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Likelihood surfaces in the parameter space of gravitational wave signals can contain many sec-
ondary maxima, which can prevent search algorithms from finding the global peak and correctly
mapping the distribution. Traditional schemes to mitigate this problem maintain the number of sec-
ondary maxima and thus retain the possibility that the global maximum will remain undiscovered.
By contrast, the recently proposed technique of likelihood transform can modify the structure of
the likelihood surface to reduce its complexity. We present a practical method to carry out a likeli-
hood transform using a Gaussian smoothing kernel, utilising gravitational wave surrogate models to
perform the smoothing operation analytically. We demonstrate the approach with Newtonian and
post-Newtonian waveform models for an inspiralling circular compact binary.

PACS numbers: 04.30.-w,02.70.Tt

I. INTRODUCTION

The first direct detection of gravitational waves (GWs)
is likely to occur soon. The ground-based interferom-
eters LIGO [1] and Virgo [2] are currently undergoing
upgrades to Advanced configurations which should start
taking data in the next couple of years and, when they
achieve their final design sensitivity, are expected to de-
tect GWs from the inspiral and merger of stellar com-
pact binaries at the rate of several events per year [3].
There are ongoing efforts to detect a stochastic back-
ground of nanohertz GWs generated by merging super-
massive black hole binaries using the accurate timing of
arrays of millisecond pulsars and the first results could
come within five years [4]. Further in the future ESA
has selected “The Gravitational Universe” to be the sci-
ence theme for the L3 science mission to launch in 2034,
which aims to detect millihertz GWs using a space-based
interferometer [5]. These distinct efforts to measure GWs
span the wide frequency range of potential sources [6] and
it is expected that GW observations from many different
sources will eventually become routine [7].
For many astrophysical systems, we can produce accu-

rate models of the source and hence predict the waveform
that would be observed on Earth. Given a bank of pre-
dicted waveform templates, a GW detection can be made
using matched filtering: the comparison of observed data
with every template in the bank. For this to be an ef-
fective technique, the templates need to be closely sep-
arated in parameter space; in high dimensional spaces,
it is not possible to construct a template bank of suffi-
cient density using reasonable computational resources.
Rather, it is common to use a Markov chain Monte Carlo
(MCMC) method to map the posterior distribution, eval-
uating waveforms as required.
The posterior is the probability of a particular set of

model parameters given some observed data. To achieve
a mapping of the posterior surface with high enough res-
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olution requires many evaluations of the likelihood func-
tion, which is the probability of producing a particu-
lar data stream given some waveform model parameters.
The Metropolis-Hastings algorithm provides a technique
to explore the parameter space using a random walk, pro-
ducing a chain of samples that will eventually converge to
the posterior distribution. There is no guarantee about
how long this convergence will take and the number of
likelihood evaluations may still be large. Techniques to
accelerate the convergence of MCMC routines are highly
desirable.
Simulated annealing [8] is one such method. The idea

is to “heat up” the likelihood surface by replacing L with
LT = L1/T for some temperature T > 1, making it eas-
ier for chains to explore large regions of parameter space.
Following some predetermined cooling schedule, the tem-
perature is gradually reduced to T = 1, where the chain
begins to sample the true likelihood, starting from a point
that is more likely to be near the global maximum. This
approach is advantageous because it does not slow down
the likelihood evaluation at each point, but the number
of local maxima of L remains fixed. Within some fixed
computational time, it is possible for a chain to remain
close to a secondary and not find the global maximum.
Parallel tempering is related to simulated annealing

in that it uses the modified likelihoods LT . Chains are
run simultaneously on a ladder of different temperatures,
with high T chains exploring more of the parameter
space. Swaps between the locations of adjacent chains are
proposed, and in this way information about the global
structure of the surface is propagated down to the T = 1
chain, which is sampling the desired distribution.
Likelihood transform techniques [9] were recently sug-

gested as an alternative and aim to accelerate MCMC
convergence by modifying the likelihood surface in a more
complicated way; specifically, we consider the case where
L is convolved with a smoothing kernel Kσ. This re-
duces the number of local maxima, but at the cost of an
increased evaluation time at each point.
A separate approach to the problem is to speed up the

individual likelihood evaluations by using reduced order
methods [10]. These accelerate the likelihood calculation
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by reducing the number of time or frequency samples at
which the waveforms need to be evaluated by first finding
a reduced spanning set for the waveform space. Similarly,
the construction of surrogate models [11, 12] achieves ac-
celeration of waveform computations by interpolating the
waveform space. In both approaches, significant compu-
tational work is done offline to produce the interpola-
tions, allowing for a quicker online run-time.
In this paper, we combine the principles of wave-

form interpolation and likelihood transformation via a
smoothing convolution. A practical scheme for applying
likelihood transform methods to GW data analysis with
surrogate models is developed, allowing for accelerated
convergence in MCMC searches without additional com-
putational time. In section II, we introduce our notation
for gravitational waveforms and outline the generation of
surrogate models. The principle behind likelihood trans-
form techniques is discussed in section III, along with
the application of surrogate models to this problem. We
then present some specific examples in section IV, before
concluding in section V with a discussion.

II. GRAVITATIONAL WAVES

A gravitational waveform h(t;λ), depending on some
set of parameters λ, has two independent components,
describing two polarisations: plus + and cross×. A given
GW detector is sensitive to a particular linear combina-
tion of the waveform polarisations

hα(t;λ) = F+
α h+(t;λ) + F×

α h×(t;λ), (1)

where a subscript α denotes a specific detector and the
response functions FAα depend on the relative orienta-
tions of the detector and the GW source. For the initial
generation of ground-based detectors, these are essen-
tially constant over the duration of a typical signal, but
they may vary significantly over an observation for space-
based interferometers as well as advanced ground-based
detectors.
In data analysis, it is necessary to account for the noise

present in GW detectors, which is assumed to be station-
ary and Gaussian. The natural overlap between wave-
forms is in the frequency domain

〈h(λ1) |h(λ2) 〉 ≡ 4
∑

α

∫ ∞

0

h̃∗α(f ;λ1)h̃α(f ;λ2)

Sn,α(f)
df,

(2)
where we sum over different detectors, each with their
own one-sided noise power spectral density Sn,α(f). Here

h̃α(f) denotes the Fourier transform of hα(t), and we are
using 〈 · | · 〉 to denote a noise-weighted overlap.
It is often convenient to write the waveform as a com-

plex time series

h(t;λ) = h+(t;λ) + ih×(t;λ). (3)

The natural inner product on this complex waveform
space is

(h(λ1) |h(λ2) ) ≡
∫ ∞

−∞

h∗(t;λ1)h(t;λ2) dt, (4)

where in practice, the integral is of finite length, T , equal
to the observation time. The corresponding real overlap
between two waveforms is given by the real part of this
inner product. The complex inner product and associ-
ated overlap make no reference to a particular detector
and are therefore useful for constructing reduced span-
ning sets for waveform spaces [12]. The two overlaps
coincide if it is assumed that there are two right-angled
detectors, at 45◦ to one another, with independent white
noise, Sn,1 = Sn,2 = const., and that the source is opti-
mally oriented, i.e., the principal polarisation axes of the
source are aligned with the arms of the first detector. In
this configuration the detector aligned with the principal
axes is sensitive only to the plus polarisation, while the
other detector is sensitive only to the cross polarisation
and the overlap is proportional to

∑

A=+,×

∫ ∞

−∞

hA(t;λ1)hA(t;λ2) dt = ℜ[ (h(λ1) |h(λ2) ) ],

(5)
where the sum is over polarisation states. We will as-
sume this optimal configuration for all sources in subse-
quent calculations, as the likelihood transform technique
is independent of our choice of detector.

A. Data analysis

Given some measured detector data xα(t) =
hα(t;λ∗) + nα(t), composed of a GW signal h with pa-
rameters λ∗ and detector noise n, the signal-to-noise ra-
tio (SNR) can be calculated

ρ(λ) =
〈x |h(λ) 〉

√

〈h(λ) |h(λ) 〉
, (6)

which we expect to be strongly peaked at the true pa-
rameters λ∗. It is useful to work with normalised tem-
plates, such that 〈h(λ) |h(λ) 〉 = 1. For noise-free data,
xα(t) = hα(t;λ∗), and making the simplifying assump-
tions about the source orientation and noise properties
described above, the SNR reduces to

ρ(λ;λ∗) = ℜ[ (h(λ∗) |h(λ) ) ], (7)

which is linear in the model h(λ).
The likelihood L(x|λ) is the probability that a partic-

ular data stream x is observed, given the parameters λ of
the signal present. Assuming stationary Gaussian noise,
the likelihood is simply

L(x|λ) ∝ exp [− 〈x− h(λ) |x− h(λ) 〉 / 2] , (8)
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up to some normalising factor. The actual quantity of
interest is the posterior P(λ|x), which is the probability
distribution of the parameters of the source λ, given the
observed data stream x. It is related to L via Bayes’
theorem

P(λ|x) = L(x|λ)π(λ)
Z

, Z =

∫

dλ L(x|λ)π(λ) (9)

where π(λ) is the prior probability distribution for the
parameters, which reflects our beliefs about the source
parameters prior to the data being taken. The evidence,
Z, normalises the posterior over the parameter space and
can also be used for model selection.
The expectation value of the likelihood over different

noise realisations can be expanded about the true pa-
rameters in the linear signal approximation to yield the
Fisher Information Matrix (FIM)

Γij = 〈h,i |h,j 〉 , (10)

where h,i = ∂h/∂λi denotes partial derivatived of the
waveform model with respect to the parameters. In the
case of uninformative (uniform) priors, the inverse of the
FIM is the covariance of the posterior distribution, and
so can be used to set a scale on its structure. The com-
ponent (Γ−1)ii is a measure of the expected width of the
marginalised posterior in λi and hence is a measure of
the expected uncertainty in the measurement of that pa-
rameter from the observed data.
The posterior encodes all of the information about the

source that can be determined from an observation. In
low-dimensional parameter spaces, the posterior can be
evaluated on a fine grid in parameter space. For higher
dimensional spaces, the required computational time is
too large and alternative methods are typically adopted,
such as Markov Chain Monte Carlo (MCMC) methods.
MCMC techniques aim to generate a chain of samples,

λi in which, after a burn-in phase, the density of points
is proportional to the posterior distribution. This is typ-
ically achieved using the Metropolis-Hastings algorithm.
Given some current parameter value λi, a new candidate
parameter value λ

′ is chosen from a suitable proposal
distribution q(λ′|λi), for instance a Gaussian centred at
λi. The Metropolis-Hastings ratio

α =
P(λ′|x)q(λi|λ′)

P(λi|x)q(λ′|λi)
(11)

is calculated and the new state is accepted with probabil-
ity min(1, α). Otherwise, the next state is set to be the
current parameter values λi+1 = λi. The starting point
for the algorithm, λ0, can be chosen arbitrarily.

B. Reduced order methods and surrogate models

Gravitational waveforms are routinely generated for
arbitrary system parameters by numerically solving dif-
ferential equations. The accuracy of such waveforms is

not guaranteed (and in some cases, deliberately sacrificed
to reduce the computational cost, for example kludge
models of extreme-mass-ratio inspirals [13, 14]); indeed,
it is possible to get significant systematic biases in param-
eter estimation by using unfaithful waveform templates,
but we shall assume in this analysis that the numerical
templates can be calculated exactly. Waveform models
and the associated likelihood, Eq. (8), can be expensive
to evaluate and reduced order methods have been pro-
posed as a way to speed up such likelihood evaluations.
These rely on finding an approximation to the likelihood,
employing a surrogate model for the waveform, that is
cheaper to evaluate.
There are many possible ways of approaching this

problem [11, 12]. Here, we give a brief summary of a
procedure for generating a reduced order likelihood and
surrogate waveformmodel. This description follows Field
et al [12], where more detail may be found.
As a starting point, we compute M waveform tem-

plates h(t;λi), referred to as the training set. The aim
is first to find the minimal number m of these waveforms
such that all other waveforms in the training set can
be well approximated. If the training set is sufficiently
dense, the approximation will also be valid for waveforms
outside the training set. Once this reduced basis set has
been found, the second stage is to identify a set of m
discrete times at which it is sufficient to compute the
waveform in order to represent it faithfully with the re-
duced basis. The final stage is to construct a surrogate
model that can predict the value of the waveform at those
times for arbitrary choices of the model parameters. The
algorithm for achieving this is as follows:

1. Choose the m most differing waveforms and con-
struct an orthonormal basis {ei(t)}i=mi=1 from them1.
The corresponding waveform parameters are re-
ferred to as greedy data. Given the similarity be-
tween GWs with different parameters, it is ex-
pected that m≪M . Every waveform in the train-
ing set, as well as waveforms that are not in the
training set, may then be approximated by the ex-
pansion

hm(t;λ) ≈
m
∑

i=1

ci(λ)ei(t). (12)

The representation error of the reduced basis (RB)
is defined as

σm ≡ max
λ

min
ci

(h(λ)− hm(λ) |h(λ)− hm(λ) ) , (13)

where the minimisation over the coefficients is done
by projecting the waveform onto the RB. The value

1 The basis is constructed in a greedy manner. Given an existing
basis of size r < m, the (r+1)th waveform is the member of the
training set with the largest residual norm when projected onto
the r-basis. The first waveform is chosen arbitrarily.
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of m is set by a condition on σm; typically we may
require that σm . O(10−12).

2. Identify m evaluation times {Ti}i=mi=1 that can be
used to construct an empirical interpolant for the
RB; these are referred to as empirical nodes2. The
goal is to construct an interpolant

Im[h](t;λ) =

m
∑

j=1

Bj(t)h(Tj ;λ), (14)

where

Bj(t) ≡
m
∑

i=1

ei(t)(V
−1)ij (15)

is independent of the system parameters and so
may be computed offline. The V matrix is con-
structed by requiring that Im[h](Tj ;λ) = h(Tj;λ).

3. At each empirical node, predict the waveform value
for arbitrary parameters by fitting h(Ti;λ) with re-
spect to λ, using only the greedy data. It is often
easier to find fits for the amplitude Ai and phase
φi of the waveform independently (as opposed to
h+ and hx individually). The waveform can then
be written as

h(Ti;λ) ≈ Ai(λ)e
iφi(λ), (16)

where the fits are arbitrary functions of the param-
eters; the specific choice will be determined by the
problem at hand.

Once these offline steps have been completed, a surro-
gate model can be constructed from the empirical inter-
polant

hS(t;λ) =

m
∑

i=1

Bi(t)Ai(λ)e
iφi(λ). (17)

The model is quick to evaluate at arbitrary λ as the {Bi}
are computed in advance, and the {Ai} and {φi} are
simple analytic expressions, fitted to the numerical data.

III. LIKELIHOOD TRANSFORM

A general optimisation problem involves finding the
set of parameters that globally maximises some func-
tion. Here we will initially calculate the SNR to illus-
trate the smoothing technique in a detector- and noise-
independent way. We then apply the method to the max-
imisation of a simple noise-dependent likelihood function.

2 The empirical nodes are selected in a greedy manner. Using
r existing nodes and the first r basis functions, an empirical
interpolant (14) is built for the (r + 1)th basis element. The
(r + 1)th empirical node is the time at which this interpolant is
most different from the actual basis function.

The SNR often has a great deal of structure: there
are many local secondary maxima and the true global
peak is tall and narrow. This makes the optimisation
problem difficult because a high resolution is required and
it is possible that any algorithm will stall at a secondary
maximum, and thus not explore the full parameter space.
It is therefore desirable to be able to sample a smoother
distribution that closely mirrors the true SNR surface.
To this extent, we follow Wang [9] and define a smoothed
SNR via a convolution

ρσ(λ;λ∗) ≡ Kσ ⋆ ρ(λ;λ∗) = ℜ[ (h(λ∗) |hσ(λ) ) ], (18)

where Kσ is some smoothing kernel of typical width σ,
we have used the linear property of the SNR and

hσ(λ) ≡ Kσ ⋆ h(λ) =
∫

Kσ(λ − λ
′)h(t;λ′) dλ′. (19)

It would be possible to numerically perform this inte-
gral, by sampling the waveform space at k points sur-
rounding the desired parameters λ and compute the ap-
propriate sum, weighted by Kσ. The major drawback to
this approach is the required computational time; run-
ning time would be increased by O(k), and in high N -
dimensional parameter spaces, the required number of
points to accurately estimate the integral may be very
large, k ∼ O(2N ).
Alternatively, if there exists an analytic expression for

the waveform model h(t;λ), it may be possible to explic-
itly calculate (or at least approximate) the integral for
particular choices of kernel Kσ. This would result in an
analytic expression for hσ, enabling the smoothed SNR
to be calculated quickly. This was the approach taken in
the previous study of likelihood transform methods [9],
where a simple quadratic chirp signal was considered.
This approach is highly restrictive since faithful models
of likely GW sources are not usually analytic but instead
are computed numerically on some parameter grid. The
quadratic chirp model used in [9] is not a faithful model
of any likely GW signal.
We take an approach between these two extremes,

showing how the surrogate model (17) can be utilised to
simplify the smoothing operation (19) required in like-
lihood transform techniques3. To do this, we must first
lose some generality, although the resulting procedure re-
mains general enough to be of wide applicability.
The N as-yet unspecified parameters, λ, for each wave-

form are mapped onto the unit cube θ in parameter
space. This allows us to discuss a wide range of wave-
form models, without being overly specific. We could
have equally chosen to map the parameters λ onto an
infinite or semi-infinite range, giving similar results.

3 We later illustrate the technique using an analytic model but, in
contrast to Wang [9], our procedure does not rely on this.
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We choose the kernelKσ to be a multi-variate Gaussian
with diagonal covariance matrix Σ = diag(σ2

1 , . . . , σ
2
N ).

The smoothed waveform can then be calculated using

hσ(θ) =

∫

dθ′ h(t; θ′)

N
∏

j=1

Nje
−(θj−θ

′

j)
2/2σ2

j , (20)

where Nj ≡ N (θj ;σj) is a normalisation function that
we derive later.
We now make use of the surrogate model (17) to re-

move the time dependence from the integrals

hσ(θ) =
m
∑

i=1

Bi(t)

∫

dθ′ Ai(θ
′)eiφi(θ

′)

N
∏

j=1

Nje
−(θj−θ

′

j)
2/2σ2

j . (21)

The phase of the waveform may be approximated around
the evaluation point using a Taylor series

φi(θ
′) ≈ φi(θ) + (θ′ − θ).∇φi. (22)

This is a good approximation when (θ′ − θ) is small,
which is true if we choose σ to be sufficiently small4.
The waveform can then be written as

hσ(θ) =

m
∑

i=1

Bi(t)e
iφi(θ)

∫

dθ′ Ai(θ
′)

N
∏

j=1

Nje
−(θ′j−θj)

2/2σ2

j exp

[

i(θ′j − θj)
∂φi
∂θj

]

. (23)

We are free to choose any set of functions {Ai}, as long
as they accurately fit the numerical waveform data. We
first focus on functions that can be decomposed into a
short series of separable terms5

Ai(θ) =
∑

terms

N
∏

j=1

fj(θj), (24)

where fj are arbitrary functions that may in principle
be different for each term. We will discuss generic ampli-
tudes later. The smoothed waveform can then be written
as

hσ(θ) =
m
∑

i=1

Bi(t)e
iφi(θ)

∑

terms

∫

dθ′

N
∏

j=1

Njfj(θ
′
j) e

−(θ′j−θj)
2/2σ2

j exp

[

i(θ′j − θj)
∂φi
∂θj

]

,

(25)

which can be simplified to

hσ(θ) =

m
∑

i=1

Bi(t)e
iφi(θ)

∑

terms

N
∏

j=1

fj(θj ;σj), (26)

where we define

fj(θj ;σj) ≡
∫ 1

0

dθ′j Nj

fj(θ
′
j) e

−(θ′j−θj)
2/2σ2

j exp

[

i(θ′j − θj)
∂φi
∂θj

]

.

(27)

The appeal of such an approach is immediate: the
smoothed waveform takes an identical form to the
surrogate model, but with the replacement fj(θj) →
fj(θj ;σj).

A. Polynomial amplitudes

We now consider the specific case of amplitude func-
tions Ai(θ) that can be well described by polynomials.
In this case, all of the fj(θj) will be powers of θj . We are
hence interested in integrals of the form

f(θ;σ, n) ≡
∫ 1

0

dθ′N θ′
n
e−(θ′−θ)2/2σ2

exp

[

i(θ′ − θ)
∂φi
∂θ

]

,

(28)
where we have dropped the j subscripts, for clarity. Com-
pleting the square in the exponential terms leads to

f(θ;σ, n) = N exp

[

−σ
2

2

(

∂φi
∂θ

)2
]

Cn(θ + iσ2 ∂φi
∂θ

;σ),

(29)
where we have defined

Cn(z;σ) ≡
∫ 1

0

dz′ z′
n
e−(z′−z)2/2σ2

. (30)

Integrating this by parts gives the recurrence relation

4 Even for larger values of σ, the procedure can still be followed. In this case, the smoothed waveform (23) is not a good approx-
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Cn(z;σ) =
1

(n+ 1)
e−(1−z)2/2σ2

+
1

σ2(n+ 1)

∫ 1

0

dz′
{

z′
n+2 − zz′

n+1
}

e−(z′−z)2/2σ2

, (31)

=
1

(n+ 1)
e−(1−z)2/2σ2

+
1

σ2(n+ 1)

{

Cn+2(z;σ)− zCn+1(z;σ)
}

, (32)

= zCn−1(z;σ) + σ2
(

(n− 1)Cn−2(z;σ)− e−(1−z)2/2σ2
)

, (33)

where the last line follows from relabelling n by n− 2 in
(32). We can perform the integral explicitly for the first
two terms:

C0(z;σ) =

√

π

2
σ

(

erf

(

1− z√
2σ

)

+ erf

(

z√
2σ

))

, (34)

C1(z;σ) = zC0(z;σ) + σ2
(

e−z
2/2σ2 − e−(1−z)2/2σ2

)

.

(35)
To correctly normalise the Gaussian kernel, we must set
Nj = 1/C0(θj ;σj). To construct a smoothed waveform,
we write out the surrogate model, including the polyno-
mial fit for the amplitude functions, and then make the
replacements6

θnj → f(θj ;σj , n). (36)

We note the expected property that f(θ;σ = 0, n) =
θn, thus recovering the original polynomial in the case of
zero smoothing.

B. Fourier amplitudes

Rather than polynomials, it may be desirable to de-
compose the amplitude functions into Fourier compo-
nents

A(θ) =
∑

k1,k2,...kN

Ake
2πik.θ, (37)

where we have dropped the i subscript for clarity, k =
{k1, k2, . . . kN}, the sum runs over positive and negative
integers, and

Ak =

∫ 1

0

A(θ)e−2πik.θ dθ. (38)
We note that (37) is of the form of (24) and so we are
interested in computing integrals of the form

f(θ;σ, n, k) ≡
∫ 1

0

dθ′ N

θ′
n
eikθ

′

e−(θ′−θ)2/2σ2

exp

[

i(θ′ − θ)
∂φi
∂θ

]

,

(39)

where we have also included a polynomial factor, for gen-
erality. Following the same procedure as before leads to

f(θ;σ, n, k) = N exp

[

−σ
2

2

(

∂φi
∂θ

+ k

)2

+ ikθ

]

Cn
(

θ + iσ2

(

∂φi
∂θ

+ k

)

;σ

)

,

(40)

where the calculation of Cn is discussed in the previous
section. These can then be used in (37), replacing each
exponential factor according to

e2πikθ → f(θ;σ, 0, 2πk). (41)

C. Generic amplitudes

In some cases, it may not be possible to decompose the
amplitude functions into a series of appropriate separable
functions. In this case, we may use a Taylor series to
approximate

Ai(θ
′) ≈ Ai(θ) + (θ′ − θ).∇Ai. (42)

As with the Taylor series in the phase (22), this is a good
approximation for sufficiently small smoothing widths σ.
Substituting it into (23) results in
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hσ(θ) =

m
∑

i=1

Bi(t)e
iφi(θ)

{

Ai(θ)

N
∏

j=1

f(θj ;σj , 0)

+

N
∑

k=1

∫ 1

0

dθ′kNk (θ
′
k − θk)

∂Ai
∂θk

e−(θ′k−θk)
2/2σ2

k exp

[

i(θ′k − θk)
∂φi
∂θk

]

∏

j 6=k

f(θj ;σj , 0)

}

, (43)

which can be written as

hσ(θ) =

m
∑

i=1

Bi(t)e
iφi(θ)

{

Ai(θ) +

N
∑

k=1

∂Ai
∂θk

f(θk;σk, 1)− θkf(θk;σk, 0)

f(θk;σk, 0)

} N
∏

j=1

f(θj ;σj , 0), (44)

where f(θ;σ, n) is defined in (29).
With these results, it should be possible to produce

a smoothed SNR or likelihood for any given surrogate
model waveform. We note that the smoothed waveforms
do not necessarily have to be accurate (neglected terms of
higher order in Ai and φi may be large) as long as the re-
sulting smoothed surface displays the desired properties
that the global maximum is broadened and the number
of secondary maxima has been reduced.
Using (44), the expected additional computational cost

of evaluating a smoothed waveform with N parameters
is O(N), in comparison to O(2N ) for naive likelihood
smoothing.

IV. CHIRP WAVEFORMS

As an illustration of our method, we consider the grav-
itational waveforms expected from a circular compact bi-
nary. Such waveforms are well-approximated by a high-
order post-Newtonian (PN) expansion [15] in the dimen-
sionless variable x = (GMΩ/c3)2/3, whereM is the total

mass of the system and Ω = Φ̇ is the angular frequency of
the binary, computed as a time derivative of the binary
phase Φ. The expansion takes the form

h+,× =
2Gµx

c2R

∞
∑

p=0

xp/2H
p/2

+,×(ψ, ι; lnx) +O(R−2), (45)

where µ is the reduced mass, R is the distance to the
source, ι is the inclination of the binary and ψ is the

imation to (21), but the resulting smoothed likelihood surface
may still be sufficiently similar to the unsmoothed surface that
MCMC convergence will be accelerated.

5 If we allow the number of terms to approach infinity, this de-
composition can be used to represent any sufficiently smooth
function, but the number of required fitting parameters will also
approach infinity. By short series, we mean that the number of
fitting parameters required to represent the function is smaller
than the number of elements m.

6 In particular, any term that does not depend on θj should be
multiplied by f(θj ;σj , 0).

binary phase distorted by tails

ψ = Φ− 2GMADM

c3
Ω ln

(

Ω

Ω0

)

. (46)

The tail integrals are a result of the non-linear interaction
between the source and the emitted GWs [16]. Here one
must use the binary’s mass monopole MADM, which in-
cludes all contributions to the mass-energy of the binary.
At 1PN order, it may be computed as [17]

MADM =M
(

1− ν

2
x
)

, (47)

where ν ≡ µ/M is the symmetric mass ratio, which
takes values between 0 (test particle limit) and 1/4 (equal
mass). Ω0 is often chosen to be the lower cutoff of the
detector band; we make the choice Ω0 = 10π rad s−1.
To demonstrate the approach, we now make some sim-

plifying assumptions. First, the expansion will be trun-
cated at finite PN order: we specify the phase Φ up to
3.5PN (this is given explicitly in appendix A); the ampli-
tude to 2PN; and MADM to 1PN7. The logarithmic term
in ψ is then at 4PN order relative to the dominant phase
contribution, and is included for completeness. Secondly,
we will consider aligned binaries that have ι = 0. In this
case, the relevant expansion functions for the plus polari-
sation are all proportional to cos(2ψ) and the cross terms
are proportional to sin(2ψ). We can therefore write a
two-parameter family of complex PN waveforms as

h(M, ν; t) =
2GMν2/5

c2R
x(t)H(x(t), ν)ei(2ψ(t)+π), (48)

where M = µ3/5M2/5 is the chirp mass and the ampli-
tude function H takes the form [18]

H(x, ν) = 2+
1

3
(ν − 13)x+ 4πx3/2

+
1

180

(

15ν2 − 635ν − 837
)

x2. (49)

7 It is not a requirement to have consistency in PN orders between
the amplitude and phase.
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The clean separation into an amplitude and phase is a
consequence of our simplifying assumptions, but this is
not a necessary requirement for the smoothing procedure.

A. Newtonian chirp

We first simplify the waveform model even more, trun-
cating at 0PN order so that the waveform has only one
free intrinsic parameter, the chirp mass M. We choose
tc = 0.4s, and set a fiducial distance of R = 1Mpc, al-
though this is unimportant as we normalise the wave-
forms to unity. We shall consider chirp masses in the
range 1 ≤ M/M⊙ ≤ 20, corresponding roughly to the
range considered in recent LIGO searches [19], and in-
ject a signal with M∗ = 2.2M⊙.
We can calculate the FIM for this waveform model

at our injection parameters. Using the unit parameter
θ = (M/M⊙ − 1)/19, we find that the global maximum
of the likelihood has a characteristic scale of 7× 10−4.

1. Idealised data

We initially perform calculations without noise, to
demonstrate the underlying properties of the smoothing
technique. Our injected waveform is plotted in figure 1.

FIG. 1. Gravitational waveform from a compact binary with
chirp mass M = 2.2M⊙ in the final 0.01s before coalescence.
Inset is the same waveform for a period of 0.4s before co-
alescence. The amplitude is set by the requirement that
(h |h ) = 1.

We construct a surrogate model for our waveform fam-
ily, as discussed in section II B, using a training set of 501
waveforms, sampled at a frequency fsample = 20 kHz and
with chirp masses selected such that they sample the fre-
quency Ω uniformly8. We target a representation error of
10−12 and the resulting RB contains 133 elements. The

8 Selecting a training set with uniform values of M resulted in a
poor surrogate model for low values of M (high frequencies).

error as a function of the size of the RB is plotted in
figure 2.
To check the faithfulness of the RB, we compute the

representation error (13) for 1000 waveforms not in the
training set, generated with random values ofM sampled
uniformly from the allowed range; all of the waveforms
had σ < 10−12, with typical values of σ ∼ 10−15.

FIG. 2. The representation error of our RB for the 0PN wave-
form family as a function of the number of elements in the
basis.

Using the training set waveforms identified in generat-
ing the RB, we perform a fit to the waveform phase at
each empirical node, using the functional form

φi(M) = a1 + a2Ma3 , (50)

where {ak}3k=1 are the fitting parameters. Figure 3 shows
the phase as a function of chirp mass, evaluated at the
first empirical node, along with the fit; the good agree-
ment is not surprising as the fitting function was moti-
vated by our knowledge of the exact waveform model.
Similar results are found for the phase at the other em-
pirical nodes.

FIG. 3. The phase of the gravitational waveform, evaluated
at the first empirical node, as a function of chirp mass. The
dots show the values of the phase evaluated at the greedy
points selected while constructing the RB. The line is a fit to
the data, which in this case is exact.
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For the 0PN waveforms, the amplitude at each empir-
ical node is simply a constant

Ai(M) = bi. (51)

Following the procedure in section IIIA, we then make
the replacement at each empirical node

bi → biN exp

[

−σ
2

2

(

∂φi
∂θ

)2
]

C0(θ + iσ2 ∂φi
∂θ

;σ), (52)

where θ = (M/M⊙ − 1)/19 is the chirp mass mapped
onto the unit cube. The resulting smoothed waveforms
for our injection signal for different values of σ are shown
in figure 4.

The choice of σ is arbitrary, but clearly has a large
impact on the resulting performance of the algorithm:
choose σ too small and the smoothed waveforms will
be indistinguishable from the unsmoothed waveforms;
choose σ too large and the smoothed waveforms will be
sufficiently dissimilar that the transform technique will
not aid in locating the global maximum. To get some
idea of the required scale, we compute the smoothed SNR
ρσ(M∗;M∗) of our injection waveform, as a function of
smoothing width, shown in figure 5. We see that choosing
values σ ∼ O(10−3) results in smoothed waveforms that
are different to the unsmoothed waveform, but which still
give a high SNR ρσ & 0.1. This is consistent with the
typical scale of the peak of the likelihood distribution
obtained from the FIM.

FIG. 4. The smoothed waveform (26), computed for our in-
jection parameters with a chirp mass M = 2.2M⊙. Thicker
lines correspond to larger values of the smoothing width σ.
The σ = 0 waveform is identical to that in figure 1.

To simulate searching for the global maximum, we
compute the smoothed SNR ρσ(M;M∗) from (18) on
a grid of {σ,M} values; the resulting curves for differ-
ent values of σ are shown in figure 6. It can be seen that
the desired smoothing properties have been achieved: the
global peak has been broadened and the number of sec-
ondary maxima has been reduced.

If the likelihood transform is to be useful, the time
taken to evaluate ρσ must not greatly exceed that taken

FIG. 5. The smoothed SNR (18), computed for our injection
parameters with a chirp mass M∗ = 2.2M⊙, as a function of
smoothing width.

FIG. 6. The smoothed SNRs (18), computed across the al-
lowed range of chirp masses, for a selection of smoothing
widths. The inset plot shows the behaviour around the injec-
tion value M∗ = 2.2M⊙. Thicker lines correspond to larger
values of σ.

to evaluate ρ0
9. In this example, we found that to com-

pute the smoothed SNR took roughly a factor of 4 longer
than ρ0. The time taken to calculate the training set data
and to produce the surrogate model is relatively large,
but this can be done offline.

2. Noisy data

We now consider analysing a data set containing an
injected signal and Gaussian white noise. We use the
plus polarisation of the waveform only, which is equiva-
lent to having an optimally oriented source observed with
a right-angle detector aligned with the principal polari-
sation axes of the system, as discussed in Section II. The
SNR of the injected signal is approximately 400. This is
a particularly large SNR, albeit not unusual for, say, su-
permassive black hole mergers observed with space-based

9 We compare to ρ0 rather than ρ to make use of the pre-calculated
surrogate model.
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detectors. We deliberately chose this value to make the
problem of secondary maxima more pronounced in our
example. If the likelihood transform approach can accel-
erate convergence in this kind of problem it will readily
solve the same problems when the SNR is lower.
For this one-dimensional example, it is possible to cal-

culate the likelihood on a grid of parameter values, us-
ing both the unsmoothed and smoothed waveform mod-
els. Figure 7 shows the computed likelihood for different
smoothing widths. The desired smoothing properties are
apparent: the global peak has broadened but remains
close to the true value, and the number of secondary
maxima has been reduced.

FIG. 7. The likelihood function computed using the smoothed
waveform model for different values of the smoothing width.
Thicker lines correspond to larger values of σ.

We now illustrate the more realistic situation of per-
forming an MCMC search on the posterior distribution.
We use a uniform prior on the chirp mass, and a Gaussian
proposal distribution of width 10−3. We choose 500 seeds
Mseed drawn from a uniform distribution across the al-
lowed range of chirp masses, and start different MCMCs
from each value: one using the unsmoothed surrogate
waveform models; and four others using the smoothed
model with different values of σ.
We run the chains for a small number of Metropolis-

Hastings steps: 2500 for the unsmoothed chain and 1000
for the smoothed chains. We don’t expect the chains
to have converged on a stationary distribution by this
point; it instead gives an indication of how quickly con-
vergence may occur. The chain lengths are chosen such
that the computational time is roughly equal for each
type of chain.
The distributions of final chirp masses for both the un-

smoothed and smoothed cases are shown in figure 8; the
unsmoothed chains locate local maxima close to their
seed value and so the final distribution is roughly uni-
form. On the other hand, the smoothed cases show that
a significant number of chains have ended up near the
global maximum at M = 2.2M⊙. The large peak visible
at Mfinal ≈ 15M⊙ is a local maximum that has accrued
many chains within the small number of steps that we
have run; as the number of steps is increased we expect

these chains to move towards the global peak, as illus-
trated by the chains in the vicinity of 5M⊙. Figure 9
shows the final chain values as a function of the seed chirp
mass. Systems that start close to the global maximum
locate it quickly using the smoothed waveform model.

FIG. 8. Distribution of final chirp masses after a short
MCMC, using likelihood functions with different amounts of
smoothing. The narrowness of the peaks is indicative that the
chains have located local maxima. The vertical grey dashed
line is positioned at the true value M∗ = 2.2M⊙.

FIG. 9. The final chirp mass, as a function of the seed mass,
for MCMCs using different smoothed likelihood functions.
The dashed sloped line is Mfinal = Mseed, indicating chains
that did not move far from their starting point. The dotted
line Mfinal = M∗ denotes the true value.
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It is also possible to perform a comparison with sim-
ulated annealing and parallel tempering techniques. We
run MCMCs for 2500 steps on the unsmoothed likelihood
but at different temperatures, starting at the same chirp
mass seed values as above. The final distributions of
chirp masses are shown in figure 10. Changing the tem-
perature of the chain does help to explore the parameter
space, but is not as effective as likelihood smoothing at
locating the largest peaks.

FIG. 10. Distribution of final chirp masses for chains at differ-
ent temperatures (dashed lines), compared to the smoothed
chain (solid line).

B. Higher order post-Newtonian chirp

We now consider our full PN waveform (up to 3.5PN
in the phase and 2PN in the amplitude), with the two
mass parameters M and ν allowed to vary. We look at
chirp masses in the range 1 ≤ M/M⊙ ≤ 20 and mass
ratios in the range10 0.1 ≤ ν ≤ 0.25.

1. Idealised data

For an initial study, we look at waveforms in the ab-
sence of noise. Our injected waveform has parameters
M∗ = 2.2M⊙, ν∗ = 0.18, tc = 0.1s and R = 1Mpc,
and is plotted in figure 11. The typical scales of vari-
ation about the true values obtained from the FIM are
2 × 10−3 for θ1 (unit chirp mass) and 0.12 for θ2 (unit
symmetric mass ratio).
We construct a surrogate model for the two dimen-

sional PN waveform family using a training set of 190×
190 waveforms, sampled at a frequency fsample = 20 kHz.
The chirp masses for the training set waveforms are the

10 If the component masses are 10M⊙ and 1.4M⊙, corresponding
to a fiducial BH-NS binary, the symmetric mass ratio is ν =
0.107725.

FIG. 11. PN gravitational waveform from a compact bi-
nary with chirp mass M = 2.2M⊙ and symmetric mass ratio
ν = 0.18 in the final 0.01s before coalescence. Inset is the
same waveform for a period of 0.1s before coalescence. The
amplitude is set by the requirement that (h |h ) = 1.

same as those in section IVA, while ν is selected uni-
formly from the allowed range for each value of M. We
target a representation error of 10−12 and the resulting
RB contains 69 elements11. The error as a function of
the size of the RB is plotted in figure 12. We confirm the
faithfulness of the RB by computing the representation
error for 2500 waveforms drawn from a uniform distri-
bution on the parameter space; no error exceeded 10−12

and typical errors were O(10−14).

FIG. 12. The representation error of the RB for the PN wave-
form family as a function of the number of elements in the
basis.

Following the surrogate model procedure, we use the
training set waveforms identified in generating the RB
to perform a fit to the waveform phase at each empirical
node. In this work, we are not interested in the efficacy
of surrogate models, but instead on their application to
likelihood transformmethods. To obtain an accurate sur-
rogate model, we therefore use a fitting function based on

11 This number should not be directly compared to the 133 RB
elements in section IVA since the waveform models are different.
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the exact binary phase (A2). As a result, the fits are ex-
act to within numerical precision.

The amplitude at each empirical node is now some
complicated function of M and ν. To approximate this
at arbitrary values, we perform plane interpolation be-
tween the greedy data points, which form an unstruc-
tured grid on parameter space. This seems somewhat
less than ideal, however, the resulting surrogate model
is sufficiently good due to our accurate phase model as
well as the fact that the greedy points chosen by the RB
algorithm are in important regions of parameter space.

We follow the approach of section III C and define a
smoothed waveform model according to (44). We choose
smoothing widths such that σ2 = 57σ1, consistent with
the FIM estimates. The resulting smoothed waveforms
for our injection signal for different values of σ ≡ σ1 are
shown in figure 13.

FIG. 13. The smoothed PN waveform, computed for our in-
jection parameters with a chirp mass M = 2.2M⊙ and sym-
metric mass ratio ν = 0.18. Thicker lines correspond to larger
values of the smoothing width σ. The σ = 0 waveform is iden-
tical to that in figure 11.

The value of ρσ(λ∗;λ∗) gives an indication of typi-
cal scales on which σ is likely to have the desired effect.
Figure 14 shows the smoothed SNR as a function of σ;
widths around 10−3 give a sufficient level of smoothing,
consistent with the FIM. The strange behaviour at larger
values of σ is due to the peak of the SNR distribution
moving away from the true value λ∗.

2. Noisy data

As with the 0PN waveform, we now consider the plus
polarisation of our injection signal in the presence of
white noise. With just two parameters, it is still feasible
to map out the likelihood surface for different amounts of
smoothing, shown in figure 15 along with an indication
of the size of the smoothing region. As the value of σ is
increased, we see a decrease in the amount of structure
on the likelihood surface.

FIG. 14. The smoothed SNR for the PN waveform family,
computed for our injection parameters with a chirp mass
M∗ = 2.2M⊙ and symmetric mass ratio ν∗ = 0.18, as a
function of smoothing width.

V. CONCLUSIONS

We have devised a practical scheme for using gravita-
tional wave surrogate models to perform likelihood trans-
form techniques, and have demonstrated that this can be
used to accelerate convergence of MCMC methods. The
advantage of smoothing the likelihood surface, rather
than simply rescaling it (as is done in simulated anneal-
ing), is that the number of secondary maxima is reduced.
The convolution required to perform this smoothing is
expensive to evaluate numerically as it would require the
generation of many waveform models. We make use of
the waveform interpolation involved in constructing sur-
rogate models to perform the convolution analytically.
Chirp waveforms have been considered as toy examples

to demonstrate the methodology. We have calculated the
overlap between, and corresponding likelihood of, model
templates and injected data to illustrate the smoothing
properties of the technique. We also considered an en-
semble of short MCMCs in the presence of white noise,
using unsmooothed and smoothed waveform models: the
smoothing process accelerates the convergence of the al-
gorithm without increasing computational time.
In practice, this approach could be implemented in a

similar way to simulated annealing: starting the MCMC
with a large smoothing width and gradually reducing this
to zero according to some predetermined schedule. Alter-
natively, many different chains could be run with differ-
ent smoothing widths, along with inter-chain communi-
cation, analagous to parallel tempering. A comparison of
these different methods, using higher-dimensional wave-
form models, will be investigated in future work.
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FIG. 15. The smoothed log-likelihoods for our PN waveform family using a selection of smoothing widths. The black ellipses
are centred on the injection values and are sized according to the smoothing width.
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Appendix A: Binary phase to 3.5PN order

To complete the description of the GWs emitted from a
circular BH binary used in section IV, we need an expres-
sion for the phase and frequency as a function of time.
Using the auxilliary time variable

τ(t) ≡ νc3

5GM
(tc − t) , (A1)

where tc is the coalescence time of the binary, the phase
can be computed to 3.5PN order as [20, 21]

Φ = − 1

ν

{

τ5/8 +

(

3715

8064
+

55

96
ν

)

τ3/8 − 3

4
πτ1/4 +

(

9275495

14450688
+

284875

258048
ν +

1855

2048
ν2

)

τ1/8

+

(

− 38645

172032
+

65

2048
ν

)

π ln

(

τ

τ0

)

+

(

831032450749357

57682522275840
− 53

40
π2 − 107

56
γE +

107

448
ln
( τ

256

)

+

[

−126510089885

4161798144
+

2255

2048
π2

]

ν +
154565

1835008
ν2 − 1179625

1769472
ν3

)

τ−1/8

+

(

188516689

173408256
+

488825

516096
ν − 141769

516096
ν2

)

πτ−1/4

}

. (A2)

The constant τ0 sets the initial conditions when the bi-
nary passes some fiducial frequency; we choose τ0 = τ(0).

γE is the Euler-Mascheroni constant.
The orbital frequency of the binary Ω = Φ̇ can be

computed by differentiating (A2) with respect to t.


