recombinant lentiviruses at 

MOI of 10 (293 T cells) or 50-100 (B cells). The transduced cells carrying GFP reporter were 

sorted by flow cytometry.  

Protein concentration determination, separation and immunoblotting 

The protein concentrations were measured with Pierce BCA Protein Assay Kit (Thermo 

Scientific, Rockford, IL) by following manufacturer’s guidelines. For Western blotting, 10-

100μg proteins were separated on 4-20% Tris-Glycine gel running in 1 x MOPS SDS Running 

Buffer (Novex, Carlsbad, CA). The proteins were transferred overnight at 5V onto a 

nitrocellulose membrane (Bio-Rad) using Trans-Blot® SD semi-dry transfer cell (Bio-Rad). 

After 1 hour of blocking with 5% milk, the membranes were probed with primary antibodies in 

5% milk for 1 hour at 37°C or overnight at 4°C. The probed membranes were washed 5 times 

with PBST (1 x PBS containing 0.1% Tween20) and probed again with HRP-conjugated 
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secondary antibodies. The probed proteins were detected by autography with enhanced 

chemiluminescence (Thermo Scientific).  

Immunostaining and fluorescence microscopy  

The L428 cells and primary mouse B cells were fixed with 4% paraformaldehyde/PBS and 

permeabilized with 1% Triton 100/PBS for 15 minutes on ice. After blocking with 5% FBS in 

PBS containing 1% Triton 100 (PBST buffer), the cells were stained with primary antibodies and 

fluorescently labeled secondary antibodies.  

In vitro tumorigenicity assays 

Cell proliferation assays: Cell growth curves were generated by directly counting cells or cell 

aggregates or by using the WST-1 assay (Roche Applied Science, Indianapolis, IN, USA) and/or 

CellTiter-Glo® Luminescent Cell Viability assay (Promega) performed according to the 

manufacturer’s protocol70. Cells were counted using trypan blue exclusion assay.  

Cell adhesion assay: 96-well-plates (Corning) were coated in triplicate with 100μl freshly 

prepared fibronectin adhesion-promoting peptides (Sigma, 20μg/ml in ddH2O) at 4oC overnight. 

Negative control wells were coated with 100μl BSA (Sigma, 40μg/ml in ddH2O). After three 

washes with PBS containing 0.1%BSA, the plates were blocked with 100μl RPMI1640 

containing 0.5% heat-inactivated FBS for 1 hour at 37oC in a 5% CO2 incubator. Next, the 

medium was replaced by 100μl cell suspensions (105 cells/ml) in RPMI160 containing 0.5% 

heat-inactivated FBS. The unattached cells were removed after 3 hours. The attached cells were 

counted with trypan blue exclusion under a microscope after washed three times with PBS 

containing 0.1%BSA.  

Colony formation assay:  Colony formation assay was carried out in 1% methylcellulose-based 

media and assessed according to the manufacturer’s protocol (Stemcell Technologies, 

Vancouver, British Columbia, Canada). After 3 weeks, colonies were stained with 

iodonitrotetrazolium chloride overnight and counted70.  

Cell transwell migration assay: HTS transwell-96 well plates with 5.0 micron polycarbonate 

membranes (Corning Cat 3388) inserts were coated with rat tail collagen I at 10μg/cm2  
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following the manufacturer’s protocol (Sigma). Briefly, the inserts were loaded with 25μl of 

diluted collagen solution (0.0572μg/μl) and air-dried in a biological safety cabinet. After 

removing any remaining collagen solution, the inserts were rinsed once with RPMI1640 

containing 0.5% FBS. To set up reservoir wells, 150μl RPMI1640 containing 10%FBS plus 

10ng stromal cell-derived factor-1α (SDF-1α) and 0.5% FBS only as negative control were 

added into each well. Then, 50 μl of 105 cells that were serum-starved overnight in RPMI1640 

containing 0.5% FBS were added to the wells. After incubation overnight at 37°C, 5% CO2, the 

DAPI stained GFP-positive cells were counted. 

In vivo tumorigenicity assay 

In vivo tumorigenicity was examined in athymic nude and SCID/BEIGE mice71. Athymic nude 

mice (6-8-week-old Balb/c nu/nu female) and SCID/BEIGE mice were purchased from the 

Jackson Laboratory. All animal experiments were done according to a protocol approved by The 

University Committee on Use and Care of Animals (UCUCA) at the University of Michigan. 

The mice were injected subcutaneously into both sides of the flanks under ketamine anaesthesia 

(nude mice: 10 injections per test; SCID/BEIGE mice: 5 injections per test) with 2-5 x 107 cells 

in 0.2 ml mixtures of serum-free RPMI1640 and Matrigel at a ratio of 1:1. Cells were treated 

with Doxycycline (1μg/ml) for 48 hours before injection into mice.  The mice were treated with 

4mg Doxycycline every day for 21 days. Tumor formation and growth in the flanks were 

observed and recorded for 21 days. The tumor sizes of the injected SCID/BEIGE mice were 

measured every two days with a digital caliper (Fowler). The tumor tissues from SCID/BEIGE 

mice were fixed overnight in 10% neutral buffered formalin, dehydrated in graded 

concentrations of ethanol, and then embedded in paraffin and sectioned. The sections (5μm 

thick) were stained with H&E according to standard protocols and analyzed by light microscopy. 

These tumor sections were imaged under an upright microscope (Olympus BX43). 

Clinical sample collection and processing 

API2-MALT1-positive and -negative MALT lymphoma tissues were obtained from the 

University of Michigan biorepository under a protocol approved by the Institutional Review 

Board. Fluorescence in situ hybridization (FISH) was performed as described below. Briefly, 

nuclei were prepared from paraffin-embedded tissues of API2-MALT1 positive and negative 
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cases with tissue diagnoses of marginal zone lymphoma. Paraffin-embedded tissue blocks were 

sectioned at 5 microns, and 3 to 4 sections were used to prepare nuclei. The sections were 

deparaffinized twice in xylene for 30 minutes and 10 minutes, followed by rehydration in 100%, 

95%, 75%, and 50% ethanol in water for 5 minutes each. Tissue sections were digested with 

Carlsberg solution (0.1% Sigma protease XXIV, 0.1 M Tris, 0.07 M NaCl, pH 7.2) for 1 to 2 

hours at 37°C. The resulting nuclear suspensions were vortexed for 20 minutes and filtered 

through a 50 micron nylon mesh. The nuclei were washed once in phosphate buffered saline and 

fixed in methanol and acetic acid (3:1). For FISH, the nuclear suspensions were pipetted on 

Vectabond treated slides (Vector Laboratories, Burlingame, CA) and air-dried overnight. The 

nuclei were then treated with 50% glycerol/2 3 SSC for 10 minutes at 90°C and denatured for 10 

minutes in 70% formamide/2 3 SSC at 70°C. FISH was performed with the MALT1 DNA-FISH 

probe purchased from Abbott Molecular according to their protocol. Two hundred or more nuclei 

were scored from each case. The MALT1 FISH probe generally appears as two distinct signals 

adjacent to each other (red and green). When there is DNA rearrangement around the API2-

MALT1 region, the probe signal splits. FISH was interpreted as normal without rearrangement 

when two signals without splits were present, aneuploid without rearrangement when more than 

two signals without splits were present and positive for API2-MALT1 rearrangement when a 

split signal was present. 

Statistical analysis 

All data are presented as mean+/- S.D. from three or more independent experiments. The 

statistical significance between two groups was calculated using Student’s t test.  
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FIGURE LEGENDS 

Figure 1: Identification of LIMA1 as a novel interactor of API2-MALT1 

(a) Schematic diagram of API2, MALT1 and its fusions and FLAG-Wt and mutant. (i) 

Schematic diagram of API2, MALT1 and fusion breakpoints showing frequency of occurrence. 

(ii) Schematic diagram of the Exon 7-Exon 7 fusion. (iii) Schematic diagram of the FLAG-

tagged API2-MALT1 (FLAG-AM) and the mutant with the paracaspase inactivating mutation 

(FLAG-AMC464A). The functional domains of the proteins are shown as indicated. E: Exon; 

BIR: Baculovirus IAP Repeat; UBA: ubiquitin-associated domain; CARD: Caspase recruitment 

domain; RING: (Really Interesting New Gene) finger domain; DD: death domain; Ig: 

immunoglobulin domain. (b) Isolation of API2-MALT1 binding proteins in 293T cells. Cell 

lysates (20mg/ml) were pre-cleared with 50μl protein-A conjugated beads and mouse IgG1 

conjugated beads. The FLAG-API2-MALT1 and FLAG-only immunoprecipitates were resolved 

on 10% SDS-PAGE and visualized with Coomassie blue staining.  (c) Spectral counts of 

peptides corresponding to LIMA1 and other proteins identified by LC-MS/MS from FLAG-

immunopurifications of cells stably expressing FLAG-API2-MALT1 and FLAG-

MALT1C464A.  

Figure 2: Two AKAS motifs at the C-terminus mediate LIMA1α binding to the API2 

moiety of API2-MALT1  

(a) API2-MALT1 interacts with endogenous LIMA1. Cell lysates (10mg/ml) were 

immunoprecipitated with 25μl FLAG M2 beads following the same procedures as in Fig. 1b. (b) 

V5-tagged LIMA1α reciprocally co-precipitates FLAG-API2-MALT1.  FLAG, FLAG-API2-

MALT1 and FLAG-API2-MALT1C464A stably expressing cells were co-transfected with V5 

tagged LIMA1α . The chimeric proteins were isolated using V5-conjugated agarose beads and 

detected with HRP-conjugated anti-FLAG antibody. (c) LIMA1α interacts with the API2 moiety 

of the API2-MALT1 fusion. LIMA1α, FLAG-API2-MALT1, FLAG-API2 (1-442) and FLAG-

MALT1 (321-824) were co-expressed in 293T cells via co-transfection. The V5-LIMA1α 

binding activities were demonstrated by co-immunoprecipitation with FLAG-M2 beads (Fig. 1b) 

and followed with HRP-conjugated anti-V5 immunoblotting. (d) The C-terminus of 

LIMA1α  interacts with API2-MALT1. V5-tagged LIMA1αWt and LIMA1α deletion mutants 

were transfected into cells stably expressing FLAG-API2-MALT1 followed by co-
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immunoprecipitation and immunoblotting as described in (c). (e) The LIMA1α C-terminus 

contains two AKAS motifs that mediate interaction with API2-MALT1C464A. Flag-API2-

MALT1C464A and V5-LIMA1αWt and AKAS1 mutation (AKAS1-), AKAS2 mutation 

(AKAS2-) and double AKAS1 and AKAS2 (AKAS1-2-) mutants were co-expressed in 293T 

cells. After immunoprecipitation, Flag-API2-MALT1C464A and V5-LIMA1α and its mutants 

were isolated using anti-Flag-M2 beads and detected by Flag-HRP and V5-HRP, respectively. (f) 

FLAG-AM and FLAG-AMC464A, but not FLAG-MALT1 was reciprocally co-

immunoprecipitated by V5-tagged LIMA1α using anti-V5 agarose beads when co-expressed in 

293Tcells. 

Figure 3: API2-MALT1 cleaves LIMA1α at arginine 206 and lysine 289 generating a LIM 

domain only (LMO) fragment 

(a) Binding and cleavage of V5 N-terminal tagged LIMA1α when co-expressed with FLAG, 

FLAG-API2-MALT1 and FLAG-API2-MALT1C464A in 293T cells. The assays with the V5-

LIMA1α transfected cells were carried out as described in Fig.2b. Co-precipitation and cleavage 

of V5-LIMA1α were detected with HRP-conjugated anti-V5.  (b) Dose response of V5-LIMA1α 

cleavage by API2-MALT1. Cleaved fragments in V5-LIMA1α expressing cells were detected at 

48 hours after transfection with 0.5, 1.0, 1.5 μg API2-MALT1 plasmid DNAs. (c) API2-MALT1 

cleaves LIMA1αWt and partially cleaves R206A or K289A single mutants, but not the 

R206A/K289A double mutant in vitro. The catalytically-inactive mutant API2-MALT1C464A 

does not cleave wild-type LIMA1α and API2-MALT1 fails to cleave the LIMA1α 

R206A/K289A double mutant. The synthetic LIMA1αWt and its mutants were incubated with 

purified API2-MALT1 and API2-MALT1C464A for 2 hours at room temperature, and then co-

precipitated with FLAG-M2 beads. The co-precipitates were further incubated for 30 minutes at 

30oC. After elution with 3 x FLAG peptides, the proteolytic cleaved bands were analyzed as 

described in the Methods section. (d) N-terminal HA-tagged LIMA1α aa1-289 was cleaved at 

R206 when co-expressed with API2-MALT1, but not the R206A mutant, vector control or with 

the API2-MALT1C464A mutant. The cleaved fragments were detected with anti-HA HRP. (e) 

The LMO fragment was detected only with anti-HA HRP in cells co-expressing the C-terminal 
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HA-tagged LIMA1α aa1-289 with API2-MALT1, but not in cells co-expressing R206A mutant, 

nor with vector control or with API2-MALT1C464A.  

Figure 4: Proteolytic cleavage of LIMA1α by API2-MALT1 promotes B cell 

lymphomagenesis in vitro 

(a) (i) Expression of endogenous LIMA1α in non-neoplastic B cells and B cell lymphoma-

derived cell lines. LIMA1 was detected by western blot with rabbit anti-LIMA1 antibody. Actin 

was used as an internal control. (ii) Distribution of endogenous LIMA1 in L428 B cells stained 

with rabbit anti-LIMA1 and imaged after staining with Alexa Fluor®488 Anti-Rabbit antibody.  

(b) LIMA1 depletion promotes B cell proliferation, colony formation and adhesion. (i) LIMA1 

knockdown by LentishRNA-mediated silencing increases L428 B cell proliferation as assessed 

by WST-1 assay. (ii) L428 cells transduced with LentiscrRNA and LentishRNA against LIMA1 

were grown on methylcellulose semi-solid agar for 3 weeks and stained with 

iodonitrotetrazolium chloride and counted. (iii) L428 cells transduced with LentiscrRNA and 

LentishRNA against LIMA1 were cultured on fibronectin-coated microtiter plates and attached 

cells were counted after overnight incubation. (c) API2-MALT1 cleaves LIMA1α to promote B 

cell lymphomagenesis.  (i) API2-MALT1 cleaves LIMA1α and increases L428 cell proliferation. 

API2-MALT1 and LIMA1α and/or vector only constructs were expressed in L428 cells and cell 

growth was assessed using WST-1 assay. (ii) LIMA1α cleavage is associated with increased 

colony formation. Cells from cii were used to perform colony formation assays as described in b-

ii.  (iii) Proliferation of L428 cells expressing API2-MALT1 compared to cells in which LIMA1 

is stably depleted using LentishLIMA1.  

Figure 5: LIM domain only (LMO) of LIMA1α generated by the API2-MALT1 cleavage is 

an LMO-like oncogenic protein  

(a) LMO-like protein promotes B cell lymphomagenesis. (i) LMO-like protein promotes L428 

cell proliferation. L428 cells transduced with LentiGFPLMO and LentiGFP (control) were 

cultured for 48 hours at 37oC and cell proliferation was determined using the WST-1 assay. (ii) 

LMO-like protein expression increases colony formation  in L428 cells.  Stable ectopic 

expression of LMO was achieved using Lentiviral transduction using LentiGFPLMO and 

LentiGFP-expressing constructs.  Lentivirus-mediated transduced as described in (i). (iii) LMO-
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like protein promotes L428 cell fibronectin-mediated adhesion. Lentivirus-transduced cells are 

the same as in a-i and a-ii. (b) Primary mouse B cell transformation by ectopic expression of the 

LMO-like protein. (i) Schematic of mouse primary B cell isolation and transduction. LMO-

transduced primary mouse B cells show enhanced proliferation. Splenic B cells were isolated 

using MACS B cell isolation kit and the purity of B cells was determined by immunostaining 

with FITC-anti-B220. The isolated B cells were transduced with LentiGFPLMO and LentiGFP 

as described in  a i. Cell viability was determined by CellTiter-Glo® Luminescent Cell Viability 

Assay kit (Promega) every three days. (ii) B cell aggregates reflective of growth were counted by 

direct visual assessment using light microscopy at day 9, and (iii) cell growth was determined 

using ATP production at day 3, 6 and 9.  

Figure 6: Cleavage-resistant LIMA1α suppresses API2-MALT1-induced lymphomagenesis  

(a) Doxycycline-induced expression of API2-MALT1 changes the cellular distribution of 

LIMA1αWtGFP fusion, but not LIMA1αMutGFP fusion. The expression of API2-MALT1 was 

measured by assessing the intensity of immunoreactive bands yielded from western blotting anti-

FLAG after Doxycycline induction. The distributions of LIMA1αGFP on cell cytospins were 

imaged during fluorescence microscopy.  (b) Cleavage-resistant LIMA1α mutation impairs 

colony formation. (i) Colony numbers of LIMA1αWt and LIMA1αMut transduced BJAB-AM-

Tet-On cells. (ii) Colonies under microscope. Statistical analysis was performed using Paired t 

test. Error bars represent ± s.d. (n = 3). (c) Paracaspase-resistant LIMA1α mutation impairs B 

cell lymphoma growth in xenografted nude mice. Athymic nude mice (n = 5 per group) were 

injected in the flanks with 2 x 107 BJAB cells treated with or without doxycycline for 48 hours. 

The injected mice were continuously induced with Doxycycline (4mg per mouse) every two days 

when the tumor formation and growth were observed (i) Schematic of tumor xenograft in nude 

mice. (ii) The percentage of mice with tumor formation (the numbers of mice forming tumor/the 

total numbers of each group × 100%) at day 14 after injection. (iii) The average tumor volume at 

day 14 after injection in nude mouse xenografts. Statistical analysis was performed using the 

Paired t test. Error bars represent ±s.d. (n = 10). 
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Figure 7: API2-MALT1 cleaves LIMA1α to promote B cell lymphomagenesis in vivo 

(a) Cleavage of LIMA1α by API2-MALT1 and cleaved LMO fragment promote B cell 

lymphomagenesis in vivo.  Injection of cells into SCID/BEIGE mice and tumor size 

measurement were performed as described in Fig. 6c. (i) Change in tumor volume in L428 cells 

transduced with recombinant Lentiviruses bearing scrRNA, shLIMA1, LMO-like, AM, AM plus 

LIMA1αWt or LIMA1αMut. (ii) Representative tumors in SCID/BEIGE mice (n = 5).  (b) 

Proteolytic cleavage fragments of LIMA1 are present in human MALT lymphomas with 

t(11;18)(q21;q21) chromosomal aberration, but not in B cell lymphomas without the 

t(11;18)(q21;q21). Evidence of the presence of t(11;18)(q21;q21) in MALT lymphomas was 

corroborated using a MALT1 break-apart DNA-FISH probe-based strategy (Abbott Molecular). 

(See supplementary Fig. 7c). Wild-type (full-length) endogenous LIMA1 and cleavage fragments 

were detected by western blot with rabbit anti-LIMA1 antibody. Equal quantities of cell lysates 

(15 μg) from L428 cells and human B cells and patient-derived lymphomas were used in all 

experiments. (c) Model of API2-MALT1-mediated LIMA1α cleavage and its contribution to B 

cell MALT lymphoma pathogenesis.  
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