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Abstract 7 

Although the Greenland Ice Sheet (GrIS) is losing mass at an accelerating rate, much 8 

uncertainty remains about how surface runoff interacts with the subglacial drainage system 9 

and affects water pressures and ice velocities, both currently, and into the future. Here, we 10 

apply a physically-based, subglacial hydrological model to the Paakitsoq region, west 11 

Greenland, and run it into the future to calculate patterns of daily subglacial water pressure 12 

fluctuations in response to climatic warming. The model is driven with moulin input 13 

hydrographs calculated by a surface routing model, forced with distributed runoff. Surface 14 

runoff and routing are simulated for a baseline year (2000), before the model is forced with 15 

future climate scenarios for the years 2025, 2050 and 2095, based on the IPCC’s 16 

Representative Concentration Pathways (RCPs). Our results show that as runoff increases 17 

throughout the 21
st
 century, and/or as RCP scenarios become more extreme, the subglacial 18 

drainage system makes an earlier transition from a less efficient network operating at high 19 

water pressures, to a more efficient network with lower pressures. This will likely cause an 20 

overall decrease in ice velocities for marginal areas of the GrIS. However, short-term 21 

variations in runoff, and therefore subglacial pressure, can still cause localized speedups, 22 

even after the system has become more efficient. If these short-term pressure fluctuations 23 

become more pronounced as future runoff increases, the associated late-season speedups may 24 

help to compensate for the drop in overall summer velocities, associated with earlier 25 

transitioning from a high to a low pressure system. 26 

1. Introduction 27 

Recent studies suggest that the Greenland Ice Sheet (GrIS) is losing mass at an accelerating 28 

rate [Rignot and Kanagaratnam, 2006; Joughin et al., 2008; Pritchard et al., 2009], with a 29 
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doubling of mass loss in the first decade of the 21
st
 century [Khan et al., 2010]. This is partly 30 

due to changes in surface mass balance (SMB), where increased accumulation of snowfall is 31 

more than offset by increased surface ablation [Fettweis et al., 2011; Sasgen et al., 2012; 32 

Box, 2013], and partly due to dynamic thinning and acceleration of ocean-terminating outlet 33 

glaciers in response to ocean warming and increased calving [Howat et al., 2007, 2011; Khan 34 

et al., 2010; Seale et al., 2011]. Projections of the ice sheet’s contribution to 21
st
 century sea 35 

level rise (2081 – 2100 relative to 1986 – 2000) suggest that for the IPCC’s Representative 36 

Concentration Pathway (RCP) 8.5, SMB changes may contribute 0.07 (0.03 - 0.16) m, 37 

whereas dynamic changes may contribute 0.05 (0.02 – 0.07) m [Church et al., 2013]. In 38 

comparison, SMB changes and dynamic changes are estimated to be contributing relatively 39 

equal rates of mass loss from the GrIS currently [van den Broeke et al., 2009]. 40 

Some of the uncertainty in the future dynamic contribution comes from limited process 41 

understanding of how basal conditions beneath land- and ocean-terminating outlet glaciers 42 

will respond to changes in surface meltwater production and penetration through the ice 43 

sheet. Several recent studies have shown that marginal areas of the GrIS respond dynamically 44 

at a range of time scales (hourly to annually) to variations in the rate of surface meltwater 45 

production [Zwally et al., 2002; Joughin et al., 2008; Shepherd et al., 2009; Bartholomew et 46 

al., 2010, 2011; Colgan et al., 2011; Hoffman et al., 2011; Andrews et al., 2014]. It has been 47 

suggested that variation in the rate of meltwater production alters the rate at which water 48 

reaches the bed via crevasses and moulins, which affects subglacial water pressures and 49 

therefore rates of sliding [Schoof, 2010; Hewitt, 2013; Werder et al., 2013]. In this respect, 50 

the ablation areas of the GrIS are similar to temperate valley glaciers [Iken and Bindschadler, 51 

1986; Mair et al., 2002; Bingham et al., 2003].  52 

Recent evidence from the GrIS shows that ice velocities increase in the short-term (hours to 53 

days) in response to increased meltwater delivery to the bed, either by hydrofracture initiating 54 

lake drainage [Das et al., 2008; Doyle et al., 2014; Joughin et al., 2013; Tedesco et al., 55 

2013], or by increased melt production and more rapid routing of water to existing moulins 56 

[Shepherd et al., 2009; Banwell et al., 2013]. There is less certainty surrounding seasonal and 57 

annual velocity changes and how these are affected by variations in melt delivery at similar 58 

timescales [e.g., Moon et al., 2014]. Recent evidence suggests that in the ablation areas of 59 

GrIS outlet glaciers, warmer (cooler) summers with higher (lower) overall melt rates are 60 

associated with reduced (enhanced) summer velocities [van de Wal et al., 2008; Hoffman et 61 
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al., 2011; Sundal et al., 2011, Sole et al., 2013; Tedstone et al., 2013]. A proposed 62 

explanation is that higher water delivery to the subglacial drainage system promotes the 63 

channelization of the drainage pathways at the expense of a more distributed system. This 64 

lowers steady-state water pressures, reduces transient peaks in water pressure, and reduces 65 

sliding. This mechanism has support from theoretical idealised modeling studies [Schoof, 66 

2010; Hewitt, 2013; Werder et al., 2013]. Conversely, near the equilibrium line and in the 67 

lower accumulation areas of the GrIS where ice is thicker, it has been suggested that summer 68 

and annual velocities may increase in higher runoff years. The rationale is that a distributed 69 

system is more likely to survive in these areas, and thus the delivery of more water to the bed 70 

in high runoff years will increase steady-state water pressures, increase transient peaks in 71 

water pressure, and promote sliding. This theory is supported by recent evidence collected 72 

over 5 years (2008 – 2013) from the accumulation area of Russell Glacier [Doyle et al, 2014].  73 

Although higher air temperatures in the future will likely cause increased meltwater 74 

production [Graversen et al., 2011], much uncertainty still remains regarding the sensitivity 75 

and response of the ice sheet’s dynamics to a warmer climate [Church et al, 2013; Vaughan 76 

et al., 2013]. There is a need, therefore, to develop coupled process-based models of glacier 77 

surface mass balance and of surface and subglacial hydrology, in order to examine how 78 

current climate controls water delivery to the ice-sheet bed and affects subglacial water 79 

pressures, and how these processes will change in response to realistic scenarios of future 80 

climate change.  81 

In this study, we apply an existing physically-based, subglacial hydrological model [Banwell 82 

et al., 2013] to the Paakitsoq region, west Greenland. The model is fed with moulin input 83 

hydrographs calculated using a surface routing model [Banwell et al., 2012b, 2013; Arnold et 84 

al., 2014], which is driven with distributed runoff calculated by a positive degree-day (PDD) 85 

model. The PDD model is first validated against the output from a more physically-based 86 

SMB scheme for the 2005 melt season [Banwell et al., 2012a, 2013; Arnold et al., 2014]. We 87 

then use the PDD model to generate a suite of surface runoff grids into the 21
st
 century in line 88 

with future climate scenarios, based on the IPCC’s framework of RCPs. These are then used 89 

to force our surface and subglacial hydrological models. The model outputs of spatially and 90 

temporally varying subglacial water pressure distributions will help to inform the on-going 91 

debate surrounding the links between surface melt, basal sliding and surface velocity patterns 92 
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on the GrIS, and will allow a better forecast of the response of marginal areas of the ice sheet 93 

to climate change over the 21
st
 century. 94 

2. Study site and available data 95 

The Paakitsoq region (~2,300 km
2
; Figure 1) is located on the western margin of GrIS 96 

[Banwell et al., 2012a], northeast of Jakobshavn Isbrae. The region was chosen because of 97 

the availability of various data sets including (i) hourly meteorological data measured at three 98 

GC-Net stations, JAR 1, JAR 2, and Swiss Camp, used to drive the melt models [Steffen and 99 

Box, 2001]; (ii) coastal precipitation and temperature data for 1985 to 2004 from the Asiaq 100 

Greenland Survey Station 437 (190 m a.s.l., 4 km west of the ice margin), also used to drive 101 

the melt models; (iii) a 750 m resolution bed digital elevation model (DEM) [Plummer et al., 102 

2008] for the subglacial routing model (resampled to 100 m using bilinear interpolation), and 103 

a 30 m resolution surface DEM taken from the Advanced Spaceborne Thermal Emission and 104 

Reflection Radiometer (ASTER) global DEM for the surface melt and routing models 105 

(smoothed using a 6 cell medium filter and then resampled to 100 m using bilinear 106 

interpolation); and (iv) proglacial stream discharge data measured at the Asiaq Station for 107 

validation of the complete hydrological model through comparison of modeled and measured 108 

proglacial discharge [Banwell et al., 2013]. In this study, we focus on a ~200 km
2
 subglacial 109 

catchment (and its corresponding supraglacial catchment), which is entirely within the 110 

ablation area of the ice sheet, and extends ~25 km inland from the margin and feeds the 111 

proglacial Asiaq Station (Figure 1).  112 

The major development presented here, compared to previous studies undertaken in the 113 

region [e.g. Banwell et al., 2012a, 2012b, 2013; Arnold et al., 2014], is that the 114 

melt/hydrological model is run into the future. For this, we use meteorological data from the 115 

Meteorological Research Institute’s CGCM-3 model (version 20110831; ensemble r1i1p1; 116 

PCDMI), run as part of the 5th Climate Model Intercomparison Project (CMIP5) (see Section 117 

3.3.2 for more details). Monthly precipitation and temperature values from 2006 to 2100 118 

were retrieved for the grid cell incorporating Paakitsoq (68
o 
– 70

o 
N, 309

o 
– 311

o 
E) for three 119 

RCP scenarios; 2.6, 4.5 and 8.5 [Church et al., 2013; Vaughan et al., 2013]. The RCPs are 120 

defined by their total radiative forcing pathway (cumulative measure of human emissions of 121 

greenhouse gases from all sources expressed in W m
-2

) and level by 2100, based on an 122 

internally consistent set of socioeconomic assumptions [van Vuuren et al., 2011]. RCP 2.6 123 

assumes a peak in radiative forcing at 2.6 W m
-2

 (~490 ppm CO2 equivalent) before 2100 124 
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followed by a decline; RCP 4.5 describes a stabilization without overshoot pathway to 4.5 W 125 

m
-2

 (~650ppm CO2 equivalent) by 2100; and RCP 8.5 describes a rising radiative forcing 126 

pathway leading to 8.5 W m
-2

 (~1370 ppm CO2 equivalent) by 2100. 127 

3. Methods 128 

3.1. The subglacial routing model 129 

The subglacial routing model is derived from the Extended Transport (EXTRAN) block of 130 

the US Environmental Protection Agency’s Storm Water Management Model (SWMM), 131 

which was originally designed to simulate sewage pipe systems [Roesner et al., 1988]. 132 

Arnold et al. [1998] adapted the original EXTRAN code to model subglacial drainage 133 

through ice-walled conduits by including equations to simulate the dual processes of conduit 134 

enlargement due to the release of frictional heat in the flowing water, and conduit closure in 135 

response to ice deformation [Spring and Hutter, 1981]. The subglacial model has previously 136 

been applied successfully to both Haut Glacier d’Arolla, a valley glacier in Switzerland 137 

[Arnold et al., 1998], and to the Paakitsoq region of the GrIS [Banwell et al., 2013]. The 138 

model is only briefly described below as Banwell et al. [2013] provide a detailed description 139 

and performance analysis of the model in the same region we are modeling here.  140 

There are key differences between the current study and that of Banwell et al. [2013]. By 141 

focusing solely on the 2005 melt season, Banwell et al. [2013] ran the model at a higher 142 

temporal resolution (1 h), and forced it with distributed runoff calculated by a SMB model 143 

(as opposed to a PDD model as we do here). This enabled Banwell et al. [2013] to investigate 144 

changes in subglacial water pressures patterns on intra-seasonal, daily, and hourly timescales. 145 

In contrast, the present study focuses primarily on inter-decadal changes in surface runoff and 146 

subglacial water pressure through the 21
st
 century. 147 

In its present form, our subglacial hydrology model routes water flow through a series of 148 

circular conduits that join at vertical ‘junctions’, with wider junctions (representing moulins) 149 

routing meltwater from the surface to the subglacial system. It is assumed that most of the 150 

surface water entering moulins flows quickly to the base of the ice sheet [cf. Björnsson, 151 

1982]. The model for the study area is formulated such that the subglacial system is 152 

predominantly channelized (as opposed to distributed), which is a realistic assumption 153 

because ice within a few kilometres of the ice-sheet margin is relatively thin and therefore 154 
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conducive to rapid development of channelized flow in the early part of the melt season 155 

[Pimentel and Flowers, 2010; Banwell et al., 2013; Sole et al., 2013]. However, as the 156 

temporary storage and release of water in a distributed subglacial drainage system is not 157 

explicitly accounted for by the model, subglacial water routing may sometimes occur too 158 

rapidly in our model, notably in the early part of the melt season. 159 

3.2. Subglacial drainage system analysis 160 

Here, we briefly describe the key boundary conditions of the model: the subglacial catchment 161 

feeding the Asiaq station; the overall structure of the subglacial drainage system within this 162 

catchment; and the surface catchment feeding the moulins that feed the subglacial drainage 163 

system. As these boundary conditions are very similar to those employed by Banwell et al. 164 

[2013], we refer the reader to that study for a fuller description. 165 

3.2.1. Subglacial catchment and drainage network delineation 166 

To define the subglacial catchment area and the structure of the subglacial drainage network 167 

(i.e. the locations and connectivity of the drainage conduits), we assume that water flows 168 

along the steepest subglacial hydraulic potential gradient (following Shreve [1972]). The total 169 

subglacial hydraulic potential (Φ) (Pa) is the sum of the elevations, and pressure potentials 170 

and can be defined as: 171 

Φ = ρw g Zb + k ρi g (Zs – Zb)                                         (1) 172 

where ρw is water density (1000 kg m
-3

), ρi is ice density (917 kg m
-3

), g is acceleration due to 173 

gravity (9.81 m s
-1

), Zb is the bed elevation (m), Zs is surface elevation (m), and k is a spatially 174 

uniform flotation fraction, defined as the ratio of water pressure to ice overburden pressure 175 

(Pw/Pi), with k = 1 representing water at the ice overburden pressure, and k = 0 representing 176 

atmospheric pressure (adapted from Shreve [1972] and following Banwell et al. [2013]). 177 

First, using the 100 m resolution surface and bed DEMs, we calculate hydraulic potential 178 

surfaces for a range of realistic k values from 0.5 to 1.0 [Thomsen and Olesen, 1991; 179 

Thomsen et al., 1991] (note that throughout the rest of this paper, the term ‘k value’ refers to 180 

the k in Equation 1). Although the k value is likely to be spatially and temporally variable in 181 

reality, it must be fixed for the purpose of defining the subglacial catchment area and 182 
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drainage network and is considered to be a long-term average for steady-state conditions 183 

[Hagen et al., 2000; Willis et al., 2012].  184 

Second, to calculate the patterns of flow accumulation (i.e. upstream area) and thereby 185 

delineate the subglacial drainage network and catchment area for each k value, we run the 186 

lake and catchment identification algorithm (LCIA) [Arnold, 2010; later used by Banwell et 187 

al., 2012b, 2013, Arnold et al., 2014]. This algorithm allows us to delineate the subglacial 188 

drainage network and subglacial catchment area for each k value [Banwell et al., 2012b, 189 

2013]. See Arnold [2010] for a full description of the LCIA and Banwell et al. [2012b; 2013] 190 

and Arnold et al. [2014] for full details of its application to the Paakitsoq region. 191 

3.2.2. Supraglacial catchment delineation 192 

To calculate the surface meltwater input locations to the subglacial routing model, we assume 193 

that all depressions in the surface DEM contain an ‘open’ moulin in its lowest cell, implying 194 

that all lakes have already drained by hydrofracture to leave an open moulin. The assumption 195 

that a moulin has the potential to form in the lowest grid cell of every depression gives a 196 

moulin density of 0.25 km
-2 

[Banwell et al., 2013], which is similar to those mapped from 197 

satellite imagery by Colgan and Steffen [2009] (0–0.89 km
-2

) and Zwally et al. [2002] (0.2 198 

km
-2

) for the Paakitsoq region.  199 

This study differs to the study by Banwell et al. [2013], in which lakes drain only if they 200 

reach a threshold volume of water during the melt season (and in which lakes that do not 201 

reach a given threshold volume, overflow into downstream catchments). The ‘open’ moulin 202 

assumption reduces our model’s ability to capture short-term fluctuations in water pressures 203 

(and associated inferred short-term fluctuations in ice velocity) resulting from lake drainage 204 

events. However, Banwell et al. [2013] concluded that longer-term periods of sustained water 205 

pressures (and associated longer-term fluctuations in ice velocity) are not a direct result of 206 

lake drainage events; instead, lake drainage events probably play a key role in opening up 207 

moulins, which can subsequently transport large quantities of water rapidly from the surface 208 

to the ice-bed interface for the remainder of the melt season. This is supported by evidence 209 

that lake drainage events have mainly short (< 1 - 2 days) effects on ice dynamics [Das et al. 210 

2008; Hoffman et al., 2011; Doyle et al., 2013; Tedesco et al., 2013]. Thus, our assumption 211 

that moulins are always ‘open’ is unlikely to have a significant effect on longer-term water 212 

pressures. Instead, our assumption that moulins are ‘open’ can be seen as an end-member that 213 
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allows a maximum volume of surface meltwater to reach the subglacial drainage system 214 

through the melt season. 215 

If we assume that moulins are vertical shafts routing water directly from the surface to the 216 

bed [Björnsson, 1982; Catania et al., 2008], with each moulin having its own supraglacial 217 

catchment supplying it with runoff, the size and shape of the entire Paakitsoq supraglacial 218 

catchment is highly dependent on the shape of the subglacial catchment feeding the Asiaq 219 

station [Banwell et al., 2013]. The LCIA is run for the surface DEM in order to identify 220 

which lake locations (assumed to all contain ‘open’ moulins) supply melt to the subglacial 221 

catchment for each specified k value.  222 

3.2.3. k value selection 223 

As explained more fully in Banwell et al. [2013], subglacial catchments defined for different 224 

k values will be associated with different volumes of surface meltwater due to the varying 225 

extents of the supraglacial catchments that supply water to the bed. In order to choose a 226 

suitable k value to define the subglacial drainage system structure and catchment area, 227 

Banwell et al. [2013] compared the total volume of the measured proglacial discharge at the 228 

Asiaq station to the total volume of modeled net runoff (calculated by their SMB model) 229 

within supraglacial catchments which supply melt to subglacial catchments delineated for k 230 

values ranging from 0.5 to 1 for the melt season of 2005. Although Banwell et al. [2013] 231 

found that a value of k = 0.925 produced the best agreement between modeled and observed 232 

runoff, a value of k = 0.95 produced the largest surface catchment feeding the Asiaq station. 233 

We adopt this value in this study as it enables us to investigate the impacts of introducing the 234 

largest volume of surface meltwater to the subglacial system that is physically plausible.  235 

A value of k = 0.95, equivalent to an average subglacial water pressure that is 95% of ice 236 

overburden, may seem high, but as suggested by Banwell et al. [2013], it is likely that 237 

conduit paths become established early in the summer when water pressures are very high 238 

due to lower discharge. Once established, conduits are likely to remain fixed in those 239 

locations, since they are unlikely to migrate laterally to areas of the bed with a lower 240 

hydraulic potential. We also note that specific conduit locations are relatively insensitive to 241 

the range of k values we test [Banwell, unpublished PhD thesis, 2012], so predicted pressure 242 

fluctuations are unlikely to be a strong function of the k value used to determine the 243 

catchment size. Therefore we use k = 0.95 to determine: i) the size and shape of the 244 
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subglacial catchment feeding the Asiaq station; ii) predict subglacial conduit paths; iii) 245 

specify the number and locations of moulins, and therefore the size and shape of the 246 

supraglacial catchment.  247 

3.2.4. Subglacial network configuration 248 

Figure 2 shows the inferred locations of individual conduits, moulins, junctions and outflow 249 

points overlaid onto the subglacial flow accumulation map for the subglacial catchment for k 250 

= 0.95. Junctions are placed along conduits, such that no conduit segment is longer than 1000 251 

m (conduit segments longer than this reduce model stability [Roesner et al., 1988]). As also 252 

found by Banwell et al. [2013], all moulin locations fall almost exactly on the paths of 253 

subglacial conduits (within 100 m), giving us confidence that the modeled conduit locations 254 

follow realistic paths. For each model time step, water reaching all of the marginal outflow 255 

points is cumulated and compared with measured proglacial discharge for that time period.  256 

All parameter values for conduits and moulins must be set at the beginning of the model run. 257 

Following Banwell et al. [2013], we assume conduits to have an initial cross-sectional area 258 

(CSA) of 3.14 m
2 
(equivalent to a diameter of 2 m) and roughness of 0.05 m

-1/3
 s

-1
, moulins to 259 

have a fixed CSA of 2 m
2
, and junctions which are not moulins to have a fixed CSA of 0.1 260 

m
2
. We also assume that all conduits are empty at the beginning of the model run. To prevent 261 

conduits from experiencing high creep closure rates at this time, we apply an initial 24 h spin-262 

up period where no wall melt or creep closure occurs (i.e. the Spring and Hutter [1981] 263 

equations are turned ‘off’), and a subsequent 24 h spin-up period where the Spring and 264 

Hutter [1981] equations gradually become effective in a linear way with time [Banwell et al., 265 

2013]. During this initial spin-up period (total time = 48 h), the total discharge in the 266 

subglacial system is very low (e.g. for 2005, the maximum discharge in hour 48 on June 2 is 267 

8 m
3
 s

-1
, compared to a maximum of 206 m

3
 s

-1
 on July 18). 268 

 3.3. Input hydrographs 269 

The subglacial model is driven with moulin input hydrographs that are generated using the 270 

melt output from the PDD model, which is then routed in each sub-catchment to its 271 

appropriate moulin using a surface routing model. Full details of this surface routing model 272 

are given in Banwell et al. [2012b, 2013] and Arnold et al. [2014]. As previously mentioned, 273 

we assume that depressions in our surface DEM do not fill to form lakes; there is an ‘open’ 274 

moulin in the lowest cell of every depression.  275 
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In the following sections, we first describe the PDD model, and explain how it is used to 276 

generate the surface runoff for the 2005 mass balance year (1 September 2004 – 31 August 277 

2005), in order to validate the PDD-modelled runoff against SMB-modelled runoff for the 278 

time period 1 June to 31 August 2005. Second, we outline our strategy for future climate 279 

forcing and explain how the PDD model is used to model surface runoff over the 21
st
 century.  280 

3.3.1. Positive degree-day model 281 

Like all PDD models, our model is forced entirely using temperature data. Although the 282 

concept involves a simplification of complex processes that are more accurately described by 283 

the surface energy-balance equations, the approach is justified because of the high correlation 284 

between temperature and various components of the energy-balance equation [Braithwaite, 285 

1981; Ohmura, 2001; Hock, 2005]. Longwave incoming radiation and the turbulent heat 286 

fluxes depend strongly on temperature, and temperature in turn is affected by shortwave 287 

radiation [Ohmura, 2001; Hock, 2005]. The PDD approach is therefore still used extensively 288 

for modeling GrIS surface melt [Braithwaite, 1995; Abdalati et al., 2001; Mote, 2003; Hanna 289 

et al., 2006; Rignot and Kanagaratnam, 2006], and has been shown to provide estimates of 290 

melt that are comparable to more complex EB modeling [van de Wal, 1996].  291 

We use a degree-day factor (DDF) of 8.9 mm per PDD for ice [Braithwaite and Olesen, 292 

1989; Braithwaite, 1995], and a DDF of 3.6 mm per PDD for snow [McMillan et al., 2007]. 293 

Following Arendt et al. [2009], the PDD model calculates the total melt, M (mm water 294 

equivalent (w.e.)), produced in a surface grid cell at each time interval (Δt, equal to 24 295 

hours), using the following equations: 296 

M = −T(z) δ[T(z)] DDFsnow/ice  Δt + P(z) δ[−T(z)]                               (2) 297 

T(z) = Taws + (z – zaws) ΓT                                           (3) 298 

P(z) = Pawsk + (z – zaws) ΓP Paws                                                       (4) 299 

where T is the daily average air temperature (
o
C), P is the daily total precipitation (rain and 300 

snow, mm w.e.), z is elevation (m), DDFsnow/ice is the degree-day factor for snow/ice (mm 301 

o
C

−1 
d
−1

), and the subscript ‘aws’ refers to values measured at the automatic weather station at 302 

JAR1. Values of Taws and Paws are adjusted for elevation using constant temperature and 303 

precipitation lapse rates ΓT (
o
C m

−1
), ΓP (% m

−1
). δ determines the threshold between positive 304 
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temperatures for melt and negative temperatures for accumulation of solid precipitation, such 305 

that δ[T ] = 1 when T > 0, and δ[T ] = 0 when T ≤ 0. 306 

The PDD model requires an initial grid of snow distribution across the entire supraglacial 307 

catchment. However, since the spatially distributed snow depth as calculated by the SMB 308 

model [Banwell et al., 2013] on 31 August 2004 after it had been run for a full mass balance 309 

year (1 September 2003 to 31 August 2004) is zero, we initialise the PDD model with a zero 310 

snow depth. The model is then able to accumulate snow over the winter and into the 311 

following summer of the 2005 mass balance year. 312 

Although refreezing in the snowpack is of no importance over the entire summer in the 313 

ablation zone of the GrIS, it is still an important factor to account for in the short-term as it 314 

can reduce the net amount of meltwater that becomes ‘runoff’ (i.e. the portion of water which 315 

does not refreeze in the snowpack) [Lefebre et al., 2002; van Pelt et al., 2012]. Following 316 

Radic and Hock [2011], annual refreezing R (cm) is related to annual mean air temperature Ta 317 

(
o
C) by 318 

R = -0.69 Ta + 0.0096                                               (5) 319 

where the lower boundary of R is zero across the entire catchment glacier, and the upper 320 

boundary of R is assumed equal to accumulated snow in the ablation area. Daily melt 321 

refreezes until the accumulated melt in one day (i.e. 24 hours) exceeds the potential 322 

refreezing, at which point it is treated by the PDD model as runoff. For example, we calculate 323 

that between June 1 and August 31 2005, only ~0.5% of the total melt across the surface 324 

catchment refreezes early in the summer and does not become runoff immediately.  325 

To validate the PDD model, we compared the daily runoff values calculated by the PDD 326 

model across the supraglacial catchment to the daily runoff values calculated by the SMB 327 

model used in the study by Banwell et al. [2013] for the time period June 1 to August 31 328 

2005. The Pearson’s correlation coefficient between these two data sets is 0.84 (significant at 329 

p < 0.00001). Furthermore, the total runoff calculated during the melt season by the PDD 330 

model (5.6 x 10
8 

m
3
) underestimates by only 8% the total runoff calculated by the SMB 331 

model (6.1 x 10
8
 m

3
).  332 

We are using a form of static mass balance modelling, in which the surface elevation remains 333 

the same; a technique frequently used by other studies [e.g. Bougamont et al., 2005; de Woul 334 
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and Hock, 2005; Radic and Hock, 2006]. This is appropriate, as future changes in surface 335 

elevation will have a much smaller effect on surface runoff (as a result of lapse-rate driven air 336 

temperature changes) compared to the effects of RCP-driven air temperature changes. 337 

Moreover, the effect of surface mass loss (ice/snow) on the ice overburden pressure at the 338 

bed (and therefore conduit opening/closure rates) will have a much smaller effect on 339 

subglacial water pressures than will the future increase in meltwater entering the subglacial 340 

system due to increased surface melt. Finally, while future changes in surface topography 341 

might lead to minor changes in the size and shape of surface catchments, studies suggest that 342 

the locations of surface depressions, and therefore moulins, are unlikely to vary greatly over 343 

the next century due to the overriding control of bedrock topography [Echelmeyer et al., 344 

1991; Sergienko, 2013]. 345 

3.3.2. Future climate forcing  346 

We applied a statistical downscaling method, referred to as ‘local scaling’ [Salathé, 2005], to 347 

the CGCM-3 output (originally at a resolution of 125 km) in order to better represent local 348 

subgrid-scale features and dynamics [Giorgi et al., 2001; Radic and Hock, 2011]. This 349 

method effectively corrects for the lapse rate by accounting for the elevation difference of the 350 

local grid point relative to the climate model grid, and has been shown to produce estimations 351 

of local temperature and precipitation that are comparable to empirical observations [e.g. 352 

Radic and Hock, 2006]. We subsequently bias-corrected the monthly climate model output 353 

series using the average difference over a period of 20 years (1 January 1985 – 31 December 354 

2004) between the climate model data and monthly and precipitation temperature data 355 

measured at the Asiaq station. We calculated the future temperature time series (Ti) as: 356 

Ti (t) =Ti, GCMf (t) + [Ti, measured - Ti, GCMh]  i = 1, … 12       (6) 357 

where Ti,GCMf is the mean monthly temperature (
o
C) for month i from the future run of the 358 

GCM for the years (t) 2006 to 2100; Ti, measured is the mean measured temperature (
o
C) for 359 

month i over the bias-correction period 1985 to 2004; Ti, GCMh is the mean temperature (
o
C) of 360 

the historical run of GCM for month i over the bias-correction period 1985 to 2004.  361 

To calculate future precipitation rates, the local scaling method simply multiplies the large-362 

scale simulated precipitation at each local grid point by a seasonal scale factor; precipitation 363 

is scaled equally throughout the year. The future precipitation time series (Pi) is 364 
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Pi (t) =Pi, GCMf (t) * [Pi, measured / Pi, GCMh]  i = 1, …, 12               (7) 365 

where Pi, GCMf is the monthly precipitation sum for month i from the future run of the GCM 366 

for the period 2006 to 2100; Pi,measured is the mean measured precipitation, for month i, over 367 

the bias-correction period 1985 to 2004; Pi,GCMh is the mean precipitation of historical run of 368 

GCM for month i over the bias-correction period 1985 to 2004. 369 

Using the output from the three RCP scenarios (2.6, 4.5 and 8.5), and with the initial 370 

assumption of zero snow depth on 31 August, we ran the PDD model for three chosen mass 371 

balance ‘years’ over the next century (2025, 2050 and 2095). We used the mean of the 372 

climate data from the decade around each of the three chosen years to improve reliability 373 

(e.g. the decade of 2020 to 2030 was used to represent the year 2025). For each of the three 374 

years, we used the calculated surface runoff for the time period 1 June to 31 August to drive 375 

the surface routing model, which produced moulin hydrographs to drive the subglacial 376 

routing model.   377 

As the PDD model requires daily meteorological data, and the future climate data is only 378 

monthly, we calculated the average temperature and precipitation per day using a ten-year 379 

(1995 – 2004) baseline period of temperature and precipitation data measured at the Asiaq 380 

station. A ‘baseline year’, which we call the year 2000 hereafter, was aggregated from the 381 

baseline period in a similar way to how the RCP runs were averaged over the decade around 382 

one year. To calculate daily temperature, the mean monthly temperature average for 2000 383 

was linearly interpolated across consecutive months, from the 15
th

 day of one month to 384 

the 15
th

 day of the next. We calculated an additive factor to relate the 2000 daily temperature 385 

to the mean monthly average, thus enabling us to estimate future daily temperatures. To 386 

calculate daily precipitation, we calculated the mean number of ‘precipitation days’ (defined 387 

as days where precipitation > 0 mm) per month in 2000, and divided equally the total 388 

modeled monthly precipitation by the number of precipitation days, to give the average 389 

precipitation per day (on the days on which precipitation occurred).  390 

4. Results   391 

4.1. Surface runoff through the 21
st
 century 392 

Figure 3 displays the total modeled summer runoff volumes over the Paakitsoq catchment for 393 

the three target years for each of the three RCPs, and for the baseline year (2000). Under RCP 394 
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2.6, runoff is predicted to increase from 3.46 x 10
8
 m

3
 in 2025 to a maximum of 5.30 x 10

8 
m

3
 395 

by 2050, and then drop back down to 4.15 x 10
8
 m

3
 by 2095. Thus, under RCP 2.6, runoff 396 

remains comparable to 2000 (4.01 x 10
8 

m
3
), although it is somewhat greater than that during 397 

the middle part of the century. Under RCP 4.5, runoff is higher than in 2000 and steadily 398 

increases over the century, from 4.63 x 10
8 
m

3
 in 2025 to 6.47 x 10

8 
m

3
 in 2095. RCP 8.5 runs 399 

show a marked increase in runoff in the latter half of the century, with runoff volume almost 400 

doubling from 6.86 x 10
8 
m

3
 in 2050 to 13.3 x 10

8 
m

3
 by 2095. 401 

The calculated daily runoff series for 2025, 2050 and 2095 under the three RCP scenarios and 402 

for 2000 are shown in Figure 4. Although runoff series for all three RCP scenarios are similar 403 

in pattern with each other and with the series for 2000, the changes in runoff magnitude 404 

compared to 2000 do not vary evenly throughout the melt season – and this general finding 405 

becomes even more apparent as the 21
st
 century progresses. In 2025, runoff under RCP 2.6 is 406 

always lower in magnitude than in 2000; under RCP 4.5, runoff is comparable in magnitude 407 

with 2000 in June and August, but substantially greater in July; under RCP 8.5, runoff 408 

magnitude is comparable with that in 2000 in June, greater in July (though not as high as 409 

under RCP 4.5), and lower than 2000 and both the other RCP scenarios in August. By 2050, 410 

runoff under RCP 2.6 is comparable in magnitude with that in 2000 throughout the melt 411 

season; under RCP 4.5, runoff magnitude is comparable with 2000 in June, but increasingly 412 

rises above it in July and August; under RCP 8.5, runoff magnitude is approximately twice 413 

that for 2000 from early June to late July, but decreases in August. Finally, by 2095, runoff 414 

magnitude under RCP 2.5 is slightly lower than that in 2000 in June, and slightly above in 415 

August; under RCP 4.5, runoff is substantially above that in 2000 throughout the summer; 416 

and under RCP 8.5, runoff is four times greater than in 2000, with most of July and August 417 

experiencing runoff volumes > 15 x 10
6 
m

3 
d

-1
. 418 

As the century progresses, and for the more intense RCP scenarios, our model suggests an 419 

increase in the areal extent of high surface runoff. Figure 5 shows that by 2095 under RCP 420 

4.5 and RCP 8.5, the total surface area experiencing > 1000 mm w.e. runoff extends further 421 

inland compared to 2000. However, under RCP 2.6, there are few observable differences in 422 

the extent and magnitude of surface runoff by the end of the century compared to 2000. The 423 

most noticeable increase in the extent and magnitude of surface runoff occurs under RCP 8.5, 424 

where surface runoff for 2095 along the margin of the ice sheet (~8500 mm w.e.) is about 425 

twice what it is in 2000, and surface runoff production at the furthest inland part of the 426 



 15 

surface catchment (~4000 mm w.e.) is four times what it is in 2000. Notably, the surface 427 

runoff production at the most inland part of the surface catchment in 2095 is comparable to 428 

what it is nearest to the margin in 2000 under RCP 8.5. 429 

4.2. Subglacial water pressure through the 21
st
 century 430 

For each model run, daily subglacial water pressure is calculated in all 47 moulins and 95 431 

junctions shown in Figure 2. Here we analyse the water pressures variations for each future 432 

year for each RCP scenario and for 2000. We do this for the sample of 11 moulins and 6 433 

junctions labelled in white text on Figure 2, which are representative of the hydrological 434 

conditions beneath different parts of the entire catchment. We carry out two stages of 435 

analysis. First, to highlight the difference between the lower and upper ablation areas, we 436 

group the moulins/junctions into: i) those < 10 km of the ice margin; and ii) those > 10 km 437 

from the margin, and analyse the average value of Pw/Pi through the melt season for the 438 

different model runs. Second, to quantify the amount of time during the melt season that 439 

basal sliding is likely to be high, we analyse the percentage of time throughout the summer 440 

that each moulin/junction is at or above ice overburden pressure (i.e. Pw/Pi ≥ 1) for each 441 

model run. This threshold is based upon previous observational [Iken and Bindschadler, 442 

1986; Kamb, 2001; Andrews et al., 2014] and modeling [Schoof, 2010; Hewitt, 2013] studies 443 

that suggest that enhanced basal sliding is likely to occur when subglacial water pressures 444 

approach or exceed ice overburden pressures. 445 

Figure 6 shows the results of the first stage of analysis. For each future year for each RCP 446 

scenario, and for 2000, the variation in average Pw/Pi is shown for a) moulins/junctions < 10 447 

km of the ice margin; and b) moulins/junctions > 10 km of the ice margin. In general, within 448 

each group of moulins/junctions, the overall patterns in Pw/Pi appear to follow a similar trend 449 

for all future years and for all RCP scenarios. The time series show an early-season peak in 450 

Pw/Pi (higher and more pronounced for moulins > 10 km from the margin), followed by a 451 

period of elevated water pressure (again, generally longer and with higher Pw/Pi, for moulins 452 

> 10 km from the margin), and then a decrease to a lower, fluctuating, mid- to late-season 453 

value.  454 

With the exception of RCP 2.6, where the maximum runoff occurs in 2050 instead of 2095, 455 

the highest peak in Pw/Pi occurs earlier in the melt season in 2095 compared to 2050, and 456 

earlier in 2050 compared to 2025 (Figure 6). For RCP 2.6, Pw/Pi peaks earliest in 2050, 457 
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followed by 2095, then 2025. Again, with the exception of RCP 2.6, Pw/Pi, values also 458 

decrease to their lower mid- to late-season value earlier in the melt season in 2095 than in 459 

2050, and earlier in 2050 compared to 2025 (i.e. compared to the mean value of Pw/Pi in the 460 

first few weeks of the melt season). For 2.6, Pw/Pi values decrease to their lower mid- to late-461 

season mean earliest in 2050, followed by 2095, then 2025. Similarly, as the RCP scenarios 462 

get more extreme, the peaks in Pw/Pi also tend to occur earlier in the melt season, and then 463 

decrease to the mid- to late-season value earlier in the melt season than for less extreme RCP 464 

scenarios. However, when 2025 under RCP 2.6 is compared to 2000, we find that the 465 

transition to a lower mid- to late-season Pw/Pi value occurs even later than in 2000, and the 466 

peak in Pw/Pi also occurs even later than in 2000 (Figure 6). This is consistent with the result 467 

that the total modeled runoff for 2025 under RCP scenario 2.6 is less than the total modeled 468 

runoff for 2000 (Figure 3).  469 

For moulins/junctions < 10 km of the margin (Figure 6a), subglacial water pressure fluctuates 470 

ultimately around a mid- to late-season mean Pw/Pi ≈ 0.45, and this is reached by ~10 July for 471 

the majority of years and RCP scenarios. After the initial filling of the subglacial drainage 472 

system (i.e. from 1 to 10 June), and before the lower mid- to late-season Pw/Pi is reached, this 473 

group of moulins fluctuates around Pw/Pi ≈ 0.6 (often peaking at a maximum of ~0.7 and 474 

decreasing to a minimum of ~0.45). 475 

For moulins/junctions > 10 km of the margin (Figure 6b), subglacial water pressure fluctuates 476 

eventually around a mid- to late-season mean Pw/Pi ≈ 0.6, which is reached by ~20 July for 477 

most years and RCP scenarios. After the initial subglacial drainage system filling, and before 478 

the mid- to late-season mean Pw/Pi is reached, this group of moulins fluctuates around Pw/Pi ≈ 479 

0.8 (often peaking at a maximum of just over 1.0 and decreasing to the minimum of ~0.65). 480 

For the purpose of the second stage of our analysis – identifying the percentage of time that 481 

moulins/junctions are at or above ice overburden pressure during the model run – three 482 

moulins and four junctions, those located < 5 km of the ice margin, are excluded from the 483 

analysis because the percentage of time that Pw/Pi ≥ 1 is <1%. We analyse the pressures in 484 

the remaining 8 moulins (481, 494, 519, 532, 564, 582, 619 and 624) and 2 junctions (1014 485 

and 10221) that are > 5 km from the margin (Figure 2). 486 

Table 1 shows the average percentage of time that Pw/Pi ≥ 1 for the 10 selected 487 

moulins/junctions, over the melt seasons of the three future years under each RCP scenario 488 
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and for 2000. With the exception of RCP 2.6 for 2025, the average percentage of time that 489 

Pw/Pi ≥ 1 decreases over the 21
st
 century for each RCP scenario. Under RCP 2.6 and RCP 490 

4.5, the largest decline in the percentage of time that Pw/Pi ≥ 1 occurs between 2025 and 491 

2050, whereas under RCP 8.5, the largest decline occurs between 2050 and 2095.  492 

Under RCP 2.6, the average percentage of time that Pw/Pi ≥ 1 increases slightly between 493 

2000 and 2025 (by ~0.8%), decreases from 2025 until 2050 (by ~3%), and again decreases 494 

from 2050 until 2095 (by ~1.1%) (Table 1). The exception to this general trend is junction 495 

1014 (Figure 2) (located in an area of relatively thick ice; ~530 m), where the percentage of 496 

time that Pw/Pi ≥ 1 increases from 2000 until 2050 (by ~0.6%), before decreasing, like the 497 

other moulins/junctions, from 2050 until 2095 (by ~1.4%).  498 

Under RCP 4.5, the percentage of time that Pw/Pi ≥ 1 decreases slightly from 2000 until 499 

2095. In the same way as under RCP 2.6, a larger decrease in subglacial water pressure 500 

occurs between 2025 and 2050 (~1.8%), than between 2000 and 2025 (~0.5%), and between 501 

2050 and 2095 (~0.6%). However, between 2050 and 2095, four moulins/junctions (481, 502 

494, 519 and 1014) experience a slight increase in pressure (~0.9%). These moulins/junctions 503 

are positioned under some of the thickest ice (mean = 565 m) and are also > 10 km from the 504 

ice margin. 505 

Under RCP 8.5, the percentage of time that Pw/Pi ≥ 1 decreases between 2000 and 2095, 506 

similar to RCP 4.5. But unlike under RCP 4.5, a larger decrease in pressure occurs between 507 

2050 and 2095 (~2.2%) than occurs between both 2000 and 2025 (~1.4%) and 2025 and 2050 508 

(~1.5%). However, four moulins/junctions (481, 494, 519 and 582) experience either a small 509 

increase or decrease (~0.5%) in pressure between 2000 and 2025, before experiencing a 510 

noticeable increase (~4.7%) in pressure between 2025 and 2050, and a noticeable decrease 511 

(~3.8%) from 2050 until 2095. These moulins/junctions are positioned under some of the 512 

thickest ice (> 500 m) and are also > 10 km from the ice margin. 513 

5. Discussion 514 

5.1. Variations in runoff through the 21
st
 century  515 

The PDD model output for RCP scenarios 2.6, 4.5 and 8.5 suggests that summer surface 516 

runoff generally increases in magnitude throughout the 21
st
 century at Paakitsoq. The 517 

exception is for RCP 2.6, where the total summer runoff for 2025 is slightly less than that for 518 
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2000, and where a small decrease in summer air temperatures from the middle to the end of 519 

the century results in lower summer runoff for 2095 than for 2050 (Figure 3). The general 520 

trend of increasing runoff is mainly due to an increase in meltwater production (due to 521 

increased air temperatures) as opposed to an increase in liquid precipitation. Given our focus 522 

on the ablation zone, this dominance increases with higher air temperatures, as snow is 523 

removed increasingly quickly to expose the lower-albedo ice surface below. 524 

Although the summer average air temperatures increase under most RCP scenarios in the 525 

future, causing an increase in total summer runoff, the temperature increases do not occur 526 

evenly throughout the summer, and in some cases monthly temperatures decrease compared 527 

to 2000. The most obvious example of this is for the RCP 8.5 scenarios where August 528 

temperatures are relatively low compared with other scenarios. This results in lower runoff 529 

volumes in August than might be expected (Figure 4). This contrasts with the situation in 530 

June where RCP 8.5 temperature increases are relatively high compared to other scenarios, 531 

resulting in greater runoff volumes in June. The timing of future runoff increases (or 532 

decreases) during the summer might be expected to influence the evolution of the subglacial 533 

drainage system and patterns of steady-state and transient water pressure fluctuations over the 534 

summer. 535 

Our results also suggest that as the century progresses, the areal extent of high surface runoff 536 

migrates inland and therefore enlarges (Figure 5). The upper region of the surface catchment 537 

experiences a four-fold increase in surface runoff from 2000 to 2095, whereas the marginal 538 

area of the surface catchment experiences only a doubling of runoff from 2000 to 2095 539 

(Figure 5). This result is partly due to significant albedo feedback in the upper regions. A low 540 

albedo ice-surface predominates in the marginal regions for the majority of the melt season, 541 

even in 2000. However, a higher albedo snow-covered surface remains for the majority of the 542 

melt season in the upper regions in 2000, but is removed and replaced by a lower albedo ice-543 

surface much earlier in the melt season by 2095. The fact that different parts of the catchment 544 

will experience different rates of runoff increase in the future might also be expected to affect 545 

the way in which the subglacial drainage system evolves over the summer, and patterns of 546 

steady-state and transient water pressure fluctuations might be expected to change more in 547 

some places than others.  548 

5.2. Variations in subglacial water pressure through the 21
st
 century 549 



 19 

Although our model does not explicitly simulate the transition from a distributed system to a 550 

channelized system, the transition to a lower mean Pw/Pi during the melt season indicates that 551 

the season-long evolution of the conduits themselves increases the efficiency of the system 552 

from small, constricted conduits early in the summer, to larger, more efficient conduits later 553 

in the season (Figure 6). Additionally, the finding that the transition to a lower mean Pw/Pi 554 

occurs earlier for conduits nearer the margin (i.e. where ice is relatively thin and runoff rates 555 

are relatively high) (Figure 6a), than for those higher up in the catchment (i.e. where ice is 556 

thicker and runoff rates are lower) (Figure 6b), indicates an upglacier progression in the 557 

evolution of conduit efficiency throughout the summer. These findings are consistent with 558 

several previous studies undertaken in marginal areas of the GrIS [e.g. Bartholomew et al., 559 

2010, 2011; Colgan et al., 2012; Banwell et al., 2013; Sole et al., 2013].   560 

Given that: i) a low mean Pw/Pi value tends to be reached earlier in the summer for model 561 

runs with higher available surface runoff (i.e. runs under the more extreme RCP scenarios, 562 

and runs later in the century) (Figure 6); and ii) the percentage of time that Pw/Pi ≥ 1 tends to 563 

decrease as surface runoff increases (Table 1), we infer that the transition from a relatively 564 

inefficient to a more efficient subglacial drainage system occurs earlier in the melt season as 565 

volumes of available surface runoff increase, in agreement with theory [e.g. Rothlisberger, 566 

1972]. This is consistent with the result that the modeled runoff for 2025 under RCP 2.6 is 567 

less than for 2000 (Figure 3), and as a consequence the transition to a lower mid- to late-568 

season pressure mean occurs earlier for 2000 than it does for 2025 under RCP 2.6 (Figure 6).  569 

Uncertainty remains about whether future increases in surface runoff (and therefore increases 570 

in subglacial discharge) will increase or decrease basal sliding, and thus ice velocities, over 571 

short (days to weeks) and long (months to years) timescales. Given our finding that the 572 

subglacial drainage system generally transitions from an inefficient to a more efficient system 573 

earlier in the melt season as the century progresses and as RCP scenarios become more 574 

extreme, we suggest that future increases in surface runoff to the subglacial hydrological 575 

system will to lead to an overall reduction in ice velocities over monthly and yearly 576 

timescales. This conclusion is consistent with previous work undertaken in marginal areas of 577 

the GrIS, where the ice is sufficiently thin to enable an efficient subglacial system to become 578 

established during the melt season [e.g. Bartholomew et al., 2010; Schoof, 2010; Sundal et 579 

al., 2011; Sole et al., 2013; Tedstone et al., 2013].  580 
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Although the overall trend is a decrease in water pressure associated with an increase in 581 

subglacial system efficiency through the century and as RCP scenarios become more 582 

extreme, some moulins/junctions under particularly thick ice (> 500 m) exhibit slightly 583 

different behaviour. For example, under RCP 2.6, the percentage of time that Pw/Pi ≥ 1 for 584 

junction 1014 (Figure 2) increases from 2025 until 2050, rather than decreasing like the other 585 

moulins/junctions. Similarly, under RCP 8.5, four moulins/junctions (481, 494, 519 and 582, 586 

Figure 2) experience a noticeable increase (~4.7%) in the percentage of time that Pw/Pi ≥ 1 587 

between 2025 and 2050, rather than a decrease like the rest of the moulins/junctions. This 588 

suggests that a certain runoff threshold is needed for the subglacial drainage system to 589 

experience a decrease, rather than an increase, in water pressure, and that this runoff 590 

threshold is higher for conduits beneath thicker ice than for those under thinner ice. 591 

Consequently, the transition from early-season high water pressure to mid- to late-season low 592 

pressure will occur latest for the thicker regions of the ice sheet. With this reasoning, we 593 

suggest that for inland ice that is above a certain thickness, the runoff threshold may not be 594 

reached under any of the RCP scenarios investigated in this study, meaning that water 595 

pressures could continue to increase, rather than decrease, in response to increases in runoff 596 

over the 21
st
 century. This is supported by a recent study by Doyle et al. [2014], who 597 

presented observational data from > 100 km from the GrIS margin and demonstrated an 598 

average increase in ice velocities from mid- to late melt season.  599 

However, over shorter timescales, our results suggest that warmer (cooler) periods can cause 600 

short-term increases (decreases) in water pressure, and, by implication, sliding velocities. For 601 

example, short-term variations (over ~3–10 days) in subglacial water pressure occur in our 602 

modeled runoff series from early August onwards, even though the system has transitioned to 603 

conduits with a lower mean water pressure by then (Figure 6). This finding is consistent with 604 

previous modeling studies [e.g., Schoof, 2010; Bartholomew et al., 2012; Banwell et al., 605 

2013] that show how temporary imbalances between the rate of water delivery to the 606 

subglacial drainage system and its ability to evacuate the water are likely to result in short-607 

term spikes in subglacial water pressure. We also find that these late melt season pressure 608 

variations are more pronounced in the moulins/junctions > 10 km from the margin (Figure 609 

6b), than those closer to the margin (Figure 6a). This is because conduits under thicker ice 610 

rapidly close during times of low runoff inflow, lowering the capacity of the system, and thus 611 

enabling higher water pressures to be produced when inflow to the system increases. Finally, 612 

we find that the late melt season pressure variations are more pronounced for years later in 613 
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the century and for more extreme RCP scenarios. For example, for 2050 and 2095, under 614 

RCP 8.5, the late melt season pressure fluctuations for moulins/junctions > 10 km of the 615 

margin are higher in amplitude than for other years and RCP scenarios (Figure 6b). This 616 

suggests that as runoff increases in future years, the higher late season pressure fluctuations 617 

may go some way to compensate for reduced ice velocities due to the earlier drop in the mean 618 

water pressure.  619 

6. Conclusions   620 

We have used a subglacial hydrology model, driven by output from a surface runoff and 621 

routing model, to simulate the likely responses of the subglacial drainage system at Paakitsoq 622 

(West Greenland) to climate warming during the 21
st
 century. The surface runoff model 623 

calculates runoff using a PDD approach, and is driven by future climate scenarios for the 21
st
 624 

century based on the IPCC’s RCPs 2.6, 4.5 and 8.5. Our main findings are: 625 

 Under most future RCP scenarios, surface runoff increases throughout the 21
st
 626 

century. The exception to this is under RCP 2.6 where the modeled runoff decreases 627 

between 2050 and 2095, and the modeled runoff in 2025 is less than the modeled 628 

runoff for the baseline year (2000). The highest modeled runoff is for 2095 under 629 

RCP 8.5, when a ~7
o
C warming results in a four-fold increase in runoff in the upper 630 

regions of the catchment. 631 

 Although our model does not explicitly simulate the transition from a distributed to 632 

channelized subglacial drainage system, the season-long evolution of the conduits 633 

themselves increases the efficiency of the system from small, constricted conduits 634 

early in the melt seasons to larger, more efficient conduits later on. On a seasonal 635 

basis, we therefore capture the behavior of the drainage system inferred from previous 636 

observations [e.g. Bartholomew et al., 2011a; Hoffman et al., 2011; Moon et al., 637 

2014]. 638 

 The timing of the transition from a less efficient subglacial drainage system to a more 639 

efficient subglacial system for a marginal area of the GrIS (< 20 km of the ice margin) 640 

is dependent on the availability of surface runoff. As the century progresses, and/or as 641 

RCP scenarios become more extreme, runoff production generally increases, and the 642 

subglacial drainage system makes an earlier transition from a less efficient network 643 

operating at high water pressures to a more efficient network with lower water 644 
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pressures. An upglacier progression in the evolution of conduit efficiency is also 645 

observed throughout the summer. 646 

 The earlier transition to an efficient subglacial drainage system throughout the 21
st
 647 

century (under most RCP scenarios) will likely cause an overall decrease in ice 648 

velocities for the marginal, Paakitsoq region of the GrIS. However, daily and weekly 649 

variations in surface runoff will cause short-term variations in subglacial water 650 

pressure, and by implication, ice velocities, even after the system has transitioned to 651 

the lower mid- to late-season pressure mean. These late season variations in 652 

subglacial water pressure are likely to become more pronounced as runoff increases 653 

during the 21
st
 century, thus the associated velocity increases may go some way to 654 

compensate for the earlier increase in conduit efficiency. 655 

 We suggest that for areas of the GrIS located further inland than our study region, 656 

where ice thicknesses are greater, an overall drop in average water pressure during the 657 

melt season may not occur. Instead, future increases in runoff availability may act to 658 

further increase subglacial water pressures, leading to increased basal sliding and ice 659 

velocities [e.g. Doyle et al., 2014]. Future modeling work that facilitates the coupling 660 

of glacier hydrology and basal sliding and extends further into the ice sheet is 661 

required to test this hypothesis.  662 
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RCP Year % of time Pw/Pi ≥ 1 

- 2000 (baseline) 11.6 

 

2.6 

2025 12.8 

2050 9.8 

2095 8.7 

 

4.5 

 

2025 11.1 

2050 9.3 

2095 8.7 

 

8.5 

2025 10.2 

2050 8.7 

2095 6.5 
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Table 1: The average percentage of time when Pw/Pi ≥ 1 for the 10 selected moulins/junctions 911 

(see Section 4.2 and Figure 2) from 1 June to 31 August 2005, under RCP scenarios 2.6, 4.5 912 

and 8.5, and for the years, 2025, 2050 and 2095. Also shown is the baseline year (2000). 913 

Figures 914 

Figure 1: Paakitsoq region (red box). Green outline shows the subglacial catchment feeding 915 

the Asiaq gauging station (green triangle for k = 0.95). Coordinates refer to UTM Zone 22°. 916 

The base Landsat 7 ETM+ image is dated 7 July 2001. 917 

Figure 2: Conduit (black lines), moulin (black dots), junction (red dots), and outflow (green 918 

dots) locations overlaid onto the subglacial flow accumulation map for the subglacial 919 

catchment for k = 0.95 (see Figure 1 for location). Outflow locations not linked to upstream 920 

conduits indicate outflow from small marginal supraglacial catchments. The green triangle 921 

marks the Asiaq gauging station. Numbers in white indicate moulins/junctions that are 922 

referred to in the main text. 923 

Figure 3: Total modeled runoff for the 3 RCPs (2.6 (blue), 4.5 (green), and 8.5 (red)) and 3 924 

target years (2025, 2050, and 2095), for the period 1
 
June to 31 August 2005. Also shown is 925 

the total modeled runoff volume for the baseline year (2000, (gray)).  926 

Figure 4: Daily modeled runoff volumes over the k = 0.95 catchment, for the baseline year 927 

(2000 (black)), and for the 3 RCPs (2.6 (blue), 4.5 (green), and 8.5 (red)) and 3 target years 928 

(2025, 2050, and 2095).  929 

Figure 5: Total modeled surface runoff from 1 June to 31 August 2005 for the Paakitsoq 930 

region, shown for the baseline year (2000), and for 2095 in all three RCP scenarios (2.6, 4.5 931 

and 8.5). The outline of the k = 0.95 surface catchment is shown.  932 

Figure 6: Mean modeled Pw/Pi for selected moulins/junctions: a) < 10 km from the ice-sheet 933 

margin; and b) > 10 km from the margin, for the baseline year (2000 (black)), and for the 3 934 

RCPs (2.6 (blue), 4.5 (green), and 8.5 (red)) and 3 target years (2025, 2050, and 2095). 935 


