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Abstract We describe a method for simulating first-order reversal curve (FORC) diagrams of interacting
single-domain particles. Magnetostatic interactions are calculated in real space, allowing simulations to be
performed for particle ensembles with arbitrary geometry. For weakly interacting uniaxial particles, the equi-
librium magnetization at each field step is obtained by direct solution of the Stoner-Wohlfarth model,
assuming a quasi-static distribution of interaction fields. For all other cases, the equilibrium magnetization is
calculated using an approximate iterated solution to the Landau-Lifshitz-Gilbert equation. Multithreading is
employed to allow multiple curves to be computed simultaneously, enabling FORC diagrams to be simu-
lated in reasonable time using a standard desktop computer. Statistical averaging and post processing lead
to simulated FORC diagrams that are comparable to their experimental counterparts. The method is applied
to several geometries of relevance to rock and environmental magnetism, including densely packed ran-
dom clusters and partially collapsed chains. The method forms the basis of FORCulator, a freely available
software tool with graphical user interface that will enable FORC simulations to become a routine part of
rock magnetic studies.

1. Introduction

First-order reversal curve (FORC) diagrams are an advanced hysteresis measurement that has become a
standard characterization tool in rock magnetism [Pike et al., 1999; Roberts et al., 2000, 2014; Harrison et al.,
2007]. From a magnetic perspective, typical rocks can be described as multicomponent ensembles of mag-
netic particles with varying shapes, sizes, domain states, coercivities, and spatial distributions. This complex-
ity means that traditional analysis of bulk hysteresis parameters [Dunlop, 2002a, 2002b] can often lead to an
ambiguous or misleading assessment of a rock’s magnetic mineralogy. FORC diagrams, on the other hand,
offer the possibility of unambiguous domain-state fingerprinting, extraction of domain-state-specific coer-
civity distributions, the detection of geometry-specific magnetostatic interaction fields, and a quantitative
analysis of magnetic mixtures [Ludwig et al., 2013; Roberts et al., 2014]. Recent applications of FORC dia-
grams include the detection of biogenic magnetite signals in sediments [Egli et al., 2010], determining the
nucleation and annihilation fields for single-vortex states in dusty olivine [Lappe et al., 2011], prescreening
of samples prior to paleointensity measurements [Carvallo et al., 2006], quantitative modeling of remanence
acquisition [Muxworthy and Heslop, 2011; Muxworthy et al., 2011; Lappe et al., 2013], and the unmixing of
central-ridge signatures for environmental magnetic applications [Egli et al., 2010; Egli, 2013; Ludwig et al.,
2013; Roberts et al., 2013; Heslop et al., 2014].

A long-term goal of FORC research is to create an inverse method to transform an observed FORC diagram
into a realistic physical model of the underlying magnetic ensemble. Before inverse methods can be devel-
oped, however, it is necessary to have a comprehensive understanding of the forward problem. There have
been some significant steps toward this goal for weakly interacting particles [Egli, 2006], but there is a gap
in our understanding of FORC diagrams for strongly interacting particles, which are commonplace in natural
systems, e.g., in intergrowths [Harrison et al., 2002; Evans et al., 2006; Feinberg et al., 2006], magnetotactic
bacteria [Chen et al., 2007; Li et al., 2012, 2013], clay-magnetite aggregates [Galindo-Gonzalez et al., 2009],
and framboids [Kimura et al., 2013]. The aim of this paper is to develop a tool that solves the forward prob-
lem of generating FORC diagrams for strongly interacting single-domain particles with arbitrary spatial
arrangement. The method forms the basis of FORCulator, a freely available software tool with graphical user
interface that will enable FORC simulations to become a routine part of rock magnetic studies. The method
is applied to several test cases of relevance to rock magnetism, illustrating how strong magnetostatic
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interactions between particles lead to geometry-specific signatures in FORC diagrams that inform our
understanding of the underlying magnetic mineralogy.

2. FORC Simulation Approaches: Pros and Cons

Several methods for simulating FORC diagrams have been successfully employed in the past. Here we
review the advantages and disadvantages of each method within the context of the aims of this study,
before justifying our chosen approach.

2.1. Preisach Modeling
Much of the pioneering work on simulating FORC diagrams has been done within the framework of Preisach
theory [Pike et al., 1999]. In Preisach theory [Preisach, 1935], each particle is described by a hysteron with a
specified coercivity, Bc, and horizontal offset, Bu. The horizontal offset is the result of a static local interaction
field, Bint 5 2Bu, and the FORC distribution (q) is the product of independent coercivity and interaction-field
distributions q(Bc, Bu) 5 f(Bc)g(Bu). Various modifications to the standard Preisach model have been developed
to deal with strongly interacting systems. In the ‘‘moving’’ Preisach model [Stancu et al., 2001], a mean-field
interaction shifts the peak in g(Bu) by an amount proportional to the net magnetic moment of the ensemble.
A positive or negative shift accounts for the collective magnetizing or demagnetizing effects of specific geo-
metries [Pike et al., 1999; Stancu et al., 2003]. Further adaptations, such as the ‘‘variable variance’’ Preisach
model adjust both the shift and the width of g(Bu) as a function of net moment, or even allow for a double
peaked distribution of interaction fields for very strongly interacting systems [Stancu et al., 2004]. These modi-
fied Preisach models provide a quick and flexible framework for simulating FORC diagrams that compare well
with their experimental counterparts. However, this approach is phenomenological in nature: it relies on an
assumption of how the statistical properties of the interaction-field distribution evolve with the magnetic state
of the ensemble. They are not, therefore, suited to the prediction of FORC diagrams for arbitrary geometries.

2.2. Analytical Solutions
An analytical solution for noninteracting Stoner-Wohlfarth particles was presented by Newell [2005]. This
work explained several key features of FORC diagrams, such as the infinitely sharp ‘‘central-ridge’’ signal
along the Bu 5 0 axis, the combination of positive and negative background signals for Bu< 0, and the
absence of signal for Bu> 0. A model of weakly interacting particles was presented by Egli [2006], which
provides an analytical expression for the broadening of the central-ridge signal. The main advantages of an
analytical approach are speed, accuracy, and the ability to extract quantitative information about the sam-
ple (e.g., particle packing fractions) via curve fitting [Chen et al., 2007]. The main disadvantage is the lack of
generality: analytical solutions must be created on a case by case basis, so this approach is not suited to the
prediction of FORC diagrams for arbitrary geometries. Furthermore, current solutions are restricted to uni-
formly magnetized single-domain (SD) particles and to the noninteracting and weakly interacting cases.

2.3. Micromagnetic Modeling
Micromagnetic modeling represents the state of the art for computing the magnetic response of a system [Fidler
and Schrefl, 2000], and has played a central role in developing our understanding of the relationship between
magnetostatic interactions and FORC diagrams [Muxworthy and Williams, 2005]. Using micromagnetic simula-
tions, it is possible to calculate FORC diagrams for strongly interacting systems (including the effects of both
magnetostatic and exchange interactions) [Muxworthy et al., 2004], account for pseudo-single-domain (PSD) and
multidomain (MD) states [Carvallo et al., 2003], and deal with heterogeneous systems [Schrefl et al., 2012]. The
main disadvantage of micromagnetic modeling is that calculations are relatively slow and resource intensive.
They are typically performed by experts in computer simulation who have access to considerable computing
resources—they are not suited to routine application by nonspecialists using a standard desktop computer. The
computational overhead means that micromagnetic simulations are often restricted in the number of particles
that can be included and/or the number of times different statistical distributions of particles can be sampled to
generate a smoothed FORC diagram. For this reason, FORC diagrams calculated via micromagnetic modeling
are often too noisy to allow useful comparison with their experimental counterparts [Carvallo et al., 2003].

2.4. Simplified Micromagnetic Modeling
For systems dominated by SD particles, a simplified micromagnetic approach, based on interacting ensem-
bles of Stoner-Wohlfarth particles, becomes a good physical approximation [Stancu et al., 2003]. Each
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particle sees an effective magnetic field, which is the sum of the applied field, an anisotropy field, and a
magnetostatic interaction field. The equilibrium magnetization of the ensemble is calculated by numerical
integration of the Landau-Lifshitz-Gilbert (LLG) equation, taking full account of dipole-dipole magnetostatic
interactions at each step. For specific geometries, the simplified micromagnetic approach has been shown
to yield identical results to the modified Preisach model [Stancu et al., 2003]. However, the simplified micro-
magnetic approach has a far greater predictive power. Calculations can be performed for arbitrary geome-
tries, and since the computational overhead is significantly less than for full micromagnetic simulations,
they can be performed for larger systems and/or multiple times to generate better statistical averaging.
Like full micromagnetic simulations, the simplified micromagnetic approach is suitable for strongly interact-
ing and highly correlated systems. The key disadvantages of the method are that it is not (currently) amena-
ble to routine application by nonspecialists in computer simulations, it is slow in comparison to analytical or
Preisach approaches, and it is restricted to SD particles.

2.5. Our Approach
Given the aims of this study, we have adopted a method based on the simplified micromagnetic approach
of Stancu et al. [2003], with specific improvements aimed at (a) speeding up the calculation of FORCs, (b)
extending from the regular 2-D geometry of Stancu et al. [2003] to an arbitrary 3-D geometry, (c) extending
the method to include particles with cubic as well as uniaxial anisotropy, and (d) creating a graphical user
interface that is amenable to routine application by nonspecialists in computer simulations. Our motivation
is to facilitate the routine simulation of FORC diagrams in rock magnetic studies, with applications both to
research and teaching.

3. Methods

3.1. Theory
The magnetic ensemble consists of N uniformly magnetized SD particles arranged arbitrarily inside a 3-D
space. The position of the ith particle is specified by the coordinates Ri 5 (Xi, Yi, Zi) and its magnetic moment
is Mi 5 MsiVi mi, where Msi is saturation magnetization, Vi is volume, and mi 5 (mx

i , my
i , mz

i ) is a unit vector.
The magnetic state of the ith particle is determined by the total effective field, Beff

i , acting upon it:

Beff
i 5Bapp1Bani

i 1Bint
i (1)

Bapp is the applied magnetic field (acting on all particles), Bani
i is the anisotropy field acting on the ith parti-

cle, and Bint
i is the magnetostatic interaction field acting on the ith particle. Anisotropy is either uniaxial or

cubic. The easy axis of a particle with uniaxial anisotropy is defined by the unit vector ui 5 (ux
i , uy

i , uz
i ). For

uniaxial particles, the anisotropy field is:

Bani
i 5

2Kui

Msi
mi;uui (2)

where Kui is the uniaxial anisotropy constant and mi,u is the component of mi along ui. For convenience, the
uniaxial anisotropy of each particle is specified using the parameter BKi 5 2Kui/Msi, which corresponds to the
intrinsic switching field of the particle (in Tesla). The three reference axes of a particle with cubic anisotropy
are specified by three orthogonal unit vectors cij 5 (cx

ij , cy
ij , cz

ij), where j 5 1, 2, 3. The effective anisotropy field
in this case is:

Bani
i 5

2Kci

Msi
mi;1 m2

i;21m2
i;3

� �
ci11mi;2 m2

i;31m2
i;1

� �
ci21mi;3 m2

i;11m2
i;2

� �
ci3

h i
(3)

where Kci is the cubic anisotropy constant, and mi,j is the component of mi along the cij axis. Again, for con-
venience, the anisotropy of each particle is specified using the parameter BKi 5 2Kci/Msi.

The magnetostatic interaction field acting on the ith particle is the sum of the dipolar stray fields created by
all other particles in the ensemble. The interaction fields are calculated assuming point dipoles using a
matrix of Green’s functions [Weiss et al., 2007]:

Bint5JM (4)

where:
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with:
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where xij 5 xi 2 xj, yij 5 yi 2 yj, zij 5 zi 2 zj, rij 5(x2
ij 1 y2

ij 1 z2
ij )

0.5, and l0 is the permeability of free space.

The dynamic response of a particle to the effective field is governed by the Landau-Lifshitz-Gilbert (LLG)
equation:

dmi

dt
52

c
11a2

mi 3 Beff
i 2

ca
11a2ð ÞMsi

mi 3 mi 3 Beff
i

� �
(9)

where c is the gyromagnetic frequency and a is a damping parameter. The LLG equation describes a
damped precessional motion of the magnetic moment around the effective field, with equilibrium being
achieved when dmi/dt 5 0, i.e., when mi is parallel to Beff

i . Direct integration of the LLG equation in the
time domain was explored (and remains an option in FORCulator), but slow convergence was found to
limit the practicality of this method for FORC simulations. Instead, we adopt an approximate method,
whereby the magnetic configuration is relaxed iteratively by placing each magnetization vector close to the
effective field vector throughout the ensemble. The moment orientation during iteration n 1 1 is given by
mi(n 1 1) 5 (1 2 f) mi(n) 1 f beff

i , where beff
i is a unit vector parallel to the effective field and f is a damping

factor (0< f< 1). This method is equivalent to minimizing the free energy of the system. Higher values of f
lead to more rapid convergence. If f is set too high, however, it can lead to oscillatory behavior. A value of f
� 0.9 was used in all the simulations presented here, which provided the best compromise between the
desire to minimize convergence time and the need to avoid oscillation. This method works best for uniaxial
systems and cubic systems with negative Kc (i.e., <111> easy axes), where the anisotropy field is parallel to
the easy axes. The method is less efficient for cubic systems with positive Kc (i.e., <100> easy axes), where
the anisotropy field is defined as being antiparallel to the hard axes rather than being parallel to the easy
axes. In this case, when other contributions to the effective field are small, placing the moments close to
the effective field does not produce the desired effect, and can lead to oscillatory behavior with large f. This
can be avoided by using a small value of f (e.g., 0.05–0.1) at the cost of reducing the efficiency of the
method. In this paper we consider only uniaxial and cubic systems with Kc< 0, which are the most relevant
cases for rock magnetism (Kc< 0 for magnetite at room temperature).
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Simulations are iterated until convergence is reached. We define convergence to have been achieved when
the mean magnitude of the torque, s, is below a certain value, i.e., when:

s5
1
N

XN

t51

jmi3beff
i j < Clim (10)

A value of Clim 5 1024 was used throughout this paper, which provided adequate equilibration of the net
moment in a reasonable time. A maximum number of iterations per field step can be defined, after which
the field step is incremented regardless of whether convergence was achieved or not. This number is set
large enough to allow virtually all field steps to converge, but small enough to prevent the entire simulation
from stalling in case one particular field step takes an unreasonable time to converge. A limit of 500 itera-
tions per field step was used throughout this paper.

An alternative simulation method for uniaxial particles is also made available in FORCulator, based on
numerical solution of the Stoner-Wohlfarth model in either a static or a quasi-static interaction field [Newell,
2005]. In the Stoner-Wohlfarth model, the micromagnetic energy of the ith particle is given by:

Ei5Kui Visin 2 hið Þ2BiMsi Vicos /i2hið Þ (11)

where hi is the angle between the easy axis and the magnetic moment of the ith particle, and ui is the angle
between the easy axis and magnetic field, Bi, acting on the ith particle. Bi is the sum of both the external
applied field and the interaction field. Dividing equation (11) by MsiViBKi, the energy is obtained in reduced
units:

gi5
1
2

sin 2 hið Þ2bicos /i2hið Þ (12)

where bi 5 Bi/BKi. Stable solutions are defined by:

dgi

dhi
5

1
2

sin 2hið Þ2bisin /i2hið Þ50 (13)

d2gi

dh2
i

5cos 2hið Þ1bicos /i2hið Þ > 0 (14)

Equations (13) and (14) are solved numerically to obtain the equilibrium magnetization state of a given par-
ticle. In general, there are two solutions, representing the upper and lower branches of the hysteresis loop.
The choice of solution depends on the history of magnetic fields applied to the particle. The switching his-
tory of each particle is tracked throughout the simulation and used to determine the correct solution in
each case. For the purposes of solving equations (13) and (14), the interaction field can be treated as static,
in which case, the stray field is calculated once per ensemble and held constant throughout the calculation.
This is equivalent to the standard Preisach approach. Alternatively, it can be treated as quasi static, in which
case, the stray field is calculated at the end of the previous field step (via equation (4)) and held constant
while the new moment configuration is calculated. The stray field is then updated to reflect the new
moment orientations before the calculation proceeds to the next field step. In the static case, the user must
specify what configuration of moments should be used to calculate the stray field (e.g., saturated or random
moments). In the quasi-static case, the moment configuration is inherited from the previous field step, ena-
bling the interaction-field distribution to evolve throughout the simulation in response to the changes in
the overall magnetization state of the ensemble. In this sense, it is similar to the moving Preisach models
discussed in section 2.1, and for the case of weakly interacting particles, provides solutions that are similar
to the robust statistical approach of Egli [2006]. This method is much faster than those based on iterative
solution of the LLG equation. However, the approach is restricted to weakly interacting systems, where the
assumption of a quasi-static interaction field is valid.

3.2. FORC Simulation
The FORC protocol is well documented in the rock magnetism literature. Readers unfamiliar with the
method are referred to Roberts et al. [2014] for a detailed review. To initiate a FORC simulation, the user first
specifies the basic physical properties of the ensemble, including the number, volume and saturation mag-
netization of the particles. Second, the user defines the statistical properties of the ensemble, including the
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type of spatial arrangement (e.g., random packing versus chains), numerical parameters defining the spatial
arrangement (e.g., dimensions of the cubic box into which particles are placed, packing fraction for random
packing, number of particles and distance between particles for chains), the type and orientation of anisot-
ropy axes (e.g., uniaxial versus cubic, random versus aligned) and the switching field distribution from which
the individual BKi values will be chosen (e.g., lognormal or user-specified distribution). The goal is to specify
the ensemble in a generic way, so that ensembles with similar characteristics can be generated automati-
cally, and their resulting FORC diagrams averaged to provide the final result. Third, the user specifies the
type of simulation to be run (e.g., approximate or time-integrated LLG, static or quasi-static Stoner-Wohl-
farth) and the simulation parameters (e.g., f factor for approximate LLG, a and c factors for time-integrated
LLG, maximum number of iterations and the convergence limit). Finally, the user defines the desired upper
limits of coercivity (Bc) and interaction field (Bu) for the final FORC diagram, together with the desired num-
ber of FORC curves (NFORC), the field step size (DB), and the number of times the simulation is to be
repeated for averaging (Navg).

The ensemble is initialized in a fully saturated state. The simulation begins with a calculation of the upper
branch of the hysteresis loop, starting at a field of (Bu 1 NFORCDB) and finishing at a field of
(Bu 2 [NFORC 2 1]DB) in steps of DB. The simulation is converged at each field step, with the configuration of
moments obtained at the end of each field step serving as the starting configuration for the next. The con-
figuration of moments obtained at each applied field, Br, between Bu and (Bu 2 [NFORC 2 1]DB) corresponds
to the starting configuration for each of the required FORCs. Individual FORC curves are simulated inde-
pendently as the field (B) increases from Br to (B 2 Br)/2� Bc in steps of DB. Automatic multithreading is
employed to take advantage of multiple processors, if available. The simulations described here were per-
formed using an Apple iMac with a 3.4 GHz Intel Quad Core i7 processor and 16 GB RAM, which enabled
eight FORCs to be calculated simultaneously. After simulating NFORC curves for the given ensemble, a new
ensemble is generated based on the specified characteristics. This process is repeated Navg times, and the
resulting FORCs averaged.

3.3. FORC Processing
After simulation, the FORCs were imported into FORCinel [Harrison and Feinberg, 2008] and processed using
the VARIFORC method [Egli, 2013]. Prior to processing, the lower branch of the hysteresis loop was sub-
tracted from each FORC to produce a set of ‘‘difference FORCs.’’ Subtracting the lower branch has no effect
on the FORC distribution, but does dramatically reduce the presence of common processing artifacts. This
procedure, recommended by Egli [2013], eliminates sigmoidal contributions to the FORCs near the rema-
nence diagonal, which cannot be described by the second-order polynomial function used to smooth the
FORC surface. Although originally conceived to account for superparamagnetic contributions to experimen-
tal FORC diagrams, we found this procedure also improved the processing of the simulated FORC diagrams.

4. Results

In the following sections, we compare simulated FORC diagrams for a number of geometries of relevance
to rock magnetism. To aid comparison, all simulations have been performed using the same input parame-
ters for particle volume (particles are modeled as 100 nm diameter spheres with volume 523,600 nm3) and
saturation magnetization (Ms 5 480 kA/m: equivalent to magnetite at room temperature). All simulations
have been performed using a lognormal distribution of anisotropy values, such that the probability density
of a particle being assigned a given value of BKi is:

qðBKiÞ5
1

r
ffiffiffiffiffiffi
2p
p exp 2

1
2

ln bBKið Þ
r

	 
2
" #

(15)

where r is the width parameter of the corresponding normal distribution in log-space and b is a scaling fac-
tor. Values of r 5 0.5 and b 5 20 were used for all simulations, which produces a distribution spanning the
range of coercivities typically encountered in magnetite-bearing rocks.

4.1. Random Packing of Uniaxial Particles: Quasi-Static Approach
FORC diagrams for randomly packed, randomly oriented ensembles of uniaxial particles with a range of
packing fractions were simulated using the quasi-static Stoner-Wohlfarth approach (Figure 1). The
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corresponding raw FORCs and difference FORCs are presented in the supporting information (Figure S1).
For the purposes of avoiding particle overlap, each particle is assumed to be spherical. We define the pack-
ing fraction, p, as:

p5
1
L3

XN

i51

Vi (16)

where L is the dimension of the cubic space in which the particles are randomly placed.

For p 5 0.001 (Figure 1a), magnetostatic interactions are extremely weak and the FORC diagram shows the
expected features of randomly oriented, noninteracting Stoner-Wohlfarth particles [Newell, 2005]: (i) a cen-
tral ridge along the Bu 5 0 axis, (ii) positive and negative background signals for Bu< 0, and (iii) no signal for

Figure 1. Quasi-static Stoner-Wohlfarth simulation for randomly packed, randomly oriented, uniaxial particles. (a) Simulation parameters:
p 5 0.001, N 5 1000, Navg 5 100, NFORC 5 100, Bc 5 130 mT, Bu 5 20 mT, DB 5 1.5 mT. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc,
kb} 5 {3, 7, 2, 7, 0.1, 0.1}. (b) Simulation parameters: p 5 0.01, N 5 1000, Navg 5 100, NFORC 5 100, Bc 5 130 mT, Bu 5 20 mT, DB 5 1.5 mT.
VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {3, 7, 2, 7, 0.1, 0.1}. (c) Simulation parameters: p 5 0.05, N 5 1000, Navg 5 200,
NFORC 5 100, Bc 5 160 mT, Bu 5 60 mT, DB 5 2.5 mT. VARIFORC smoothing parameters {sc0, sc1, sb0, sb1, kc, kb} 5 {4, 7, 3, 7, 0.1, 0.1}. (d) Simu-
lation parameters: p 5 0.1, N 5 1000, Navg 5 100, NFORC 5 100, Bc 5 160 mT, Bu 5 60 mT, DB 5 2.5 mT. VARIFORC smoothing parameters {sc0,
sc1, sb0, sb1, kc, kb} 5 {4, 7, 3, 7, 0.1, 0.1}. (e) Horizontal profiles at Bu 5 0. The profiles were obtained by summing the FORC distribution inside
a window of specified width, centered on the Bu 5 0 axis, and normalizing to the peak value. The input distribution of switching fields,
assuming randomly oriented particles with a lognormal distribution of BKi (equation (15) with r 5 0.5 and b 5 20) is shown as the solid
gray curve. The values (4 4 3 4 0 0) refer to a different set of VARIFORC smoothing parameters used for that profile. (f) Vertical profiles at
Bc 5 20 mT. Inset shows the FWHM of the vertical profile as a function of packing fraction (p).
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Bu> 0. A horizontal line profile of the FORC distribution along the central ridge is shown in Figure 1e, and
follows closely the input distribution of switching fields. A vertical line profile taken at Bc 5 0.02 T, close to
the peak of the FORC distribution, produces a sharp asymmetric peak (Figure 1f). Although the finite width
of the peak might, at first, be interpreted as a measure of weak interactions between the particles, the full
width at half maximum (FWHM) of the peak (1.9 mT; see inset to Figure 1f) is only just above field resolution
of the simulation (DB 5 1.5 mT), and is much wider than the actual interaction-field distribution at this pack-
ing fraction. The need for high-resolution measurements to reveal the true nature of the central ridge in
noninteracting systems is discussed by Egli et al. [2010]; the same principles apply to simulations. For consis-
tency, the field steps used here were chosen so that all simulations used a standard number of FORCs
(NFORC 5 100) to cover the required region of FORC space. Smaller field steps are recommended when using
FORCulator to study the finer details of the central ridge.

With increasing packing fraction, the central ridge becomes broadened into the horizontal ‘‘teardrop’’
shape predicted by Egli [2006] (Figures 1b–1d). The teardrop shape is significant, as it differs considerably
from the elliptical shape predicted by classical Preisach theory (obtained here using the static approxima-
tion—see supporting information Figure S2). The teardrop becomes increasingly asymmetric about the
Bu 5 0 axis with increasing packing fraction, with the lower half developing into a ‘‘lobe’’ flanked by a
strong negative signal to its left and a weak (but statistically significant) negative signal to its right. Such
lobes are a characteristic feature of strongly interacting systems [Evans et al., 2006; Miot et al., 2014]. Verti-
cal line profiles close to the peak of the FORC distribution show both a broadening and a shift to positive
Bu (Figure 1f). Due to the broadening, horizontal line profiles now need to be integrated vertically in order
to obtain a good estimate of the switching field distribution (Figure 1e). The choice of integration window
is a compromise between capturing as much of the teardrop as possible whilst avoiding as much of the
negative signal as possible (which distorts the distribution for small Bc). A slight difference between the
input switching field distribution and the horizontal FORC profile was observed for p 5 0.1 (dotted curve
in Figure 1e). This discrepancy was removed by using a smaller smoothing factor (pink curve in Figure
1e), highlighting the importance of not oversmoothing FORC diagrams when performing quantitative
analysis. The limits of the quasi-static approach become increasingly evident for p� 0.05, with the emer-
gence of oscillatory behavior in the magnetization curves and a vertically spread positive contribution to
the FORC diagram close to the Hc 5 0 axis (Figures 1c and 1d). For p> 0.1, results become physically unre-
alistic, as illustrated by the nonequilibrium form of the FORC diagram for p 5 0.15 (supporting information
Figure S3).

4.2. Random Packing of Uniaxial Particles: Approximate LLG Approach
FORC diagrams for randomly packed, randomly oriented ensembles of uniaxial particles with a range of
packing fractions were simulated using the approximate LLG approach (Figure 2). The corresponding raw
FORCs and difference FORCs are presented in the supporting information (Figure S4). Results for p< 0.01
are equivalent to those obtained using the quasi-static approach. The asymmetric teardrop (Figure 2a) and
interaction lobe (Figure 2b) develop for p> 0.01, but not the vertically spread positive contribution to the
FORC diagram close to the Hc 5 0 axis that was observed in the quasi-static calculations (Figures 1c and 1d).
For p> 0.2, the peak evolves from a teardrop into an ellipse (Figure 2c), and becomes stretched along the
vertical Bu axis with increasing p (Figure 2d). At these large packing fractions, the FORC diagram resembles
the ‘‘wishbone’’ structure, characteristic of perpendicular recording media [Pike et al., 2005; Dobrot�a and
Stancu, 2013]. Horizontal profiles again follow closely the input distribution of switching fields (Figure 2e),
although for p� 0.3 there is a small systematic overestimate of the distribution in the coercivity range 0.06–
0.12 T, which was not removed by using smaller smoothing factors. A linear increase in the FWHM of vertical
profiles through the peak distribution with p is observed (Figure 2f inset). A least squares fit to the FWHM
data yielded an intercept of 3 6 1 mT (i.e., just above the DB 5 2.5 mT field step size of the simulation) and
slope 180 6 8 mT.

Values of the saturation magnetization (Ms), saturation remanence (Mrs), coercivity (Bc), and coercivity of
remanence (Bcr) were extracted from the raw FORCs and are plotted in Figure 3a in the form of a ‘‘Day plot’’
of Mrs/Ms versus Bcr/Bc. The results are consistent with previous studies using micromagnetic simulations of
regularly spaced particles [Muxworthy, 2003]. The ensemble moves from the SD field into the PSD field, fol-
lowing a distinct curved path that extrapolates to the MD field. The path taken resembles the ‘‘mixing
paths’’ defined by Dunlop [2002a] for mixtures of noninteracting SD and MD particles.
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4.3. Noninteracting Cubic <111> Particles
Unlike the uniaxial case [Newell, 2005], there is no analytical solution for the FORC diagram of noninteract-
ing particles with cubic anisotropy. Although the theoretical hysteresis loop for cubic anisotropy has been
computed [Usov and Peschany, 1997], the availability of multiple states that a particle can fall into during
switching means that a dynamic solution of the LLG equation is required. To our knowledge, the only pub-
lished micromagnetic calculation of a FORC diagram for particles with cubic anisotropy was performed by
Muxworthy et al. [2004], who only investigated weakly interacting particles (p � 0.005). It is worth examining
in some detail, therefore, our prediction for noninteracting particles with cubic anisotropy. The FORC dia-
gram, raw FORCs, and difference FORCs for p 5 1025 are shown in Figure 4. The bulk hysteresis parameters
(Mrs/Ms 5 0.864, Bc 5 9.2 mT; Figure 4c) are close to the expected theoretical values for randomly oriented

Figure 2. LLG simulations for randomly packed, randomly oriented, uniaxial particles. (a) Simulation parameters: p 5 0.065, N 5 1000, Navg 5 25, NFORC 5 100, Bc 5 160 mT, Bu 5 60 mT,
DB 5 2.5 mT. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {3, 7, 3, 7, 0.2, 0.2}. (b) Simulation parameters: p 5 0.13, N 5 1000, Navg 5 25, NFORC 5 100, Bc 5 160 mT, Bu 5 60
mT, DB 5 2.5 mT. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {3, 7, 4, 7, 0.2, 0.2}. (c) Simulation parameters: p 5 0.3, N 5 1000, Navg 5 25, NFORC 5 100, Bc 5 160 mT, Bu 5 60
mT, DB 5 2.5 mT. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {3, 7, 4, 7, 0.2, 0.2}. (d) Simulation parameters: p 5 0.39, N 5 1000, Navg 5 25, NFORC 5 100, Bc 5 160 mT,
Bu 5 60 mT, DB 5 2.5 mT. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {3, 7, 6, 7, 0.2, 0.2}. (e) Horizontal profiles at Bu 5 0. The profiles were obtained by summing the
FORC distribution inside a window of specified width, centered on the Bu 5 0 axis, and normalizing to the peak value. The input distribution of switching fields, assuming randomly ori-
ented particles with a lognormal distribution of BKi (equation (15) with r 5 0.5 and b 5 20) is shown as the solid gray curve. (f) Vertical profiles at Bc 5 25 mT. Inset shows the FWHM of
the vertical profile as a function of packing fraction (p).
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particles with cubic <111> anisotropy (i.e., Mrs/Ms 5 0.866 and 0.18 BK< Bc< 0.2 BK) [Usov and Peschany,
1997]. Note that the peak of the input anisotropy distribution (equation (15)) occurs at BK 5 50 mT, so the
observed value of Bc 5 9.3 mT is within the expected range of 9< Bc< 10 mT. The FORC diagram (Figure
4a) shares some of the characteristics of the FORC diagram for noninteracting uniaxial particles (Figure 1a):
(i) a ridge of intensity close to the Bu 5 0 axis (labeled ‘‘1’’ in Figure 4b), (ii) positive and negative background
signals for Bu< 0 (labeled ‘‘2’’ and ‘‘3’’ in Figure 4b), and (iii) no signal for Bu> 0. Some key distinguishing fea-
tures are present, however: (i) the peak of the FORC distribution is displaced slightly (<0.5 mT) to negative
Bu values, (ii) a new negative signal appears above the remanence diagonal (labeled ‘‘4’’ in Figure 4b). The
origin of signal 4 can best be seen in the difference FORCs (Figure 4d), which all display a pronounced peak
in the field range associated with upward switching events. From the color coding in Figure 4d, the nega-
tive signal 4 (blue) can be seen to originate from the left flank of this peak, the positive signal 2 (orange)
originates from the right flank of the peak, and the ridge signal 1 (black) originates from the point where
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Figure 3. Day plot parameters extracted from the FORC simulations. (a) LLG simulations for randomly packed, randomly oriented, uniaxial particles. Numbers indicate the packing frac-
tion (p). (b) LLG simulations for randomly packed, randomly oriented, cubic particles with <111> easy axes. Numbers indicate the packing fraction (p). (c) LLG simulation for chains of
100 nm diameter particles and a center-to-center separation of 110 nm as function of chain collapse. Numbers indicate the chain collapse factor (c). (d) LLG simulation for chains
(c 5 0.2) of 100 nm diameter particles with increasing particle separation. Numbers indicate the center-to-center separation of the particles (in nm).

Geochemistry, Geophysics, Geosystems 10.1002/2014GC005582

HARRISON AND LASCU VC 2014. American Geophysical Union. All Rights Reserved. 4680



each difference FORC intersects the envelope of the upper hysteresis branch. Signal 4 was also seen in the
calculation of Muxworthy et al. [2004], along with the small region of weak, but statistically significant, posi-
tive signal labeled ‘‘5’’ in Figure 4b.

4.4. Random Packing of Cubic <111> Particles
FORC diagrams for randomly packed, randomly oriented ensembles of cubic particles with <111> easy
axes and a range of packing fractions were simulated using the approximate LLG approach (Figure 5). The
corresponding raw FORCs and difference FORCs are presented in the supporting information (Figure S5).
For p 5 0.01, the main peak broadens into a flattened teardrop shape, retaining the small offset in the nega-
tive Bu direction (Figure 5a). The ridge-like signal 1 is retained at higher Bc, but the negative signal 4, and its
associated peak in the difference FORCs, are much less pronounced. For p 5 0.035, the broadening of the
peak continues and a positive lobe starts to develop between signals 3 and 4 (Figure 5b). For p 5 0.1 (Figure
5c), the lobe observed for Bu< 0 is fully developed, while the FORC distribution for Bu> 0 takes on a more
triangular shape, with vertically spreading intensity extending all the way to Bc 5 0 (contrast this with the
closed teardrop shape observed for unixial particles; Figure 2b). For p 5 0.3 (Figure 5d), the peak becomes
vertically stretched into a wishbone structure resembling Figure 2d. Unlike the uniaxial case, strong interac-
tions between cubic particles lead to broadening in both vertical and horizontal directions (Figures 5e and
5f). A linear increase in the FWHM of vertical profiles through the peak distribution with p is observed (Fig-
ure 5f inset). A least squares fit to the FWHM data yielded an intercept of 1.3 6 1 mT (i.e., just above the
DB 5 1 mT field step size of the simulation) and slope 197 6 3 mT. The corresponding changes in bulk hys-
teresis parameters are represented on a Day plot in Figure 3b. Again there is a systematic shift of the

Figure 4. (a) LLG simulation for randomly packed, randomly oriented, cubic particles with <111> easy axes. Simulation parameters: p 5 1025 (i.e., noninteracting), N 5 250, Navg 5 200,
NFORC 5 100, Bc 5 50 mT, Bu 5 10 mT, DB 5 0.6 mT. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {3, 7, 2, 7, 0.2, 0.2}. (b) Same as Figure 4a but with added contours for the
FORC distribution (solid lines) and signal-to-noise threshold of 3 (dashed line). (c) Raw FORCs (black lines) with background colors indicating the corresponding value of the FORC distri-
bution at that point. Colors are plotted according to the same color scale as in Figure 4a. (d) Difference FORCs derived from Figure 4c by subtracting the lowermost FORC from each indi-
vidual FORC.
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ensemble from the cubic SD field to the uniaxial SD field, into the PSD field and toward the MD field, along
a distinct curved path. The speed with which the ensemble moves along this path with increasing packing
fraction is greater for the cubic case than for the uniaxial case.

4.5. Chains of Particles: Effect of Chain Collapse
Single chains of particles can be created in FORCulator using a constrained, self-avoiding random walk (Fig-
ure 6a). The first particle in a chain (p1) is positioned at random, subject to the constraint that it does not
overlap with any particles previously generated in the ensemble. The second particle (p2) is placed at a
specified center-to-center distance, d, from p1. The vector p2

�!, joining particle p1 to p2, can either be chosen

Figure 5. LLG simulations for randomly packed, randomly oriented, cubic particles with <111> easy axes. (a) Simulation parameters: p 5 0.01, N 5 250, Navg 5 200, NFORC 5 100, Bc 5 50
mT, Bu 5 10 mT, DB 5 0.6 mT. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {3, 7, 2, 7, 0.2, 0.2}. (b) Simulation parameters: p 5 0.035, N 5 250, Navg 5 200, NFORC 5 100,
Bc 5 60 mT, Bu 5 40 mT, DB 5 1 mT. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {3, 7, 3, 7, 0.2, 0.2}. (c) Simulation parameters: p 5 0.1, N 5 250, Navg 5 200, NFORC 5 100,
Bc 5 100 mT, Bu 5 50 mT, DB 5 1.5 mT. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {3, 7, 3, 7, 0.2, 0.2}. (d) Simulation parameters: p 5 0.3, N 5 250, Navg 5 200, NFORC 5 100,
Bc 5 100 mT, Bu 5 60 mT, DB 5 1.6 mT. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {9, 9, 9, 9, 0.2, 0.2}. (e) Horizontal profiles at Bu 5 0. The profiles were obtained by sum-
ming the FORC distribution inside a window of specified width, centered on the Bu 5 0 axis, and normalizing to the peak value. (f) Vertical profiles at Bc 5 7 mT. Inset shows the FWHM of
the vertical profile as a function of packing fraction (p).
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at random or it can be constrained to lie along a specific direction to create a degree of chain alignment.
Once the first two particles in a chain have been placed, further particles are added sequentially until the
specified number of particles in the chain, Np, is reached. The nth particle in the chain, pn, is placed at the
end of the vector, pn

�!, joining the centers of particles pn21 and pn. Candidate orientations are chosen such
that there is a uniform probability of pn

�! falling inside a cone with axis pn21
��! and semiangle u (Figure 6a).

Acceptance of a candidate orientation of pn
�! is subject to the constraint that no particle should overlap

with any other particle previously generated in the ensemble. To create systematic changes in the degree
of chain collapse, we define a chain collapse factor, c (0� c� 1), such that u 5 cp (Figures 6b–6e). The easy
axis orientation of each particle in the chain can either be chosen at random, or it can be chosen to align
with the chain axis. Chain axis alignment is achieved by defining the easy axis vector of particle pn21 to be
parallel to the vector sum pn22

��!
1 pn
�! (Figure 6a). Easy axes for the first and last particles in the chain are

defined to be parallel to p2
�! and pNp

�!, respectively.

FORC diagrams for randomly packed, randomly oriented chains of uniaxial particles, with easy axes
aligned to the chain axis, were simulated using the approximate LLG approach (Figure 7). The corre-
sponding raw FORCs and difference FORCs are presented in the supporting information (Figure S6).
Each simulation contained 50 chains inside a 10 3 10 3 10 lm box, with each chain containing 20
spherical particles of 100 nm diameter and a center-to-center distance of 110 nm. These parameters
were chosen to mimic chains of closely spaced particles, typical of magnetotactic bacteria [Bazylinski
and Frankel, 2004]. For c 5 0 (straight chains; Figure 6b), the FORC diagram displays the characteristics

Figure 6. (a) Definition of the method used to generate collapsed particle chains via a constrained self-avoiding random walk. The diagram depicts how the position of the third particle
in a three particle chain (Np 5 3) is chosen. The vector pn

�! is selected randomly within a cone of semiangle u, centered on pn21 and aligned with pn21
��!. The easy axis of a particle inside

the chain points along the vector joining the particles immediately before and after it (gray dotted line). The easy axis of particles at the beginning and end of the chain are aligned with
the vectors p2

�! and pNp

�!, respectively. (b–e) Ensembles of chains generated with different collapse factors. Each chain contains 20 spherical particles with diameter 100 nm and a center-
to-center distance between particles of 110 nm. Each image represents a magnified portion of an ensemble of 50 randomly aligned chains inside a 10 3 10 3 10 lm box. Black lines
show the orientations of uniaxial easy axes, which were constrained to be parallel to the chain axis.
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of noninteracting uniaxial particles (Figure 7a), albeit with a coercivity distribution that is very different
to the input distribution (Figure 7e).

For c 5 0.3, the chain structure remains readily identifiable, but chains are no longer straight and occasion-
ally double back on themselves (Figure 6c). The FORC diagram retains a sharp central ridge, with weak
‘‘wings’’ of intensity developing above and below it. The wings are not centered on the peak of the central-
ridge distribution, but displaced significantly to lower Bc values. For c 5 0.7, the chains are in a partially col-
lapsed state, with many appearing as clusters but with a significant fraction still recognizable as bent chains
(Figure 6d). The FORC diagram retains a sharp central ridge, with the wings increasing in intensity. The com-
bination of sharp ridge and distinct wings creates a distinctive ‘‘concord’’ shaped FORC distribution. For
c 5 1, the chains are in their most collapsed state (or, at least, the most collapsed state that can be gener-
ated using this algorithm), with the majority appearing as clusters and a small minority retaining some rec-
ognizable chain structure (Figure 6e). Again, the central ridge is retained at high coercivity and the low-

Figure 7. LLG simulations for the chain configurations shown in Figure 6. (a) Simulation parameters: c 5 0, Navg 5 25, NFORC 5 100, Bc 5 160 mT, Bu 5 60 mT, DB 5 2.5 mT. VARIFORC
smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {12, 12, 2, 12, 0, 0}. (b) Simulation parameters: c 5 0.3, Navg 5 25, NFORC 5 100, Bc 5 160 mT, Bu 5 60 mT, DB 5 2.5 mT. VARIFORC smooth-
ing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {12, 12, 2, 12, 0, 0}. (c) Simulation parameters: c 5 0.7, Navg 5 25, NFORC 5 100, Bc 5 160 mT, Bu 5 60 mT, DB 5 2.5 mT. VARIFORC smoothing
parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {12, 12, 2, 12, 0, 0}. (d) Simulation parameters: c 5 1, Navg 5 25, NFORC 5 100, Bc 5 160 mT, Bu 5 60 mT, DB 5 2.5 mT. VARIFORC smoothing parameters:
{sc0, sc1, sb0, sb1, kc, kb} 5 {12, 12, 2, 12, 0, 0}. (e) Horizontal profiles at Bu 5 0. The profiles were obtained by summing the FORC distribution inside a window of specified width, centered
on the Bu 5 0 axis, and normalizing to the peak value. (f) Vertical profiles taken at the indicated position (corresponding to the peak position of the corresponding horizontal profile) and
summed over a window with the specified width.
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coercivity wings, which now form an almost circular pattern, increase in intensity, leading to an apparently
bimodal FORC distribution (Figure 7d).

Horizontal profiles through the central ridge show a systematic shift to lower Bc values with increasing chain
collapse (Figure 7e), as well the development of low-coercivity shoulders associated with the developing
wings. Vertical profiles centered on the peak of the central ridge, but integrated across a wide range of
coercivities, show a systemic increase in the intensity of the wings with increasing chain collapse (Figure 7f).

Day plot parameters for collapsed chains move along a relatively straight line within the SD field, with the
Mrs/Ms ratio decreasing from 0.5 to a minimum value of just under 0.4 for fully collapsed chains (Figure 3c).
The values of the Bcr/Bc ratio are overall lower than in the case of isolated particles, in part due to higher Bc

values. The fact that the ensemble evolves with increasing collapse along a different path from the one fol-
lowed by randomly packed particles (Figure 3a) is to be expected because of the nonrandom nature of the
algorithm used here to generate chain collapse.

4.6. Chains of Particles: Effect of Interparticle Separation
FORC diagrams for randomly packed, randomly oriented chains of uniaxial particles (c 5 0.2), with easy axes
aligned to the chain axis and a range of interparticle separations (d) were simulated using the approximate
LLG approach (Figure 8). The corresponding raw FORCs and difference FORCs are presented in the support-
ing information (Figure S7). Each simulation contained 50 chains inside a 4 3 4 3 12 lm box, with each
chain containing 20 spherical particles of 100 nm diameter. Several key changes to the FORC diagram are
observed as the interparticle spacing is increased from d 5 110 nm (as used in the previous section) to
d 5 130 nm (Figure 8a): (i) the peak of the coercivity distribution shifts from Bc 5 0.07 T to Bc 5 0.053 T, (ii)
the upper wing of intensity associated with the small degree of chain collapse (Figure 7) becomes weaker,
(iii) the main peak starts to develop a ‘‘boomerang’’ shape with peak offset to negative Bu, and (iv) a nega-
tive signal starts to develop below the boomerang. The lowering of the coercivity, the development of the
boomerang shape, the magnitude of the negative offset and the intensity of the negative region become
more pronounced with increasing d up to a value of d 5 200 nm (Figures 8b and 8c). Further increases in d
lead to further decreases in coercivity but a reduction in the other features (Figure 8d). By d 5 500 nm, the
FORC diagram resembles that of the equivalent noninteracting case (Figure 1a), although the coercivity dis-
tributions are not identical due to the nonrandom easy axis alignment of the chains.

In the Day plot, the ensemble moves from left to right along the Mrs/Ms 5 0.5 line (Figure 3d). The higher
values of Bcr/Bc with increasing particle separation reflect the evolution of the system from particles
arranged in chain structures toward random packing. A center-to-center distance of more than 500 nm is
essentially equivalent to random packing with no magnetostatic interactions between particles (Figure 3a).

5. Discussion

5.1. Randomly Packed Particles
The limitations of the quasi-static approach for randomly packed particles are clearly illustrated by the
appearance of oscillatory behavior in individual FORCs (Figure S3), the asymmetry of the difference FORC
plot about the B 5 0 axis (Figure S3), and the appearance of an anomalous vertically spread positive contri-
bution to the FORC diagram close to the Hc 5 0 axis (Figures 1c and 1d). These features are artifacts associ-
ated with the breakdown of the assumption that particles undergo independent switching events in a
static interaction field and a failure of the simulation to reach the correct equilibrium state. When interac-
tions are strong, the magnetic state of neighboring particles become correlated, and switching events can
no longer be considered to be independent. As soon as these effects become significant, an iterated
approach is required to find the equilibrium micromagnetic state of the ensemble. These problems are
solved by using the approximate iterated LLG approach (Figure 2), albeit at the expense of longer computa-
tion times. The LLG approach is recommended for all but the most weakly interacting systems.

Calculated FORC diagrams for interacting particles agree well with those observed experimentally, e.g., in
intergrowths [Evans et al., 2006] and clusters of single-domain magnetite [Miot et al., 2014]. The main dis-
crepancy is the larger value of the negative signal observed along the negative Bu axis in the simulated dia-
grams, which is typically less pronounced or absent in experimental diagrams. The negative signal in
experimental diagrams may be suppressed by thermal fluctuations (which are neglected at present in
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FORCulator), or masked by positive contributions to the FORC diagram in that region, e.g., from superpara-
magnetic or multidomain contributions [Newell, 2005].

A key observation is that, even for weakly interacting particles, the form of the FORC diagram differs greatly
from that obtained using the standard Preisach assumption of a static interaction field (Figure S2). A major
consequence of this is that it is not possible to use the FORC diagram directly as the source of an input Prei-
sach distribution for the purposes of simulating the acquisition of thermoremanent magnetization (TRM),
except perhaps in the most weakly interacting cases [Muxworthy and Heslop, 2011; Muxworthy et al., 2011;
Lappe et al., 2013]. A more robust approach would be to perform an inverse analysis on the FORC diagram
to obtain a physical parameterization of the particle ensemble in terms of its coercivity distribution and
packing fraction, and then use this physical model of the system as the basis for simulating the acquisition
of TRM. The broadening of vertical FORC profiles with packing fraction provides a starting point for such
analysis (Figures 2f and 5f). Egli [2006] argued that the best method for characterizing the broadening is to

Figure 8. LLG simulations for the chains with a collapse factor of c 5 0.2 and increasing interparticle separation (d). Chains were oriented
at random inside a box of size 4 3 4 3 12 lm. (a) Simulation parameters: d 5 130 nm, Navg 5 25, NFORC 5 100, Bc 5 160 mT, Bu 5 60 mT,
DB 5 2.5 mT. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {7, 7, 2, 7, 0, 0}. (b) Simulation parameters: d 5 150 nm, Navg 5 25,
NFORC 5 100, Bc 5 160 mT, Bu 5 60 mT, DB 5 2.5 mT. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {7, 7, 2, 7, 0, 0}. (c) Simula-
tion parameters: d 5 200 nm, Navg 5 25, NFORC 5 100, Bc 5 160 mT, Bu 5 60 mT, DB 5 2.5 mT. VARIFORC smoothing parameters: {sc0, sc1, sb0,
sb1, kc, kb} 5 {7, 7, 2, 7, 0, 0}. (d) Simulation parameters: d 5 300 nm, Navg 5 25, NFORC 5 100, Bc 5 160 mT, Bu 5 60 mT, DB 5 2.5 mT. VARI-
FORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {7, 7, 2, 7, 0, 0}. (e) Horizontal profiles at Bu 5 0. The profiles were obtained by sum-
ming the FORC distribution inside a window of specified width, centered on the Bu 5 0 axis, and normalizing to the peak value. (f) Vertical
profiles taken at the indicated position (corresponding to the peak position of the corresponding horizontal profile).
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focus on the upper half (i.e., Bu> 0) of
vertical profiles taken as far as possible
to the left of the central peak. Profiles
taken here sample the complete
interaction-field distribution seen by a
few particles with minimum anisot-
ropy, and by using only the upper half
of the profile to define the width, the
distorting influence of the negative
region can be avoided. Figure 9 shows
the dependence of FWHM (defined
here as twice the half width at half
maximum) divided by l0Ms derived
from the upper half of low-coercivity
profiles for randomly packed uniaxial
and cubic particles. Note that both uni-
axial and cubic particles lie on the
same curve and that the nonlinearity is
consistent with theoretical predictions
[Egli, 2006]. Assuming random packing
of particles and an appropriate value
for Ms, Figure 9 can provide estimates
of packing fractions directly from FORC
diagrams. For uniaxial particles, the
input coercivity distribution is matched

closely by horizontal profiles through the FORC distribution (Figure 2e), so this too can be determined
directly from the data. This is not possible for strongly interacting particles with cubic anisotropy, however,
since horizontal profiles through the FORC distribution do not correspond to the input coercivity distribu-
tion (Figure 5e).

Increasing interactions between SD particles moves the system smoothly from the SD into the PSD region
of a Day plot (Figures 3a and 3b). Simultaneously, the simulated FORC diagrams start to develop many of
the features observed in the FORC diagrams of ‘‘true’’ PSD particles (i.e., noninteracting particles with sizes
that are intermediate between those of SD and MD particles). A typical example of a PSD FORC is shown in
Figure 10a, which was measured on a sample of fire obsidian from Glass Buttes, Oregon containing particles
of magnetite in the PSD size range [Ma et al., 2007]. A comparison of Figure 10a with Figures 2c and 5c
reveals many shared features, including the asymmetric vertical broadening about the Bu 5 0 axis and the
development of a lower ‘‘lobe’’ flanked by a negative signal to its left and a weaker (but statistically signifi-
cant) negative signal to its right. This raises several interesting questions: (i) Can strongly interacting clusters
of SD particles be distinguished unambiguously from noninteracting ensembles of PSD particles using
FORC diagrams? (ii) Does the high-field isothermal behavior of strongly interacting clusters of SD particles
provide a good physical analog to the high-field isothermal behavior of PSD particles? (iii) Does this analog
also extend to the low-field, high-temperature behavior of PSD particles? If the answer to the first question
is ‘‘no,’’ this presents a significant barrier for the development of an inverse method for FORC diagrams.
However, if the answer to the latter two questions is ‘‘yes,’’ this barrier becomes irrelevant (i.e., if PSD par-
ticles are equivalent to strongly interacting particles in terms of the their rock magnetic behavior, then it is
no longer necessary to distinguish them from each other for the purpose of modeling). This equivalence
could provide a way forward in the modeling of PSD TRM, for which there is currently no practical theory
that can be applied in paleomagnetic studies. Examination of the equivalence (or otherwise) between PSD
particles and strongly interacting SD clusters will be an important area of future research.

5.2. Chains of Particles
Single or multiple chains of strongly interacting magnetic particles are present in all species of magnetotac-
tic bacteria [Bazylinski and Frankel, 2004]. The linear arrangement of magnetosomes along the chain axis is
biologically controlled by means of a proteinous filament [Faivre and Sch€uler, 2008] in order to optimize the

Figure 9. Scaled FWHM, i.e., FWHM (in T) divided by l0Ms for magnetite (0.603 T),
extracted from low-coercivity vertical profiles for randomly packed uniaxial
(circles) and cubic (diamonds) particles as a function of packing fraction (p). Pro-
files were taken at coercivities of 10 and 7 mT for uniaxial and cubic particles,
respectively. FWHM was defined in this case as twice the half width to half maxi-
mum extracted from the upper half (i.e., Bu> 0) of the vertical profile.

Geochemistry, Geophysics, Geosystems 10.1002/2014GC005582

HARRISON AND LASCU VC 2014. American Geophysical Union. All Rights Reserved. 4687



magnetic properties of the chain for the purposes of magnetotaxis. Post mortem, however, the cell struc-
ture will undergo lysis (i.e., breakdown), leading to varying degrees of chain collapse during diagenesis [Li
et al., 2012]. Similar effects can be seen by genetically modifying bacteria to remove the biological struc-
tures necessary to maintain chain integrity [Faivre and Sch€uler, 2008]. FORC diagrams have emerged as a
powerful tool to detect the presence of magnetotactic bacteria and magnetofossils in sediments [Egli et al.,
2010; Roberts et al., 2012; Heslop et al., 2014]. There is considerable interest, therefore, in exploring the FORC
signatures associated with varying degrees of chain collapse [Chen et al., 2007; Li et al., 2012].

The FORC diagram of perfectly straight chains (Figure 7a) illustrates the dominance of intrachain magneto-
static interactions over the properties of individual magnetosomes in determining the switching properties
of the chain. Unlike the FORC diagram in Figure 1a, which is consistent with the prediction of Newell [2005]
for an ensemble of randomly oriented, noninteracting uniaxial particles with a lognormal distribution of
switching fields, the FORC diagram in Figure 7a is closer to the theoretical prediction for an ensemble of
randomly oriented, noninteracting uniaxial particles with identical switching fields [Newell, 2005]. The theo-
retical FORC distribution for identical particles with intrinsic switching field BK is zero for Bc< 0.5BK, is
asymptotic to infinity at Bc 5 0.5BK and drops rapidly to zero at Bc 5 BK. Here we observe an approximately
Gaussian peak at Bc 5 0.07 T, which is close to half of the highest statistically significant value of coercivity
(Bc 5 0.12 T). The observed distribution is zero below Bc 5 0.04 T, despite the majority of particles having
intrinsic switching fields below this value (Figure 7e). From this we can conclude that straight chains act as
individual switching units, and that the intrinsic switching field of a chain is close to the switching field of
the most coercive particle within it.

The peak of the coercivity distribution shifts to lower values with increasing chain collapse, but does not
reach the input distribution of coercivities of individual particles, even for fully collapsed chains. In addition,
the bimodality of the coercivity distribution, which is most apparent for fully collapsed chains, is similar to
that of coercivity distributions that contain a mixture of biogenic hard and soft components [Egli, 2004].
This existence of the two magnetosome components in natural samples has been attributed empirically
(using coercivity analysis of remanence curves and transmission electron microscopy) to particle morphol-
ogy, with elongated grains exhibiting higher coercivities [e.g., Yamazaki and Ikehara, 2012; Lascu and Plank,
2013]. Heslop et al. [2014] have explored the influence of additional factors on the shape of coercivity distri-
butions extracted from FORC central ridges. They concluded that chain length and chain preservation,
together with particle morphology and oxidation state, could also explain the occurrence of distinct bio-
genic coercivity components. Our simulations yield complementary evidence to experimental results [e.g.,
Chen et al., 2007; Li et al., 2012], and make it increasingly clear that chain collapse may play an important
role in determining the shape of coercivity distributions of magnetosome-rich samples.

Hysteresis ratios for chains and isolated particles do not overlap in the Day plot, even for collapsed chains
for which c 5 1 (Figure 3). Fully collapsed chains have high Mrs/Ms values (�0.4) compared to clusters of

Figure 10. FORC diagrams of natural samples: (a) fire obsidian from Glass Buttes, Oregon containing PSD magnetite. Measurement parameters: Bsat 5 1.7 T, Bc 5 150mT, Bu 5 60 mT,
DB 5 1 mT, tavg 5 100 ms, NFORC 5 283. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {9, 9, 9, 9, 0.2, 0.2}; (b) sediment from Brownie Lake Minnesota containing magneto-
somes. Measurement parameters: Bsat 5 0.2 T, Bc 5 110 mT, Bu 5 15 mT, DB 5 0.83 mT, tavg 5 500 ms, NFORC 5 182. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {6, 6, 3, 6,
0.1, 0.1}; (c) Olivine crystal containing magnetite precipitated along dislocations. Measurement parameters: Bsat 5 2.2 T, Bc 5 130 mT, Bu 5 50 mT, DB 5 0.75 mT, tavg 5 200 ms,
NFORC 5 293. VARIFORC smoothing parameters: {sc0, sc1, sb0, sb1, kc, kb} 5 {5, 7, 4, 7, 0.1, 0.1}.
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strongly interacting particles (�0.2). This might appear at first to be an artifact of the algorithm used to gen-
erate chain structures. However, experiments on cultured magnetotactic bacteria show that chains within
freeze-dried bacterial cells, which are expected to collapse during the freeze-drying process, have Mrs/Ms

values in the interval 0.4–0.5, whereas only extracted magnetosomes, which are expected to behave as ran-
domly packed particles, have hysteresis ratios comparable with those of strongly interacting isolated par-
ticles [Moskowitz et al., 1993; Chen et al., 2007]. This implies that the physical mechanism of chain collapse
preserves vestiges of the chain structure even in fully collapsed chains.

As well as the decrease in overall coercivity and Mrs/Ms, our simulations predict very distinctive changes to
the FORC diagrams in partially collapsed chains. The results presented in Figure 7 agree very well with
experimental FORC diagrams obtained for chains in various degrees of collapse [Chen et al., 2007; Egli et al.,
2010; Kind et al., 2011; Li et al., 2012]. A particularly good match is obtained, for example, between Figure 7d
for fully collapsed chains (c 51) and Chen et al. [2007, Figure 3] for a sample of clustered magnetosomes.
Figure 10b shows an example of a FORC diagram obtained on a bulk sediment sample from Brownie Lake,
Minnesota that contains a mixture of PSD magnetite and magnetosome chains in various states of collapse
[Lascu et al., 2010]. The combination of a sharp ridge signal superimposed on a smooth vertically spread
background is very different from that obtained for randomly packed clusters. Such geometry-specific FORC
signatures lend credence to the use of FORC diagrams as a diagnostic tool in rock magnetic studies. A new
insight from these simulations is that the combination of a sharp ridge and smooth background can be cre-
ated by homogeneous dispersion of partially collapsed chains, with the relative intensity of the two features
a systematic function of the degree of chain collapse. This differs from the traditional interpretation of such
signatures in terms of a bimodal mixture of perfectly straight chains and random clusters [Chen et al., 2007;
Kind et al., 2011]. The ability to make such distinctions is critical to the interpretation of environmental mag-
netic signals.

Although the chain configurations explored in Figure 8 are not immediately relevant to magnetotactic bac-
teria, they serve as a general example of systems with a magnetizing geometry (i.e., those that that create a
positive mean-field interaction). The predicted features of the FORC diagram can be observed in many
experimental FORC diagrams, suggesting that such geometries are fairly common in nature. An example is
shown in Figure 10c. The FORC diagram was obtained for an olivine sample with dislocations that have
been decorated with magnetite during heating to 700�C. The area below the horizontal axis contains some
of the same features observed for example in Figure 8d: a tilted central ridge with a positive slope and a
peak that is offset a few mT to negative Bu, a pronounced negative region, and hints of the boomerang
shape above it. The main difference is the absence of signal above the Bc axis in the simulation, indicating
that other components are contributing to the signal in the experimental FORC. The examination of simu-
lated FORCs in concert with experimental data could provide insight into the spatial arrangement and the
geometry of dislocations in deformed olivine, and whether magnetite particles along dislocations are
arranged in clusters or chains with various degrees of separation between particles.

6. Conclusions

One of the primary goals of rock and environmental magnetism is to provide a quantitative characterization
of a sample’s magnetic mineralogy, with the ultimate aim of producing appropriate physical models. FORC
diagrams play an increasingly important role in achieving this goal, due to their sensitivity to magnetostatic
interactions between particles. In this paper, we have developed a method for performing routine FORC
simulations for arbitrary ensembles of strongly interacting SD particles, and explored some common geo-
metries of relevance to rock and environmental magnetism. Distinctive geometry-specific FORC signatures
are obtained, which provide a potential route to extracting a quantitative physical parameterization of the
particle ensemble based on the experimental FORC diagram. FORC diagrams of strongly interacting clusters
of SD particles share many of the characteristics of FORC diagrams for noninteracting PSD particles, sug-
gesting that the two cases may be closely analogous. Distinctive FORC diagrams for partially collapsed
chains of particles provide a new interpretation of experimental FORC diagrams of magnetotactic bacteria
in terms of a homogeneous ensemble of chains with a specific degree of chain collapse, rather than a
bimodal distribution of straight chains and random clusters. FORC simulations are a valuable tool for the
interpretation of experimental FORC diagrams, and should become a routine part of rock magnetic studies.
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FORCulator is currently restricted to SD particles. Future work will focus on incorporating simulations for the
full range of magnetic behavior (including SP, SD, PSD, and MD states).
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