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Chapter 1

Introduction

The present thesis deals with the mathematical treatment of kinetic theory and focuses more
precisely on the Boltzmann equation. The latter equation describes the evolution in position
and velocity of rarefied gas particles with a statistical point of view. It plays a central role
in mathematical physics as it builds a bridge between Newtonian systems of particles and
fluid dynamics. In this chapter, we start with a brief overview of the Boltzmann equation
and its main features (Section 1.1). We then present some mathematical problems such
as the quantification of positivity of solutions (Section 1.2) and the Cauchy theory and the
trend to equilibrium in a perturbative setting (Section 1.3); which is a short introduction to
the hydrodynamical limits of the Boltzmann equation which will be studied more thoroughly
in Part II. We conclude by a quantic version of the Boltzmann equation that is used to
describe gases of bosons and fermions and also contains the mechanisms of the Bose-
Einstein condensate (Section 1.4). We give, in each section, a brief description of our
main contributions in those domains.

The reader will also find an index of the notations we use for functional spaces in
Appendiz 1. A.
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1.1 General presentation of the Boltzmann equation

1.1 General presentation of the Boltzmann equation

In this section we gather some general definitions, descriptions and properties of kinetic
theory and the Boltzmann equation in rather informal statements. We refer to the stan-
dard books [25][32][30] or the review article [112] for deeper considerations and rigorous

statements.

1.1.1 Models in kinetic theory
1.1.1.1 Kinetic theory and physics of particles and fluids

If one considers a system of N bodies, which can be particles, stars or galaxies for instance,

moving in a domain Q C R? with velocities in R?, the Newton’s laws of motion describes

the dynamics of the latter system. These laws are the foundations of classical mechanics
N

) . This

system of evolution equations encodes the particular dynamics of each body, this is called

and generate, in that case, an Hamiltonian system in the phase space (Q x R¢

the microscopic scale.

Unfortunately, the N-body problem is renowned to be of a tremendous mathemati-
cal difficulty (even when N = 3) and is therefore hardly useful to study or predict the
behaviour of a large number of entities. In the case of a large system, it is often more
interesting to look into the general, the average, behaviour rather than following each
particle individually. Applying Newton’s laws to infinitesimal volume of particles at equi-
librium inside this volume leads to the equations of fluids mechanics, such as Euler or
Navier-Stokes equations. This point of view is called the macroscopic scale.

The macroscopic scale proved itself useful to describe the average dynamics of systems
(sea or car traffic for example). It however comes with the drawback that is the loss
of the microscopic dynamics inside the system. Kinetic theory stands right between the
microscopic and the macroscopic scale, it is called the mesoscopic scale. It adopts a
probabilistic approach to the problem in order to decrease the degrees of freedom of the
Hamiltonian system but still keeps track of the microscopic dynamics.

A deeper presentation of these physical points of view as well as their different connec-

tions is given in Chapter 3.

The aim of kinetic theory is to model a system constituted of a large number of particles
by a distribution function, in the one particle phase space of position and velocity, that
evolves with time. More precisely, the dynamics of the system is encoded in a density
function

f: [0,T]xQxR* — R*
(t,z,v) — f(t,z,v),

where T' > 0 can be infinite and § x R? is the particle phase space introduced earlier.

- 13-



1 Introduction

Physically speaking, for a given position z and velocity v, the quantity f(¢,z,v)dzdv is
the probability of having a particle in the ball B(x, dx) with a velocity in the ball B(v, dv)
at time ¢t. One can understand f as an approximation, in the limit when N tends to

infinity, of the first marginal of the empirical measure of the system

| X
N > Gayty ()80, (v),
=1

where (z;(t),v;(t)) is the position and velocity of the i*" particle at time ¢. A more precise

description is given in Chapter 3.

Moreover, for kinetic theory to have a physical meaning, one expects that the total mass
of the system remains finite in bounded domains and therefore, the minimal assumption

required for f is that
vte[0,7], f(t,-) € L, (2L} (RY)).

In this point of view, physical observables can be expressed as averages in velocities.

We therefore obtain the following local macroscopic quantities of the system of IV particles.

e the local density:
p(t,z) = f(t,z,v) dv,
R4
e the local velocity:

u(t,z) = p(tl,x)/Rd vf(t,x,v) dv,

e the local temperature:

1 2
o(t = — t d
(1) = s [ o=l f(t.o0)
or, equivalently, the local energy:
[of? ul> | plt,2)0(t, x)
E(t,z) = — f(t,z,v)dv = p(t,z)— + d——"""—=.
Rd 2 2 2

The mass, mean velocity and temperature of the system being the integral against the space
variable x over the spatial domain 2 of the local observables. In order to be physically
relevant, kinetic theory focuses on density functions f that have finite mass, mean velocity

and energy at each time.

- 14 -



1.1 General presentation of the Boltzmann equation

1.1.1.2 Evolution equations in kinetic theory

As described before, the kinetic theory point of view is to model the dynamics of a large
number of particles thanks to an evolution equation satisfied by a density function f =
f(t,x,v). This equation has to take into account the free motion of a particle and the
possible distortion it undergoes due to an external force or interactions with other particles.
As we will see, the latter interactions play a major role in physical studies and contain

most of the mathematical difficulties.

In the case of non-interacting particles and in the absence of external force, the motion
remains straight lines travelled along with constant velocity. The corresponding equation
is the free transport equation

of+v-Vyf=0. (1.1.1)

When the system is influenced by an external force Fe,; = Fey(x) acting on the particles,
corrections have to be made to (1.1.1). The new equation is called the linear Vlasov
equation and reads

Of +v-Vof + Fou(2) - Vo f = 0. (1.1.2)

Even though these equations are deeper than they look, especially in bounded domains,
they neglect the interactions which may exist between particles. These interactions could
be attractive or repulsive, thinking of electromagnetism for instance, but also should model

what happens when two, or more, particles collide with each other.

The modelling of one-to-one interaction between particles can be done in two different
ways, and one can, of course, combine them. The idea of how to derive them from
microscopic behaviours is given in Chapter 3, Section 3.2.

If the range of the interaction is macroscopic then the evolution equation is called a
mean-field equation. This type of kinetic equation is non-linear and has the following
form.

atf +v- vxf =+ vm\p(t7$) ’ vvf =0, (1‘1'3)

with

\If(t7l‘) =~y f(t,x,v)dv.
R4

A typical example of a mean-field equation is the Vlasov-Poisson equation used to described

plasmas and for which 1 is the Coulomb interaction for electromagnetism:

q2

" dreg 2]’

¥(2)

where ¢ is the electric charge of a particle and g is the vacuum permittivity.

Our work will, however, be about another way of modelling interactions between par-
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1 Introduction

ticles. In that case, the range of the interaction is assumed to be so small that it can be
considered as a localised interaction. This happens when the trajectory of a particle is
distorted when passing very close to another one or, in the simplest physical case, when
the particles bounce again each other when colliding. The kinetic equations describing

this type of interactions are called collision equations and read

atf"‘v’v:cf:Q(f)? (1'1'4)

where () can be non-linear and encodes the physical properties of the collision process.
One of the most fundamental collision equation in kinetic theory gives the dynamics
of rarefied gases. This equation is called the Boltzmann equation and will be the subject

of this entire thesis.

1.1.2 The collisional model of the Boltzmann equation

As mentionned above, we will only be interested in the case of the collisional model (1.1.4)
described by the Boltzmann equation (even if some of our results will apply to more models,
see Chapter 4. We give below some elementary properties of the Boltzmann collisional

operator ().

1.1.2.1 The Boltzmann collision operator

The kinetic theory point of view begins with the microscopic modelling of the collisional
interactions between particles. The Boltzmann equation rules a particular sort of many
particles system. We restrain ourselves to the case of monoatomistic system with elas-
tic collisions. The formal derivation of the Boltzmann equation relies on the following
assumptions on the physical process. We refer to [25][30], first chapter, for a complete

description.

1. We suppose that the interaction is a binary collision, which means that when two
particles are close enough to each other their trajectories are deviated. The con-
sequence of such a postulate is that one can neglect collisions involving more than
two particles, which implies that the system is comparable to a dilute (rarefied) gas.
Mathematically, if the system contains N particles of radius r, we suppose that we
are in the Boltzmann-Grad limit: N73 << 1 and Nr? = O(1).

2. The collisions are considered to be localised both in space and time. This conveys
the idea of the fact that the trajectories are deviated very quickly and it translates
mathematically under the hypothesis that a collision takes place at a position x and

a time ¢.

- 16 -



1.1 General presentation of the Boltzmann equation

3. We also suppose that the collisions are elastic. In other terms, the momentum and
the kinetic energy are preserved throughout the collision process. If two particles
of respective velocities v' and v/, collide, then their outcoming velocities v and wv,
satisfies

/ /
UV + U, = U+ Vs

o' ]7 + [P = ol + o2

We remark here that the mass is the same for all the particles in a monoatomistic
gas and considering several species requires a different version of the preservation of

kinetic energy and therefore different outcoming velocities.

4. The physics of the process is assumed to be microreversible, which means that the
microscopic dynamics are reversible in time. In other terms, the probability that
velocities (v/, v},) are changed into (v, v,) during a collision is equal to the probability

of changing velocities from (v,v,) into (v',v.).

5. We further suppose Boltzmann molecular choas inside the system. This states that
before they collide, two particles evolve independently one from the other. This hy-
pothesis implies an asymmetry in the arrow of time since after collision the velocities

of the two particles are correlated (via the preservation of momentum and kinetic

energy).

The formal derivation, from Newton’s laws, of the kinetic model associated to the
assumptions above (see Chapter 3.2 for a brief explaination or [28], chapter 3) yields the
Boltzmann equation. Note that the rigorous mathematical derivation is still a very hard
problem even if in 1974 Lanford [00], and recently ameliorated in [!!][90], proved it for
very short time (typically, shorter than the mean time of first collision).

The Boltzmann collision operator is therefore a bilinear operator encoding the proba-
bility for two particles with velocities v and v}, to undergo a collision resulting in velocities
v and v,. The laws of elasticity link (v',v}) to (v,vs) in a bijective correspondance (easily
deduced from Figure 1.1) we call the “o-representation”. If we denote

v =

o= —-
v — v’

then o varies on S*~! when (v/,v)) varies in R?¢ and we have the following relation

P N |v — vy

2 2
U,_v+v* |v — vy
2 2
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1 Introduction

Figure 1.1: Correspondance between pre and post collision velocities

Under this representation we obtain an explicit form for the Boltzmann equation,

Of +v-Vof =Q(f. f), (1.1.5)

with @ being the Boltzmann collision operator given by

Qf, f)= /Rd . B ([v — vi],co80) [ f' fi — [ f+] dv.do. (1.1.6)

In the expression above, B is called the Boltzmann collision kernel and encodes the physics

of the collision process, # is the angle between v — v, and o, and we use the standard
notations f = f(t,z,v), f« = f(t,z,vs), f/ = f(t,z,v") and f. = f(t, z,v)).

1.1.2.2 The different collision kernels of the Boltzmann operator

Alternative representations. The first thing one can notice about the Boltzmann
collision kernel is that its form (1.1.6) depends on the choice we made to express (v', v),)
in terms of (v,vs). There exists other parametrisations and we refer to [ 12] Chapter 1 for
advantages and inconveniences of each of them. We nonetheless present two alternative

representations of the Boltzmann collision operator that will be use later in this work.

The most common alternative way of writing the Boltzmann operator () is the so-called
“w-representation” (which can also be easily deduced from Figure 1.1). In this case, we
consider the unit vector

v—1

R
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1.1 General presentation of the Boltzmann equation

to obtain a new bijective correspondance bewteen (v/,v}) and (v, v,), namely

V=0 — (v — vy, w) w

vl = v, — (Ve — v, W) w.

In the “w-representation”, the collision operator reads

QU1 = / Bw—ve,w) [f'f — f1.] dvudw,

R xSd-1

where the correspondance with the “o-representation” is given by

)

The second representation we want to introduce has been proposed by Carleman [27]

d—2

B (z,w) = 2971 B(|z|,0).

and takes v’ and v/, as integration parameters and defines v, = v’ + v, —v. With these

choices, the Boltzmann collision operator reads

1 > / , v = I gl / /
Q(f,f):/Rd (/E /‘U_v,’d_lB(Qv—v —v*,M> [FfL— £ 1] dv*> dv’,

v,v

where E,, . is the hyperplane going through v and orthogonal to v — v'.

The Carleman representation will play an important role in Chapter 6.

Different collisional interactions. The physics of the collision process is encoded in
the Boltzmann collision kernel B. For simplicity reasons, we will always assume that this
kernel is of the form

B (Jv — v, cos 0) = ®(|v — vi|)b(cos 0),

where ® and b are positive and locally integrable functions except, eventually, at respec-
tively 0 and 1. This assumption is made without loss of generality on the kernel but
reduce the complexity of later computations. Moreover, it is satisfied in all the physically
relevant cases that we describe below. We refer to [2%] Chapter 2 or [ 12] Chapter 1 for a

derivation of B from the interaction laws.

A very important case is the one of hard spheres which correspond to the case where
particles are considered as billiard balls bouncing on each other. For this specific interac-
tion one has

JCs >0, B(Jv—wvsl,cos80)=Co|v—uvy.

In a more general setting, we will always assume that the kinetic collision kernel ®

- 19 -



1 Introduction

satisfies either
VzER, colz|” < O(2) < Colzl’

or a mollified version

Viz| 21€R, c¢olz]" < ®(2) < Co 2|

Viz| <1€R, cp < P(2) < Cs,

cp and Cg being strictly positive constants and 7 belonging to (—d,1]. The collision
kernel is said to be “hard potential” in the case of v > 0, “soft potential” if v < 0 and
“Maxwellian” if v = 0.

The angular collision kernel b is seldom known explicitely. However, we will assume
(b o cos) to be a continuous function on 6 in (0, 7], strictly positive near 6 ~ 7 /2, which

satisfies

b(cos ) sin?20 ~ by o~ (FV),
6—0+

for bg > 0 and v in (—o00,2). The case when b is locally integrable, v < 0, is referred to by
the Grad’s cutoff assumption (first introduce in [1%]) and therefore B will be said to be a
cutoff collision kernel. This case is of tremendous importance since it allows to decompose
the Boltzmann operator Q = QT — Q. The case v > 0 will be designated by non-cutoff

collision kernel.

We can mention here that in the physically important case of inverse-power laws in
dimension d = 3,

®(z) = Cp |2]"

and v and v are not independent since there exists s > 2 such that

_3—5

7_8—1
2

v = .
s—1

Moreover, in the case of Coulomb interactions s = 2, we have an explicit formula for the

angular kernel in dimension d = 3, which is

bo
sin* @’

b(cos ) =

The mathematical treatment of these different collision kernels reveals different be-
haviours for solutions to the Boltzmann equation, depending where the singularities of
both the kinetic and the angular collision kernels occur. In other terms, the decay at

infinity or even the regularity properties, both in the velocity variable, of solutions to the
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1.1 General presentation of the Boltzmann equation

Boltzmann equation (1.1.5) are very sensitive to the way ® behaves for small or large

relative velocities and the way (b o cos) blows up at 6 ~ 0.

1.1.2.3 Initial data and boundary conditions

The Boltzmann equation has to describe, at a mesoscopic scale, the motion of particles
evolving in time in the spatial domain 2. We therefore need to prescribe an initial dis-
tribution fi,(z,v) as well as a modelling of the interactions between a particle and the

boundary of €, in the case it exists.

The problem of the initial data is quite obvious
VeeQ, YoeRe,  £(0,2,0) = fin(z,v).

However, there exists density functions that are not physically relevant, as discussed in Sec-
tion 1.1.1.1. In that respect, the physically relevant solutions to the Boltzmann equation
must have finite mass and energy at least in bounded sets. The minimum requirements

one should ask for f;, are thus
1. fin(z,v) = 0 almost everywhere in  x RY,

2. for all K compact in §2,

/K /Rd <1 + |v|2> fin(z,v) dedv < +o00.

There exist several modellings of the interactions between a particle and the boundary
of Q.

In the case Q = R? no boundary condition is needed. However, the relevant solutions
need to satisfy an integrability condition at infinity.

In the case 0 # (), particles will interact with the frontier of the domain. The most

common behaviours are the following.
e The bounce-back condition

V(t,z,v) € RT x 90 x RY, f(t,x,v) = f(t,z,—v).
o If Q is regular enough, then one can consider the specular reflection boundary con-

dition
V(t,z,v) € RT x 9Q x RY,  f(t,2,0) = f(t, 2, Rs(v)),
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1 Introduction

Rz, for z on 012, stands for the specular reflection at that point against the boundary.

One can compute, denoting by n, the outward normal at a point x on OS2,

Yo e R, Ru(v) = v —2(v,ng)n,.

o If Q is regular enough and 02 has a temperature Ty then one can impose the

Maxwellian diffusion boundary condition

Y(t,z,v) € RT x 9 xRY,  f(t,z,v) = [/v~nz>0 ft,z,v) (v-ng) dv m

1o}
Note that the first two boundary conditions convey the idea of particles bouncing against
the wall, in two different manners, whereas the third one expresses the fact that particles
are absorbed by the wall and then emitted back into €2 according to the thermodynamical
equilibrium distribution My between the wall and the gas,

1 2
My(v) = —————¢ 5,

d—1 d+1

(2m) = T2

The last case we will consider is the periodic case when € is the d-dimensional torus T¢.
This will be of particular interest since it is a bounded domain without boundary conditions
except for the periodicity condition. This case is also physically and mathematically
interesting because it has been proven (see [30] Chapter 7) that it is equivalent to the case

when € is a box with specular reflection boundary conditions.

1.1.2.4 Conservation laws and entropy dissipation

There are some few interesting facts that one can rapidly discover about the solutions to

the Boltzmann equation, at least formally. Its collision operator

QA = [ Blo—vleosd) [1'f~ ££] dudo

encodes the microscopic behaviour of the gas in the case of elastic collisions. This particular
case of interaction preserves the mass, the momentum and the energy and this reflects
on the macroscopic observables. Indeed, the Boltzmann collision kernel is invariant, for

instance, under the changes of variable

V — Uy

(v,v6,0) = (V' Vi, k) with k= —

and

(v, V5,0) = (Vs,v, —0).
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These invariances formally give (see [1(] Chapter 1 for a rigorous statement) that for a

given test function ¢(v),

[ eunwew)ae = B~ f1] (84 ¢ — b — ¢) dudv,do,
R4 RdxRd x Sd—1

4
(1.1.7)

The latter property has two major consequences that are related to macroscopic laws.

In full generality (1.1.7) implies first that

1
/ QUL v | dv=0 (1.1.8)
Rd 2
|v]
and second
D(f)i=~ [ QU1 losf du > 0. (1.1.9)

In the case when f is solution to the Boltzmann equation

hf +v-Vof =Q(f, f),

we have that, by integrating in v the differential equation, (1.1.8) comes out as

e the preservation of the total mass

d

7 Qp(t,fﬂ) dx =0,

o the preservation of total energy if €2 has no boundary or if boundary conditions are

bounce-back or specular reflections

d
B —
o /Q (t,z)dx =0,

e the preservation of total momentum if 2 has no boundary

d
p7 /Q p(t,x)u(t,z) de =0,

The consequence of (1.1.9) applied to solutions to the Boltzmann equation, at least at
a formal level, is known as the Boltzmann H-theorem. The latter theorem states, if ) has

no boundary or if boundary conditions are bounce-back or specular reflections, that the
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entropy of a solution f, defined as

S(f) :/Q Rdflogf dxdv

which is the opposite of the thermodynamical entropy, can only decrease in time

d
G5 == [ Dipyas <o,

Such a result is much deeper than it looks and was subject to a lot of discussions and
rejections from the scientific community when Boltzmann discovered it. The entropy
dissipation indeed implies time irreversibility of the Boltzmann equation which seems
unnatural since the Newton dynamics of the microscopic processes it describes are time-

reversible.

We conclude this brief introduction to the Boltzmann equation by describing its steady
states. The entropy dissipation states that we are at a local thermodynamic equilibrium
if

D(f)(t,z) =0,
which is possible if and only if
Vo eRY, f(t2,0) = Mip0) u(ta) o) (V)

where M, , g) is called a Maxwellian distribution and is defined by

p _lv—ul?
M(p,u,e) ('U) = W@ 20

Moreover, for all p = p(t,x), u = u(t,z) and 0 = 0(t, z) the following holds
Q(Mp,u,0)s M(p,u0)) =0,
and therefore a local thermodynamic equilibrium is global if and only if
V(z,0) € QxRY, v VoM(,,0 = 0.

In the case of the torus, this condition yields a unique global equilibrium for the Boltzmann
equation that is the Maxwellian independent of ¢t and x that has the same total mass,
momentum and energy as the initial configuration f;,. This is also the case if €2 is a
non axis-symmetric bounded domain with bounce-back or specular reflection boundary
conditions. We refer to [10] Chapter 1 and [ 12] Section 2.5 for more details and references.

In these cases, we can always consider, without loss of generality, that the equilibrium
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is a centred gaussian with mass and variance 1. We denote

p(v) = W

1.2 Quantitative study of the positivity of solutions (Part
I)

Part I deals with some quantitative and qualitative aspects of solutions to the Boltzmann
equation (1.1.5).

The aim of Chapter 2 is to prove that non-negative solutions to the Boltzmann equation
are in fact strictly positive and bounded from below by an exponential lower bound. This
is an a priori result where we will not tackle the issue of existence. We solely make the
hypothesis that a solution exists and it has some uniform regularity properties we present
below.

The framework of this study is quite wide since we consider all types of collision
operator (hard and soft potentials with or without angular cutoff) and Q is a C? convex

bounded domain with specular reflection boundary conditions.

1.2.1 Motivations and state of the art

The issue of quantifying the positivity of solutions to the Boltzmann equation has been
investigated for a long time. It is of great interest for physical purposes but, more re-
cently, it has also proven itself of significant importance for the mathematical study of the
Boltzmann equation. The development of entropy-entropy production methods (see [112]
Chapter 3 and [113]) to study the convergence to equilibrium [35][36][27] requires this type

of exponential lower bounds.

The first quantitative statement on positivity of the solutions to the Boltzmann equa-
tion goes back to Carleman [20] where he dealt with the spatially homogeneous equation.
The radially symmetric solutions f(¢,v) = f(¢, |v]) he constructed in dimension d = 3 for

hard sphere collision operator, satisfy an almost Maxwellian lower bound
2+e
Wt > to, Vo €R®, f(t,v) > Cre @l

C1,Cy > 0 for all tg > 0 and € > 0. The constants C; and C5 depends only on tg, € and «a
priori estimates on the solution f.

Pulvirenti and Wennberg [95] then extended the latter inequality to solutions to the
spatially homogeneous Boltzmann equation with hard potential and cutoff in dimension

d = 3 with more general initial data. They proved that if the solution has finite mass,

- 925 -



1 Introduction

energy and entropy then it is bounded from below by a Maxwellian lower bound of the

type
V> to, Yo €R®, f(t,v) > Crem 2l

for all ¢ty > 0.

Finally, Mouhot [7%] dealt with the full Boltzmann equation on the torus. He not only
proved the same result as Pulvirenti and Wennberg in the case of hard potential with
angular cutoff but he also obtained the Maxwellian lower bound for soft potential with
cutoff collision kernels. He also derived the same kind of results in the non-cutoff case in

the torus, the immediate appearance of an exponential lower bound of the form

‘U|K+E

V> to, V(z,v) € TT x RY,  f(t,0) > Cy(e)e” 26 ,

for all 9 > 0, all e > 0 and K = K(v) with K(0) = 2 (thus recovering the cutoff case in
the limit).

All these results deeply rely on a spreading property of the gain part Q" of the Boltz-
mann collision operator that arises as soon as the solution has a non-concentration property
which means, roughly speaking, an initial lower bound. This “upheaval point” results from
non-concentration properties of the gain operator ([95]) or continuity-compactness argu-
ments (Chapter 2). The case of spatially inhomogeneous solutions [7%] is based on these
arguments and a method to make them uniform under the flow of characteristics.

The case where €2 is bounded implies a different behaviour for the characteristics and
our main contribution is the derivation of a spreading method that remains invariant under
the characteristics flow. For instance, boundaries imply the existence of grazing collisions
where the strategy develop on the torus fails and we had to create a geometrical approach

of those problematic trajectories.

1.2.2 The free transport equation in convex bounded domain (Chapter
2)

The first task is to establish a rigorous description of characteristic trajectories for the free

transport equation
Orf +vVyf =0

with specular reflection boundary conditions, which can be seen has billiard balls trajec-
tories. Although it has been studied in numerous works [93][33][104][105] and has been
used in kinetic theory [52][59], a complete study in the case of mere specular reflections
and convexity seemed to be missing. The cited works indeed contain assumptions on the
boundary (electromagnetism or strict convexity for example) that lead to clear rebounds

against the boundary whereas a general study should also consider rolling trajectories for
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instance.

Chapter 2 starts with an extensive and descriptive study of the characteristics of the
free transport equation in a C' convex bounded domain. One of our most relevant con-
tribution is the extension of a result of Tabachnikov [101] that states that the set of
points (x,v) that comes from infinitely many rebounds in finite time is negligeable. More

precisely, we proved the following.

Proposition 1.2.1 Let Q be a C' open, bounded domain in R and let (z,v) be in Q x R,
Then for all t > 0 the trajectory finishing at (x,v) after a time t has at most a countable
number of rebounds.

Moreover, this number is finite almost surely with respect to the Lebesgue measure on

Q x R4,

The main idea was to generate a parametrisation of Q that links the trajectories to

their footprints, where this result is known to hold thanks to the work of Tabachnikov.

1.2.3 An exponential lower bound (Chapter 2)

In what follows, we are going to need bounds on some physical observables of solution to
the Boltzmann equation and we describe them below.
We consider a function f(¢,z,v) > 0 defined on [0,7) x Q x R? and we recall the

definitions of its local physical quantities.

e its local energy

est) = [ ol f(t., o)
Rd
e its local weighted energy
it.) = [ ol Fita,v)de,
R4

where ¥ = (2+ )7,
e its local LP norm (p € [1,+0o0))
Bt x) = |1 f(t 2, )l p s
e its local W2 norm

wi(t, @) = [1F(t 2 oo
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The solutions to the Boltzmann equation are assumed to satisfy some properties about
their local hydrodynamical quantities. These properties will differ depending on which

case of collision kernel we are considering and are given by what follows.

e In the case of hard or Maxwellian potentials with cutoff (v > 0 and v < 0):

sup  ef(t,z) < +oo. (1.2.1)
(t,x)€[0,T)xQ

e In the case of a singularity of the kinetic collision kernel (v € (—d, 0)) we shall make

the additional assumption

sup lfc(t, x) < o0, (1.2.2)
(t,2)€[0,T) x 92

where py, > d/(d + 7).

e In the case of a singularity of the angular collision kernel (v € [0,2)) we shall make

the additional assumption

sup  wy(t,z) and sup  €}(t,z) < +o0. (1.2.3)
(t,2)€[0,T)x (t,z)€[0,T)xQ

We now state the result of Chapter 2 in a rather informal way. For a more detailed

and more rigorous statement, we refer to Section 2.2.

Theorem 1.2.2 Let Q be T% or a C? open convex bounded domain in R% and let f;y, be a
non-negative continuous function on Q x R% with strictly positive mass and finite energy.
Let f(t,x,v) be a continuous non-negative solution of the Boltzmann equation in Q x R?

on some time interval [0,T), T € (0,+00], which satisfies

o if the collision kernel is hard or Mazwellian potential with cutoff, then f satisfies
(1.2.1);

e if the collision kernel is soft potential, then f satisfies (1.2.1) and (1.2.2);
e if the collision kernel is non-cutoff, then f satisfies (1.2.3).
Then

(i) for cutoff collision kernels: for all T € (0,T) there exists p > 0 and 0 > 0,
depending on 7, Ey (and Lfﬂ if B is a soft potential kernel), such that for allt € [1,T)
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the solution f is bounded from below, almost everywhere, by a global Mazwellian

distribution with density p and temperature 0, i.e.

| 2

A d P Ll
vVt e [r,T), V(z,v) € Q x RY f(t,x,v))me 30
i1) for non-cutoff collision kernels: for all T € (0,T) and for any exponent K such
(ii) y
that
log (2 + %)
9\ Y]

K >
log2

there exists C1,Cy > 0, depending on 7, K, Ey, E}, Wy (and Lfﬂ if B is a soft
potential kernel), such that

Vte [r,T), Y(z,v) € QxRY,  f(t,z,v) > Cre=Coll”

As an important remark, let us emphasize that in the case of a C® bounded strictly
convex domain with f having uniformly bounded local mass and entropy, our proofs are

entirely constructive.

1.3 The incompressible Navier-Stokes limit of the Boltz-

mann equation (Part /1)

1.3.1 Going from Boltzmann equation to incompressible Navier-Stokes
equations (Chapter 3)

The Boltzmann equation rules the mesocopic evolution of a rarefied gas and is established
on the microscopic dynamics of the particles. It therefore stands in between the micro-
scopic scale and the macroscopic scale described by the acoustics and fluids evolution
equations. A natural question thus arises: does there exist a link between the physical
observables of solutions to the Boltzmann equation and solutions to fluid dynamics ?

It is physically relevant to derive a non-dimensional form of the Boltzmann equation
[16][98] which reads

Oufe + v Vafe = QU £, (1.3.1)

where ¢ is called the Knudsen number of the gas. Physically, e~! represents the average
number of collisions for each particle per unit of time. Therefore, as reviewed in [! 11], one
can expect a convergence from the Boltzmann model towards the acoustics and the fluids

dynamics as the Knudsen number ¢ tends to 0.
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The study of the latter convergence is called the hydrodynamical limits of the Boltz-
mann equation and is of tremendous importance to mathematically prove the coherence
of the different scales of description in physics. Chapter 3 is dedicated to the issue of
hydrodynamical limits and gives a state of the art in the domain. We therefore just de-
scribe briefly here the incompressible Navier-Stokes framework that we thoroughly study

in Chapters 4 and 5. The incompressible Navier-Stokes equations read

Oy — vVAu+u-Vu+ Vp =0,
V-u=0, (1.3.2)
00 — kAO +u -V =0,

to which we can add the Boussineq relation
Vip+6) =0, (1.3.3)

where p is the pressure, v and k are respectively the dynamic viscosity and the thermal

conductivity of the fluid.

The Boltzmann equation and the incompressible Navier-Stokes equations describe
physical phenomenon that do not evolve at the same timescale. As suggested in pre-
vious studies [10][111][9%8] we need to rescale (1.3.1) in time by a factor ¢, to get rid of
these time scale differences. Moreover, they also suggested that a perturbation of order ¢
around the global equilibrium

1 v
p(v) = We E

should approximate, as the Knudsen number tends to 0, the incompressible Navier-Stokes
equations.

We hence study the following equation
1 1 + o d d
8tfg+gv-vmf5:€—2(02(f5,f5), on R™ x T x RY, (1.3.4)
under the linearization f.(t,z,v) = p(v) + ehe(t, z,v). This leads to the perturbed Boltz-

mann equation

1 1 1
Oche + Zv- Vihe = 5 L(he) + ~T(he, he). (1.3.5)

that we will study thoroughly, and where we defined

L(h) = [Q(u,h) + Q(h, )]
[Q(g,h) +Q(h,9)] .
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Roughly speaking, the dissipation of entropy discussed in Section 1.1.2.4 is expected,
in the case of small initial perturbation h.(0,z,v), to make f.(t,z,v) = u(v) + eh.(t, z,v)
converge towards its global equilibrium p(v) as time goes to infinity. This trend to equi-
librium would give bounds on f; and if the latter bounds are uniform in € one can study

the hydrodynamical limit

)
tim |12

where the norm of the convergence will be rigorously defined later. The main goal to
study the limit for Boltzmann equation towards incompressible Navier-Stokes equation is
therefore to develop a Cauchy theory and prove a trend to equilibrium for (1.3.5) that will

be uniform in €.

1.3.2 Hydrodynamical limit in H:, (4~/?) (Chapter 4)

Chapter 4 rigorously justifies the discussion of previous subsection in the Sobolev space
H;, (,u_l/ 2) for s large. More precisely, it constructs a Cauchy theory for small initial
data of the perturbed Boltzmann equation (1.3.5). This theory is uniform in the Knudsen
number, that is to say the smallness assumption is independent of e. Moreover, we show an
exponential decay for h., uniformly in €. The latter decay allows us to rigorously prove the
convergence of the observables of h. towards solutions to the incompressible Navier-Stokes
equation (1.3.2), satisfying the Boussineq equation (1.3.3).

We emphasize here that all the results in Chapter 4 are obtained constructively, which
is of great importance for physical purposes and seldom the case in Boltzmann perturbative
theory. Our main contribution is the derivation of hypocoercive estimates independent on
€ in new distorted norms catching the dependencies in the Knudsen number.

We refer to Sections 4.1.4 and 5.1.2 for a state of the art of the study of the semigroup
and the Cauchy problem.

In this section we consider the Boltzmann equation with hard potential or Maxwellian

potential (y = 0), that is to say there is a constant C'y > 0 such that
B (Jv —v4l,0) = @ (Jv — vi]) b (cos 6)

with
D(z) = Cp2", v€]0,1],

and a strong form of Grad’s angular cutoff, expressed here by the fact that we assume b

to be C' with the controls from above

Vz e [-1,1], b(2),b(2") < Cp.
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For the sake of clearness, we study (1.3.4) with the linearization f.(¢,z,v) = u(v) +
5u1/2h5(t,:c,v) which amounts to working on h. in the space Hj , without any weight.

The sole changes are in the linear and bilinear operators:

L) = QG+ Qb o]
! 3q. us 1,1 1 (1.3.6)
) = [0t + Qb i

1.3.2.1 The linear Boltzmann operator

A common strategy in perturbative framework is to study the properties of the linear
operator part and then consider the bilinear as a remainder term. We therefore focus first

on the linear part of the perturbed Boltzmann equation

1 1
GSZ?L—*U'VJ;.
3 €

In the case of hard potential with angular cutoff, it is known that L is a negative
self-adjoint operator in L2. More importantly, L in hypocoercive. This translates into the

following properties.

Properties in H;,v
(H1): Coercivity and general controls
L:L? — L2 is a closed and self-adjoint operator with L = K — A such that:

e A is coercive:

— it exists [|.|,, norm on L? such that

Vh e L?

v

vy lhlize < vt IBIR, < (A(R), Rz < va' I, .
— A has a defect of coercivity regarding its v derivatives:
Vh e Hy, (Vol(h), Voh) 2 > v3 Vb3, — v B3, -
o There exists C* > 0 such that

vhe Ly, Yg € Ly, (L(h),g)r2 < C* |lhll, llglla, -

where (V{C\)Kk@ are strictly positive constants depending on the operator and the dimen-

sion d.
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We define a new norm on L2 :
k)

Il = 100, e

(H2): Mixing property in velocity

¥ >0,3C(0) >0, Vhe HY, (VyK(h),Voh)ra < C©) k|72 +08[Voh7, -

(H3): Relaxation to equilibrium

The kernel of L is generated by d+2 functions which form an orthonormal basis for Ker(L):

Ker(L) = Span{¢1(v), ..., ¢4t2(v)}.

Moreover, the ¢; are of the form B(v)e“”|2/4, where P; is a polynomial.
Furthermore, denoting by 7 the orthogonal projector in L? on Ker(L) we have the

following local coercivity property:

IN>0,Vhe L2, (L(h),h) < —)\HhL‘

2
Ay

where ht = h — 1 (h) denotes the microscopic part of h (the orthogonal to Ker(L) in L2).

Assumptions in H; ,, s > 1

(H1’): Defect of coercivity for higher derivatives

L satisfies the following property: for all s > 1, for all |j| + |I| = s such that |j| > 1,

Vh e H?

T

. . . 2
OIA M), )iz, > v o[, — vt Il

where I/é\ and ué\ are strictly positive constants depending on L and d.

We also define a new norm on H
k)

1/2

.12
Mg = | o,

lil+1l<s

(H2’): Mixing properties
(H2) extends to higher Sobolev’s spaces: for all s > 1, for all [j|+ || = s such that |j| > 1,

T,

V6 >0, 3C(6) >0, Vhe H,, (9K (h),00h)z, < C(6) Il +6 Ha;'h‘

2
Li

All the constants are explicit thanks to the works of C. Baranger and C. Mouhot [/]
and C. Mouhot [79].
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The first important result derive in Chapter 4, is the fact that the linear part of the

Boltzmann operator generates a contraction semigroup in H .
bl

Theorem 1.3.1 If L is a linear operator satisfying the conditions (H1’), (H2’) and (H3)
then there exists 0 < eq < 1 such that for all s in N*,

1. forall0 <e <eq, Ge = 2L — e Y-V, generates a C°-semigroup on H3,.

2. there exist ng) >0 and a norm ||-|[3s such that for all 0 < e < eq:

2 2 012 2 i |I?
B~ | 103, + D 005, +<2 30 (o, |-
[1<s [U+15]<s v
l71>1

and for all h in H3

7U,

(Ge(h), yus < —C& ||h = me. ()3 -

The modified norm ||-||,;; is dependent on €. We can however make two remarks.
€

1. The dependence on € only appears in front of v-derivatives which disappear in the
process of the hydrodynamical limit since only integral against the v variable are of

interest.

2. In the next subsection, another norm is constructed and do not involve any £ depen-
dencies. With this norm, a same result than Theorem 1.3.1 can be obtained with

similar arguments.

1.3.2.2 The perturbed Cauchy problem and trend to equilibrium

The hypocoercivity features of the linear Boltzmann operator and the generation of a
strongly continuous semigroup in H; , discussed in the previous subsection were used by
C. Mouhot and L. Neumann [%?] to obtain existence, uniqueness and exponential decay
to equilibrium in the case ¢ = 1, with constructive methods. Such results were known to
exist since the first rigorous studies by S. Ukai [107][108] but the methods of the proof
were not constructive and thus did not give explicit statements.

The controls we have on the bilinear remainder term I' are the following.

(H4): Control on the second order operator

[: L2 x L? — L2 is a bilinear symmetric operator such that for all multi-indexes j and
I such that |j]+|I| <'s, s >0,
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T g,h ,f 2 < ’ T
CANCHONIFE G o) Iflle =0

)

G; . and G7 being such that G , < Gt GS < G5t and satisfying the following property:

RV

G2.(9:1) < Cr (lglls , Iy + W0l ol

dsp e N, Vs > 59, 3Cr > 0,
Ga(9:7) < Cr (Il sia N9llarg + 190 srsz Il ) -

The uniform Cauchy theory we present in Chapter 4 is an extension of the results
derived in [%2] to obtain estimates that are uniform in the Knudsen number. However, in
the case ¢ = 1, the linear part (G; and the bilinear remainder term I" are of the same order
and can be compared. The main difficulty for general Knudsen number is the fact that
the linear part G, generates a contraction semigroup with a spectral gap of order 0(1)
whereas the bilinear part is of order O(¢~1). This makes impossible to consider e~ 'T as a

mere error term since it explodes as € goes to 0. Our main contributions are

¢ A method mixing the hypocoercivity properties of the linear operator L with the a
priori estimates on the bilinear operator, in particular thanks to an orthogonality
property of the symmetrised operator I.

(H5): Orthogonality to the Kernel of the linear operator

Vh, g € Dom(I')N L%, T(g,h) € Ker(L)*.
¢ The construction of a new norm in Hy , combining the idea of [32] and [50] to study
both the microscopic and the fluid part of the solution.

The main result is the following theorem.

Theorem 1.3.2 Let () be a bilinear operator such that:
e the equation (1.3.4) admits an equilibrium 0 < p € L'(T? x RY),

e the linearized operator L = L(h) around p with the scaling f = p + eu'2h satisfies
(H1”), (H2’) and (H3),

o the bilinear remaining term I' = T'(h, h) in the linearization satisfies (H4) and (H5).
Then

o there exists 0 < ¢4 < 1 and a norm ”HHSL such that for any s > so (defined in (H4))
and any 0 < e < g, |||l ~ Iy, independently of e,
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e there exist 65 > 0, Cs > 0 and 75 > 0 such that for all 0 < e < ey4:

For any distribution 0 < fi, € L'(T? x RY) with fi, = pu+ e 2hin =0, hip in Ker(G.)*
and
thn”q.[zL < (557

there exists a unique global smooth (in Hj ,, continuous in time) solution f. = f.(t,z,v)

to (1.3.4) which, moreover, satisfies fo = p+ ep'/?he > 0 with:

||h6H7-L§l < dee” ™,

We emphasize here that this Theorem is more general than just the case of the Boltz-
mann equation. It is indeed applicable to several other kinetic models such as the linear
relaxation, the semi-classical relaxation, the linear Fokker-Planck equation and the Landau
equation with hard and moderately soft potential.

1.3.2.3 The limit towards the incompressible Navier-Stokes equations

Theorem 1.3.2 implies that the sequence (he )y, is bounded in L{°H . Such a bound-
edness property is enough (see [¢]) to obtain a weak convergence result he — h in distri-

butions as € goes to 0 with

1. his in Ker(L), so of the form

h(t,z,v) = |p(t,z) + v.u(t,z) + %(m? —d)o(t,z)| p(v)/?,

2. (pe, ue, 0) converges weakly-* in L{°(H?) towards (p,u, ),

3. (p,u, 0) satisfies the incompressible Navier-Stokes equations (1.3.2) in the Leray sense

[66] as well as the Boussineq equation (1.3.3).

In fact this convergence is strong and Chapter 4 gives explicit rates of convergence.

Theorem 1.3.3 Consider s > so and hiyn in H3 ,, such that ||hin|[3s < 0s.

Then, (he)eso eists for all 0 < € < g4 and converges weakly* in L (HEL2) towards h
such that h € Ker(L), with Vy-u =0 and p+ 60 = 0.

Furthermore, fOT hdt belongs to HL? and it exists C > 0 such that,

+o0 +0oo
‘ / hdt — / hadt'
0 0
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1.3 The incompressible Navier-Stokes limit of the Boltzmann equation (Part I7)

One can have a strong convergence in L[Q0 T]HiL% only if hiy, is in Ker(L) with Vg -u;ym =0
and pin, + 03 = 0 (initial layer conditions).

Moreover, in that case we have
1h — hEHL[QO ooy HEL2 < Cyelin(e)l,
and for all & in [0,1], if hin belongs to HEFOL2,

sup ||h - h5||HsL2 (t) < Cemin(é,l/Q)’
t€(0,400) z v

This theorem gives a strong convergence for (pe, u., 0-) towards (p, u, 6) but above all it
gives us that (p, u, #) is the solution to the incompressible Navier-Stokes equations together

with the Boussineq equation satisfying the initial conditions:
e u(0,z) = Pujn(x), where Pu;,(x) is the divergence-free part of wu;,(z),

o p(0,2) = —0(0,2) = 5(pin() — Oin(2)).

A similar convergence was known to exist (see [1()]) in the case where the spatial domain
was R?, but did not require any integration in time. Our main contribution was to adapt
the arguments to the case of the torus where the integration in time is compulsory to

control the Fourier transform of the semigroup generated by G. that was derived in [39].

1.3.3 Hydrodynamical limit in polynomial weighted spaces (Chapter 5)

This work has been done jointly with Sara Merino-Aceituno and Clément Mouhot, both
from the University of Cambridge.

The aim of Chapter 5 is to extend the previous semigroup properties of the linear part
G, and the Cauchy theory for the full perturbed equation to more general space. The ulti-
mate goal is to derive those results, uniform in the Knudsen number, in LLLS® (1 + ]v|2).
This space is indeed optimal in the velocity variable, since it incorporates bounded mass
and energy densities, in the Boltwmann framework whereas LJ° is problematic for the
Navier-Stokes equations. We would therefore be able to construct solutions to the incom-
pressible Navier-Stokes equations in L}° via the Boltzmann equation and its hydrodynam-
ical limit. Here again we hope to use constructive arguments and obtain explicit rates of
convergence.

This aim has not been achieved yet but it is still a work in progress with Sara Merino-
Aceituno and Clément Mouhot. We so far managed to drop the strong exponential weight
for a polynomial one, almost optimal, and we can deal with spaces without any derivatives

in v for the Cauchy problem. The semigroup properties are extended in all Lebesgue and
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Sobolev spaces with a polynomial weight (1 4 |v|)*, for k large enough and k > 2 in the

L} case. Chapter 5 presents our joint work.

We recall that we are working on the dimensionless Boltzmann equation

O fe + év Vafe = é@(fa, fo), on TN x RV, (1.3.7)

under the linearization f.(¢,z,v) = p(v)+¢ehe(t,x,v), which leads to the perturbed Boltz-
mann equation

1 1 1
athg + EU . Vxhg = gﬁ(hg) + gQ(hE, hg)’ (138)

where we defined

L(h) = 2Q(u, h).

Note that we will use curly letters for operators in that Section and standard ones to talk
about the restrictions of these operators to Hj , (/fl/ 2). For instance, we recover the

operator of previous section

(gf)‘H;w(ufl/Q) =G..

We still consider the Boltzmann equation with hard potential or Maxwellian potential

(v = 0), that is to say
B (Jv — vi|,cos0) = @ (Jv — vi]) b(cos 0), (1.3.9)

with ® and b be positive functions. This hypothesis is satisfied for all physical model and
is more convenient to work with but do not impede the generality of our results.
We also restrict ourselves to the case of hard potential or Mazwellian potential (v = 0),

that is to say there is a constant C's > 0 such that
O(z) =Cp2", ~€]0,1], (1.3.10)

with a strong form of Grad’s angular cutoff (see [!%]), expressed here by the fact that we

assume b to be C! with the controls from above
Vz e [-1,1], b(2), b(z/) < Cy. (1.3.11)

1.3.3.1 Semigroup properties in Lebesgue and Sobolev spaces

In a recent article [51], an abstract extension theorem allows, under certain assumptions,
to extend semigroup properties from a space E into a larger space £. The latter theo-
rem allowed to prove that G; generates a strongly continuous semigroup in Lebesgue and

Sobolev spaces with polynomial weight [51].
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In the same spirit, we show that G. generates a strong continuous semigroup in
Lebesgue and Sobolev spaces of the form W WE? (1+ [v])¥) for a < B and k large
enough with explicit thresholds independent of €. It is done by starting from existing
results in Hy , (,ufl/ 2) and then decomposing the linear operator G. into a dissipative
part and a regularising part that are then treated in larger and larger spaces up to the
space where the semigroup properties have been derived in previous articles. We thus
improve the existing result [23]. Our main contribution is an adapted version of the ab-
stract extension theorem developed in [51] that takes into account the dependencies on the
Knudsen number as well as a careful study of the dissipative and the regularising parts of

the operator G..

Theorem 1.3.4 Let B be a Boltzmann collision kernel satisfying (1.3.9)-(1.3.10)-(1.3.11).
There exists 0 < eq < 1 such that for all p, q in [1,4+00], all o, B in N with o <  and all

k> k‘;, where

3+ /19 48 1
= 2 - . (1 - ) , (1.3.12)
q

q

1. for all0 < e < g4, Ge = e 2L — e v -V, generates a C°-semigroup, Sg_(t), on
Wg,qu@m ((v)k),

2. for all T > 0, there exist Cg(T), Ao > 0, such that for all 0 < & < g4 and for all h;y,
mn Wf’qu’p (<v)k), forallt >

”Sga (t)(hm) - Hg(hin)ng,an{f»P(@)k) < CQ(T)ei)\Ot ||hm - Hg(hin)ngqufm((v)k) )

where Ig is the spectral projector onto Ker (G:) which is given, for all €, by

d+1

Mg(g) = (/MW 9o d:cdv) Pift, (1.3.13)

=0

where ¢po(v) =1, fori=1,...,d we defined ¢;(v) = v; and pg41 = <\v[2 — d> /V2d.
The constants €4, Cg(T) and \g are constructive and only depends on d, p, q, k, a,, B and

the kernel of the Boltzmann operator.

The rate of decay A\g can be taken equal to the spectral gap of £|H£,U(u‘1/2) (see [23]),
for s as large as wanted, when k is large enough (and we obtained a constructive threshold).
Finally, we emphasize that in the case ¢ = 1, the result holds for all £ > 2. This is
almost the minimal regularity L2 <1 + ]v|2> for the Boltzmann equation, that is solutions

with bounded mass and energy.

-39 -



1 Introduction

1.3.3.2 Cauchy problem and exponential decay in Sobolev spaces with poly-

nomial weight

The second part of Chapter 5 deals with the uniform, in the Knudsen number, Cauchy
problem and the exponential decay towards equilibrium in larger spaces than the expo-
nential weight framework we dealt with in Chapter 4.

The spaces where we developed our theory are of the following forms
welwbl (1 + \v|2+0> and WolHP (1 + yv|2+°) ,

for s large enough and all o < 5. This improves the Cauchy theory developed in Chapter
4 by dropping the exponential weight and the v-derivatives. Again, the polynomial weight
is almost the optimal one for the Boltzmann equation (conservation of mass and energy).

Such results have recently been obtained [51] for fixed €, in which case the rate of decay
of the semigroup generated by G. is of the same order than the remainder term Q(h,h).
However, in order to obtain uniform results we have to handle the remainder term £~ 1Q
and it cannot be treated as a mere perturbation that evolves under the flow of Sg_, the
semigroup generated by G, since the latter has an exponential decay of order O(1).

Our main contribution is a new analytic point of view about the extension theorem in
[51] and includes the bilinear term. More precisely, we decompose the perturbed equation
(1.3.8) into a hierarchy of equations taking place in spaces that have more and more
regularity up to Hy, (,ufl/ 2) where estimates had been derived in Chapter 4. At each
step we use the dissipative part of the linear operator to control the remainder term e~'Q
whereas the regularising part is controlled in spaces with higher regularity.

We hence state the following theorem tackling the Cauchy problem and the exponential

convergence towards the equilibrium pu.

Theorem 1.3.5 Let B be a Boltzmann collision kernel satisfying (1.3.9)-(1.3.10)-(1.3.11)
and letp=1 orp=2.
There exists 0 < eq4 < 1 and By in N such that

o for all o, B in N such that 8 > By and o < B and for all k > 2 define

& = wetwir (k).

e for any Ay in (0,X0) (Ao defined in Theorem 1.3.4) there exist Co g, Na,p > 0 such
that for any 0 < e < g4, for any distribution fi, = u+ ehip = 0:

If

(i) hip is in Ker(G.)* in EP,

- 40 -



1.4 A quantic version of Boltzmann equation (Part 117)

(ii) Hhmng < Na,B)

Then there exists a unique global solution f. = f.(t,z,v) to (1.3.7) in EP which, moreover,

satisfies f- = u+ ehe = 0 with:
e h. belongs to Ker(G.)* for all times,

|hellgr < Cag llhinllgn €08

The constants Cy g and 14,5 are constructive and depends only on «, S, k, d, X and the

kernel of the Boltzmann operator.

1.4 A quantic version of Boltzmann equation (Part //7)

1.4.1 The Boltzmann-Nordheim equation

As we mentionned before, the Boltzmann equation describes, at a mesoscopic level, the
dynamics of a monoatomistic rarefied gas with elastic collisions. There exists different
modifications of this kinetic model, for polyatomistic gases for instance (see [29]).

For all these models, the Boltzmann equation arises from microscopic behaviours ruled
by classical physics, where the probability of two particles colliding depends only on the
number of particles moving at the incoming velocities. The case of quantum mechanics
is rather different since the probability of two particles colliding not only depends on
the velocity of the particles undergoing the collision but also the outcoming velocity the
collision yields. We refer to [32] Chapter 17 for more details.

Using quatum statistical physics instead of classical statistical physics, Nordheim [39]
derived a quantic version of the Boltzmann equation for bosons and fermions.

The latter evolution equation is called the Boltzmann-Nordheim equation and reads

as follow, with the usual shorthand notations.
Of +v-Vaf =Qalf),
with
Qalf) = /}RNngl B(v,v.,0) [/ A+ af)fl(l+af) — fL+af) f(1+ afl)] dvdo.

The Boltzmann-Nordheim equation thus rules the dynamics of the distribution of par-
ticles for a dilute quantum gas of bosons (o = 1) or fermions (a«w = —1). Note that in the

classical case o = 0 one recovers the Boltzmann equation.
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In Chapter 6, our study applies to the case where the collision kernel B is hard poten-
tial with angular cutoff. More precisely, the collision operator is supposed to satisfy the

following properties.
1. B(v,v4,0) =@ (Jv —vs]) b(cosb),
2. there exist Cg > 0 and « in [0, 1] such that ®(z) = Cg27,

3. (bocos) is continuous on (0, 7) and integrable on the sphere:

Iy = / b(cos @) do = ‘Sd_2‘ / b (cos 6) sin? 20 df < +oo0.
sd-1 0

Moreover, we restrain ourselves to the spatially homogeneous case for a gas of bosons
of+v-Vaf =Q(f), (1.4.1)
with

A= [, B0 At HLAT L) - S0+ LA D] dodo (142)

1.4.2 Cauchy problem and the Bose-Einstein condensate (Chapter 6)

The Boltzmann-Nordheim collision operator (1.4.2) is in fact the addition of the classical
Boltzmann collision operator with a trilinear operator. If some properties of the classical
Boltzmann equation still hold true for the Boltzmann-Nordheim equation, such as the

a priori preservation of mass, momemtum and energy

1 1
/ o | F() do= / o | folv) dv,
Rd U|2 R

2
| [l

the trilinear term implies rather different behaviours.

Indeed, physical observations and numerical simulations (see [10] for an overview of
these results) in the isotropic setting f(¢,v) = f(¢, |v]) showed that there exists a critical
temperature T.(Mp), depending on the mass My of the bosonic gas. If the temperature
of the initial datum f;, is below T.(Mj) then the solution of the Boltzmann-Nordheim
equation will develop a dirac mass at |v| = 0 in finite time. This blow-up phenomenon is

known as the Bose-Einstein condensate.

From the mathematical point of view, the only rigorously known results focused on the
isotropic framework. X. Lu [69][70][71] built solutions in Li and proved a Cauchy theory

for measures. He also proved, with not entirely constructive methods, a concentration
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phenomenon for subcritical temperature in the limit ¢ goes to infinity. We emphasize here
that this asymptotic result does not imply the appearance of a Bose-Einstein condensate
in finite time. Recently, other isotropic solutions have been constructed in L'(1 + |v]**?)
by M. Escobedo and J. J. L. Velazquez [10]. Moreover, they made a major breakthrough
by proving the appearance of a Bose-Einstein condensate in finite time under some as-
sumptions on the solution [10] and for subcritical temperatures [11].

In Chapter 6 we develop a local in time Cauchy theory in the non-isotropic setting in
LY N L. The latter space is the most general one can hope for a Cauchy theory that
catches the Bose-Einstein condensate. Solutions are indeed physically expect to have finite
mass and energy and the creation of a dirac mass creates a blow-up in L* whereas it only

leads to a loss of mass in L!.

Our main contributions are a new version of Povzner inequality [0], which bounds the
evolution of convex functions through a collision, and a new control on the operator QT for
high and small relative velocities v — v,. We also control the higher moments of solutions
to the Boltzmann-Nordheim equation and derive a precise estimate on the blow-up of the
(2 4 )" moment of solutions at time ¢ = 0, in the spirit of [77], to obtain uniqueness.

We denote, for all s and ¢ in RT,

M) = [l (o) do

the s moment of a function f(t,v). The main result of Chapter 6 is the following Cauchy

theorem for the Boltzmann-Nordheim equation for bosons.

Theorem 1.4.1 Let fo(v) be in Lé’v N L.
Then there exists Ty > 0, depending only on Cg, ly, 7, HngL% and || fol| jee, Such that
there exists a unique f in L7 ([O,To)jL%,v N L) solution of (6.1.3) on [0,Ty) x RY that

loc

preserves mass and ENETGY.

Moreover, this solution satisfies

o Ty=+0c0 or lim [f|;~ = +00,
T—Ty [0,7] xR

o [ preserves the momentum of fo,

o for all s >0 and for all 0 < T < Ty,

M(t) € Liy. ([T, To)) -
o for all T < Ty,

sup (f(t,v)+/0t(1+]v|7)f(s,v) ds) < .

[0,T]xRd
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Let us mention here that Theorem 6.2.1 implies a Bose-Einstein concentration phe-
nomenon as time goes to infinity for subcritical initial data if they are globally defined
thanks to the work of Lu ([71] Theorem 2).

The latter argument is however non explicit and does not prove any blow-up in finite
time whereas [10] gives the apparition of the Bose-Einstein condensate in finite time in the
isotropic setting. A work in progress is the proof of the creation of a condensate in finite

time in our more general framework.

Appendices

1.A Notations

We will work in different function spaces. We gather in this appendix the different nota-
tions we will use throughout the sequel.

We first emphasize the fact that we consider that 0 belongs to the following sets: N,
zZt, Qt, (R — Q)" and RY.
We then define the following shorthand notation,

(Y =1+

1.A.1 Function spaces for one variable

Here, the term “variable” has to be understood as being in a particular vector space of
dimension N, namely RY. Basically, when there is not any combination of time, space
and velocity spaces.

Let p bein [1,4+00), ¢ in R, s in R* and m : RN — R* a strictly positive measurable

function.

Weighted Lebesgue spaces. We define the space LP (m) by the norm

p
1Al o my = [/ f)IPm(y)* dy|
R4
and the space L* (m) by the norm

[fllLoe my = sup (Lf(m)[m(y)) -

yeRN

In the case when m(y) = (y) is a power of (-) we use the shorthand notations

L =L (m?) and L =L (m?).
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Weighted Sobolev spaces In the case where s is a natural number, for any multi-index
k= (ki,...,ky) in NV we denote

e the k" partial derivative by

o ok

oF =~ ...
oy kN

e foriin {1,..., N} we denote by ¢;(k) the i*" coordinate of k,
e the length of k will be written |k| =), ¢;(k),
e the multi-index d;, by : ¢;(d;,) = 1 if ¢ = ip and 0 elsewhere.

With these conventions, we define the space W*P (m) by the norm

B =

1oy = | D [2%]

k| <s

)

p
LP(m)

and the space WP (m) by the norm

1w scoqmy = D Hakame)'

|k|<s

In the case m(y) = (y) we use the obvious shorthand notations W, ¥ and W,**.

These definitions can be extended by interpolation, or via the theory of Fourier trans-
form, to the case s in RT.

In the particular case p = 2, we will write H* (m) = W*? (m) and H} = qu’2.

1.A.2 Function spaces for several varaiables

In the case where the functions we consider are functions of time, space and velocity we
need distinctive notations. The convention we chose is to index the space by the name of

the concerned variable. For instance, for a measurable function
ft,z,0): [0,T) x Q x R — RY,
with Q € R?, we will denote for p in [1, +o0]

LP = LP([0,T)), LP=1LF(Q) and LP=LP(RY).

T

We extend these notations verbatim to weighted Lebesgue and weighted Sobolev spaces.

In the case of norm involving all the different variables we need new definitions. We
consider functions f(z,v) defined in Q x R? with Q ¢ R?.
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Let p and ¢ be in [1,400), @ and s in RT and m : R — R* a strictly positive
measurable function.
In the case where s is a natural number, for any multi-indexes j = (ji,...,jn) and
I=(l1,...,ly) in NV we denote the (j,1)"" partial derivative by
: .y
al] = 0,0},

with multi-index partial derivatives being defined in previous subsection. We define the
space W IWEP (m) by the norm

Wlyoowrro = > [0if]

li|<al1<p
[t +]j]<max(a,B)

LiLg(m)

We emphasize here that in the case a = § and p = ¢ this definition is equivalent to the
ﬁ 7 (m)-norm on Q x R? we defined in the previous subsection. Again, in the particular

case p = 2 or ¢ = 2 we will use the notations, respectively, Hg and H{? .
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Chapter 2

Instantaneous filling of the
vacuum for the full Boltzmann

equation in bounded domains

We prove the immediate appearance of a lower bound for continuous mild solutions to the
full Boltzmann equation in the torus or a C? convex domain with specular boundary condi-
tions, under the sole assumption of reqularity of the solution. We investigate a wide range
of collision kernels, some satisfying Grad’s cutoff assumption and others not. We show
that this lower bound is exponential, independent of time and space with explicit constants
depending only on the a priori bounds on the solution. In particular, this lower bound
18 Mazwellian in the case of cutoff collision kernels. A thorough study of characteristic
trajectories, as well as a geometric approach of grazing collisions against the boundary are
derived.

These results are entirely constructive if the domain is C3 and strictly convex.
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2 Instantaneous filling of the vacuum

2.1 Introduction

This chapter deals with the Boltzmann equation, which rules the behaviour of rarefied
gas particles moving in a domain © of R? with velocities in R? (d > 2) when the only
interactions taken into account are binary collisions. More precisely, the Boltzmann equa-
tion describes the time evolution of f(t,z,v), the distribution of particles in position and

velocity, starting from an initial distribution fo(z,v) .

We investigate the case where () is either the torus or a C? convex bounded domain.

The Boltzmann equation reads

VE=0 , Y(z,0)eQxRY O f4+v-Vif =Q(f, f), (2.1.1)
V(z,v) € QxRY, - f(0,2,0) = fo(x,0),

with f being periodic in the case of Q = T¢, the torus, or with f satisfying the specular

reflections boundary condition if  is a C? convex bounded domain:
Y(z,v) € 02 x R, f(t,z,v) = f(t,z,Re(v)). (2.1.2)

Rz, for x on the boundary of €2, stands for the specular reflection at that point of the

boundary. One can compute, denoting by n(z) the outward normal at a point x on 9%,

Vo e RY, Ru(v) =v—2(v-n(z))n(z).

The quadratic operator Q(f, f) is local in time and space and is given by

QU = / B (jv— .l cos 8) [f'f — 1] dvedo,

RdxSd—1

where f', fi, fi and f are the values taken by f at v/, vs, v, and v respectively. Define:

o vt v =y
2 2 v—v
vtv.  |u—u ,and  cosf = (——,0).
o = * * |v — vy
* 2 2

The collision kernel B > 0 contains all the information about the interaction between
two particles and is determined by physics (see [25] or [30] for a formal derivation for the

hard sphere model of particles). In this chapter we shall only be interested in the case of
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B satisfying the following product form
B (Jv — vy, co80) = @ (Jv — vi|) b(cos 0), (2.1.3)

which is a common assumption as it is more convenient and also covers a wide range of

physical applications. Moreover, we shall assume that ¢ satisfies either
VzeR, colz|7 < P(2) < Cs|z|” (2.1.4)
or a mollified assumption

Y|zl >1€eR, colz|” < ®(z) <Csplz|”

(2.1.5)
V|Z’§1€R, C@Q(I)(Z)QCQ,

cp and Cg being strictly positive constants and v in (—d, 1]. The collision kernel is said
to be “hard potential” in the case of v > 0, “soft potential” if v < 0 and “Maxwellian” if
v=0.

Finally, we shall consider b to be a continuous function on 6 in (0, 7], strictly positive

near 0 ~ /2, which satisfies

b(cos §)sin?20 ~ oo~ 1+ 2.1.6
(cos 0) sin ) bo ( )
for bg > 0 and v in (—o0,2). The case when b is locally integrable, v < 0, is referred to by
the Grad’s cutoff assumption (first introduce in [13]) and therefore B will be said to be a

cutoff collision kernel. The case v > 0 will be designated by non-cutoff collision kernel.

2.1.1 Motivations and comparison with previous results

The aim of this chapter is to show and to quantify the strict positivity of the solutions to
the Boltzmann equation when the gas particles move in a bounded domain. This issue has
been investigated for a long time since it not only presents a great physical interest but
also appears to be of significant importance for the mathematical study of the Boltzmann

equation.

Moreover, our results only require some regularity on the solution and no further
assumption on its local density, which was assumed to be uniformly bounded from below
in previous studies (which is equivalent of assuming a priori either that there is no vacuum

or that the solution is strictly positive).

More precisely, we shall prove that continuous solutions to the Boltzmann equation

with angular cutoff in a C? convex bounded domain or the torus which have uniformly
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bounded energy satisfy an immediate Maxwellian lower bound:

[v
Vo > 0, 3p,0 > 0, ¥t > tg, ¥(z,0) € QX RY,  f(t,m,0) > —b— e a7,

The strict positivity of the solutions to the Boltzmann equation standing in the form of
an exponential lower bound was already noticed by Carleman in [20] for the spatially homo-
geneous equation. In his article he proved that such a lower bound is created immediately
in time in the case of hard potential kernels with cutoff in dimension 3. More precisely, the
radially symmetric solutions he constructed in [20] satisfies an almost Maxwellian lower
bound,

Vt > to, Yo €R3,  f(t,v) = Cre O™

Cy,Cq > 0 for all tg > 0 and € > 0. His breakthrough was to notice that a part Q™ of the

Boltzmann operator () satisfies a spreading property, roughly speaking

Q" (L) 1wn) 2 Cilp (s ar);

with Cy < 1 (see Lemma 2.4.2 for an exact statement).

The spreading strategy was used by Pulvirenti and Wennberg in [95] to extend the
latter inequality to solutions to the spatially homogeneous Boltzmann equation with hard
potential and cutoff in dimension 3 with more general initial data. Their contribution was
to get rid of the inital boundedness suggested in [20] by Carleman thanks to the use of
an iterative regularity property of the QT operator. This property allowed them to imme-
diately create an “upheaval point” that they then spread with the method of Carleman.
Moreover, they obtain an exact Maxwellian lower bound of the form by controlling the
decay of C7}

Vt > to, Yo € RS, f(t,v) = Cre C2lF,

for all ¢ty > 0.

Finally, Mouhot in [78] dealt with the full Boltzmann equation in the torus. He derived
a spreading method that is invariant under the flow of the characteristics, obtaining lower
bounds uniformly in space as long as the solution has uniformly bounded density, energy
and entropy (for the hard potential case) together with uniform bounds on higher moments
(for the soft and Maxwellian potentials case). However, he also implicitly assumed that
the initial data had to be bounded from below uniformly in space. He also derived ([78])
the same kind of results in the non-cutoff case in the torus, the immediate appearance of

an exponential lower bound of the form

Vt > to,¥(z,0) € T x RE,  f(t,0) > Cy()e~C2@lI™™
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for all 9 > 0, all e > 0 and K = K(v) with K(0) = 2 (thus recovering the cutoff case in
the limit). His idea was to split further the @) operator into a cutoff part and a non-cutoff
part that is seen as a small perturbation of his original spreading method.

Our results extend those in [75] in the case of C? bounded convex domain. Our
main contribution is the derivation of a spreading method that remains invariant under
the characteristics flow that, unlike the torus case, changes the direction of velocities at
the boundary. Moreover, we emphasize here that the existence of boundaries implies the
existence of grazing collisions against the latter, where the strategies developped in [95] and
[7%] fail. We therefore to derive a geometrical approach to those problematic trajectories.

Furthermore, we do not assume any uniform boundedness on the initial data but we
require the continuity of the solution to the Boltzmann equation. However, if we keep the
assumptions made in [75] and further assume that the domain is C® and strictly convex

then our proofs are constructive.

The quantification of the strict positivity, and above all the appearance of an expo-
nential lower bound, has been seen to be of great mathematical interest thanks to the
development of the entropy-entropy production method. This method (see [I12], Chapter
3, and [! 13]) provides a useful way of investigating the long-time behaviour of solutions
to kinetic equations. Indeed, it has been successfully used to prove convergence to the
equilibrium in non-pertubative cases for the Fokker-Planck equation, [30], and the full
Boltzmann equation in the torus or in C! bounded connected domains with specular re-
flections, [37]. This entropy-entropy production method requires (see Theorem 2 in [37])
uniform boundedness on moments and Sobolev norms for the solutions to the Boltzmann

equation but also an a priori exponential lower bound of the form
f(t7 IL’, U) 2 Cleicﬂi}'q?

with ¢ > 2.

Therefore, the present chapter allows us to prove that the latter a priori assumption
is in fact satisfied for a lot of different cases (see [73], Section 5 for an overview). We
also emphasize here that the assumption of continuity of the solution we have made does
not reduce the range of applications since a lot more regularity is usually asked for the
entropy-entropy production method. Moreover, our method, unlike the ones developed in
[95] and [78], does not require a uniform bound on the local density of solutions, which
is not a requirement for the entropy-entropy production method either (see [37], Theorem
2).

To conclude we note that our investigations require a deep and detailed understanding
of the geometry and properties of characteristic trajectories for the free transport equation.

In particular, a geometric approach of grazing collisions against the boundary is derived
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and is the key ingredient to study the strict positivity of solutions to the Boltzmann
equation. The existing strategies as well as our improvements are discussed in the next

section.

2.1.2 Our strategy

Our strategy to tackle this issue will follow the method introduced by Carleman [20]
together with the idea of Mouhot [7%] to find a spreading method that will be invariant
along the characteristic trajectories. Roughly speaking we shall built characteristics in
a C? bounded convex domain, create an “upheaval point” (as in [J5] and [7%]) that we
spread and expand uniformly along the characteristics. Finally, once the lower bound can
be compared to an exponential one we reach the expected result.

However, the existence of rebounds against the boundary leads to difficulties. We

describe them below and point out how we shall overcome them.

Creating an “upheaval point” was achieved, in [95] and [73], by using an iterated
Duhamel formula and a regularity property of the collision operator relying on a uniform
lower bound of the local density of the function. But the use of this property requires
a uniform control along the characteristics of the density, the energy and the entropy of
the solutions to the Boltzmann equation which is natural in the homogeneous case but
made Mouhot consider initial datum bounded from below uniformly in space. Our way
of dealing with the appearance of the “upheaval point” is rather different but includes
more general initial datum. We make the assumption of continuity of solutions to the
Boltzmann equation and by compactness arguments we can construct a partition of our
phase space where initial localised lower bounds exist, i.e., localised “upheaval points”.

The case on the torus studied by Mouhot tells us that an exponential lower bound
should arise immediately and therefore we expect the same to happen as long as the
characteristic trajectory is a straight line. Unfortunately, the possibility for a trajectory
to remain a line depends on the distance from the boundary of the starting point, which can
be as short as one wants. This thought is the basis of our means for spreading the initial
lower bound. We divided our trajectories into two categories, the ones which always stay
close to the boundary (grazing collisions) and the others. For the latter we can spread our
lower bound uniformly as noticed in [7%]. The key contribution of our proof is a thorough
investigation of the geometry of grazing collisions. We show that their velocity does not
evolve a lot along time and mix it with the spreading property of the collision operator.
Notice here that the convexity of 2 is needed for the study of grazing trajectories.

The last behaviour to notice is the fact that specular reflections completely change ve-
locities but preserve their norm. Therefore, the existence of rebounds against the boundary
prevents us from obtaining a uniform spreading method straight from the ”upheaval point”

unless it is depending only on the norm of the velocity. Our strategy is to spread the lower
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bound created at the “upheaval points” independently for grazing and non-grazing colli-
sions up to the point when the lower bound we obtain depends only on the norm of the
velocity. Roughly, our lower bounds will be balls in velocity that can be centred away from
the origin and we shall grow them up finitely many times to balls containing the origin

and finally be able to generate a uniform spreading method.

Collision kernels satisfying a cutoff property as well as collision kernels with a non-
cutoff property will be treated following the strategy described above. The only difference
is the decomposition of the Boltzmann bilinear operator () we consider in each case. In the
case of a non-cutoff collision kernel, we shall divide it into a cutoff collision kernel and a
remainder. The cutoff part will already be dealt with and a careful control of the L*°-norm
of the remainder will give us the expected lower bound, smaller than a Maxwellian lower
bound.

A preliminary to our study is to be able to construct the characteristic trajectories
associated to the Boltzmann equation with specular reflections in a C? bounded convex
domain. These trajectories are merely those of the free transport and so can be seen as

the movement of a billiard ball inside the boundary of our domain.

Such a free transport in a convex domain has been studied in [33] (see also [93], [10]
or [105] for geometrical properties) and has been used in kinetic theory by Guo, [52], or
Hwang, [79], for instance. Yet, the common feature in [33], [72] and [59] is that their as-

sumptions on the boundary always lead to clear rebounds of the characteristic trajectories.
That is to say, the absoption phenomenon of [33], the electromagnetic field in [52] and [59)]
or the smooth strict convexity assumption used in [77], prevent the characteristics to roll
on the boundary which is one of the possible behaviour we have to take into account in
our general settings. As briefly mentionned in the introduction of [105], the behaviour at
some specific boundary points is mathematically quite unexpected, even if that is of no
physical relevance. We thus classify all the possible outcomes of a rebound against the
boundary and study them carefully to analytically build the characteristics for the free
transport equation in our domain €.

Finally, we need to control the number of rebounds that can happen in a finite time. In
[104], Tabachnikov focuses on the footprints on the boundary of the trajectories of billiard
balls and shows that the initial conditions leading to infinitely many rebounds on the
boudary is a set of measure 0. We extend this to the whole trajectory (see Appendix 2.3.1,
Proposition 2.3.4), not only its footprints on the boundary, allowing us to consider only
finitely many rebounds in finite time and to have an analytic formula for the characteristics
which we shall use throughout the chapter.

Notice that all this study of the free transport equation will be done in the case of a

merely C! bounded domain.
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2.1.3 Organisation of the chapter

Section 2.2 is dedicated to the statement and the description of the main results proved
in this chapter. It contains four different parts

Section 2.2.1 defines all the notations which will be used throughout the chapter.

As mentioned above, we shall investigate in detail the characteristics and the free
transport equation in a C' bounded domain. Section 2.2.2 mathematically formulates the
intuitive ideas of trajectories.

The last subsections, 2.2.3 and 2.2.4, are dedicated to a mathematical formulation
of the results related to the lower bound in, respectively, the cutoff case and the non-
cutoff case, described in Section 2.1.2. It also defines the concept of mild solutions to the

Boltzmann equation in each case.

Sections 2.4 to 2.7 focuse on the Maxwellian lower bound in the cutoff case. It is
divided into the four main arguments of the proof.

Following our strategy, Section 2.4 creates the localised “upheaval points” whereas
Section 2.5 and Section 2.6 spread them along non-grazing and grazing trajectories re-
spectively.

Section 2.7 concludes by describing the immediate appearance of a lower bound depend-
ing only on the norm of the velocity ( Proposition 2.2.4) as well as proving the immediate

Maxwellian lower bound (proof of Theorem 2.2.3).

Finally, we deal with non-cutoff collision kernels in Section 2.8 where we prove the
immediate appearance of an exponential lower bound (Theorem 2.2.6). The proof follows
exactly the same steps as in the case of cutoff kernels and is thus divided into Section
2.8.1, where we construct a lower bound only depending on the norm of the velocity, and

Section 2.8.2, where we derive the exponential lower bound.

As mentioned before, we need to study the free transport equation and the different
important properties of the characteristics. Appendix 2.3 formulates these issues, investi-
gates all the different behaviours of rebounds against the boundary (Section 2.3.1), builds
the characteristics and derives their properties (Section 2.3.2) and solves the free transport

equation (Section 2.3.3).

2.2 Main results

We begin with the notations we shall use all along the chapter.

2.2.1 Notations

We denote (-) = /1 + |-|* and y™ = max{0, y}, the positive part of y.
This study will hold in specific functional spaces regarding the v variable that we describe
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here and use throughout the sequel. Most of them are based on natural Lebesgue spaces
L} = LP (RY) with a weight:

e for p € [1,00] and q € R, L}, is the Lebesgue space with the following norm

1le, = 16 flLp

e for p € [1,00] and k € N we use the Sobolev spaces Wk by the norm

1/p
1 flyrr = > 10°f |

Is|<k
with the usual convention H¥ = w2,
In what follows, we are going to need bounds on some physical observables of solution
to the Boltzmann equation (2.1.1).

We consider here a function f(t,z,v) > 0 defined on [0,T) x Q x R? and we recall the

definitions of its local hydrodynamical quantities.

e its local energy

est.) = [ ol F(t., o)
Rd
e its local weighted energy
ita) = [ 1ol Fit,z,0)do,
R4
where 7 = (2+ 7)™,
e its local LP norm (p € [1,+0))

l?(ta x) = Hf(twrv )HL’Hj )

e its local W2 norm
U)f(t,l‘) = Hf(tvxa )HW}O" :

Our results depend on uniform bounds on those quantities and therefore, to shorten

calculations we will use the following
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Ey = sup ef(t,z) E} = sup e’f(t,:n),
(t,2)€[0,T)x (t,2)€]0,T)x

sz) = sup lfc(t, z) , Wp= sup  wy(t, x).
(t,2)€[0,T) X (t,2)€[0,T)x

In our theorems we are giving a priori lower bound results for solutions to (2.1.1)
satisfying some properties about their local hydrodynamical quantities. Those properties
will differ depending on which case of collision kernel we are considering. We will take

them as assumptions in our proofs and they are the following.

e In the case of hard or Maxwellian potentials with cutoff (v > 0 and v < 0):

Ef < +00. (2.2.1)

e In the case of a singularity of the kinetic collision kernel (v € (—d,0)) we shall make
the additional assumption
LY < o0, (2.2.2)

where py, > d/(d+ 7).

e In the case of a singularity of the angular collision kernel (v € [0,2)) we shall make

the additional assumption
Wy < 400, E} < +oo0. (2.2.3)

As noticed in [78], in some cases several assumptions might be redundant.

Furthermore, in the case of the torus with periodic conditions or the case of bounded
domain with specular boundary reflections, solutions to (2.1.1) also satisfy the following
conservation laws (see [2%], [30] or [112] for instance) for the total mass and the total

energy:

/ f(t,z,v) dedv =
R4

//Rd 0|2 f(t, @, v) dedv = (2.2.4)

2.2.2 Results about the free transport equation

M, E >0, Vt € RT

Our investigations start with the study of the characteristics of the free transport equation.
We only focus on the case where ) is not the torus (the characteristics in the torus being
merely straight lines) but we will use the same notations in both cases. This is achieved

by the following theorem.
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Theorem 2.2.1 Let Q be an open, bounded and C' domain in R,
Letug : @ x R — R be Ct in 2z € Q and in L7 .

The free transport equation with specular reflections reads

VE>0 , Y(z,v) e QxRY du(t,x,v) + Dp(v)(u)(t, z,v) =0, (2.2.5)
V(z,v) € QxRY, w(0,z,v) = up(x, v), (2.2.6)
V(z,v) € 0 x RY,  u(t,x,v) = u(t, z, Re(v)), (2.2.7)

where R, stands for the specular reflection at a point x and Dy(v) is the directional
derivative at x in the direction of v.
Then this equation has a unique solution u : Rt x Q x RY — R which is C in time,
admits a directional derivative in space in the direction of v and is in wa.

Moreover, for all (t,z,v) in RT x Q x RY, there exists fin(t, x,v), vin(t, z,v) and
trin(t,,v) (see Definition 2.3.6) such that

U,(t, xz, U) = Ug (xfzn - (t - tfin)”finv vf'm) .

2.2.3 Maxwellian lower bound for cutoff collision kernels

The final theorem we prove in the case of cutoff collision kernel is the immediate appearance
of a uniform Maxwellian lower bound. We use, in that case, the Grad’s splitting for the

bilinear operator @) such that the Boltzmann equation reads
Q(g,h) = / ® (Jv — vi]) b(cos 0) [N g, — hg,] dvido
RédxSd-1
= QJr(gvh) - Qi(gvh)v

where we used the following definitions

Q" (g,h) = / ® (v — vi|) b (cos 0) b/ g, dv.do,

R xSd—1

Q (g.h) = my(®+g(v)h = Llg (), (2.2.8)

where

ny = / b(cos @) do = ‘Sd_2’ / b (cos 0) sin? =20 do. (2.2.9)
Sd—1 0

In Section 2.3 we prove that we are able to construct the characteristics (X¢(z,v), Vi(z,v)),
for all (t,z,v) in RT x Q x R%, of the transport equation (Proposition (2.3.8)). Thanks

to this Proposition we can define a mild solution of the Boltzmann equation in the cutoff
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case. This weaker form of solutions is actually the key point for our result and also gives

a more general statement.

Definition 2.2.2 Let fy be a measurable function, non-negative almost everywhere on
Q x R,
A measurable function f = f(t,z,v) on [0,T) x QxR? is a mild solution of the Boltzmann

equation associated to the initial datum fo(x,v) if
1. f is non-negative on £ x RY,

2. for every (x,v) in Q x RY:
t— L[f(t,Xt(CC,’U), )](‘/;5(1‘71}))’ t— Q+[f(tht(‘/L‘av)v ')7f(t7Xt(xaU)7 )](%(I,U))

are in Lj,.((0,T)),

3. and for each t € [0,T), for all z € Q and v € R,
t
[t Xi(z,v), Vi(w,v)) = fo(x,v)exp [—/O Lif(s, Xs(z,v), )](Vs(x,v)) ds

tex — t s (xz,v),- H(x,v)) ds (2.2.10)
s Lo (- [ LU Kuto0) NVt ) )
Q+[f(57XS(x’U)7')af(57X5(x’v)v')](V:?(‘T’U)) ds.

Now we state our result.

Theorem 2.2.3 Let Q be T? or a C? open convex bounded domain in R and let fo be a
non-negative continuous function on Q x R Let B = ®b be a collision kernel satisfying
(2.1.3), with ® satisfying (2.1.4) or (2.1.5) and b satisfying (2.1.6) with v < 0. Let f(t,x,v)
be a mild solution of the Boltzmann equation in Q x R% on some time interval [0,7),
T € (0,400], which satisfies

e fis continuous on [0, T) x QA xRe, £(0,z,v) = fo(z,v),M >0 and E < oo in (2.2.4);
o if O satisfies (2.1.4) with v = 0 or if ® satisfies (2.1.5), then f satisfies (2.2.1);
o if ® satisfies (2.1.4) with v < 0, then f satisfies (2.2.1) and (2.2.2).

Then for all 7 € (0,T) there exists p > 0 and § > 0, depending on 7, E; (and Lff’
if © satisfies (2.1.4) with v < 0), such that for all t € [1,T) the solution f is bounded
from below, almost everywhere, by a global Mazwellian distribution with density p and
temperature 0, i.e.

|2

o _P
vte[nT), V(z,v) € AxRE, - f(t,z,0) > (2ro)ir®
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If we add the assumptions of uniform boundedness of fy and of the mass and entropy
of the solution f we can use the arguments originated in [95] to construct explicitely the
initial “upheaval point”, without any compactness argument (see Section 2.4.2). Moreover,
if we further suppose that € is C® and strictly convex, the use of tools developed by Guo
[57] yields a constructive method to control grazing collisions (see Remark 2.6.3). We thus

have the following corollary.

Corollary 1 Suppose that conditions of Theorem 2.2.3 are satisfied (the continuity as-
sumption on fo can be dropped) and further assume that Q is C* and strictly convex, i.e.
there exists £ : RY — R to be C° such that

Q={zeR? &) <0}
and such that V& # 0 on 02 and there exists C¢ > 0 such that
Oii(@)vivy > Ce |lvl?
for all z in Q and all v in RE. Further assume that fy is uniformly bounded from below
V(z,v) € Q% Rd, folz,v) = p(v) >0,
and that f has a bounded local mass and entropy

R, = inf t d 0
/ (t,a:)el[%,T)xQ Rd f(t,z,v) dv >

Hy = sup
(t,2)€[0,T)xQ

flt,z,v)logf(t, z,v) dv| < +oc.
R

Then conclusion of Theorem 2.2.3 holds true with the constants p and 0 being explicitely

constructed in terms of 7, Ey, Hy, Lfﬂ and upper and lower bounds on |V&| and |V2§‘on
o09.

As stated in Subsection 2.1.2, the main result to reach Theorem 2.2.3 is the construction

of an immediate lower bound only depending on the norm of the velocity:

Proposition 2.2.4 Let f be the mild solution of the Boltzmann equation described in
Theorem 2.2.3.
For all 0 < 7 < T there exists rv, ao(T) > 0 such that

vt e [7/277—]7 \V/(SU, U) € Q x Rd) f(t,l',U) > GO(T)]-B(()JV)(U),
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ryv and ag(T) only depending on 7, E; (and Lfﬂ if ® satisfies (2.1.4) with v < 0).

2.2.4 Exponential lower bound for non-cutoff collision kernels

In the case of non-cutoff collision kernels (0 < v < 2 in (2.1.6)), Grad’s splitting does not
make sense anymore and so we have to find a new way to define mild solutions to the
Boltzmann equation (2.1.1). The splitting we are going to use is a standard one and it

reads

Q(g,h) = / ® (Jv — vy|) b (cos 0) [h'g, — hg.] dvido
RdxSd—1

= Q%(gvh) - Q%(gah)a

where we used the following definitions
Qi(g,h) = / ® (Jv — vi]) b(cos ) g, (B — h) dv.do,
R xSd-1

Qg(g,h) = - (/Rdxgdl D (|v — vy|) b(cos 0) [gfk - g*] dv*da> h (2.2.11)
= Slgl(v)h.

We would like to use the properties we derived in the study of collision kernels with
cutoff. Therefore we will consider additional splitting of Q.

For ¢ in (0,7/4) we define a cutoff angular collision kernel
b9 (cos B) = b (cos 6) 1ig)>c

and a non-cutoff one
b0 (cos 0) = b (cos b) 1jp|<e-

Considering the two collision kernels BE? = ®b¢° and BNCO = ®bNCO we can
combine Grad’s splitting (2.2.8) applied to BEC with the non-cutoff splitting (2.2.11)
applied to Bév CO_ This yields the splitting we shall use to deal with non-cutoff collision
kernels,

Q=0 —Q- +Ql - @2, (2.2.12)

where we use the shortened notations QF = Q;Eco and Q% = yvcos for i =1,2.
€ €

Thanks to the splitting (2.2.12) and the study of characteristics mentionned in Section
2.2.2, we are able to define mild solutions to the Boltzmann equation with non-cutoff
collision kernels. This is obtained by considering the Duhamel formula associated to the

splitting (2.2.12) along the characteristics (as in the cutoff case).
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Definition 2.2.5 Let fy be a measurable function, non-negative almost everywhere on
Q x R,
A measurable function f = f(t,z,v) on [0,T) x Q@ xR? is a mild solution of the Boltzmann

equation with non-cutoff angular collision kernel associated to the initial datum fo(x,v) if
there exists 0 < g9 < /4 such that for all 0 < e < gq:

1. f is non-negative on  x R?,
2. for every (x,v) in Q x R%:
t— Le[f(tu Xt(.%','l)), ')](%(mav))vt — Qz_[f(t,Xt(mav)? ')7 f(t, Xt(.’L',U), )](W(Q?, U))

t— Se[f(t, Xi(z,v), )| (Vi(z,v)), t — Q;[f(tht(%v)v s f(t Xi(, ), )| (Ve(z, v))
are in L},.([0,T)),

3. and for each t € [0,T), for all z € Q and v € R,

£t X, 0), Vil v)) = folz, v)exp {— [ (R 516, X0, N Vi) s

+ /Ot exp (— /: (Le + S2) [f(s, Xg (2, 0), )] (Vi (z,v)) ds/)

(Q;r + Q;) [f(saXS(x>U)v ')> f(87X8($7U)> )](VS(SL‘,’U)) ds.
(2.2.13)

Now we state our result.

Theorem 2.2.6 Let Q be T¢ or a C? open convex bounded domain in RY and fy be a
continuous function on Q x R, Let B = ®b be a collision kernel satisfying (2.1.3), with ®
satisfying (2.1.4) or (2.1.5) and b satisfying (2.1.6) with v in [0,2). Let f(t,x,v) be a mild
solution of the Boltzmann equation in Q x R% on some time interval [0,T), T € (0, 400],
which satisfies

o f is continuous on [0,T) x Q x R? and f(0,2,v) = fo(z,v),M >0 and E < oo in
(2.2.4);

o if ® satisfies (2.1.4) with v > 0 or if ® satisfies (2.1.5), then f satisfies (2.2.1) and
(2.2.3);

o if & satisfies (2.1.4) with v < 0, then f satisfies (2.2.1), (2.2.2) and (2.2.3).
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Then for all T € (0,T) and for any exponent K such that

log (2 + %)
2—

K
- log2

there exists C1,Coy > 0, depending on 7, K, Ef, E}, Wy (and Lfﬂ if © satisfies (2.1.4)
with v < 0), such that

Vi e [r,T), Y(z,v) € QxRY,  f(t,z,v) > Cle—Cz\v\K'

Moreover, in the case v =0, one can take K = 2 (Mazwellian lower bound).

We emphasize here that, in the same spirit as in the cutoff case, the main part of the
proof will rely on the establishment of an equivalent to Proposition 2.2.4 for non-cutoff

collision kernels.

Corollary 2 As for Corollary 1, if if fo is bounded uniformly from below as well as the
local mass of f, the local entropy of f is uniformly bounded from above and ) is C3
and strictly convex then the conclusion of Theorem 2.2.6 holds true with constants being
explicitely constructed in terms of T, K, Ey, E}, Wy, Hy, LI}W and upper and lower bounds
on |V¢| and {V%‘on o0.

Remark 2.2.7 Throughout the chapter, we are going to deal with the case where € is
a C? convex bounded domain since it is the case where the most important difficulties
arise. However, if Q = T¢, we can follow the same proofs by letting the first time of
collision with the boundary to be +oo (see Section 2.3) and by making the definition that
the distance to the boundary (which does not exist) is +oo (which rules out the case of

grazing trajectories).

2.3 The free transport equation: proof of Theorem 2.2.1

In this section, we study the transport equation with a given initial data and boundary
condition in a bounded domain 2. We will only consider the case of purely specular
reflections on the boundary 9€2. Those kind of interaction cannot occur for all velocities
at the boundary. Indeed, for a particle to bounce back at the boundary, we need its

velocity to come from inside the domain ). To express this fact mathematically, we define

A+:{(x,v)€89><Rd: U-n(:n))()},
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where we denote by n(z) the exterior normal to 99 at x.

Consider ug : © x R — R which is C' in z € Q and L*(Q x R?) = L2 ;. We are
interested in the problem stated in Theorem 2.2.1, (2.2.5) — (2.2.7).
If D, (v)(u) denotes the directional derivate of u in x in the direction of v we have, in

the case of functions that are C! in =,
D,(v)(u) =v-Vu.

Therefore, instead of imposing that the solution to the transport equation should be C!

in x, we reformulate the problem with directional derivatives.

Physically, the free transport equation means that a particle evolves freely in 2 at a
velocity v until it reaches the boundary. Then it bounces back and moves straight until it
reaches the boundary for the second time and so on so forth up to time ¢. The method of
characteristics is therefore the best way to link u(t,z,v) to ug by just following the path

used by the particle, backwards from ¢ to 0 (see Figure 2.1). This method has been used

tQ(t7 z, U)

trin(t, z,v)

Figure 2.1: Backward trajectory with standard rebounds

in [52] on the half-line and in [33], [59], for instance, in the case of convex media. However,
in both articles they only deal with finite, or countably many, numbers of rebounds in
finite time. Indeed, the electrical field in [52] and [79] makes the particles always reach the
boundary with v - n(x) > 0 and [33] has a specular boundary problem with an absorption
coefficient o € [0,1): u(t,x,v) = au(t,z, Rz(v)). Therefore, in the case the particle arrives

tangentially to the boundary, i.e. v-n(z) = 0, we have R, (v) = v and so u(t,z,v) = 0.
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2 Instantaneous filling of the vacuum

This vanishing property allowed the authors to not care about the special cases where the
particle starts to roll on the boundary.

Another way of looking at the characteristics method is to study the footprints of the
trajectories on the boundary. This problem, as well as the possibility of having infinitely
many rebounds in a finite time, has been tackled by Tabachnikov in [101]. Tabachnikov
only focused on boundary points since the description of the trajectories by only consider-
ing their collisions with the boundary holds a symplectic property and a volume-preserving
transformation. Such properties allowed him to show that the set of points on the bound-
ary that lead to infinitely many rebounds in finite time is of measure 0 ([!0/], Lemma
1.7,1). Unfortunately, in our case we would like to follow the characteristics and the study
of trajectories only via their footprints on the boundary is no longer a volume-preserving

transformation.

In our case we need to follow the path of a particle along the characteristics of the
equation to know the value of our function at each step. If the particle starts to roll
on the boundary (see Figure 2.2) we require to know for how long it will do so. The
major issue is the fact that v - n(z) = 0 does not tell us much about the geometry of 9
at z and the possibility, or lack of, for the particle to keep moving tangentially to the
boundary. Moreover, some cases lead to non physical behaviour since the sole specular
collision condition implies that some pairs (z,v) € 9§ X R? can only be starting points,

they cannot be generated by any trajectories (see Figure 2.3). This case is mentioned

quickly in the first chapter of [105] but not dealt with.
tmin(T,0) to(t, z,v)
x
U
Q
trin(t, x,v)

Figure 2.2: Backward trajectory rolling on the boundary
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tmin(-r; U) 1: S

<y

Figure 2.3: Backward trajectory that reaches an end

Therefore, in order to prove the well-posedness of the transport equation (2.2.5) —
(2.2.7), we follow the ideas developed in [52] and [79], which consist of studying the back-
ward trajectories that can lead to a point (¢,z,v), combined with the idea of countably
many collisions in finite time used in [33]. However, we have to deal with the issues de-
scribed above and to do so we introduce a new classification of possible interactions with
the boundary (see Definition 2.3.1). We also extend the result of [I01], in terms of pair
(z,v) leading to infinitely many rebounds in finite time, to the whole domain €2 (Proposi-
tion 2.3.4). To do so we link up the study on the boundary made in [10] with the Lebesgue
measure on () by artificially creating volume on 92 thanks to time and a foliation of the

domain by parallel trajectories.

The section is divided as follows. First of all we shall describe and classify the col-
lisions with the boundary in order to describe very accurately the backward trajectories
of a point (x,v) in 90 x RY  We will name trajectory or characteristic any solution
(X (t,z,v),V(t, z,v)) satisfying the initial condition (X (0,z,v),V(0,z,v)) = (z,v), the
boundary condition (2.2.7) and satisfying, in 2,

dX
= _v
dt
dVv
— =0
dt

This will give us an explicit form for the characteristics and allow us to link u(t, z,v) with
uo(z*,v*), for some x* and v*. Finally, we will show that the function we constructed is,
indeed, a solution to the transport equation with initial data ug and specular boundary

condition and that such a solution is unique.
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2.3.1 Study of rebounds on the boundary

As mentionned in the introduction of this section, when a particle reaches a point at the
boundary with a velocity v it can bounce back (Figure 2.1), keep moving straight (Figure
2.2) or stop moving because the specular reflection does not allow it to do anything else
(Figure 2.3), which is physically unexpected. The next definition gives a partition of the

points at the boundary which takes into account those properties.

Definition 2.3.1 We define here a partition of 9Q x R? that focuses on the outcome of

a collision in each of the sets.

e The set coming from a rebound without rolling

Qrebounds = {(1’,1)) € 00 x RY: v n(x) < 0} .

o The set coming from rolling on the boundary

Qrolling = {(x,v) cINxRY: v-n(x)=0and 36 >0,Vt € [0,0], x — vt € Q}

e The set of only starting points

Qstop = {(x,v)EanRd: v-n(z) =0and Y6 > 0,3t € [0, 0], x—vtgéQ}.

e The set coming from straight line

Qline = {(x,v) €00 x R?: v-n(z) > 0}.

One has to notice that any point of €2;;,. indeed comes from a straight line arriving at
z with direction v since Q is open and is C! (so there is no cusp).
In order to understand the behaviour expected at €2, we have the following proposition.

The proof of it gives insight into the nature of specular reflections.

Proposition 2.3.2 If we have (x,v) in Qgop then there is no trajectory with specular

boundary reflections that leads to (x,v).

Proof of Proposition 2.3.2 Let us assume the contrary, that is to say (z,v) is in Qgop
comes from a trajectory with specular boundary reflection.
We have that (z,v) belongs to 9Q x R? and so if (z,v) comes from a straight line it

can only be (by definition of trajectories) a line containing x with direction v which means
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that (z,v) comes from {(x — vt,v), t € [0,T]}, for some T" > 0. But the trajectory is
necessarily in € and this is in contradiction with the definition of Qstop-

Therefore, (x,v) must come from a rebound after a straight line trajectory. But again
we obtain a contradiction because the velocity before the rebound is R;(v) = v and the

backward trajectory is the one studied above. m

Now we have our partition of points on the boundary of €2, we are able to generate the
backward trajectory associated to a starting point (z,v) in Q x R%. The first step towards
its resolution is to find the first point of real collision (if it exists) that generates (z,v)
(see Figure 2.1). The next proposition-definition proves mathematically what the figure

shows.

Proposition 2.3.3 Let Q be an open, bounded and C' domain in R®. Let (z,v) be in
Q x RY, then we can define

timin (T, V) :max{t>0: z—vs€eQ, V0L sét}.
Moreover we have the following properties:

1. if there exists t in (0, tymin(x,v)) such that x — vt hits OS2 then (x — vt,v) belongs to

Qrolling-
2. tmin(z,v) = 0 if and only if (x,v) belongs to Qstop U Qrebounds-

3. (x — vtmin(z,v),v) belongs to Qstop U Qrebounds -

Property (1) emphasises the fact that if, on the straight line between x and = —
Vtmin(x,v), the particle hits the boundary it will not be reflected and so just rolls on.
Then property (2) tells us than ¢, (4,.) is always strictly positive except if (z,v) does
not come from any trajectory of a particle or if it is the outcome of a rebound without
rolling. Finally, property (3) finishes the study since at & — vt (2, v) the particles either
come from a reflection (case Qepounds), and we can keep tracking backwards, or started

its trajectory at & — vtyin(x,v) (case Qstop).

Proop of Proposition 2.3.3 First of all we have that €2 is bounded and so there exists
R such that Q C B(0, R), the ball of radius R in R%.

Then we notice that 0 belongs to

A(:E,v):{t>0: w—vsGQ,VOésgt}.
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2 Instantaneous filling of the vacuum

Therefore A(x,v) is not empty. Moreover, this set is bounded above by 2R/ ||v|| since for
all ¢ in A(x,v)
R > |z —vt| > t{lo]| - [|l2]-

Therefore we can talk about the supremum t,,;,(z,v) of A(z,v). Let (t,)nen be increasing
sequence in A(x,v) that tends to t(x,v). As Q is closed we have that z — vt (2, v)
belongs to Q. Then, if 0 < s < tmin(z,v) there exists n such that 0 < s < ¢, and so, by
the property of t,,, z — vs is in Q. This conclude the fact that t,,:,(z, v) belongs to A(x,v)

and so is a maximum.

We now turn to the proof of properties.
Let (z,v) be in Q and 0 < t <t (7, v) such that = — vt belongs to 9. Then for all
0<t] <t<ty<tmin(z,v), z—vt; and x — vty are in  and so, by the definition of an

exterior normal to a surface we have
[(z —vt) — (x —vty)] - n(z —vt) 2 0 and [(x — vt) — (z — vt2)] - n(x — vt) >0,

which gives v - n(x — vt) = 0.
Moreover, since to belongs to A(x,v), for all s in [0,ty — t], (x — vt) — vs is in €2, which
means that (z — vt,v) belongs to ,oing-

Property (2) is direct since if (2, v) = 0 then for all ¢ > 0, there exists 0 < s < ¢
such that z —vs does not belong to  and then v-n(z) < 0. So (z,v) belongs t0 Qrebounds
if v-n(z) >0, or to Qstop-

Finally, property (3) is straightforward since & — vtin(z,v) is in 9Q (because Q is
open) and since for all 0 < ¢ < tin(z,v), © — vt is in Q. Thus [(x — V) — (z — vt)] -
n(x — vtmin(x,v)) = 0, which yields v - n(x — vtmin(x,v)) < 0.Then, by the definition of
A(z,v) and the fact that ¢, (z,v) is its maximum, we have that either (z — vtin(x, v), v)

belongs to cpounds or belongs to Qgipp. W

Up to now we focused solely on the case of the first possible collision with the boundary.
In order to conclude the study of rebounds for any given characteristics we have to, in
some sense, count the number of rebounds without rolling that can happen in finite time.

This is the purpose of the next proposition.

Proposition 2.3.4 Let Q be a C' open, bounded domain in R? and let (z,v) be in Q x R
Then for all t > 0 the trajectory finishing at (x,v) after a time t has at most a countable
number of rebounds without rolling.

Moreover, this number is finite almost surely with respect to the Lebesgue measure on
Q x R?
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Proof of Proposition 2.3.4 The fact that there is countably many rebounds without
rolling comes directly from the fact that t,,;,(x,v) > 0 except if (x, v) is a starting/stopping
point (and then did not move from 0 to ¢) or if (x,v) is the outcome of a rebound (and so

comes from (z, R, (v)) which belongs to Qine, implying that t,in(x, Rz (v)) > 0).

Now we shall prove that the set of points in Q x R? which lead to an infinite number
of rebounds in a finite time is of measure 0. To do so, we first need some definitions. The
measure 4 in  x R? is the one induced by the Lebesgue measure and we denote by A the
measure on 9§ x R? (see Section 1.7 of [104]).

We will also denote

Q = {(a:, v) € Q x (]Rd — {0}) coming from an infinite number of rebounds} ,

Qy = {(x, v) € 0N X (]Rd - {O}) coming from an infinite number of rebounds} .

We know ([104] Lemma 1.7.1) that A(£25) = 0 and we are going to establish a link between
the measure of €2 and the one of 25. Those two sets do not live in the same topology nor

same dimension and so we build a function that artificially recreates them via time.

Because 2 is bounded we can find time Th; > 0 such that for all z in Q and v in
RY — {0}, (z — T/ ||v|]) does not belong to . Furthermore, in the same way as for

tmin(z,v), we can define, for (z,v) in Q x R?,

min{t >0: x+0vte 89} if (ajav) € QU Qrebounds

T(z,v) =
() 0 otherwise

We define the following function which is clearly C*.

F: [0,Ty] xR x (RT—{0}) — R?x (R?—{0})
(t,z,v) —> (m+ﬁt,v).

We also define the set

B:{@mﬂO:xe&%veﬁ@—{@%te@ﬂ%a@ﬁ.
and claim that F is injective on the set B. Indeed, if (¢,z,v) and (t*, 2*,v*) are in B such
that F(t,z,v) = F(t*,2*,v*) then v = v* and x + tv/ ||v|| = =* + t*v/ ||v]|.

Let assume that t* > t, therefore we have that

m:xhﬂﬁ—ﬂﬁﬁeaﬁ

-73 -



2 Instantaneous filling of the vacuum

and thus t* —t > T'(z*,v). However, t* < T'(z*,v) so we reach a contradiction and t* < t.
By symmetry we have ¢t = ¢* and then = z*. We also notice that [0, 7] X Qst0p and

[0, T'hr] % Qrolting do not intersect B.

Finally we have that Q = F (BN ([0,Ta] X Q5)). Indeed, if (¢, 2z,v) belongs to B N
([0, Th] x Qp) then F(t,z,v) = (x+tv/ ||v||,v) and x+tv/ ||v|| is in ©Q and its first rebound

backward in time is (x,v) which lead to infinitely many rebounds in finite time. Therefore
v
x4+ t—— €
o]l

The converse is direct, by considering the first collision with the boundary of the backward

trajectory starting at (x,v) in €.
All those properties allow us to compute p(£2) by a change of variable in B N Q.

p(€) = p(F(BN([0, Tar) x Q)))

= /_ 1p(BA([0,Th]x00)) (T, v)dxdvdt
QxRd

‘Jac(Fflﬂ d\(z,v)dt

/;ﬁ([O,T]u] XQ@)

< Ty sup (’Jac(F_l)}) A(Qp) = 0.
[O,TM]XQ

2.3.2 Description of characteristics

In the previous section we derived all the relevant properties of when, where and how
a trajectory can bounce against the boundary of ). As was shown, the characteristic
starting from a point (¢, z,v) in RT x Q x R is the backward trajectory satisfying specular
boundary reflections that leads to (x,v) in time ¢. Basically, it consists in a straight line
as long as it stays inside §2 or it rolls on the boundary. Then it reaches a boundary point

where it does not move any more (£25p) or bounces back (Qrepounds)-

Thanks to Proposition 2.3.4 we can generate the countable (and almost surely finite)
sequence of collisions with the boundary associated to the future point (z,v). We shall

construct it by induction. We consider (x,v) in Q x R
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e Step 1: initialisation: we define

iL‘()(.CL‘,’U) =,
vo(z,v) =,
to(z,v) =0.

e Step 2: induction: if (x(x,v),vp(x,v)) € Qgtop then we define

wk-i-l(xv U) = ZL‘k(ZL‘, U)>

’Uk+1(.1', U) = 'Uk’(xv U)>

tk—l—l(xa U) = +09,
if (zx(x,v),vE(z,v)) ¢ Qsi0p then we define

Tpr1(z,v) = zp(x,v) — v (2, V) tmin (2 (2, v), Vi (2, 0)),

vk—i—l(xa U) = Raszrl(:E,U) (Uk: (1;7 U))7

ter1(z,v) = tr(x,v) + tmin (g (z,v), Vi (2, 0)).

Remark 2.3.5 Let us make a few comments on the accuracy of the sequence we just built.

1. Looking at Proposition 2.3.3, we know that at each step (apart from 0) we necessary
have that (zi(x,v),vi(z,v)) belongs to either Qsiop 0T Qrebounds and so the char-
acteristic stops for ever (case 1 in induction) or bounces without rolling and start
another straight line (case 2). Thus the sequence of footprints defined above captures
the trajectories as long as there are rebounds and then becomes constant once the

trajectory reach a stopping point.

2. If tin(zr(z,v),vp(z,v)) = 0 for some k > 0 then, by properties 2. and 3. of Propo-
sition 2.3.3, we must have (zi(x,v), vE(z,v)) € Quop (since vi(x,v) is the specular
reflection at x(x,v) of vi—1(z,v) and (z(z,v), vE—1(z,v)) 15 1 Qrepounds U Lstop)-
Thus, (tg(z,v))ken is strictly increasing as long as it does not reach the value +oo,

where it remains constant.

Finally, it remains to connect the time variable to those quantities. In fact, the time will
determine how many rebounds can lead to (z,v) in a time ¢. The reader must remember
that the backward trajectory can lead to a point in {24, before time ¢.

Since the characteristics method helps us to find the value of the solution of the trans-

port equation at a given point using its trajectory, the next definition links a triplet (¢, z,v)
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to the first rebound of the trajectory that leads to (z,v) in a time t.

Definition 2.3.6 Let Q be an open, bounded and C* domain in RY.
Let (t,z,v) be in RT x Q x R, Then we can define

max{k € N : tx(x,v) < t}, if it exists,

n(t,r,v) =
( ) +o0, if (ti(x,v))k is bounded by t.

The last rebound is then define by
e if n(t,x,v) < +o0 and ty 041 = +00, then

T fin (t, Zz, 'l)) = Tn(t,x,v) (CL', U)?

Vfin (t7 Zz, U) = Un(t,z,v) (33, ’U),

trin(t,x,v) =1,

e if n(t,z,v) < +00 and ty( 4041 < +00, then

T fin (ta z, U) = Tn(t,x,v) (337 U)v

Vfin (tv xz, U) = Un(t,x,v) (:L'a ’U),

tfin (t, z, U) = tn(t,z,'u) (x7 U),

e if n(t,x,v) = +oo, then

( .
Tpin(t,z,v) = kggloo g (z,v),
Vpin(t, x,v) = kginoo vg(z,v),

tfin(t7 xz, U) = kEIJPoo tk('rv U)‘

Remark 2.3.7 Let us make a few comments on the definition above and the existence of
limits.
1. After the last rebound, occuring at t, . .), the backward trajectory can only be a
straight line during the time period t — ty(; z.0) (see Figure 2.1). That is why we
defined tpin(t, ©,v) =ty 2.0 if we reached a point on Qrepounds and trin(t,z,v) =1t

if the last rebound reaches Qg0 (the trajectory can only start from there).
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2. In the last case of the definition, we remind the reader that (tx(z,v))ken is strictly
increasing and so converges if bounded by t. But then, because (||vg(x,v)||)ren s
constant and xi(x,v) = rp_1(x,v) — tmin(xp(z,v), V8 (2, v))V (2, v), we have that

(zx(z,v))ken s a Cauchy sequence.

8. The last case in Definition 2.3.6 almost surely never happens, as proved in Proposi-
tion 2.3.4.

To conclude this study of the characteristics we just have to make one more com-
ment. We studied the characteristics that go backward in time because it simplifies the
construction of a solution to the free transport equation. However, it is easy to prove
(just requires the inductive construction of vy and xy) that the forward trajectory of (x, v)
during a period ¢ is the backward trajectory over a period ¢ of (x, —v). This gives the final

proposition.

Proposition 2.3.8 Let Q be an open, bounded and C* domain in R®. Then for all (z,v)
in Q x R we have existence and uniqueness of the characteristic (X¢(x,v), Vi(x,v)) given
by, for allt >0,

Xi(z,v) = xpin(t,z, —v) + (t = tpin(t, z, —v))vpin(t, x, —v),
Vi(z,v) = —vpn(t,z,—v).

Moreover, we have that Vi(x,v) = Oy 5 »(v) with Oy 4, an orthogonal transformation, and

that for almost every (z,v) in Q x R we have the following

Vi >0, (z,v)=(Xe(Xe(z,—v),=Vi(z,—0)), Vi(Xi(z, —v), =Vi(z, —v))). (2.3.1)

Proof of Proposition 2.3.8 By construction we have that
Otvxzv = Rmfin(tvxﬂ}) 00 Rxl(umvv)'

It only remains to show the last equation (2.3.1), but it follows directly from the fact
that the backward trajectory of (x,v) is the forward trajectory of (z, —v).

We can reach a point on {14, after a time ¢; and so the forward trajectory of that
point during a time t > t; does not come back to the original point (since we stayed in

Qgtop for a period ¢t — 7).
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However, the set of points that reach 4, belongs to the set of points that bounce
infinitely many times in a finite time and this set is of measure zero (see Proposition 2.3.4).

2.3.3 [Existence and uniqueness of solution to (2.2.5) — (2.2.7)
2.3.3.1 Proof of uniqueness

The uniqueness of a solution with ug in C} ﬁLfM comes directly from the fact that we have
a preserved quantity through time, thanks to the specular reflection property. Indeed, let
us assume that u is a solution to our free transport equation satisfying specular boundary

condition and the initial value problem wug. Then, a mere integration by part gives us
2 2
V>0, ult, )Lz, = lluollzz

which directly implies the uniqueness of a solution, since the transport equation (2.2.5) is

linear.

2.3.3.2 Construction of the solution

It remains to construct a function u that will be constant on the characteristic trajectories
and check that we indeed obtain a function that is differentiable in ¢ and x which satisfies
the transport equation. The first point of Remark 2.3.7 gives us the answer as we expect

the following behaviour
u(t,:c,v) = ’U,(t - t1($,v),$1($,v), 'Ul(xvv)) == u(t - tk('xa v),mk(:n,v),vk(x,v)),

up to the point where there are no more rebound in the time interval [0,¢]. From there we
continue in a straight line.
Thus, we define: V(¢,2,v) € Rt x Q x R,

u(t, z,v) = uo (Tin(t, z,v) — (t = tpin(t, 2, v))vpin(t, 2, ), Viin(t, z,v)) .

2.3.3.3 Boundary and initial conditions

First of all, u satisfies the initial condition (2.2.6) as n(0,x,v) = 0 (since tin(x,v) = 0).
u also satifies the specular boundary condition (2.2.7). Indeed, if (z,v) is in AT,

then either v - n(x) = 0 and the result is obvious since R,(v) = v, or v - n(x) > 0 and

thus (z,R;(v)) belongs to Qrepounds SO tmin(x, Rz(v)) = 0 (Proposition 2.3.3). An easy

induction shows

g (z,v) = xpp1(x, Re(v)), vi(z,v) = vpr1(x, Re(v)), tx(x,v) = tpy1(x, Re(v)),
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for all £ in N.
The last equality gives us that n(¢,z,v) = n(t,z, R, (v)) — 1 and therefore, combined with

the two other equalities,
-Tfin(ta Z, U) - l‘fzn(t, Z, Rx(’l))), Ufin(t7 Z, /U) - Ufin(ta Z, RSE(U))v
tfln (t7 x, U) = tfm (tv x, RCC (U))7

which leads to the specular reflection boundary condition.

2.3.3.4 Time differentiability

Here we prove that u is differentiable in time on R*. Let us fix (z,v) in Q x R?.

By construction, we know that n(t, x, v) is piecewise constant. Since (tx(z,v))ken is strictly
increasing up to the step where it takes the value +oo, for tx(z,v) < t < tgp41(z,v) we
have that for all s € R such that tx(z,v) < t+ s < tg11(z,v),

Trin(t,x,v) = xpin(t + 5,2,0), Vein(t, x,v) = Vit + 5, 2,0),
trin(t,x,v) = trin(t + s,2,0).

Therefore, we have that

u(t + s, x,v) — u(t,z,v)

S
_ wo(@pin — (E+ 8 = tpin)Vpin, Vfin) = w0(Lpin — (E = tfin)Vfin, Vfin)
S
st —Ufin * (VxUO) (xfzn - (t - tfin)vfinv vfin)v

because ug is C! in 2. So u is differentiable at t if ¢ in strictly between two times t4(x, v).
We thus find that u is differentiable at ¢ and that its derivative is continuous (since  f;p,
Vfin and ty;, are continuous when x and v are fixed).

In the case t = tx(x,v) we can use what we just proved to show that we have the
existence of right (except for ¢t = 0) and left limits of Oyu(t,z,v) as t tends to ty(z,v). We
use the specular reflection boundary condition of g together with the fact that it is C!

in z and that tg(z,v) = tg41(x, Rx(v)) to obtain the equality of the two limits.

2.3.3.5 Space differentiability and solvability of the transport equation

Here we prove that u is differentiable in « in €2, which follows directly from the time
differentiability. Let us fix t in RT and v in R?, we shall study the differentiability of

u(t,,v) in the direction of v.
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2 Instantaneous filling of the vacuum

) is open and so
Ve e Q, 36 >0, Vs € [-6,0], x4+ sve.
Thanks to the inductive construction, one find easily that
u(t,z + sv,v) = u(t — s, x,v).

Therefore, since u is time differentiable, we have that u(¢, -, v) admits a directional deriva-

tive in the direction of v and that

Dy (v)(u)(t, z,v) = —0wu(t, z,v).

2.4 The cutoff case: localized “upheaval points”

In this section and the next three we are going to prove a Maxwellian lower bound for a
solution to the Boltzmann equation (2.1.1) in the case where the collision kernel satisfies
a cutoff property.

The strategy to tackle this result follows the main idea used in [95] and [78] which
relies on finding an “upheaval point” (a first minoration uniform in time and space but
localised in velocity) and spreading this bound, thanks to the spreading property of the

Q™ operator, in order to include larger and larger velocities.

We gather here two lemmas, proven in [78], that we will frequently use in this section.
We remind the reader that we are using Grad’s splitting (2.2.8). Let us first give an L™
bound on the loss term (Corollary 2.2 in [75]).

Lemma 2.4.1 Let g be a measurable function on R%. Then
Yo R, |L[g)(v) < O o),

where CgL is defined by:
1. If ® satisfies (2.1.4) with v > 0 or if ® satisfies (2.1.5), then

C’; = cst nyCoey.

2. If ® satisfies (2.1.4) with v € (—d,0), then

CgL =cstnyCo [eg + 18], p>d/(d+7).
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2.4 The cutoff case: localized “upheaval points”

The spreading property of Q% is given by the following lemma (Lemma 2.4 in [75]),
where we define

Iy = 7r/4<151<f37r/4 b(cos ). (2.4.1)

Lemma 2.4.2 Let B = ®b be a collision kernel satisfying (2.1.3), with ® satisfying (2.1.4)
or (2.1.5) and b satisfying (2.1.6) with v < 0. Then for any v € R, 0 <r < R, £ € (0,1),

we have

_ d_
QT (Lp.r) L) = ostlhear PRI g o).

As a consequence in the particular quadratic case § =r = R, we obtain

a_
Q" (1pw,s) Lp(s) = cst lyead 72 113(@75\@(175))7

for any v € R? and € € (0,1).

The case of the torus, studied in [7%], indicates that without rebounding the expected
minoration is created after time ¢ = 0 as quickly as one wants. Therefore we expect the
same kind of bound to arise on each characteristic trajectory before its first rebound.
However, in the case of a bounded domain, rebounds against the boundary can occur
very close to the time ¢ = 0 and a rebound preserves only the norm of the velocity.
Therefore, we will fail finding a uniformly (in space) small time where a uniform bound
arises. Nevertheless, the convexity and the smoothness of the domain implies that grazing
collisions against the boundary do not change the velocity very much.

Thus our study will be split in three parts, which are the next three sections. The first
step will be to partition the position and velocity spaces so that we have an immediate
appearance of an “upheaval point” in each of those partitions. The second one is to obtain
a uniform lower bound which will depend only on the norm of the velocity. Then the final
part will use the standard spreading method used in [95] and [75] which will allow us to

deal with large velocities and derive the exponential lower bound uniformly.

2.4.1 Partition of the phase space and first localised lower bounds

In this section we use the continuity of f together with the conservation laws (2.2.4)
to obtain a point in the phase space where f is strictly positive. Then, thanks to the
continuity of f, its Duhamel representation (2.2.10) and the spreading property of the Q"
operator (Lemma 2.4.2) we extend this positivity to high velocities at that particular point
(Lemma 2.4.3). Finally, the free transport part of the solution f will imply the immediate

appearance of the localised lower bounds (Proposition 2.4.4).
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2 Instantaneous filling of the vacuum

Moreover we define constants that we will use in the next two subsections in order to

have a uniform lower bound.

We define some shorthand notations. For z in ©, v in R? and s, > 0 we denote the
point at time s of the forward characteristic passing through (x,v) at time ¢ by
Xst(z,v) = X (Xi(x,—v), =Vi(z, —v))
‘/:S,t(x7v) = ‘/:S(Xt(xa _U)a_%(x7 —'U)),

which has been derived from (2.3.1).

We start by the strict positivity of our function at one point for all velocities:

Lemma 2.4.3 Let f be the mild solution of the Boltzmann equation described in Theorem
2.2.3.

Then there exists (z1,v1) in Q x R? and A > 0 such that for alln € N and all t in [0, A],
there exists r,, > 0, depending only on n, and a,(t) > 0 such that

A
Vo € B <x1, 2n> Yo eRY, f(txz,v) > an(t)1B @, ) (V),

with ag > 0 independent of t and the induction formula

A+ /min(t,A/(2"+1(2rn+||vl||))
n

+
ani(t) = Co g et 02 (s) ds

0

where Cg = cstlyce is defined in Lemma 2.4.2 and Cr, = cstnyCo Ey (or Cr, = cstnyCo (E 5+
LZ})) is defined in Lemma 2.4.1, and

32
4

ro=2A4A, rpy1= Th.-

Proof of Lemma 2.4.3 The proof is an induction on n.

Step 1: Initialization. We recall the conservation laws satisfied by a solution to the

Boltzmann equation, (2.2.4),

vt € RY, / flt,x,v) dedv = M, // |v!2f(t,x,v)dmdU:E,
Q JRd Q JRd

with M > 0 and F < oo.

Since € is bounded, and so is included in, say, B(0, Rx), we also have that

vt e RT, / / (|:U]2 + ‘U’Q) f(t,z,v) dedv < « = MR% + E < 4o0.
Q JRd
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2.4 The cutoff case: localized “upheaval points”

Therefore if we take t = 0 and Ry, = \/2a/M, we have the following

M
/ / fo(z,v) dedv > — > 0.
B(0,Rmin) / B(0,Rumin) 2

Therefore we have that there exists z1 in  and v; in B(0, Ryip) such that

M

> 0.
WVol(BO, Ron))®

fo(z1,v1)

The first step of the induction is then due to the continuity of f at (0, x1,v1). Indeed,
there exists o7, dx,dy > 0 such that

. M
~ 8Vol(B(0, Rpin))?’

vt € [Oa(sT]’ vxeB(xlvéX)’ VUGB(Ula6V)7 f(t7$7/U)

and we define A = min(dr,dx, dy).

Step 2: Proof of the induction. We assume the conjecture is valid for n.
Let  be in B(x1, A/2"Y), v in B(0, ||v1]| + 27,) and ¢ in [0, A].

We use the fact that f is a mild solution to write f(¢,x,v) under its Duhamel form
(2.2.10). The control we have on the L operator, Lemma 2.4.1, allows us to bound from
above the second integral term (the first term is positive). Moreover, this bound on L is
independent on ¢, z and v since it only depends on an upper bound on the energy ey ;.
t,x,~)) which is uniformly bounded by E; (and by L‘?). This yields,
for 7,,(t) = min (t, AJ2M N (2r, + Hle)))

(and its local L? norm l?(

n(t)
e_SCL<HU1H+2rn>7+ Q+ [f(sa Xs,t(xy U)v ')7 f(sa Xs,t(xa U): )] (V:s,t(x7 U)) dS,

(2.4.2)
where Cp, = cst CoEy (or Cp = cst nyCo(Ef + L?)), see Lemma 2.4.1, and we used
Vet (@, v)|| = [[v]] < 2rn + [[u1]-

F(ta,v) > /

0

Besides, we have that B(z1,A) C © and also

A A
Vs € |0, , Yo, € B(0, 2ry), - Dl < =
$ 201 (27, + |1 ) % (0, florll +2rn),  [l21 — (z + sv.)] on

which, by definition of the characteristics (see Section 2.3.2), yields

A
Xsi(z,v) =x+sv,€B <$1, 2n>
Vs € [0, 7,(t)], Yu. € B(0, [|v1]| + 2ry),

Ver(x,ve) = vy
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2 Instantaneous filling of the vacuum

Therefore, by calling v, the integration parametre in the operator Q™ we can apply

the induction property to f(s, Xs+(z,v),v,) which implies, in (2.4.2),
O 2 20t
f(t,z,v) 2/ e s-Lilln n o (8)Q [lB(an),lB(UMn)] ds(v).
0

Applying the spreading property of QF, Lemma 2.4.2, with £ = 1/4 gives us the
expected result for the step n + 1 since B(vi,mn41) C B(0, ||vi|| +27r5,). m

We now have all the tools to prove the next proposition which is the immediate ap-

pearance of localised “upheaval points”.

Proposition 2.4.4 Let f be the mild solution of the Boltzmann equation described in
Theorem 2.2.3.
Then there exists A > 0 such that for all 0 < 79 < A, there ezists é7(19), dx(70), ov(70),
Rpnin(10), ao(10) > 0 such that for all N in N there exists Nx in N* and x1,...,zN, in
Q and vy, ...,ony i B(0, Rpin(70)) and

e QC U B(xi,csx(To)/QN);

1<i<Nx

o Vit € [10,07(70)], Y& € B(z4,0x(10)), Vv € R,

f(ta z, U) P a’O(TO)]‘B(Ui75v(T0)) (U)a

with B (v;, 0y (10)) C B(0, Rynin(70))-

Proof of Proposition 2.4.4 We are going to use the free transport part of the Duhamel

form of f (2.2.10), to create localised lower bounds out of Lemma 2.4.3.

We take 0 < 19 < A, where A is defined in Lemma 2.4.3.
() is bounded so let us denote its diameter by dg. Let n be big enough such that r, >
2dq /10 + ||v1]| and define Ry (10) = 2dq/70.

Thanks to Lemma 2.4.3 applied to this particular n we have that

E,A} , Vo e Bz, A/2"),  f(t,z,v) > ay (E> 1B, (V)5 (2.4.3)

Web 2

where we used the fact that «,(t) is an increasing function.

Define . o
_ng, (2o
ao(m0) = 30n (%) e 2 rRT
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2.4 The cutoff case: localized “upheaval points”

We remark that f is continuous on the compact [rg, A] x Q x B(0, Ryin(70)) and hence

uniformly continuous. Therefore it exists ¢/-(79), 0 (70), 07, (70) > 0 such that
Vit — | < 8 (m0), V H$ — :B'H < Oy (10), V Hv — U’H < &y (10),

|f(t,x,v) — f(t’,x',v/)‘ < ap(70). (2.4.4)

We conclude our definition by taking

or(mo) = min(A, 10+ 8 (70)),
dx(10) = min(dy(70), A/2™),

Sy(m0) = min(§{ (m0), 7).
Finally, we take N € N and notice that ) is compact so there exists z1,..., Ny in
such that Q € |J B (zi,0x(70)/2"). Moreover, we construct them such that 1 is the
1<i<Nx
one defined in Lemma, 2.4.3.
We then take v; to be the one defined in Lemma 2.4.3 and we define
) 2
Vie{2,...,Nx}, vi=—(x;i—x1).
70
Because 2 is convex we have that
XT0/2,T0 (.’L‘Z‘,’UZ‘) = i, (2.4.5)
V‘ro/2,‘ro (xhvi) =

Using the fact that f is a mild solution of the Boltzmann equation, we write it under
its Duhamel form (2.2.10) and we drop the last term which is positive. As in the proof of
Lemma 2.4.3 we can control the L operator appearing in the first term in the right-hand
side of (2.2.10) (corresponding to the free transport). Thus, we use the Duhamel form
(2.2.10) between 7y and 79/2 and we combine it with (2.4.5). This yields

T (2 (g +
f(10,i,v5) 2 f(%al‘lavi)e 2 Oz (imm)lt
70 _To¢ 2dg At
Z (5) e 2 3 0 > ]-B(vl,rn)(vi)
> 2a0(70)1B (v rn) (Vi)
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2 Instantaneous filling of the vacuum

where we used (2.4.3) for the second inequality. We see here that v; belongs to B(0, Rin(70))
and that B(0, Ryin(70)) C B(vi,7,) and therefore

f (70, 23, vi) = 2a0(70)- (2.4.6)

Finally, combining (2.4.6) with the uniform continuity of f, (2.4.4) we have that for
all ¢ in [To,(ST(To)], T in B(xi,éx(To)) and v in B(Ui,(sv(Tg)),

f(t, Z, U) 2 ao(T()).

Remark 2.4.5 This last proposition tells us that localised lower bounds appear immedi-
ately, that is to say after any time 19 > 0. The exponential lower bound we expect will
appear immediately after those initial localised lower bounds, i.e. for all 7 > 19. There-
fore, to shorten motation and lighten our presentation, we are going to study the case
of solution to the Boltzmann equation which satisfies Proposition 2.4.4 at 7o = 0. Then
we will immediatly create the exponential lower bound after 0 and apply this result to
F(t,z,v) = f(t + 10, ,v).

2.4.2 A constructive approach to the initial lower bound, Corollary 1

The initial lower bounds we just derived relies on compactness arguments and their con-
struction is therefore not explicit. However, as mentioned in Section 2.2.3, a few more
assumptions on fy and f suffice to obatin a completely constructive approach for the “up-
heaval point”. This method is based on a property of the iterated QT operator discovered

by Pulvirenty and Wennberg [95] and reformulated by Mouhot ([7%] Lemma 2.3) as follows.

Lemma 2.4.6 Let B = ®b be a collision kernel satisfying (2.1.3), with ® satisfying (2.1.4)
or (2.1.5) and b satisfying (2.1.6) with v < 0. Let g(v) be a nonnegative function on R?
with bounded energy eq and entropy hg and a mass py such that 0 < py < +o0o. Then there
exist Ry ,00,m0 > 0 and v € B(0, Ry) such that

QT (QF (91B(0,R0)> ILB(0.R0)) » 9L B(0.R)) = M0LB(5.60)5

with Ry , 00,10 being constructive in terms on py, €4 and hy.

We now suppose that 0 < py, < +00, hy, < +oc and that

V(a,v) € Qx RY, folz,0) = p(v) >0
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2.4 The cutoff case: localized “upheaval points”

and we follow the argument used in[75].

By the Duhamel definition (2.2.10) of f being a mild solution and Lemma 2.4.1 we

have
+

F(t, Xi(x,0), Vi(z,0)) = folz,v)e O (2.4.7)

and
t
f(tvwvv) 2/0 € —(t=5)CLv Q+ [f(s,Xs,t(:c,v),'),f(s,stt(ac,v),-)] (V;t(x U)) ds.

Define t(x,v) > 0 the time of first contact with 9 of the trajectory = + sv (see rigorous
definition in Proposition 2.3.3). For all ¢ in [0,¢(x, v)] we have

Xoi(z,v) = x+to,
Vou(z,v) = wo.

Thus, for all 0 < ¢ < t(x,v),

f(t,z,v) >/te (t=5)Cr (v Q+ [f(s,x + sv,-), f(s,x + sv,-)] (v) ds,
0

and we can iterate the latter inequality

t +
f(t,x,v) > / e—(t—s)C’L@;)W
0

Q+ |:/ (s=s)C1 v)’Y Q+ (f(S,l‘ + Slvv ')7 f(S,.fU + Slvv )) (')d8/7 f(t,.%’ =+ sv, ) (U) ds.
0
(2.4.8)

(2.4.7) and (2.4.8) are exactly the same bounds than the ones obtained in [7%], Step
1 of proof of Proposition 3.2, and we can therefore conclude the same way with Lemma
2.4.6

f(t,z,v) = ao(10)1p3.45),

as long as v is in B(0, Rp) and 0 < ¢t < 7.
The only difference with [75] is the fact that we need 7y to be in [0, (x, v)], giving local

lower bounds instead of a global one.

2.4.3 A lower bound depending only on the norm of the velocity: strat-
egy of the proof of Proposition 2.2.4

As stated in the introduction, the spreading property of the bilinear operator Q* cannot

be used (at least uniformly in time and space) when we are really close to the boundary
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2 Instantaneous filling of the vacuum

due to the lack of control over the rebounds. However, if we have a lower bound depending
only on the norm of the velocity then the latter bound will not take into account rebounds

as they preserve the norm, allowing us to spread this minoration up to an exponential one.

The next two sections are dedicated to the creation of such a uniform lower bound
depending solely on the norm of the velocity. In order to do so we restrain the problem
without taking into account large velocities and divide the study to two cases: if the
trajectory stays close to the boundary or if it does not. In both cases we will start from
the localised “upheaval points” constructed in Section 2.4.1 and spread them to the point

where one gets a lower bound depending only on the norm of the velocity.

The next sections tackle each of these points. We first study the case when a charac-
teristic reaches a point far from the boundary and finally we focus on the case of grazing
characteristics. We fix 07, dx, oy, Rmin and ag to be the ones described in Proposition
2.4.4 at time 19 = 0.

The result we will derive out of those studies is Proposition 2.2.4 and from now on,
dependencies on physical observables of f (E; and L‘?ﬂ) will be mentionned but will not

be explicitly written everytime.

2.5 The cutoff case: characteristics passing by a point far

from the boundary

In this section we manage to spread the lower bounds created in Proposition 2.4.4 up to
a ball in velocity centred at zero as long as the trajectory we look at reaches a point far

enough from the boundary.
First, we pick N in N* and cover {2 with Uicicny B(@i 6x/2N) as in Proposition 2.4.4.
Then for | > 0 we define

Q={zeQ: dz,00) =1}, (2.5.1)
where d(z,09) is the distance from x to the boundary of €.

For any R > 0 we define two sequences in R™ by induction, for all 7 > 0 and [ > 0,
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To :6\/
32 (2.5.2)
'n+1 = 4 T'n
and

([ ao(l,7) =ag

d+ry

rd l T (2.5.3)
ant1(L7) = CQ a1 gaap® CLt ap (8’T>’

where Cg and C7, were defined in Lemma 2.4.3.

We express the spreading of the lower bound in the following proposition.

Proposition 2.5.1 Let f be the mild solution of the Boltzmann equation described in
Theorem 2.2.3 and suppose that f satisfies Proposition 2.4.4 with 9 = 0.

Consider 0 < 7 < 0r and N in N. Let (7;)icq1,.. Ny} and (Vi)ief1,.. Ny} be given as in
Proposition 2.4.4 with 1y = 0.

Then for all n in {0,..., N} we have that the following holds: for all 0 < | < dx, and
R > 0 such that I/R < 7, for all t in [I/(2"R), 7], and for all x € Q and v € B(0, R), if
there exists t; € [0,t — /(2" R)] such that X, ((z,v) belongs to Q; N B(x;,0x/2") then

f(tvxa U) = an(lv’r)lB(vi,rn)(V%l,t(xav))?

where (ry,) and (a,) are defined by (2.5.2)-(2.5.3).

Proof of Proposition 2.5.1 This Proposition will be proved by induction on n.

Step 1: Initialization. The initialisation is simply Proposition 2.4.4 and the first

term in the Duhamel formula (2.2.10) starting at 7.

Indeed, we use the definition of f being a mild solution to write f(t,x,v) under its
Duhamel form (2.2.10) starting at ¢; where both parts are positive. The control we have
on the L operator, Lemma 2.4.1, allows us to bound from above the first term. Moreover,

this bound on L is independent on = and v (see proof of Lemma 2.4.3). This gives

+
flt,z,0) = e OB £ Xy, 0), Vi, o(,0)) (2.5.4)

Finally, Proposition 2.4.4 applied to f(t1, X¢, +(z,v), Vi, ¢(x,v)) gives us the property

for n = 0.
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2 Instantaneous filling of the vacuum

Step 2: Proof of the induction. We consider the case where the proposition is true
for n.
Given [ € (0,0x], t € [[/(2""'R),7], * € Q and v € B(0, R).

We suppose now that there exists t; € [0,¢ — [/(2"T1R)] such that Xy, +(x,v) € QN
B(xi, 6x /2™,

Similar to what we did in the first step of the induction, but concentrating on the

second part of the Duhamel formula (2.2.10) we conclude that

The goal is now to apply the induction to the triplet (s, X:(z,v), vs), where v, is the
integration parametre inside the QT operator, with |lv.|| < R.
One easily shows that X, ¢(z,v) = Xy, ¢(@,v)+ (s—t1) Vi, ¢(w,0), for s in [ty + gk, b1+

ﬁ], and therefore we have that

[ Xty (2, v) = Xs a2, 0)|| < (2.5.6)

on+2 ’

and so that Xs¢(z,v) belongs to Q;_;/on+2.

Finally, we have to find a point on the characteristic trajectory of (s, X (x,v),vs)

that is in Qp for some I’. This is achieved at the time ¢; (see Figure 2.4).

Figure 2.4: Study of (s, Xs,(z,v),vs) far from the boundary

Indeed, we have s in [t; +1/(2""3R),t; +1/(2"2R)] so, for ||v.]| < R
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Ve et sl [[Xeel@v) — (Xealev) — (s — )| < = (2.5.7)

= ont2”
This gives us the characteristics trajectory backward starting from s, since X ;(z,v) —

(s — s')v, remains in 2, and therefore

Xy s (Xsp(m,0),00) = Xsp(z,0) — (s — & )vs

Vs € [t1, 5],
Vs’,s (XS,t(x7v)v’U*) = Ux.

To conclude we just need to gather the upper bounds we found about the trajectories
reaching (X (7,v),v,) in a time s in [t; +1/(2"73R),t; +1/(2"72R)], equations (2.5.6)
and (2.5.7)

l
[ Xty (2, 0) — Xy s (Xs a2, ), 04[] < SR

We have that Xy, +(z,v) belongs to ;N B(x;,dx /(2""1)) and therefore we have that for
all sin [t1+1/(2"P3R), t14+1/(2"2R)], Xy, s (Xs1(2,v),v.) belongs to QN B(x;, 6x /2").

Finally, if s belongs to [t;+1/(2" ™3 R), t1+1/(2" T2 R)] we have that (I/8)/(2"R) < s < T
and t1 isin [0,s — (I/8)/(2"R)].

We can therefore apply the induction assumption for I’ = [/8 inside the QT operator
in (2.5.5), recalling that Vi, (X, (2, v),vs) = vs.

l 2 + t1+ st
flt,z,v) > ap (8,T> e CrT(R) (/ e Q" [1B(m,rn)7 1B(vi,rn)] dS) (Vi 2(z,0)) .
t

1
1+2"+3R

Applying the spreading property of Q*, Lemma 2.4.2, with & = 1/4 gives us the
expected result for the stepn+1. =

One easily notices that (r,)nen is a strictly increasing sequence. Moreover, for all N
in N we have that for all 1 < ¢ < Nx, v; belongs to B(0, Ryin). Therefore, by taking N
large enough (greater than N; say) we have that

Vi € {1,. . .,Nx}, B(O,QRmin) C B(UZ',TN).

This remark leads directly to the following corollary which stands for Proposition 2.2.4

in the case when a point on the trajectory is far from the boundary of €.

- 01 -



2 Instantaneous filling of the vacuum

Corollary 3 Let f be the mild solution of the Boltzmann equation described in Theorem
2.2.3 and suppose that f satisfies Proposition 2.4.4 with 19 = 0.

Let Ar be in (0,67] and take 11 in (0, Ap].

Then for all 0 < I < 0x, there exists a(l,71, A7) > 0 and 0 < £(I, 71, Ar) < 71 such that
for all t in [11, Ar], and every (z,v) in Q x R%: if there exists t, € [0,t — (I, 71, A7)] such
that X, +(z,v) belongs to  then

ft,m,0) = a(l, 71, Ar)1p0,2Rmm) (V)-

Proop of Corollary 3 This is a direct consequence of Proposition 2.5.1.

Indeed, take 0 < < dx, 0 < 71 < Ap and R = R(Ap) > 0 such that R > 3R,,;, and
l/R < Ap. Then take Ny > N; large enough such that l/(2N2R) < 11. We emphasize here
that Ny depends on to 71 so we write Na(77).

Now apply Proposition 2.5.1 with N = Na(71) and for ¢ in [71, Ap]. We obtain exactly
Corollary 3 (since B(0,2Rnin) C B(v;,ry) for all i and R > 3R;,) with

l

al.m, A7) = ayy(y (b Ar) - and - E(l.m, Ar) = Grpae

and the fact that |J B (2;,6,/2") covers Q. m

1<i<Ny

2.6 The cutoff case: geometry and grazing trajectories

We now turn to the case when the characteristic trajectory never escapes a small distance
from the boundary of our convex domain €.

Intuitively, by considering the case where 2 is a circle, one can see that such a behaviour
is possible only when the angles of collisions with the boundary remain small (which
corresponds in high dimension to the scalar product of the velocity with the outside normal
being close to zero), or the angle is important but the norm of the velocity or the time
of motion is small. Thus, by using the spreading property of the Q" operator we may
be able to create larger balls in between two rebounds against the boundary because the
latters should not change the velocity too much.

The study of grazing collisions will follow this intuition. First of all Section 2.6.1
proves a geometric lemma dealing with the fact that if the velocities are bounded from
below and above, then for short times, the possibility for a trajectory to stay very close to
the boundary implies that the velocity do not change a lot over time. Then Section 2.6.2
spreads a lower bound, in the same spirit as the last subsection, up to the point when this
lower bound covers a centred ball in velocity. Notice that the geometric property forces us
to work with velocities whose norm is bounded from below and so we shall have to take

into account the speed of the spreading.
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2.6 The cutoff case: geometry and grazing trajectories

2.6.1 Geometric study of grazing trajectories

The key point of the study of grazing collisions is the following geometric lemma. We
emphasize here that this is the only part of the chapter where we need the fact that € is
C2.

Proposition 2.6.1 Let Q be an open convex bounded C? domain in R and let 0 < vy, <
UM -
Then, for all e > 0 there exists t.(vy) such that for all 0 < 19 < t.

te(vpr) there exists
lc(Vm, 72) > 0 such that for all x in Q and all v in R with vy, < |jv| < v

M,

(Vs € [0, 7], Xs(x,v) ¢ ng(vm,m)) = (Vs € [0,t(vm)], || Vs(z,v) — 0] <e).

Furthermore, l. (v, ) is an increasing function.

The following is dedicated to the proof of Proposition 2.6.1.

We recall that for z in Q and v in R% we define, see Section 2.3, tpin(x,v) to be the
time of the first proper rebound when we start from x with a velocity —v. This means
that t,n(x,v) does not take into account the case where a ball rolls on the boundary.
This implies that one cannot hope to get continuity of the function ¢,,;, because changing
the velocity slightly may lead to a proper rebound instead of a rolling movement.

This being said, we define a time of collision against the boundary which will not
take into account the possibility of rolling along the boundary of €2. This will not be too
restrictive as we are considering a C? convex domain and therefore a trajectory that stays
on the boundary will only reach a stopping point which happens only on a set of measure
zero in the phase space (see Section 2.3). Therefore we define for  in Q and v in R%, the
first forward contact with the boundary, t(x,v). It exists by the same arguments as for
tmin- Notice that if z is on 02 then for all v # 0 we have that ¢(z,v) = 0 if and only if
n(x) - v > 0, with n(z) being the outward normal to 902 at the point x.

We have the following Lemma dealing with the continuity of the outward normal to
0€) at the first forward contact point which will be of great interest for proving the crucial

Proposition 2.6.1.

Lemma 2.6.2 Let Q be an open convex bounded C* domain in R%.
Then t : (z,v) —> t(z,v) is continuous from Q x (R?—{0}) to RT.
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2 Instantaneous filling of the vacuum

Proof of Lemma 2.6.2 Let suppose that ¢ is not continuous at (o, vo) in Qx (R? — {0}).
Then

|zo —an|| < 1/N

de >0, VN > 1, I(zn,vN), o — owll < 1/N and  |t(zo,v0) — t(zn,vN)| > €.
0 — UN|l x

If we still denote by dqo the diameter of 2, we obviously have that for all N, 0 <
t(xy,vn) < da/|lvn||. Thus, (H(zN,vNn))yey 18 a bounded sequence of R and we can
extract a converging subsequence (t(x¢(N), v¢(N))) such that T' = Nlirilmt(x¢(N), v¢(N)).

By construction (see Section 2.3) we have that for all N in N, x4y +t(Zg(n)> Ve(a))Vg(N)
belongs to 02 which is closed. Moreover, this sequence converges to xg+ Tvg which there-
fore is on Of).

Finally we have that |t(xg,v9) —T| > e. Since Q is convex, the segment [xq,zo +
max(t(zo, vo), T)vo] stays in  and intersect the boundary at least at two distinct points.
By convexity of the domain, this implies that the extreme points of the latter segment

have to be on the boundary which means that xg belongs to 92 which is a contradiction.

Therefore, ¢ is continuous in Q x (R? — {0}). By the definition of ¢(z,v) we have its
continuity at the boundary. Indeed, n(z) - v > 0 means we came from inside the domain

to reach that point and we have

x—2x

|t(a",v) = t(z,v)|| < TS

]
We are now ready to prove the geometric Proposition 2.6.1.
Proof of Proposition 2.6.1 Consider € > 0 and 0 < v,,, < vjy.

Step 1: the case of segments. The first step is to understand that if a whole
trajectory stays close to the boundary, then the angle made by the velocity with respect
to the normal at the point of collision is close to 7/2 for dimension d = 2. The same
behaviour in higher dimensions is described by the scalar product of the direction of the
trajectory and the normal being close to zero. One has to remember that controlling
||Vs(x,v) —v| is the same as controlling the scalar products of the trajectory and the
normal on the boundary at each collision point (see definition of V(z,v) in Section 2.3).

Let x be on 90 and p in N*. We define

I'p(z) = {|n(ac) ol ve ST ston(z) v <0 and Vs € [0,t(z,v)], © + sv ¢ Ql/p} ,
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2.6 The cutoff case: geometry and grazing trajectories

with €/, being defined by (2.5.1).

I')(x) gives us the values of scalar products between a normal on the boundary and all
the directions that create a characteristic trajectory which stays at a distance less than
1/p from the boundary in between two distinct rebounds (see Figure 2.5). This is exactly
what we would like to control uniformly on the boundary.

We remark that I'y(z) is not empty because (2 and, thus, Q,/, are convex and by
the geometric theorem of Hahn-Banach we can separate (2, and a disjoint convex ball
containing x. It is also straightforward, a mere Cauchy-Schwartz inequality, that I',(z) is

bounded from above by 1. Therefore we can define, for all p in N*,

hy: 00 — RT
x +—— supl)p(z).

We are going to prove that (hy)pen+ satisfies the following properties: it is a decreasing
sequence of functions, h,, is continuous in z for each p > 1 and for all z in 9Q (hy(z))pen=
converges to 0.

The fact that (hy) is decreasing is obvious.

In order to prove the continuity of h, we take an x on the boundary and v in Sé-1
such that [n(x) - v| is in I')(x). We have that for all s in [0, t(x, v)]

d(x + sv,00) < 1/p.

The distance to the boundary is a continuous function and [0,#(x,v)] is compact so
there exists s(x, v) in the latter interval such that d(x+s(x, v)v,0Q2) is maximum. Because
() is convex we have that {2y, is convex and therefore

d(z + s(z,v)v,Q
Vs € [O,t(x,v)], B <‘T =+ sv, (x S(x;))v 1/p)> N Ql/]’ = (Z)

Then for all 2’ on the boundary such that ||z — 2'[| < d(x + s(x,v)v, Q4 ,)/2 we have
that for all s in [0,#(2',v)], ' + sv is not in €, /,. Lemma 2.6.2 gives us that if 2’ is close
to = then t(z’,v) > 0 and thus v is not tangential at x’ either. Moreover Q is C2 so the
outward normal to the boundary is continuous and therefore for ' even closer to x we
have that v is such that [n(z) - v| is also in I',(2"). To conclude, we notice that the scalar

product is continuous and therefore for all n > 0 we obtain

—n < | [n@) - o] = Inf@) -0l | < n,

when 2’ is close enough to z.
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2 Instantaneous filling of the vacuum

The same arguments with the same constants (since our continuous functions act on
compact sets and therefore are uniformly continuous) if 2’ is close to x then taking |n(z’) - v|
in Ty /,(2") we have |n(z) - v| in T'y/,(2) and the same inequality as above. This gives us
the continuity of hy, at x. Indeed, we showed that for all 2’ close to z and for all element
u in T'y jp(x) we can find an element u’ in T'y /,(2) that is close to u.

Finally, it remains to show that for z on the boundary we have that h,(x) tends to 0
as p tends to 4o0.

One can notice that the vector —n(z) is the maximum possible in I'y(z) and is exactly the
direction of the diametre in €2 passing by x. Hence, simple convexity arguments lead to the
fact that if all the segments of the form [z, z —t(z, —n(x))n(z)] intersect €, /, then we have
that for all x on the boundary, there exists v,(x) in ST=! such that n(z) - vy(z) = —hy(z).
Moreover, the segment [z, + t(z, v,(7))vp(z)] is tangent to €, and we denote by z;, its
first contact point (see Figure 2.5). The convexity of 2 and €2, /, shows that, as p increases,
xp gets closer to z and to the boundary (€2 is convex). Therefore v,(z) tends to a tangent

vector of the boundary at x. This shows that

lim h,(x) =0

p—+o0

in the case where all the segments of the form [z, — t(z, —n(z))n(x)] intersect € /.

We now come to the case where the segments of the form [z,x — t(z, —n(z))n(z)] do
not all intersect €2y /,. If for all p, this segment does not intersect {2/, this implies by
convexity of ) that [z, z — t(x, —n(z))n(z)] is included in 9Q. But then —n(z) is not only
a normal vector to the boundary at x but also a tangential one at z. Geometrically this
means that x is a corner of 9 and n(z) is ill-defined. This is impossible for 2 being C2.
Hence, for all x on the boundary, it exists p(x) such that the segment at = intersect €2,
However, Q is C? and we also have Lemma 2.6.2. Those two facts implies that p(z) is
continuous on J€) which is compact and therefore p(x) reaches a maximum. Let us call
this maximum P. For all p > P, all the segments of the form [z,z — t(x, —n(x))n(z)], =

in 02, intersect p and we conclude thanks to the previous case.

Thanks to these three properties and the fact that 02 is compact, we are able to use
Dini’s theorem. We therefore find that (hp)pen= converges uniformly to 0. By taking p.
large enough we have that for a segment of a characteristic trajectory joining two points
on the boundary to be outside €, we must have I')_ < ¢ for any = on the boundary (see
Figure 2.5).

Step 2: more general trajectories. We take x in 9 and v such that v, < ||v]| < var

and we suppose that for a given £ > 0

Vs € [O,t], Xs(l',’U) ¢ Ql/P(e/ZNmaz)’
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2.6 The cutoff case: geometry and grazing trajectories

Npaz to be define later.

We are about to find a uniformly small time such that trajectories having at least
two collisions against the boundary do not undergo an important evolution of velocity.
This will be achieved thanks to the facts that ||v|| < vas and that the maximum of the
scalar product is attained at a critical vector and which is the only one that needs to be
controlled.

Thanks to Proposition 2.3.4, (X(z,v))s has countably many rebounds against the
boundary (almost surely a finite number in fact). We denote by (t;);en) the sequence
of times between consecutive collisions and by (I;);en the distance travelled during these

respective times. We have that

VieN, [;=|vlt; and wvput < Zli < oyt
ieN
Therefore, for all n > 0, there exists IV,(x,v) in N such that

Y ti<n (2.6.1)

>Ny (z,v)

By continuity of ¢(z,v), see Lemma 2.6.2, and the fact that ¢(z,v) = 0 if and only if
n(x)-v > 0, we have that for n small enough (2.6.1) yields

> (i) vl <ef4, (2.6.2)

i>Np(x,v)

where v; is the velocity after the i*? rebound and x; is the i** footprint.

t(z,v) is uniformly continuous on the compact 9Q x {|v| = var} (see Lemma 2.6.2)
therefore the footprints of (Xs(z,v))scpy are uniformly continuous and therefore there
exists ag? > 0 and Ny, in N such that

Vo, x' € 00 s.t. Ha: - x/H < ax, Yo, <|v| <oy, Np(z,v) < Npag — 1. (2.6.3)

We have now defined N,,qz.

The first property to notice is that if (Xs(z,v))sejo, has at least two rebounds against
the boundary, then at each of them the scalar product between the incoming velocity and
the outward normal is less than /2N,

Secondly, 2 is C? and therefore n(z) is uniformly continuous on the boundary. Thus,

the specular reflection operator R, is uniformly continuous on 9Q x B(0,vs):

Elozg?) >0, Vz,2' € 09 s.t. H:L’ — x/H <ax, [[Re—Rul <e/4Nmaz- (2.6.4)
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2 Instantaneous filling of the vacuum

We want to be sure that straight trajectories stay in our domain of uniformity so we

o 1
t < t(vpy) = max <X, > ,
UM  Pe/2Nmas VM

consider

where ax = min(o&),ag?)) defined in (2.6.3) and (2.6.4). To conclude, thanks to (2.6.3)

and (2.6.2), if (Xs(z,v))sefo, collides at least twice with the boundary then

9 9
vse 1, lo-Vim ol <2 ln(e) wl<2 Y o420 =
iEN igNmaz_l mar

Roughly speaking we do not allow the velocities near the critical direction to bounce
against the wall and for the grazing ones we run them for a short time, preventing them
from escaping a small neighbourhood where the collisions behave almost the same every-

where (see Figure 2.5).

To conclude our proof, it only remains to find [ < 1/p, /2Nma, that prevents trajectories
staying in €; but go through only one rebound with a scalar product greater than /2
from happening. This is easily achieved by taking [ small enough such that not a single
trajectory with a scalar product greater than €/2N,,,, can stay inside €; during a time 7.
Indeed, one part of these trajectories will overcome a straight line of lenght at least v, 7/2
and making a scalar product greater than £/2N,,,4,. The distance from the boundary of
the extremal point of these straight lines is therefore, by convexity, uniformly bounded
from below (e.g. in dimension 2 it is bounded by vy, 7€ /4 Npqa. Taking . (v, 7) being the
minimum between this lower bound and 1/p, /2Nmae 8ives us the required distance from

the boundary.

Figure 2.5: Control on grazing trajectories
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2.6 The cutoff case: geometry and grazing trajectories

Remark 2.6.3 In the case of Q is a strictly convex C® domain, the proof of Proposition
2.6.1 can be easily made constructive thanks to the tools developed by Guo [57].
In that case we have the existence of € : RY — R to be C® such that

Q={zeR? &) <0}
and such that V& # 0 on 092 and there exists C¢ > 0 such that
0ij€()viv; > C¢ [|v]|”

for all z in Q and all v in RE. It allows us to define the following bounded functional along

a characteristic trajectories (X, Vs),
a(s) = €(X,) + [V VE(XL)]* =2 [Va - VE(X,) - Vi] €(X5) > 0,
The latter functional satisfies that if X, is on 0 then
(50) = [Vay - VEX e )12 = [Vag - n(Xop )2 [VE(X o) 2.

a thus encodes the evolution of the scalar product between the velocity of the trajectory
and the normal to 2 at the footprints of the characteristic. If the characteristic trajectory
starts with a velocity v such that vy, < ||v|| < va, as in Proposition 2.6.1, Lemma 1 and
Lemma 2 of [77] shows that in between two consecutive collision with the boundary at time

s1 and sy we have the existence of C¢ > 0 such that

|51 — 89| > Cg#gl), (2.6.5)

Um
ecﬁ(”m+1)sla(81) < ng(merl)sga(SQ), (2.6.6)
e*C&'(’UM‘Fl)Sla(Sl) > eicf(va’»l)sza(SQ)' (267)

With (2.6.5) we can control the minimum time between two consecutive collisions with
the boundary and therefore the minimum lenght of a segment between two consecutive
collisions, uniformly in x andv (since VE is bounded from below on 92 and non-vanishing).
We therefore obtain a uniform maximum number of collisions during the given time T.
Finally, (2.6.6) and (2.6.7) bounds uniformly the evolution of the scalar product between
two consecutive collision and therefore the mazimum evolution of Vs(xz,v) on the whole
trajectory for a given time T. Plugging those constructive constants into the study we just

made gives explicit constants in Proposition 2.6.1.

Now that we understand how grazing trajectories behave geometrically we can turn

our attention to their effects combined with the spreading property of the Boltzmann Q"
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2 Instantaneous filling of the vacuum

operator.

2.6.2 Spreading effect along grazing trajectories

In order to use the geometrical behaviour of grazing characteristic trajectories, one needs
to consider velocities that are bounded from below. However, we would like to spread
a lower bound up to ball centred at 0 where a lower bound on the norm of velocities is
impossible. We shall overcome this problem using the flexibility of the spreading property
of the QT operator, Lemma 2.4.2, which allows us to extend the radius of the ball from 0
up to \/2 times the initial radius.

The idea is to spread the initial lower bound by induction as long as the origin is strictly
outside, where we are allowed to use the geometrical property of grazing characteristics.
Finally, a last iteration of the spreading property, not requiring any a prior: knowledge
on characteristics, will include 0 in the lower bound.

In Corollary 3 we can fix a special time 7 of crossing the frontier of some §2; allowing
us to derive a lower bound for our function in this special case. The second case of grazing
trajectories is dealt with Proposition 2.6.1 where we can find an [ for €2; to control the
evolution of the velocity. Our goal now will be to find all the constants that are still free
and to finally find a time of collision small enough that it will remain the same during all

the iteration scheme.

We now fix all the constants that remain to be fixed in Corollary 3 thanks to Proposition
2.6.1.
Let

Ap = min (67, ts, /4(3Rmin)) - (2.6.8)

Next we define, for £ in (0, 1),

ro(§) =dv
Sy (2.6.9)

rai1(§) = V2(1—ra(§) - T

We have that (r,,(1/2 -5/ (Sﬁ)))n cy 18 a strictly increasing sequence. Therefore, it

exists Nypqz such that

1 5
r —— ——= | =2 2Rpin-
v (3 500)

Now we fix N in N* greater than N,,q,. With this NV and Proposition 2.4.4 at 79 = 0,
we construct vy,...,Uny.

For i in {1,..., N} we take £® in (0,1/4 —5/(8v/2)] and we define Nyu.(7) to be such
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2.6 The cutoff case: geometry and grazing trajectories

that 0 ¢ B (v;, rn(f(i))) for all n < Npqe (i) and 0 € B (vi, TN, (3 (f(i))). We can in fact
take £ such that 0 € Int (B (vi, T Nonas (i) (f(i)))).
Therefore we have that for all ¢ in {1,..., Nx},
6 = l[vill = " Nppaa (i1 (€7) 2 0,

which is strictly positive if and only if Nyuq.(7) > 0. We consider

m = i d;; 0; > 0}. 2.6.10
o= M J (2.6.10)
We can now define:
20x
V0 <7<A7p, R(1) = max | 3Rmin, — + 1), (2.6.11)
T
n(r)=7- ;57)_() >0, (2.6.12)
t(r) = #(U(r), m(7), Ar). (2.6.13)
Finally, we define [(7)
Vo<T<A T2(7) = min | A 0% (2.6.14)
< AT, 2(T) = T, R(r) ) .6.
I(7) = min (8x, s, /4 (m, 72(7))) - (2.6.15)

We also build up the following sequence, where R, [ and 71 depend on T,

b0 (r, Ag) = age~Ar=mICL(RN”

+

i . i _ 5X —7
b1(1)+1(7-’ Ar) = min (CQTﬁlf'y(f( ))d/2 lme CrLiR)y

b (r, AT>2;a<z,n,AT>)

(2.6.16)
¢ was defined above and a(l, 7, Ar) was defined in Corollary 3.

We are now ready to state the next Proposition which is the complement of Proposition
2.5.1 in the case when the trajectory stays close to the boundary. We remind the reader
that 0 < £(7) < 71 (7).

Proposition 2.6.4 Let f be the mild solution of the Boltzmann equation described in

Theorem 2.2.3 and suppose that f satisfies Proposition 2.4.4 with 9 = 0.
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Consider 0 < 7 < Ap and take i in {1,..., Nx} such that Nyq, (i) > 1.
For allm in {0,..., Nmaz(i) — 1} we have that for allt in [T —dx /(2" R(7)), Ar], all z in
B(x;,0x/2™) and all v in B(0, R(T)), if

Vs € [O,t — E(T)]v Xs,t(x,v) ¢ Ql(‘r)

then
flt,x,v) > bnl) (T, AT)]'B(vi,?’n(ﬁ(i)))(v)’

all the constants being defined in (2.6.8),(2.6.9),(2.6.15),(2.6.11), (2.6.12), (2.6.13) and
(2.6.16).

Proof of Proposition 2.6.4 We are going to use the same kind of induction we used to

prove Proposition 2.5.1. So we start by fixing i such that Ny, (i) > 1.

Step 1: Initialization. The initialisation is simply Proposition 2.4.4 and the first
term in the Duhamel formula (2.2.10) starting at 7, with the control from above on L
thanks to Lemma 2.4.1.

Stef 2: Proof of the induction. We consider the case where the Proposition is true
at 1 < Npag (1) — 2.
We take t in [T — dx /(2" R(7)), A7],  in B(z;,dx/2"*1) and all v in B(0, R(7)).

We suppose now that for all s € [0, — #(7)] we have that X ,(x,v) does not belongs
to (7).

To shorten notation we will skip the dependence in 7 of the constant.
We use the definition of f being a mild solution to write f(¢,x,v) under its Duhamel
form (2.2.10) where both parts are positive. As in the proof of Proposition 2.5.1, we

control, uniformly on ¢, x and v, the L operator from above. This yields

t—-0X
+ - oan+2p

f(ta l’,?}) > e_CLT<R>’Y Q+ [f(sa Xs’t(l’,v), ')7 f(sts,t(xyv)v )] (‘/;,t(xyv)) d87

Sx
t= ¥R
(2.6.17)
where we used ||V +(z,v)| = |Jv|]| < R. We also emphasize here that this inequality holds

true thanks to the definition of (2.6.11):

Ox Ox
—m27’—§>0.

The goal is now to apply the induction to the triplet (s, Xs(x,v), vs), where v* is the

integration parameter inside the QT operator, with |lv.|| < R.
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We notice first that for all s in [t — dx /(2" R),t — 6x /(2" T2R)]

ox

lzi = Xse(z, o)l < 5o + llo = Xsu(, )]
5)( 5X
S W+(t—S)R<27,

so that for all s in [t — 6x /(2" R),t — §x/(2""2R)], X;.+(x,v) belongs to B(z;, dx/2").

We also note that

Ox dx Ox
t— 2n+1R’t_ 2n+2R:| C |:T—2nR,AT:| .

We have two different cases to consider for (Xy s(Xs¢(x,v), v4))gepo,s—7-
Either for some s’ in [0, s — ], X¢ (X5 (2, v), vs) belongs to €; and then we can apply
Corollary 3:

f(sts,t(xav)vv*) a(l77-1a AT)]-B(O,2Rmm)(U*)

=
> bgzi)(ﬂ AT)IB(UZ.7T”(§(¢)))(U), (2.6.18)
since v; is in B(0, Ryin)-

Or for all 8" in [0, s — ] C [0, 2], X s(Xs+(x,v),v,) does not belong to € and then we

can apply our induction property at rank n and we reach the same lower bound (2.6.18).

Plugging (2.6.18) into (2.6.17) implies, thanks to the spreading property of @1, Lemma
2.4.2 with ¢ = €@,

f(t,z,v) > (2.6.19)
5%
C Td+7(g(i))d/Q—le—TCL(R>7+ (b(1))? D 1 . oy (Vei(z,v)) ds
QR"n n L _ox B(vi,V2(1—£®)py, (£)) Vs, Ly .
2n+tlR

To conclude we use the fact that for all s in [0,¢ — ] we have that X ,(x,v) does not
belong to € and that t — £ > 5. Moreover, n + 1 < Nyae(i) — 1 and so if v belongs to
B (v, rn(f(i))) we have that v, < ||v||. We apply Proposition 2.6.1, raising

Sx Sx
~owrip! T gueg)

5
Vs e |t v — Viu(z,0)| < ZV
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Therefore, if v belongs to B (v, rn+1(§(i))) we have that V; ;(z,v) belongs to B(v;, v2(1—
ED)r, (€M) for all s in [t — dx /(2" R),t — dx /(2" 2 R)].
Therefore if v belongs to B (vl-, Tnt1(€ (i))) we can compute explicitly (2.6.19) and

obtain the expected induction. m

Thanks to Proposition 2.6.4, we can build, for all x and all v, a lower bound that will
contain 0 in its interior after another use of the spreading property of the Q' operator.

The next Corollary is the complement of Corollary 3.

Corollary 4 Let f be the mild solution of the Boltzmann equation described in Theorem
2.2.3 and suppose that f satisfies Proposition 2.4.4 with 19 = 0.
Let Ar be defined by (2.6.8).
There exists vy > 0 such that for all T € (0, Ar] there exists b(T) > 0 such that for all t
in [T, Ar]

If, for (1) and I(T) being defined by (2.6.13) — (2.6.15),

Vs € [O, t— E(T)], X37t(ZL‘, U) ¢ QZ(T)'
Then

f(t,z,v) = b(T)1p0 . )(0).

Proof of Corollary (4) We are going to use the spreading property of QT one more
time. We recall that we chose N > Nz = Npao(2) for all i. By definition of Npq,(7),

Vie{1,...,Ny}, 0¢Int (B (vi,rNW(i)@(i)))) .
We define

rv = min {rx,,.0 D) = Jull; i € {1,..., Nx}}

which only depends on éy and (Ui)ie{l,..., Ny}- By construction we see that
Vie{l,...,Nx},B(0,ry) C B (vi,rNW(i) (5“))) . (2.6.20)

Now we take 7 in (0, A7] and we take ¢ in [7, A7), z in B(z;,5x/2V) and v in B(0, R(7))
such that

Vs € [O’t - E(T)]v Xs’t(l’,’U) ¢ Ql(T)a
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We have that t is in [r — dx/(2VNme==1R(7)), Ap] and z in B(z;,dx /2Nmaz()-1)
(N > Npjaz(i)). By the same methods we reached (2.6.19), we obtain for n = Ny, (4)

flt,x,v) > (2.6.21)
_dx
C T,dJr'Y(f(i))d/Zflef‘rCL<R>W+ (b(i))z TR 1 . oy (Vai(z,v)) ds
Q"n n o _bx B(vi,V2(1—£®)r, (£@)) Vs Ly .
an+1R

This time the conclusion is different because we cannot bound the velocity from below
since our lower bound contains 0. However, (2.6.20) allows us to bound from below the in-
tegrand in (2.6.21) by a function depending only on the norm. Moreover, ||v|| = ||V ¢(x, v)||
along characteristic trajectories (see Proposition (2.3.8)). Thus we obtain the expected

result by taking

b(7) = min {bg@mx(i); ied{l,... 7NX}} .

2.7 Maxwellian lower bound in the cutoff case: proof of
Theorem 2.2.3

This section gathers all the results we proved above and proves the main Theorem in the

case of a cut-off collision kernel.

2.7.0.1 Proof of Proposition (2.2.4)

By combining Corollary 3 and Corollary 4 we can deal with any kind of characteristic

trajectory. This is expressed by the following lemma.

Lemma 2.7.1 Let f be the mild solution of the Boltzmann equation described in Theorem
2.2.3 and suppose that f satisfies Proposition 2.4.4 with 19 = 0.
There exists Ap > 0 and ry > 0 such that for all 0 < 7 < Ar there exists a(T) and

Vt e [r, A7), a.e. (z,0) € QxRY, f(t,z,0) > a(T)1B 0y (V)

Proof of Lemma 2.7.1 In Corollary 4 we constructed Ay and ry .
We now take 7 in (0, Ar] and consider ¢ in [7, A7), (x,v) in Q x R? where f is a mild

solution of the Boltzmann equation.
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We remind the reader that I(7) and £(7) have been introduced in (2.6.15) and (2.6.13).
Either (Xy(x,v))se(04—i(ry meets Q) and then we use Corollary 3 to get

ft,z,0) = a(l(7), 71(7), AT) 1B (0,0 ) (V)-
Or (Xs1(2,v))sep0,4—i(r) Stays out of ;) and then we use Corollary 4 to get
f(ta z, U) = b(T)]-B(O,rV)(U)‘

We obtain Lemma 2.7.1 with a(7) = min (a(I(7), 71(7), A7), b(7)). =
We now have all the tools to prove Proposition 2.2.4.
Proof of Proposition 2.2.4 Let 7 be strictly positive and consider ¢ in [7/2, T].

First case. We suppose that f satisfies Proposition 2.4.4 with 7y = 0.

We can compare ¢t with Ap constructed in Lemma 2.7.1.

If ¢t < Ar then we can apply the latter lemma and obtain for almost every (z,v) in
Q x R4

-
F(t2,0) 2 a(3) Lo (©). (2.7.1)

If t > Ap then we can use Duhamel formula (2.2.10) and bound f(¢,z,v) by its value
at time Ap (as we did in the first step of the induction in the proof of Proposition 2.5.1)

and use Lemma 2.7.1 at Ap. This gives, for ||v]| < ry,

f(ATy XAT7t(CI77 ’U), VAT,t(«’B7 /U))ef(t*AT)CL<TV>'y+

+
> a(AT)ei(TiAT)CL“VW 1B(0,rv)(VAT,t(xvv))

f(t,x,v)

WV

+
a(Ar)e” TTATICLIVIT g g (0). (2.7.2)

We just have to take the minimum of the two lower bounds (2.7.1) and (2.7.2) to obtain
Proposition 2.2.4.

Second case. We do not assume anymore that f satisfies Proposition 2.4.4 with
T0 — 0.
Thanks to Proposition 2.4.4 with 79 = 7/4 we have that

V<0, Ve eQ, veRY  F(t,xz,v) = f(t+ 710, 2,0)
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is a mild solution of the Boltzmann equation satisfying exactly the same bounds as f in
Theorem 2.2.3 and such that F' has the property of Proposition 2.4.4 at 0 (note that all
the constants depend on T79).

Hence, we can apply the first step for ¢ in [7/4,37/4] and F(¢',z,v). This gives us the
expected result for f(t,z,v) for t =t + 79 in [7/2, 7).

[ ]

2.7.1 Proof of Theorem 2.2.3

As was mentioned in Section 2.1.2, the main difficulty in the proof is to create a lower
bound depending only on the norm of the velocity. This has been achieved thanks to
Proposition 2.2.4. If we consider this proposition as the start of an induction then it leads
to exactly the same process developed by Mouhot in [75], Section 3. Therefore we will
just explain how to go from Proposition 2.2.4 to Theorem 2.2.3, without writing too many
details.

First of all, by using the spreading property of the QT operator once again we can

grow the lower bound derived in Proposition 2.2.4.

Proposition 2.7.2 Let f be the mild solution of the Boltzmann equation described in
Theorem 2.2.3.
For all 7 in (0,T), there exists Ry > 0 such that

Vn € N,Vt € [7’ } V(z,v) € Q x ]Rd,f(t,a:,v) > an(T)1p(0,r,)(V),

-
- on+1’ T
with the induction formulae

a2 (T)rg+7£g/2+1

an+1(7) = cst Co— and Tpy1 = \/5(1 — &),

2n+1

where (&n)nen is any sequence in (0,1) and ro = ry, ap(t) and Ce only depend on 7, Ey
(and Lfﬂ if @ satisfies (2.1.4) with v < 0).

Indeed, we take the result in Proposition 2.2.4 to be the first step of our induction and
then, for n in N and 0 < 7 < T, the Duhamel form of f gives

ft,z,v) >

T

T~ ontz

eioL(tis)@er Q+ (f(s7 XSJ(‘T’ U)? '), f(37 XSyt(xv U)? )) (V;,t(xv v))ds,

.
T—onFT
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for ¢ in [T —7/2"F2 7).

Using the induction hypothesis together with the spreading property of Q% (Lemma
2.4.2) leads us, as in the proofs of Propositions 2.5.1 and 2.6.4, to a bigger ball in velocity,
centred at 0. The only issue is to avoid the v-dependence in exp [—CL (t— s)(v>7+} which
can easily be achieved as shown at the end of the proof of Proposition 3.2 in [7%]. This is

exactly the same result as Proposition 3.2 in [7%], but with the added uniformity in z.

As in Lemma 3.3 in [75], we can take an appropriate sequence (&, )nen and look at the

asymptotic behaviour of (a, (7)), cn. We obtain the following

| 2

Pr il

A d
> -
V7 >0, 3p-,0; >0, V(z,v) € Q xR f(t,z,v) > (27T07-)d/26 30 .

Notice that, again, the result is uniform in space, since the previous one was, and that the

constants p, and 6, only depend on 7 and the physical quantities associated to f.

To conclude, it remains to make the result uniform in time. As noticed in [7%], Lemma
3.5, the results we obtained so far do not depend on an explicit form of fy but just on
uniform bounds and continuity that are satisfied at all times, positions and velocities.
Therefore, we can do the same arguments starting at any time and not t = 0. So if we
take 7 > 0 and consider 7 < t < T we just have to make the proof start at ¢ — 7 to obtain
Theorem 2.2.3.

2.8 Exponential lower bound in the non cutoff case: proof
of Theorem 2.2.6

In this section we prove the immediate appearance of an exponential lower bound for
solutions to the Boltzmann equation (2.1.1) in the case of a collision kernel satisfying the
non cutoff property.

The definition of being a mild solution in the case of a non cutoff collision kernel,
Definition 2.2.5 and equation (2.2.12), shows that we are in fact dealing with an almost
cutoff kernel to which we add a non locally integrable remainder. The strategy will mainly
follow what we did in the case of a cutoff collision kernel with the addition of controlling
the loss due to the added term.

As in the last section, we shall first prove that solutions to the Boltzmann equation
can be uniformly bounded from below by a lower bound depending only on the norm of
the velocity and then use the proof given for the non cutoff case in [7%]. We will do that by
proving the immediate appearance of localised “upheaval points” and spreading them up
to the point where we reach a uniform lower bound that includes a ball in velocity centred

at the origin. The spreading effect will be done both in the case where the trajectories
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reach a point far from the boundary and in the case of grazing trajectories. At this point
we will spread this lower bound on the norm of the velocity up to the exponential lower

bound we expect.

We gather here two lemmas, proved in [7%], which we shall use in this section. They
control the L>®-norm of the linear operator S. and of the bilinear operator Q.. We first
give a property satisfied by the linear operator S, (2.2.12), which is Corollary 2.2 in [78],

where we define

my = / b(cos 0) (1 — cos b)do = ‘Sdﬁ’ / b(cos ) (1 — cos B)sin? 20 df.  (2.8.1)
Sd-1 0

Lemma 2.8.1 Let g be a measurable function on R®. Then
+

Vo e RY,|S[gl(v)] < CE ),

where C’f is defined by:

1. If ® satisfies (2.1.4) with v > 0 or if ® satisfies (2.1.5), then
CgS = cst mpCapey.
2. If ® satisfies (2.1.4) with v € (—d,0), then
Cg = cst mpCo [eg + lg] , p>d/(d+7).
We will compare the lower bound created by the cutoff part of our kernel to the

remaining part QL. To do so we need to control its L>-norm. This is achieved thanks to

Lemma 2.5 in [78], which we recall here.

Lemma 2.8.2 Let B = ®b be a collision kernel satisfying (2.1.3), with ® satisfying (2.1.4)
or (2.1.5) and b satisfying (2.1.6) with v € [0,2). Let f,g be measurable functions on R%.
Then

1. If ® satisfies (2.1.4) with 2+~ > 0 or if ® satisfies (2.1.5), then
Yo € R |Qy(g, /)()] < est mCa gl o 1 lwzee (0)7.
2. If ® satisfies (2.1.4) with 24+~ < 0, then

Vo e R |Qh(g, )| < estmuCo gl + gl o] 1Fllee ()7

- 109 -



2 Instantaneous filling of the vacuum

with p > d/(d+~v+2).

2.8.1 A lower bound only depending on the norm of the velocity

In this section we prove the following proposition, which is exactly Proposition 2.2.4 in

the non-cutoff framework.

Proposition 2.8.3 Let f be the mild solution of the Boltzmann equation described in
Theorem 2.2.6.
For all 0 < 7 < T there exists ap(t) > 0 such that

vt e [T/277]7 v<l‘, ’U) € Q X Rd7 f(t,x,v) > aO(T)]'B(O,Tv)(U)a
rv and ag(1) only depending on Ey, E, Wy (and L‘T}” if ® satisfies (2.1.4) with v < 0).
Proof of Proposition 2.8.3 As before, we would like to create localised “upheaval points”
(as the ones created in Proposition 2.4.4) and then extend them. Both steps are done, as

in the cutoff case, by induction along the characteristics.

We have the following inequality

QX (f, /) + QLS f) = QF(f. f) — |QL(f. 1)) (2.8.2)

From the definition of being a mild solution in the non-cutoff case (Definition 2.2.5), for

any 0 < € < gy,

(2.8.3)
ft, Xi(x,v), Vi(z,v)) = fo(x,v)exp [_/0 (Le + Se) [f (s, Xs(z,v),)](Vs(x,v)) ds
# [Co (= [ @t S Xao0) N Tl 0 )
(Q;r + Q;) [f(s, Xs(:B’ U)a ')a f(S, Xs(l'a U)? )](Vs(l'v U)) ds.
Due to Lemmas 2.4.1, 2.8.1 and 2.8.2 we find that

+

Le[f] < Cpmygo(0)”", - Se[f] < Cmypeo(v)? (2.84)

and

’Q;(ﬁ f)‘ < Cymyneo <U>(2+A’)+ (2.8.5)
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where Cy > 0 is a constant depending on Ef, E}, Wy (and Lfﬂ if @ satisfies (2.1.4) with
v <0).

The proof of Proposition 2.8.3 is divided into three different inductions that are dealt
with in the same way as in the proof of Proposition 2.2.4. Each induction represents a
step in the proof: one to create localised initial lower bounds (Lemma 2.4.3), another
one to deal with non-grazing trajectories (Proposition 2.5.1) and the final one for grazing
trajectories (Proposition 2.6.4). Therefore, we will just point out below the only changes

we need to make those inductions work in the non-cutoff case.

In all the inductions in the cutoff case, the key point of the induction was to control

at each step quantities of the form

2

[t zv) = /

¢

t

exp <—/ (Le + So) [f(8', Xo (z,0), )] (Ve (z,v)) ds'>

(QF + Q1) [f(s, Xs(w,0), ), f(s, Xs(2,0), ) (Vs(z,v)) ds,

where (t%l))neN, (tg))ne;\r are defined differently for grazing and non-grazing trajectories

(see proofs of Propositions 2.5.1 and 2.6.4).

Much like those previous induction, and using (2.8.2), (2.8.3) and (2.8.4) — (2.8.5), if
f(t7$7v) > anlB(57rn) then

)

ft2,0) > /m eI (@2QF (s 1) 1p(o )] — Crmuyeo (R)FD) (Vi(w,v)) ds,
t

n

which leads to

£
flt,z,v) > /(D e CH B (2.8.6)
2

a_
(aicst lbscoc(prﬁlf”fﬁ llB(T),rn\/i(lffn)) — Cpmyneco <R>(2+V)+> (Vi(z,v)) ds,

due to the spreading property of Q1 (see Lemma 2.4.2) and using the shorthand notation
+

CF(R) = Clmgo +myyco)(R)T".

To conclude we notice that, thanks to the definitions (2.4.1), (2.2.9) and (2.8.1),

lbgo =1
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and ) )
0 —V 0 2—v
~ — ~ 2. .
nbsco e—=0 v ° mbévco e—0 2 — Vg ( 8 7)
if v belongs to (0,2) and
nyco ~ by |loge|, mynco ~ bo g? (2.8.8)
€ =0 ’ € e—=02—v

for v = 0.
Thus, at each step of the inductions we just have to redo the proofs done in the cutoff
case and choose € = ¢, small enough such that

@t o L o dtry 51
Crmyneo (R) < —agest lyepraTVER . (2.8.9)

Proposition 2.8.3 follows directly from these choices plugged into the study of the cutoff

case. H

2.8.2 Proof of Theorem 2.2.6

Now that we proved the immediate appearance of a lower bound depending only on the
norm of the velocity we can spread it up to an exponential lower bound. As in Section
2.7.1, we thoroughly follow the proof of Theorem 2.1 of [7%]. The proof in our case is
exactly the same induction, starting from Proposition 2.8.3. Therefore we only briefly
describe how to construct the expected exponential lower bound. For more details we

refer the reader to [7%], Section 4.

We start by spreading the initial lower bound (Proposition 2.8.3) by induction where,
at each step, we use the spreading property of the Q;Fn operator and fix €, small enough
to obtain a strictly positive lower bound (see (2.8.9)).

There is, however, a subtlety in the non-cutoff case that we have to deal with. Indeed,
at each step of the induction we choose an ¢, of decreasing magnitude, but at the same
time in each step the action of the operator —(QZ + Q?) behaves like (see (2.8.6))

exp [—Cf <mbé\rnco + nbscno) (7553) — tﬁf))@)w* .

By (2.8.7) — (2.8.8), as e, tends to 0 we have that nyco goes to +oo and so the action
of —(Q- + Q?) seems to decrease the lower bound to 0 exponentially fast. The idea
to overcome this difficulty is to find a time interval tT(ll) — %2) = A, at each step to be

sufficiently small to counterbalance the effect of nyco.

More precisely, by starting from Proposition 2.8.3 as the first step of our induction,
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taking
n+1 n
(0 = (Z Ak> o = (Z Ak> .
k=0

in (2.8.6) and fixing &, by (2.8.9) we can prove the following induction property

Proposition 2.8.4 Let f be the mild solution of the Boltzmann equation described in
Theorem 2.2.6.
For all 7 in (0,T) and any sequence (Ap), oy such that Y, o An =1,

Vn € NVt € [(Z Ak> T, ’7’] Y(z,v) € Q x ]Rd,f(t,x,v) 2 an(7)1B(0,m,) (V)
k=0

with the induction formulae

~ _5 =Y +
Gnt1 = cst Apy1exp —[Cfa%rﬁlf'y 752/2 1] 2—v E Ag | 7] air%”ﬁg/“l
k>n+1

if v isin (0,2),

apy1 = cst App1exp | —cst 10g[é’fa%rg+7_ﬁgg/2_l] Z Ay Tf a721r71+d§g/2+1
k>n+1
ifv=0 and
Tnt+l = \/§rn(1 —&n),

where (§n)nen s any sequence in (0,1) and ro = ry, ao(T) and C’f depend only on 7, Ef,
Y, Wy (and Li’ﬂ if ® satisfies (2.1.4) with v < 0).

We emphasize here that the induction formulae are obtained thanks to the use of

equivalences (2.8.7) and (2.8.8) inside the exponential term

+ +
—Cy (mbzvco +nbco> (to) —t ) (R) —Cy (mbzvco +nbco) (Chsni1 Ak)(R)Y
e En En >e En En

(see step 2 of proof of Proposition 4.2, Section 4 in [75]).

As we obtain exactly the same induction formulae as in [78], the asymptotic behaviour
of the coefficients a,, is the same. Thus, by choosing an appropriate sequence (Ap)nen,
as done in [78], we can construct the expected exponential lower bound independently of

time.
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Part 11

THE HYDRODYNAMICAL
LIMITS OF THE BOLTZMANN
EQUATION






Chapter 3

From many-body problems to

physics of continua

Scientists work on establishing mathematical descriptions of physical phenomena in order
to understand and foresee Nature. Different points of view, different scales, can be con-
sidered to translate physical dynamics into equations. However, even though the resulting
theories look different in terms of equations and behaviour, they should model the same
phenomena but at different scales. In this chapter we explore some physical and mathe-
matical links between particles motion, gas dynamics and fluid mechanics in order to prove
the mathematical coherence of the various physical modellings of Nature.

This chapter is far from being an erhaustive overview since it restrains itself to the
framework of point particles in the framework of classical mechanics. It however motivates

and introduces the important concept of hydrodynamical limits of the Boltzmann equation.
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3.1 Particles, gases and fluids in physics

The study of the motion of large amounts of particles is of great importance in physics and
several laws and models had been derived. Whether one wants to describe the movement
of nanoscopic particles under the influence of an electromagnetic field or to foresee the
evolution of clouds of galaxies, it all comes down to finding a physical theory that agrees
with observation.

In this section we briefly present the historical evolutions of the description of natural
phenomena in order to understand their distinctive features as well as the links that
can be made in between them. The framework presented here is the whole space but
bounded domains can be considered with appropiate boundary conditions to be added to

the equations.

3.1.1 Newton, Hamiltonian systems and the motion of particles

In 1687, Isaac Newton published his Principia Mathematica [¢7] where he wrote the basis
of what we nowadays call the classical mechanics. He described his celebrated second law
of motion stating that the net force applied to a body produces an acceleration that is
proportional to its mass.

With this tool we are able to describe the motion of NV particles of mass m and radius 7,
evolving in R? and subject to an external potential V and a two-body interaction potential
®. Each of the particle is represented by its position and velocity (z;,v;) and the latter
couple satisfies the following system of ordinary differential equations, where we put m in
the definition of V' and .

da:z»
dt

= U

d’UZ'
= ~VaV(w) - ZV@ T — T5).

J#Z

This system of nonlinear equations is known as the N body problem, which is very
complicated as soon as N is greater than or equal to 3. This difficulty is due to the lack of
a sufficient number of conserved quantities along the motion (which is called integrability
of the system and imposes constraints on the motion itself) and was already noticed by
Poincaré in [92]. However, in this specific case the force is the gradient of a potential and

this dynamical system is thus Hamiltonian because with Hamiltonian operator

Z|Ul| +ZV§L’1 +Z<I> T — xj).

J#%
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If N is very large then one is only interested in an average behaviour of the group of

particles. We therefore turn to the N-particle distribution function Fi in the phase space
DN = {(t,xl,vl, e 7xN,'UN) € R+ X RQdN7 V1 #]’ ’:L‘Z — x]| > fr} .

In the case of Hamiltonian dynamical systems, the distribution Fy had been shown to

satisfy the Liouville equation,

8 Fy + Liou (Fy) =0, inDy, (3.1.1)

where the Liouville operator reads

N
0H 0 OH 0
Liou = — .
ot ; <8’UZ 81'1 8371 8’UZ>
In 1884, Josiah Gibbs [15] emphasized the importance of the Liouville equation as the

fundamental equation of statistical mechanics.

3.1.2 Euler, continuous medium and fluid mechanics

The study of the motion of fluids awaited a bit longer and a precise mathematical models
appeared only with Leonhard Euler in his Principes généraux du mouvement des fluids,
[13] published in 1755. Considering a fluid like a continuous medium rather than a group
of individual molecules, Euler derived the first equations of fluid dynamics which bares his
name and concerns the mass, the momentum and the energy of the fluid. Euler equations
link the evolution of the density p, the mean velocity u, the inner pression p and the energy
FE of the fluid. They read

Op + V- (pu) =0,
pOyu + pu - Vou + Vip = 0, (3.1.2)
WE+V,-(u(E+p))=0.

The first remark we can make is that those equations imply the conservation of total
mass, momentum and energy of the fluid which is the minimum that classical mechanics
ask for. However, Euler modelled a fluid without friction and thus cannot explain the
viscosity phenomena we can observe.

The first step towards modelling of viscid fluids was made by Claude-Louis Navier in
1822 in his Mémoire sur les lois du mouvement des fluides [35], where he introduced a
shear stress tensor to describe the inner force created by the motion of the fluid. Unfortu-

nately, the way he tackled shear stress did not match real observations and the ultimate
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improvements to the theory of viscid fluids were achieved by Adhémar Barré de Saint-
Venant ([! 1], written in 1834 and published in 1843) and George Stokes ([103], 1845) by
considering a shear stress tensor that is proportional to the gradient of the velocity. This
lead to the so-called Navier-Stokes equations for newtonian fluids, where we denote the

mean temperature of the fluid by 6,

dp+ Vg - (pu) =0,
pou + pu - Vou + Vp = vAgu, (3.1.3)
OE + V- (u(E+p)) =rA0,

where v and k are respectively the dynamic viscosity and the thermal conductivity of
the fluid. The interested reader can find a derivation of those equations from the laws of

physics as well as other types of fluids in [12].

Remark 3.1.1 We can think of the Euler equations as the limit of the Navier-Stokes

equations when the viscosity of the fluids goes to 0.

Finally, when the shear stress is very important, namely when v tends to infinity, one

obtains the Stokes equations for viscid fluids.

Oip + Vg - (pu) =0,
poru + Vep = vA,u, (3.1.4)
OE = kA0,

3.1.3 Maxwell, kinetic theory and gas dynamics

As previously emphasized, the many particles problem is really intricate and its complexity
makes it almost impossible to use when one realises that a mole of gas contains more than
6,02 x 10?3 particles or that the Milky Way is constituted of approximately 10! stars.
To overcome this issue, James Clerk Maxwell in 1867 [75] (in a weak formulation based
on the physical observables of a system) and Ludwig Boltzmann in 1872 [13][17] developed
the founding principles of kinetic theory. This theory proposes to take a statistical ap-
proach to model the dynamics of particles when they are so numerous that the individual
behaviours are of little interest. Basically, one should try to understand the evolution of
the distribution function f(¢,x,v) of particles in the phase space as N tends to infinity;
the quantity f(t,x,v)dzdv stands for the probability of finding a particles in [z, z + dz]

with velocity in [v,v + dv] at time t.
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3 From many-body problems to physics of continua

These thoughts lead to several models in statistical physics, depending on which inter-
actions, which systems, are taken into account. In this part we will focus on the Boltzmann

equation, already described in Chapter 1, which reads
Of +v-Vof =Q(f, f)- (3.1.5)

3.2 Hilbert’s sixth problem: the mathematical coherence of

models

The different theories briefly described above have been established rather independently
from each other and real observations validate them as being the relevant mathematical
description of physics. However, they model, at different scales, the same underlying
phenomenon that is the interaction between particles.

If we study a system of N particles then looking at their average dynamics when N
is large should bring us to the kinetic theory framework for rarefied gases. Moreover, a
strongly compressed gas becomes a fluid at very high pressure and therefore there should
exist a link between kinetic equations and fluid equations.

At the International Congress of Mathematicians held in Paris in 1900, Hilbert em-
phasized the importance of mathematically deriving the coherence of all those physical
models. More precisely, Hilbert’s sixth problem aims at building up a unified description
of mechanics, from microscopic atoms to macroscopic continuum. One would like to un-
derstand mathematically how macroscopic properties of fluids and gases, such as viscosity
or irreversibility, evolving at an observation timescale T s, can arise from reversible micro-
scopic dynamics, where the mean time between two consecutive collisions is of microscopic

timescale T, (see Figure 3.1).

In this section, we formally study the possible convergences between the different phys-
ical models and give some of the existing results in the field that proved these convergences
rigorously. We will restrict ourselves to the case when particles moves in a boundary free
domain such as R? or the torus T¢.

We shall give a more thorough study of the hydrodynamical limits as these will be the

purpose of the next two chapters.

3.2.1 From micro to macro models: the law of large numbers

In this section we briefly present some strategies to go directly from Hamiltonian systems
to macroscopic dynamics. It deals with a problem that is completely transversal to our
work on Boltzmann equation and its hydrodynamical limits and we will thus not go into

details but we give a short description for the sake of completeness of our manuscript.
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3.2 Hilbert’s sixth problem: the mathematical coherence of models

Microscopic Scale

N particles Hamiltonian systems

(Newton’s laws)

Large deviations
N>>1
Teou << Tobs

Thermodynamical limit

N>>1

Hydrodynamical limit

Macroscopic Scale Teot << Tobs Mesoscopic Scale

Continuous media Gas dynamics
(Euler, Navier-Stokes,. .. )

(Boltzmann equation)

Figure 3.1: Transitions between the different level of description (from [08])

For rigorous proofs and a deeper insight of the theory, we refer the reader to [01], in
the case of Euler limit, and to [12][07], for the Navier-Stokes limit. What follows can be
found in [9%] Chapter 1.

We would like to understand how microscopic properties generate macroscopic dy-
namics. We start with N particles with positions and velocities (z;,v;) which satisfy the
Liouville equation (3.1.1). The physical observables of the system of N particles are the

mass and momentum densities

2

1 N
Mpy(t,z) = —Zéaj—:z:l
i=1

1 N
Pultr) = =3 u()d(e - mi(t)),
=1

2

where 0 is the Dirac measure at the origin.

The microscopic dynamics happen much faster and more localized than the fluid me-
chanics and one thus has to work at different time and space scales. We denote by (z, )
the microscopic variables and by (Z,%) the macroscopic ones. We have a ratio ¢ between

space scale that we will make go to zero:

S
Il
[O)
8

The ratio between time scales will define the fluid dynamics towards which our Liouville
equation converges. Indeed, if we define the typical density p = N/L3, with L being a

typical macroscopic lenght, we have the three possible outcomes
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3 From many-body problems to physics of continua

1. p~ e and t = et: the number of collision per particle is then finite and this is the
Grad limit,

2. p~1andt = et: the number of collision per particle is of order e~ and this is the

Euler limit,

3. p~1andt=e?t: the number of collision per particle is of order =2 and this is the

Diffusive limit.

In all the cases, the goal is to compute the equations satisfied, in a weak sense since we
are dealing with probability measures, by My(t/e,%/¢) and Py(t/e,%/¢) and to compute
the limiting equations as € goes to zero. We are looking at probability measures so the
convergence has to be understood as a convergence in the sense of the law of large numbers
as N tends to infinity, with respect to the density function Fj.

Some results have been rigorously proven in some special settings where we have er-
godicity of the system. We refer to the references given at the begin of this section for

more details.

3.2.2 The thermodynamical limit: the chaos assumption

As the number N of particles in a system becomes very large the N-body problem is too
intricate to offer an interesting description of how the system behaves. Moreover, one
is more interested by the global evolution of the system than the actual motion of one
particular particle in the case where they are indistinguishable. A statistical approach is
preferable and the Liouville equation is easier to handle, see Section 3.1.1.

The derivation from microscopic dynamics to mesoscopic scales is rather hard even
for short range interaction potentials. Indeed, it depends exactly on the positions and
velocities of particles when we would like to only care about the probability distribution
of the latters. In other words, there is no global description of the interacting forces inside
the system. Therefore, some assumptions have to be made in order to ensure the statistical
stability of the mesoscopic dynamics in the limit N — oc.

We give here a brief and formal derivation of the Boltzmann equation from the laws

on Newton. Most of this section follows closely [30] and [11].

The Liouville equation (3.1.1) in the case of a sole two-body interaction potential @y

reads, when the diameter of each particle is denoted by r,

N N N
OFN+ Y i VaFy =3 Y Volp(w; —a;) - Vo, Fiy =0,
i=1 i=1 j=1

JFi
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3.2 Hilbert’s sixth problem: the mathematical coherence of models

in the phase space
Dy = {(t,a:l,vl,...,xN,vN) e RT x R2N v £ j, |y — x| > ’I“} )
We add on Fj the assumption that particles are indistinguishable, which translates into

Vo € &y, f(t,21,v1,...,2N,0N) = [(t,5(1), Vo(1)s - - - Ta(N) Vo (N))
where G dentotes the group of permutations of the set {1,...,N}.

We want to extract the average behaviour of a particle, that is to say the first marginal
associated to Fy, which we denote by f](\})(t, Z1,01).

The thermodynamical limit is the resulting equation satisfied by f ](V} ) when we let N
go to infinity. Looking at the Liouville equation, the main difficulty will be to understand
the term V,®y in the limit of infinitely many particles. However, as N goes to infinity,
the energy of the system has to remain bounded and we thus have to assume that the
energy of each interaction via @ is small. We therefore need to rescale the potential ® 5

and we present the two ways of doing it.

The mean-field limit:
In that case we consider that the range of the interaction stays macroscopic but that its
amplitude decreases like 1/N. This way we have that &y = ®/N for a given macroscopic
potential P.

In that case, integrating the Liouville equation against (z2,vs,...,ZN,vN) to obtain

the equation of the first marginal and taking the limit as N goes to infinity yields
8tf+v'vxf+F'vvf:0a

where f = Nlim f](\}) and
—00

F(t,z) = -V, (cp . f(t,x,v)dv) .

Rd
This strategy of the mean-field limit generates a lot of interestic mathematical studies.
As an example we mention the Vlasov-Poisson equation used to describe plasmas with

Coulomb interaction potential (even if the rigorous derivation remains an open problem)

q2

o(r)= —L
(z) dreg |z|’

where ¢ is the electric charge of a particle and ¢¢ is the vacuum permittivity.

However, we will not deal with this type of rescaling for ® and we refer the interested

reader to a review by Golse [17].
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3 From many-body problems to physics of continua

Collisional dynamics:
The rescaling of &5 we are interested in is the one where interactions become localized
in the space variable, acting like collisions between particles. Basically, we suppose that
the strenght of the interaction ®y stays O(1) but its range is very small. The Liouville

equation associated to this problem reads

N N N
1 T;— X
O FN + E v Vg, Ny — g g jvsz < ] J) -V, Fn =0, (3.2.1)
i=1 i=1 j=1
JF

where [ is the range of interaction of ® and is microscopic. Moreover, this equation has

to be satisfied in the following domain
Dy = {(t,xl,vl,...,xN,vN) e Rt x R¥N v +£ 4, |z; — x| > l}.

If we integrate the Liouville equation against (xg,ve, ..., zxN,vyN) we clearly see that, com-
pared to the mean-field limit case where ®5 implies that each particle feels the aver-
age force generated by all the other particles, f](\,l) will depend on f](\?) via the term
171V, ®(I7 (21 — 22)). We thus need to compute the equation satisfied by the second
marginal which depends, by the same considerations, of f](\‘? ), By induction we construct a
hierarchy of N equations from the first marginal to the N** one (Fy itself). This system
of equations is called the BBGKY hierarchy, from Bogoliubov [16], Born and Green [!9],
Kirkwood [62][63] and Yvon [115] (see also [30][11][90]).

A requirement to derive the BBGKY hierarchy is to define boundary conditions on
0Dy, which is the set where at least two particles are in contact, in order to integrate by
parts in the integrated Liouville equation. We suppose that the collision between particles

(xi,v;) and (z;,v;) are elastic collisions, that is

1. they are localized in time and space so the positions of the particles remain unchanged

and the particles collide at a given time,

2. they are perfectly elastic which means that the momentum and the energy are pre-

served: if we denote v; and v} the outcoming velocities we have

v + V) = v; +vj
2 2 2 2

e e R T S

Of course, for this elastic collisions to define boundary conditions and physical dynamics,

we have to put aside the problematic case when three or more particles collide at the same

time or when infinitely many collisions happen in a finite time. Fortunately, the set of
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3.2 Hilbert’s sixth problem: the mathematical coherence of models

initial data leading to such outcome is of Lebesgue measure zero (see Proposition 2.1.1 in

[11] for the hard sphere case).

We integrate the Liouville equation (3.2.1) against the last N — s coordinates and take
into account the boundary conditions. The complete computations can be found in [1/]
Chapter 4 thanks to truncated marginals. To simplify here we just assume that it holds

true for marginals. The BBGKY hierarchy reads, at least in a weak sense,

—S

© - 6 1< T — ¢ s N —s (s+m)
OfN + D v Vafy =7 D Ve () Vufy = Y m( T Q™).
=1 m

i,j=1 =1

J#i
for all s € {1...N}. Here @ is an operator encoding the boundary conditions. Namely,
it involves the integral over the N — s spherical particles potentially colliding with the
free s particles. Therefore, the particles having a diameter [, one can expects a uniform
convergence as N tends to infinity if our gas satisfies the Boltzmann-Grad scaling:

lim N4t =0(1).
N—+oc0

The thermodynamical limit consists in understanding the BBGKY hierarchy when N
goes to infinity in the Boltzmann-Grad scaling setting.

As mentionned before, the marginals can only be understood thanks to higher order
marginals. To obtain the Boltzmann equation, one has to prove that the limit Fy is of a

tensor product form

lim Fy =) f,

N—~oc0
neN

where f is a density function that satisfies the Boltzmann equation. This tensor product

has to be understood in the sense of marginal

VneN, lim f@=fo -of.
N—+o00 —_—

stimes

Such a property is called the chaos assumption and it means that particles asymptotically
behave independently of each other, in a weak sense.

An important feature that does not happen in the mean-field case is the fact that the
collisional dynamics framework defines a past and a future for the system. Indeed, when
two particles bounce against each other, they are no longer independent of each other since
the laws of elasticity define their velocities after the collision. The chaos assumption thus

implies a choice for the arrow of time.

Deriving Boltzmann equation rigorously from the Liouville equation, and the BBGKY
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3 From many-body problems to physics of continua

hierarchy, still requires a lot of studies. The first result was due to Lanford [075] where
he gave a proof about existence of solution to the BBGKY hierarchy, their convergence
and the propagation of the chaos assumption in time. Recently, [11] and [90] filled in the
missing details in Lanford’s proof in the case of hard spheres (billiard balls with ® = 0)
and short range potentials (® with compact support and unbounded near the origin).
Unfortunately, up to now, the proofs hold for very short time, smaller than the mean

free time between two consecutive collisions.

Let us briefly mention that another approach has been proposed by Kac [00] to derive
the spatially homogeneous Boltzmann equation from a stochastic process underlying the
dynamics of particles instead of using Newton’s law. In that case, dynamics of velocities are
viewed as stochastic processes with jumps standing for collisions. This strategy has been
useful to obtain results about the Boltzmann equation, such as insights of Cercignani’s
conjecture on the entropy decay for entropy-entropy production methods for instance. A

recent state of the art about the subject can be found in [70].

3.2.3 The hydrodynamical limits: the Knudsen number

Fluids dynamics are determined by some properties of fluids such as their compressibility
and their viscosity. These parameters are expressed in terms of dimensionless coefficients
that encode the physical properties of the fluid. For instance, the Mach number Ma =
up/c*, where ug is the bulk velocity of the flow and ¢, is the speed of sound in the medium,
determines the compressibility of the fluids and the Reynolds number Re informs about
the viscosity of the fluids. The smaller these numbers are, the less compressible or viscous
the fluid is.

At the mesoscopic scale of the Boltzmann equation, only microscopic features are
governing the dynamics but one expects that the macroscopic properties arise from such
dynamics but at different time and space scales. What follows is a gathering of results,
thoughts and suggestions made essentially in [10][111][95].

We will not discuss the case of bounded domain as this is more intricate and notably
fewer results has been proven. We refer the interested reader to Section 4.4 of [95] or [9]
for the particular case of incompressible Euler limit. Note that some results presented here
cannot hold true with boundaries because of the existence of a boundary layer phenomenon,

as noticed in [73] for compressible Euler limit for which the Prandtl layer occurs.

3.2.3.1 A dimensionless reformulation of the Boltzmann equation

The macroscopic dynamics are visible at a much bigger scale than the microscopic inter-
actions between particles. We therefore consider a macroscopic length scale [y, which can
be the size of the domain where the flow evolves, and an observation time scale tg, which

can be seen as Ty in Figure 3.1.
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3.2 Hilbert’s sixth problem: the mathematical coherence of models

By choosing a reference temperature 6y we define a thermal speed ¢* associated to this
temperature (see Section 2.2 of [9%]). ¢, would be the speed of sound in the case of a
monoatomic gas. We set new nondimensional variables

T
t() l() ’ - c* ’
as well as a nondimensional distribution function

33
_ loes

f/(t/’ xl? UI) - N[) f(t7$7v)7

where Ny is the average number of particles in a volume [3; po = No/ lg is therefore the

mean macroscopic density of the gas.

As noticed in [16] or [98], the Boltzmann operatore () is expressed in density per unit

of time and therefore defines a new microscopic time scale 7y in the following sense

Po
B M M dodv.dv = —.
Lo B0 ) M) (0) M 00 (0) dornde = 2

To is the mean free time between two consecutive collisions of a particle at equilibrium

M 4,0.6,) and thus define the mean free path

)\0 = CxT0-

Finally we take a rescaled collisional kernel B'(v', v, o) = po79B(v, v«, o) and we obtain

a nondimensional form of the Boltzmann equation, where we dropped the prime notations:

Madlf +v-Vaf = QU ) (32.2)

where Ma is the Mach number of the flow and Kn is the Knudsen number, which is
the inverse of the average number of collisions for each particle per unit of time. One
can choose different length and time scales to study fluctuations around a reference flow
instead. In that case one obtains the Strouhal number instead of the Mach number and

this choice leads to different hydrodynamical models (see [95]).

Considering fluids as gases where particles are in contact suggests that the Knudsen
number governs the convergence from Boltzmann equation to fluid equations. The hy-
drodynamical limits study the evolution of solutions to the rescaled Boltzmann equation
(3.2.2) as Kn goes to zero. Moreover, fluid dynamics essentially amount to the laws of
conservation of mass, momentum and energy. We thus expect to derive them only using

the conservation laws and the entropy decrease fulfilled by the Boltzmann equation.
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3 From many-body problems to physics of continua

3.2.3.2 The compressible Euler limit

For now on we denote the Knudsen number by €. We look at the family of distributions
(fe).sp that satisfy (3.2.2) for all € in (0, 1], that is

eMaod,fe +ev -V, fe = Q(fs: fs)

Therefore, at least formally, if f. tends to f as € goes to zero we have that Q(f, f) =0
which leads to (see Section 1.1.2.4)

p(t,x) exp o —u(t @)
(27m0(t, z))?? 20(t,x) )~

Thanks to Section 1.1.2.4 we have the conservation of mass, momemtum and energy

f(t,z,v) = Mpuo(t,z,v) =
for all the f. and so this gives in the limit

Ma/ Mo dv+ Vg - / vM, 9 dv =0

Rd R

Ma/ VM9 dv+ Vo - / V@ VM0 dv=0
R R

1 1
Ma/ |U|2Mpu9dv—|—vx-/ *|’U|2UMpu9dU:0,
RdQ Ehat} Rd2 » Wy

which is easily computed into

Madip + V. - (pu) =0,
Mad; (pu) + Vg - (pu @ u) + V4 (pf) = 0,

1 d 1 d—+ 2

These equations are the compressible Euler equations for a perfect monoatomic gas
where the pressure is p = pf, the thermal energy is 6/2 per degree of freedom and the
internal energy is thus df/2. We remark here that the H-theorem (see Section 1.1.2.4)

leads to

Maod; (p IOgngﬂ) + V- <pu log#) <0,

which is the characterization of physically relevant solutions to the Euler system, known

as the Lax admissibility condition.

There are few rigorous results about the derivations above and we refer the reader to

Section 6.2 of [95] for a bibliography on the subject. Most of the existing results are valid
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as long as the compressible Euler theory gives smooth solutions, in other words the proofs
fail as soon as a singularity appears in Euler equations, which is a common property of
the latter equations (see [101]).

Let us mention here the article by Caflisch [25], extended by Lachowicz [(] to more
general initial data by dealing with the problem of initial layer. These articles construct
solutions to the Boltzmann equation close to a local Maxwellian M, ,, ) the parameters of
which satisfy the Euler equations. Their general strategy was to look for solutions to the
Boltzmann equation of the form f. = M, g) + €9 which proved itself to be a powerful

method that we shall discuss deeper later.

3.2.3.3 The asymptotic compressible Navier-Stokes limit

Hydrodynamical limits study the asymptotic of the observable quantities of solutions f.
to (3.2.2) as € goes to zero. As seen in the section above, if we expand f. in terms of
g, the zeroth order term has to be an Eulerian maxwellian M, ,, g). Moreover, Remark
3.1.1 seems to consider Navier-Stokes system as a fluctuation around a global equilibrium of
Euler system so the natural question is wether an expansion of f. gives us the compressible
Navier-Stokes equation.

The Hilbert’s expansion - or its modified version the Chapman-Enskog’s expansion
where the variables of g are observables of f. and their derivatives - is a formal expansion

of f. around the Knudsen number

+o00 ‘
fE(t7x>U) = Zezgi(t,x,z}).
=0

The goal is now to plug this expression inside the nondimensional form of the Boltz-
mann equation, to obtain a hierarchy of partial differential equations and to solve them
to obtain solutions f. of that specific form. The Hilbert’s expansion is formal but one
can look at a finite expansion with a remainder term that is hoped to be small enough.
Mathematical properties of these kind of expansions are detailed in the works of Grad
[15][49].

We saw before that go = M, ¢) With (p,u,0) satisfying the Euler equations. The

equation one gets at zeroth order is

Ma@tgo +v-Veg0 = Lgo (91)7

where Ly, is the linearization of the Boltzmann operator around the local Maxwellian go.
The properties of the linear operator are therefore required but we will not go into them,
we refer the reader to [¢] for the ones needed in this derivation and to Chapter 4 for a

general study. The important point is that we get a form for g; which is
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g1(t,z,v) = Lg_ol (Madigo + v - Vago) + pi1(t, z,v), (3.2.3)

where p1, u1 and 6 are functions of t and = and ¢ is in Ker (Lg,).

If we define
1 2 1 2
A)=v@v — - lv|I; and B(v) = Y [|v\ — (d+ 2)} , (3.2.4)

then direct computations with go = M(,,,¢) and the Euler equations give us

1 V.0
Madigo + v - Vago = — <A(V) :D(u) + B(V) - > 90, (3.2.5)
2 Vo
where ) .
o v—Uu _ = Ty * .
V= i and D(u) 5 (Vou+ (Vou)') d(Vx u)ly.
We notice that A(V)go and B(V')go are in Im (Lgy,). Moreover, see [%][10], there exist

functions o, 8 : R™ — R* such that

L (A(V)go) = p 02 (V) A(V)go and L' (Bgo) = p~ 0728 (V) B(V)go.
(3.2.6)

Combining the latter equalities with (3.2.3) and (3.2.5) yields a precise form for gy,

o= 7072 (30 (VD AW): D) + IV BOV)- 5 ) o+

It remains to compute ; - i.e. its observable quantities (p1,u1,61) - so we look at the

expansion of the Boltzmann equation at first order in e:

Madigr + v - Vagi = Lgo(92) + Q(g1, 91),

for which we still have conservation of mass momentum and energy

) (v) [Madig1 + v - Vagi] dv =0,
R

with ¢ (v) = 1,0, [v]*

This system of conservation laws together with the equations satisfied by (p, u, 0) gives
that
pe =p+ep, us=u+euy, 0:=0+c¢cb

satisfy
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Maatpa + Vg (peua) =0,
Mad, (Psua) + V- (Psua ® ua) + Vg (paea) =¢eVy [V(pa, GE)D(UE)] ,
g
Mad,E; + Vg - (us(Ez + peb:)) = 51/(/)5, 0c)D(ue) : D(ue) +eVy - [K(pe, 02) V0],

where the internal energy is the one of a monoatomic gas
1 d
E: = p: (2 |u5|2 + 295) )

and the dynamic viscosity and the thermal conductivity are given by

v(pesb) = pz 072 (V) AWV), AWV)) (3:27)
k(pe,b:) = pa—legﬂ <O‘(‘V|)A(V)7A(V)>L%(go)' (3.2.8)

The observables of the system (pe, u., 0:) satisfy the Navier-Stokes equation with dis-
sipation terms of order €. Of course, in order to make this rigorous, one has to close the
whole system with go and prove that this remainder term is of order £2. This can be found
formally in [%] and a similar result that the one derived by Caflisch in the case of Euler
equation has been proven by De Masi, Esposito and Lebowitz [}1], for a Navier-Stokes
maxwellian with constant mass and temperature. The interesting point is that the macro-
scopic viscosity and conductivity arose from microscopic phenomenon described by the
linear part of the Boltzmann equation.

To conclude with the Hilbert expansion, one can obtain next orders asymptotic hydro-
dynamical limits. However, the second order yields the Burnett equations which turned

out to be irrelevant physically. For further discussions on these schemes see [1%] and [111].

3.2.3.4 The incompressible hydrodynamical limits

The compressible Navier-Stokes equation has been recovered from Boltzmann equation
only in an asymptotic regime where the dissipativity tends to 0. One can wonder if we can
actually obtain the compressible Navier-Stokes equations with dissipative term of order 1.

Unfortunately, this is impossible. The viscosity of a fluid is measured thanks to its

Reynolds number Re and one has the von Karman relation

_Ma

Re—ﬁ.

Considering the Knudsen number to go to zero therefore implies that either the Reynolds
number explodes or that the Mach number goes to zero as well. Therefore, hydrodynam-

ical limits with finite viscosity must be incompressible, since the Mach number measures
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compressibility.

Fluids equations has been derived from the physics of continua, considering that in ar-
bitrarily small regions of space the fluid is at equilibrium. Euler or Navier-Stokes equations
should thus arise from gas dynamics as a perturbation around a global equilibrium, say
Mo = My 0,1y without loss of generality. We therefore look at solutions to the Boltzmann
equation (3.2.2) of the form

fe = Mo + dche,

where ¢ still stands for the Knudsen number. We expect that different orders of pertur-
bations . lead to different hydrodynamical regimes. Indeed, properties of the Boltzmann

operator, see Chapter 1, yield

1 Oc
Madih: +v - Vihe = gLMo(ha) + zQ(ha, he), (3.2.9)
and the term 6. emphasized the role the linearity of the equation or, on the contrary, the

bilinear part depending on the order of magnitude of d. compared to e.

In any case, since . tends to zero as € go to zero we have that if h. — h then formally

taking the limit as ¢ — 0 in (3.2.9) gives
Ly, (h) =0

which means that h is a fluctuation of a maxwellian, i.e. of the following form:

h(t,z,v) = |p(t,x) +u(t,z) v+ (W) G(t,x)] M. (3.2.10)

The acoustic limit.
The Mach number has to be related to the Knudsen number if one hopes to obtain a
viscuous hydrodynamical limit. We briefly mention that in the case where Ma = 1 the
Reynolds number tends to infinity whereas the fluid stays compressible. Therefore, one
wants to recover the acoustic equations (propagation of waves in the medium) in the limit

¢ to zero. This is indeed the case as long as 6. = €% with 8 > 1/2, see [0][7].

The fluid limits.
In the case Ma tends to zero as € goes to zero, taking the limit in the local conservation

of mass and momemtum associated to (3.2.9) gives

Ve (v,h)p2 =0 and Vg -(v®@uv,h)2 =0,
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which stands for the incompressibility criteria and the Boussinesq approximation
Ve-u=0 and V,(p+0)=0.

The Boussinesq relation is an approximation for fluids where density evolutions can be
neglected. As a result, in such fluids we can neglect the effects of inner inertia which makes
sound waves impossible to develop, which is in adequation with our previous paragraph.
In order to derive the hydrodynamical limit we come back to the conservation laws
satisfied by (3.2.9). As an example we consider the conservation of momentum and energy

(the conservation of mass being straightforward at least formally) which reads

1
at<va hE)L% + mvx ’ <U ®wv, ha>L% =0,

and can be written in terms of A (see (3.2.4)),

1 1,1 5
Or(v, he) 2 + mvx (A(v), he) 2 + Vi <Ma<d | ,hE)L%> =0.

The last term on the left-hand side seems to explode as € and Ma tend to 0. However, it
is a gradient so if we integrate the equality against a divergence free test function this term
disappears. For now on, we consider the computations in a weak sense, integrated against
divergence free functions. This way, we can only recover solutions to incompressibles fluid
equations in the Leray weak sense [(0].

The idea is to use the self-adjointness property of Ly, and express Lyy, (he) thanks to
(3.2.9). This gives

1

—_ Cim | (e e L
lim ~—(A(v), he) = lim | ==(v @ Ly (A(v)), he)

Oc

_ M7a<L]T/‘[1° (A()),Q(hs, he)) | -

The temperature equation is handled the same with the operator B instead of A and
to conclude we have to use their properties (3.2.6).
Here we see the importance of the order of magnitude of Ma and §. compared to the

Knudsen number €. The results are the following:

e Ma =9, = ¢? with 0 < ¢ < 1 leads to incompressible Euler equations since collisions

are faster than the dissipation,

e Ma = ¢? with 0 < ¢ < 1 and 0. = €P with p > 1 leads to incompressible Stokes

equation since this time the non-linearity vanishes in the limit,

e Ma = 6. = ¢ leads to incompressible Navier-Stokes equations because dissipation

and collisions occur at the same scale.
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A formal proof of these statements is given in [3][10] and a survey of the existing rigorous
results can be found in [ 11]. As noticed before, the physical quantities associated to h.
converges to weak solutions to the fluid models (Leray sense for Navier-Stokes and dissipa-
tive sense for Euler). Rigorous proofs of those derivations require compactness arguments.
A strategy that proved itself to be useful is to use the framework of renormalized solutions
derived by DiPerna and Lions [3%], like in [7].

3.3 A brief description of the following chapters

The problem of hydrodynamical limit is also closely related to the Cauchy problem asso-
ciated to the linearized Boltzmann equation (3.2.9). Indeed, one would like to have a local
or global existence in a perturbative setting with some kind of uniformity in the Knudsen
number. Such results exist and we refer to Chapter 4 for a state of the art of the matter.

Furthermore, the methods described above do not give explicit rate of convergence or
a constructive way of deriving the limit. Such concerns can be dealt with thanks to the
study of the explicit form of the linear semigroup in the Fourier space. This point of view
was initiated by Ellis and Pinsky [39] and further developed by Bardos and Ukai [1(] to
obtain uniform convergence in time. The issue of the initial layer at time ¢t = 0 arises from

these studies and we refer to Chapter 4 for a deeper understanding of the phenomenon.

The next two chapters deal with the incompressible Navier-Stokes hydrodynamical
limit on the torus.

In Chapter 4 we build a Cauchy theory in Sobolev spaces with a maxwellian weight
as well as exponential convergence to equilibrium. Then, extending the strategy of [1(]
to the torus, we prove strong convergence of solutions to the Boltzmann equation towards
incompressible Navier-Stokes Leray solutions. Moreover, we give a constructive proof with
explicit rates of convergence.

Chapter 5 aims at getting rid of the maxwellian weight as well as derivatives to build a
Cauchy theory in Sobolev with polynomial weight. This uses a recent extension theorem
for semigroups result by Gualdani, Mischler and Mouhot [51]. Such uniform results should

allow to derive solutions to Navier-Stokes equations in large spaces, in particular L2°.
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Chapter 4

From Boltzmann to incompressible
Navier-Stokes on the torus in

Sobolev spaces

We investigate the Boltzmann Equation, depending on the Knudsen number, in the Navier-
Stokes perturbative setting on the torus. Using hypocoercivity, we derive a new proof of
existence and exponential decay for the solutions of this perturbed equation, with explicit
reqularity bounds and rates of convergence. These results are uniform in the Knudsen
number and thus allow us to obtain a strong derivation of the incompressible Navier-
Stokes equations as the Knudsen number tends to 0. Moreover, our method shows that the
smaller the Knudsen number, the less control on the v-derivatives of the initial perturbation
1s needed to have existence and decay. It is also used to deal with other kinetic models.
Finally, we show that the study of this hydrodynamical limit is rather different on the torus
than the already proven convergences in the whole space as it requires averaging in time,

unless the initial layer conditions are satisfied.
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4.1 Introduction

4.1 Introduction

This chapter deals with the Boltzmann equation in a perturbative setting as the Knudsen
number tends to 0. We consider the latter equation to describe the behaviour of rarefied
gas particles moving on T? (flat torus of dimension d > 2) with velocities in R? when the
only interactions taken into account are binary collisions. More precisely, the Boltzmann
equation describes the time evolution of the distribution of particles in position and veloc-
ity. A formal derivation of the Boltzmann equation from Newton’s laws under the rarefied
gas assumption can be found in [2], while [30] present Lanford’s Theorem (see [05] and
[11] for detailed proofs) which rigorously proves the derivation in short times.

Consider the following more general form of it, where we denote the Knudsen number

by € .
Of +v-Vof = QLD nT xRS

= [ @l e bleosd) [77 - S dedo, (011)

where f', fi, fi and f are the values taken by f at v/, vy, v, and v respectively. Define:

P N v — vy

2 2 —
,and cosf = vy Lo ).
U,:v—l—v*_\v—v*lg v — vy
* 2 2
One can find in [28], [30] or [10] that the global equilibria for the Boltzmann equation

are the Mazwellians (1(v), which are gaussian density functions. Without loss of generality

we consider only the case of normalized Maxwellians:

1 v]2
(0) = — et
T ent

The bilinear operator Q(g, h) is given by
Q(g,h) = / ® (Jv — vi|) b (cosh) [ g. — hg.] dv.do.
RdxSd—1

4.1.1 The problem and its motivations

The Knudsen number is the inverse of the average number of collisions for each particle
per unit of time. Therefore, as reviewed in [ 11], one can expect a convergence from the
Boltzmann model towards the acoustics and the fluid dynamics as the Knudsen number
tends to 0. This latter convergence will be specified. However, these different models

describe physical phenomenon that do not evolve at the same timescale. As suggested
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4 From Boltzmann to incompressible Navier-Stokes on the torus

in previous studies (see [10][111][9%]) we can rescale our original equation in time by a
factor €, to get rid of these time scale differences. Moreover, they also suggested that a
perturbation of order ¢ around the global equilibrium p(v) should approximate, as the
Knudsen number tends to 0, the incompressible Navier-Stokes equations.

Therefore we study the following equation

O fs + %v Vafe = E%Q(fe,fs) ,onT?¢ x RY, (4.1.2)

under the linearization f.(t,z,v) = u(v)+eu'/?(v)h(t,z,v). This leads us to the linearized

Boltzmann equation

1 1 1
8th5 + E'U . Vxhg = ?L(hg) + gF(hg, hg) (413)

that we will study thoroughly, and where

=
=
I
S
F
t\
=
+
i
=
SN
B
=
tl
=

All along this chapter we consider the Boltzmann equation with hard potential or

Mazwellian potential (v = 0), that is to say there is a constant C'g > 0 such that
(13(2) = C@Z’y AS [07 1]7

and a strong form of Grad’s angular cutoff (see [13]), expressed here by the fact that we

assume b to be C'' with the controls from above
Vz € [_17 1]7 b(z)7b(zl) < Cb7

b and ® being defined in equation (4.1.1).

The aim of the present chapter is to use a constructive method to obtain existence and
exponential decay for solutions to the linearized Boltzmann equation (4.1.3), uniformly in

the Knudsen number.

Such a uniform result is then used to derive explicit rates of convergence for (h:)c>0
towards its limit as € tends to 0. This allows us to prove, and quantify, the convergence

from Boltzmann equation to the incompressible Navier-Stokes equations (4.1.4).
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4.1.2 Notations

Throughout this chapter, we will use the following notations. For two multi-indexes j and
I in N? we define:

0] = 00,0,

e foriin {1,...,d} we denote by ¢;(j) the i'* coordinate of j,
e the length of j will be written [j| = )", ¢;i(j),

e the multi-index 0;, by : ¢;(d;,) = 1 if ¢ = iy and 0 elsewhere.

We will write the spaces we are working on L%, = LP (’]I‘d X Rd), 2 =1rr (Td) and
Ly =1rr (Rd). The Sobolev spaces H ,, H; and H; are defined in the same way and we

T,

denote the standard Sobolev norms by ||||§1,s = > 817‘ , -
T lilHilss Law

4.1.3 Our strategy and results

The first step of this chpater is to investigate the equation (4.1.3) in order to obtain
existence and exponential decay of solutions in Sobolev spaces H; ,, independently of the
Knudsen number €. Moreover, we want all the required smallness assumptions and rates of
convergence to be explicit. Such a result has been proved in [50] by studying independently
the behaviour of both microscopic and fluid parts of solutions to (4.1.3), we proposed here

another method based on hypocoercivity estimates.

Our strategy is to build a norm on Sobolev spaces which is equivalent to the standard

norm and which satisfies a Gronwall type inequality.

12
First, we construct a functional on H? , by considering a linear combination of H@lj ‘ ,
’ L(IJ v

for all 7]+l < s, together with product terms of the form (8?1 5. 9)-)rz2 - The distortion
of the standard norm by the addition of mixed terms is necessary to Have a relaxation,
due to the hypocoercivity property of the linearized Boltzmann equation (4.1.3) (see [32]).

We then study the flow of this functional along time for solutions to the linearized
Boltzmann equation (4.1.3). This flow is controlled by energy estimates and, finally, a non-
trivial choice of coeflicients in the functional yields an equivalence between the functional
and the standard Sobolev norm, as well as a Gronwall type inequality, both of them being

independent of .

We first apply this strategy to the linear case (i.e. without considering the bilinear
remainder term) and prove that it generates a strong semigroup with a spectral gap and,
therefore, an exponential relaxation (Theorem 4.2.1). We then extend our method to the

full nonlinear model and obtain an a priori estimate on our functional (Proposition 4.2.2).
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4 From Boltzmann to incompressible Navier-Stokes on the torus

This estimate enables us to prove the existence of solutions to the Cauchy problem and
their exponential decay as long as the initial data is small enough with a smallness not
depending on & (Theorem 4.2.3). We emphasize here that, thanks to the functional we
used, the smaller ¢ the less control is needed on the v-derivatives of the initial data.

However, these results seem to tell us that the v-derivatives of solutions to equation
(4.1.3) can blow-up as € tends to 0. Thus, the last step is to create a new functional,
based on the microscopic part of solutions, satisfying the same properties but controlling
the v-derivatives as well. The fact that we ask for a control on the microscopic part of
solutions to equation (4.1.3) is due to the deep structure of the linear operator L. This
leads to the expected exponential decay independently of & even for those v-derivatives
(Theorem 4.2.4).

Finally, the chief aim of the present chapter is to derive explicit rates of convergence
from solutions to the linearized Boltzmann equation to the incompressible Navier-Stokes
equations.

Theorem 4.2.3 tells us that for all ¢ we can build a solution h. to the linearized Boltz-
mann equation (4.1.3), as long as the initial perturbation is sufficiently small, indepen-
dently of e. We can then consider the sequence (h:)o<e<1 and study its limit. It appears
that it converges weakly in L HS L2, for s > so > d/2, towards a function h. Furthermore,

we have the following form for A (see [10])
_ 1. 9 1/2
h(t, z,v) = | p(t, 2) +v.ult,z) + S (Jo]” = N)O(t, ) | u(v)™=,

of which physical observables are weak (in the Leray sense [(0]) solutions of the linearized
incompressible Navier-Stokes equations (p being the pressure function, v and k being

constants determined by L, see Theorem 5 in [10])

Owu — vAu+u-Vu+ Vp =0,
V-u=0, (4.1.4)
00 — kAO+u-VO =0,

together with the Boussineq relation

V(p+6)=0. (4.1.5)

However, in order to know the initial data of these quantities, we study the Fourier
transform on the torus of our linear operator and use Duhamel formula. This gives us a

strong convergence result on the time average of h. with an explicit rate of convergence
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in finite time. An interpolation between this finite time convergence and the exponential
stability of the global equilibria in Boltzmann and Navier-Stokes equations concludes with
a strong convergence for all times (Theorem 4.2.5). The way we tackle this convergence

allows us to obtain an explicit form for the limit of (hc)e>0.

4.1.4 Comparison with existing results

For physical purposes, one may assume that € = 1 which is a mere normalization and that
is why many articles about the linearized Boltzmann equation only deal with this case.
The associated Cauchy problem has been worked on over the past fifty years, starting with
Grad [70], and it has been studied in different spaces, such as weighted L2(H') spaces [107]
or weighted Sobolev spaces [53][55][114]. Other results have also been proved in R? instead
of the torus, see for instance [#%][1][31], but it will not be the purpose of this chapter.
Our chapter explicitly deals with the general case for € and we prove results that are
uniform in e, allowing us to consider the hydrodynamical limit as the Knudsen number
tends to 0. To solve the Cauchy problem we used an iterative scheme, like in the papers
mentioned above, but our strategy yields a condition for the existence of solutions in H ,
(without any weight) which is uniform in € (Theorem 4.6.3). In order to obtain such a
result, we had to consider more precise estimates on the bilinear operator I', depending
on the existence of v-derivatives or not. Bardos and Ukai [!0] obtained a similar result in

R? but in weighted Sobolev spaces and did not prove any decay.

The behaviour of such global in time solutions has also been studied. Guo worked
in weighted Sobolev spaces and proved the boundedness of solutions to equation (4.1.3)
in [55], as well as an exponential decay (uniform in ) in [56]. The norm involved in
[55][70] is quite intricate and requires a lot of technical computations. To avoid specific
and technical calculations, the theory of hypocoercivity (see [¢1]) focuses on the properties
of the Boltzmann operator and which are quite similar to hypoellipticity. This theory has
been used in [32] to obtain exponential decay in standard Sobolev spaces in the case ¢ = 1.

We use the idea of Mouhot and Neumann developed in [$2] consisting of considering
a functional on Hj , involving mixed scalar products. In this chapter we thus construct
such a quadratic form, but with coefficient depending on €. Working in the general case
for € yields new calculations and requires the use of certain orthogonal properties of the
bilinear operator I' to overcome these issues. Moreover, we must construct a new norm
out of this functional, which controls the v-derivatives by a factor e.

The fact that the study yields a norm containing some ¢ factors prevents us from
having a uniform exponential decay for the v-derivatives. We use the idea of Guo, in [70],
of looking at the microscopic part of the solution h. everytime we look at a differentiation
in v. This idea catches the interesting structure of L on its orthogonal part. Combining

this idea with our previous strategy fills the gap for the v-derivatives.
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4 From Boltzmann to incompressible Navier-Stokes on the torus

Finally, our uniform results enable us to derive a weak convergence in HL? towards
solutions to the incompressible Navier-Stokes equations, together with the Boussineq re-
lation. We then find a way to obtain strong convergence using the ideas of the Fourier
study of the linear operator L —v.V,, developed in [39] and [10], combined with Duhamel
formula. However, the study done in [10] relies strongly on an argument of stationary
phase developed in [109] which is no longer applicable in the torus. Indeed, the Fourier
space of R? is continuous and so integration by parts can be used in that frequency space.
This tool is no longer available in the frequency space of the torus which is discrete.

Theorem 4.2.5 shows that the behaviour of the hydrodynamical limit is quite different
on the torus, where an averaging in time is necessary for general initial data. However,we
obtain the same relation between the limit at ¢ = 0 and the initial perturbation h;,
and also the existence of an initial layer. That is to say that we have a convergence in
L[207T] = L?([0,T)) if and only if the initial perturbation satisfies some physical properties,
which appear to be the same as in R? studied in [10)].

This convergence gives a perturbative result for incompressible Navier-Stokes equations
in Sobolev spaces around the steady solution. The regularity of the weak solutions we
constructed implies that they are in fact strong solutions (see Serrin [99][100] and Lions
[67] Section 2.5). Moreover, our uniform exponential decay for solutions to the linearized
Boltzmann equation yields an exponential decay for the perturbative solutions of the
incompressible Navier-Stokes equations in higher Sobolev spaces. Such an exponential
convergence to equilibrium has been derived in Hg for d = 2 or d = 3 in [100], or can be
deduced from Proposition 3.7 in [72] in higher Sobolev spaces for small initial data. The
general convergence to equilibrium can be found in [7/] (small initial data) and in [90] but

they focus on the general compressible case and no rate of decay is built.

Furthermore, results that do not involve hydrodynamical limits (existence and expo-
nential decay results) are applicable to a larger class of operators. In Appendix 4.4 we
prove that those theorems also hold for other kinetic collisional models such as the lin-
ear relaxation, the semi-classical relaxation, the linear Fokker-Planck equation and the

Landau equation with hard and moderately soft potential.

4.1.5 Organization of the chapter

Section 4.2 is divided in two different subsections.

As mentionned above, we shall use the hypocoercivity of the Boltzmann equation
(4.1.1). This hypocoercivity can be described in terms of technical properties on L and T"
and, in order to obtain more general results, we consider them as a basis of our chapter.
Thus, subsection 4.2.1 describes them in detail and a proof of the fact that L and I" indeed
satisfy those properties is given in Appendix 4.A. Most of them have been proved in [3?]

but we require more precise ones to deal with the general case.

- 146 -



4.2 Main results

The second subsection 4.2.2 is dedicated to a mathematical formulation of the results

described in subsection 4.1.3.

As said when we described our strategy (subsection 4.1.3), we are going to study the
flow of a functional involving L%U—norm of  and v derivatives and mixed scalar products.
To control this flow in time we compute energy estimates for each of these terms in a
toolbox (section 4.3) which will be used and referred to all along the rest of the chapter.

Proofs of those energy estimates are given in Appendix 4.5.

Finally, sections 4.4, 4.5, 4.6, 4.7 and 4.8 are the proofs respectively of Theorem 4.2.1
(about the strong semigroup property of the linear part of equation (4.1.3)), Proposition
4.2.2 (an a priori estimates on the constructed functional for the full model), Theorem
4.2.3 (existence and exponential decay of solutions to equation (4.1.3)), Theorem 4.2.4
(showing the uniform boundedness of the v-derivatives) and of Theorem 4.2.5 (dealing
with the hydrodynamical limit).

We notice here that section 4.6 is divided in two subsection. Subsection 4.6.1 deals
with the existence of solutions for all € > 0 and subsection 4.6.2 proved the exponential

decay of those solutions.

4.2 Main results

This section is divided in two parts. The first one translate the hypocoercivity aspects
of the Boltzmann operator in terms of mathematical properties for L and I'. Then, the

second one states our results in terms of those assumptions.

4.2.1 Hypocoercivity assumptions

This section is dedicated to the framework and assumptions of the hypocoercivity theory.
A state of the art of this theory can be found in [%1].

4.2.1.1 Assumptions on the linear operator L

. . 1
Assumptions in H, ,

(H1): Coercivity and general controls

L:L? — L?is a closed and self-adjoint operator with L = K — A such that:
e A is coercive:

— there exists |||, norm on L? such that

Vh e L2

v

v IlIZs < vt 1Bl < (A(R),h)z < v lIRIR,

v
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— A has a defect of coercivity regarding its v derivatives:
Vhe Hy, (Vol(h), Voh) 2 > v3 Vb3, — v B3, -
e There exists C* > 0 such that

vhe Ly, Vg € Ly, (L(h),g)r2 < C* |Ihlly, llglla, -

where (V2)1<s<4 are strictly positive constants depending on the operator and the dimen-
sion of the velocities space d.

As in [32], we define a new norm on L2 ,:
7

e = {11, 2 -

(H2): Mixing property in velocity

V6 >0,3C(0) >0, Vhe Hy, (V,K(h),Vuh)ra < C(0)|hlf75 + (Vb7 -

(H3): Relaxation to equilibrium

We suppose that the kernel of L is generated by N functions which form an orthonormal
basis for Ker(L):

Ker(L) = Span{¢1(v),...,on(v)}.

Moreover, we assume that the ¢; are of the form P;(v)e~1*/4, where P; is a polynomial.
Furthermore, denoting by 77, the orthogonal projector in L? on Ker(L) we assume that

we have the following local coercivity property:

IN>0,Vhe L2, (L(h),h) < -\ Hhi’

2
Ay
where h* = h— 71, (h) denotes the microscopic part of h (the orthogonal to Ker(L) in L2).

We are using the same hypothesis as in [32], except that we require the ¢; to be
of a specific form. This additional requirement allows us to derive properties on the v-
derivatives of 7y, that we will state in the toolbox section 4.3.

Then we have two more properties on L in order to deal with higher order Sobolev

spaces.

Assumptions in H; ,, s > 1

(H1’): Defect of coercivity for higher derivatives

We assume that L satisfies (H1) along with the following property: for all s > 1, for all
|7] + |I| = s such that |j| > 1,
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Vh e H?

00

- .
OI A, Oz, > vit ||| = vt Il

where I/5A and ué\ are strictly positive constants depending on L and d.

We also define a new norm on H
b

1/2

aj 2
H-||H;‘: Z H Z'HA

lil+1l<s

(H2’): Mixing properties

As above, Mouhot and Neumann extended the hypothesis (H2) to higher Sobolev’s spaces:
for all s > 1, for all |j| + |I| = s such that |j| > 1,

T,

V6> 0,3C(0) >0, Vhe H,, (9/K(h),h)z, < CO)|Il%an +5 Ha{h‘

2
L%,v

4.2.1.2 Assumptions on the second order term I'

To solve our problem uniformly in ¢ we had to precise the hypothesis made in [32] in
order to have a deeper understanding of the operator I'. This lead us to two different
assumptions.

(H4): Control on the second order operator

[: L2 x L2 — L2 is a bilinear symmetric operator such that for all multi-indexes j and
[ such that |j]+ || < s, 5 >0,

8JF g,h ,f 2 < ’ . .
Gt fin, Golg: W flla» 15 =0

Gs , and G$ being such that G5, < G5, G5 < G5! and satisfying the following property:

Gs.,(0:m) < Cr (Ilglls, I1Pllgy + WAlge ol )

dsp € N, Vs > sy, 3Ct > 0,
G2(9,1) < Cr (Illmgis N9y + N9l sz IPliry)

(H5): Orthogonality to the Kernel of the linear operator

Vh, g € Dom(I)N L3, T(g,h) € Ker(L)*.

4.2.2 Statement of the Theorems
4.2.2.1 Uniform result for the linear Boltzmann equation

For s in N* and some constants (bésl)

we define the following functional on Hj ,, where we emphasize that there is a dependance

)jils (al(s))l and (ag‘gl))i’l strictly positive and 0 < e <1
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on &, which is the key point of our study:

N

HHH; = Z bS) 2 + ZalS) HalO HL2 + Z zl 5 8?15178?>L%U

[F]+1<s [11<s [1I<s
l7]>1 i,¢i(1)>0

We first study the linearized equation (4.1.3), without taking into account the bilinear
remainder operator. By letting m, be the projector in wa onto Ker(w) we obtained the

following semigroup property for L.

Theorem 4.2.1 If L is a linear operator satisfying the conditions (H1’), (H2’) and (H3)
then there exists 0 < eq < 1 such that for all s in N*,

1. forall0 <e<eq, Ge = 2L — e v -V, generates a CO-semigroup on H3,.
2. there exist C’(s), (b;?), (al(s)), (agsl)) > 0 such that for all 0 < e < ¢gq

e ~ (112, + S 005+ 30 Haj

l<s [L+151<s
lj|>1

and for all h in H,

.Z‘U’

(Ge(h), hps < =CE b — 7. ()l -

This theorem gives us an exponential decay for the semigroup generated by G..

4.2.2.2 Uniform perturbative result for the Boltzmann equation

The next result states that if we add the bilinear remainder operator then it is enough, if

¢ is small enough, to slightly change our new norm to have a control on the solution.

Proposition 4.2.2 If L is a linear operator satisfying the conditions (H1’), (H2’) and

(H3) and T’ a bilinear operator satisfying (H4) and (H5) then there exists 0 < eq < 1 such
that for all s in N*,
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1. there exist K(gs), K{S), Kés) (bfl)), (al(s)), (agi)) > 0, independent of T' and e, such
that for all 0 < e < eq4:

2 2 0 (|2 2 Al
e ~ | 1, + S lloP 5.+ 3 ot
l7|<s lL]+151<s e
l71>1

2. and for all hip, in Hj , NKer(Ge)* and all g in Dom(T") N H

3 os Uf we have a solution
k)

hin H; , to the following equation

1 1 1
Oh+ ~v-Vih = —L(h) + ~T(g, h),
t +€U 62 ()+E (g )

then

d s S s S S 2
05, < —EG Il + K17 (G2, m)* + K5 (G0 (9.1).

One can remark that the norm constructed above leaves free the z-derivatives while it
controls the v ones by a factor e.

We want to emphasize here that this result shows that the derivative of the norm is
control by the z-derivatives of I' and the Sobolev norm of I'; but weakened by a factor
g2. This is important as our norm ||H3_[g controls the L2(HZ)-norm by a factor of order 1

whereas it controls the whole H; ,-norm by a multiplicative factor of order 1/e.

Theorem 4.2.3 Let Q be a bilinear operator such that:
o the equation (4.1.2) admits an equilibrium 0 < p € L' (T? x R%),

e the linearized operator L = L(h) around p with the scaling f = p + eu'2h satisfies
(H1"), (H2’) and (H3),

e the bilinear remaining term I' = I'(h, h) in the linearization satisfies (H4) and (H5).
Then there exists 0 < €4 < 1 such that for any s > so (defined in (H4) ),

1. there exist (b(s)), (al(s)), (a(s)) > 0, independent of T and e, such that for all 0 < e <

jvl Zvl
Ed-
2 2 012 2 Ak
B ~ [, + D2 0Pl +<2 2 o], |-
l7|<s |L+151<s e
l7]>1

2. there exist 63 > 0, Cs > 0 and 75 > 0 such that for all 0 < e < gy4:
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4 From Boltzmann to incompressible Navier-Stokes on the torus

For any distribution 0 < fip € Ll(Td X Rd) with fim = p+ 5,u1/2hm >0, hy, in Ker(Ga)L
and

there exists a unique global smooth (in HZ ,, continuous in time) solution f. = f:(t,x,v)

:I)'U’

to (4.1.2) which, moreover, satisfies f- = p+ eut/2h, > 0 with:

”hs”Hg < HhmHH; e~ st

The fact that we are asking h;, to be in Kelr(Gg)L just states that we want f;,, to have
the same physical quantities as the global equilibrium g. This is a compulsory requirement

as one can easily check that the physical quantities

/ fe(z,v)dzdv, / v fe(z,v)dzdv, / [o|? fo(, v)dzdv
TdxRd TdxRd TdxRd

are preserved with time (see [30] for instance).
Notice that the HZ-norm is this theorem is the same than the one we constructed in

Proposition 4.2.2.

4.2.2.3 The boundednes of the v-derivatives

As a corollary we have that the H?(L?)-norm decays exponentially independently of £ but
that the only control we have on the Hj , is

bs _
el < 2.

This seems to tell us that the v-derivatives can blow-up at a rate 1/¢. However, Guo, in
[56], showed that one can prove that there is no explosion if one controls independently the
fluid part and the microscopic part of the solution. This idea, combined with our original
one, leads to the construction of a new norm which will only control the microscopic part
of the solution whenever we face a derivative in the v variable.

We define the following positive quadratic form

e, = 32 o) o aa—m)| +z Dllp 5, + S0 aletdf s 00z,
|4 ]+11<s s lH<s
l71>1 i,ci(1)>0

Theorem 4.2.4 Under the same conditions as in Theorem 4.2.3, for all s > sg, there
exist (bg.fl)), (ozl(s)), (a (s )) >0 and 0 < g4 < 1 such that for all 0 < € <

1. H-HHSL ~ HHH;U, independently of ¢,
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T,v

2. if he is a solution of 4.1.3 in HE ,, with HhmHH;L < 0, then
HhEHHgl < 5267#7

where &, and T, are strictly positive constants independent of .

This theorem builds up a functional that is equivalent to the standard Sobolev norm,
independently of €. Thus, it gives us the exponential decay of the v-derivatives as well as
the decay of the x-derivatives. However, the distorted norm used in Theorem 4.2.3 asked
less control on the v-derivatives for the initial data, suggesting that, in the limit as € goes
to zero, almost only the z-variable has to be controlled to obtain existence and exponential

decay.

4.2.2.4 The hydrodynamical limit on the torus for Maxwellian particles

Our theorem states that one can really expect a convergence of solutions of collisional
kinetic models near equilibrium towards a solution of fluid dynamics equations. Indeed,
the smallness assumption on the initial perturbation does not depend on the parameter
as long as ¢ is small enough.

We then define the following macroscopic quantities

e the particles density p.(t,z) = (u(v)'/?, he(t, z,v)) 12,

e the mean velocity u.(t,z) = (vu(v)'/2, ho(t, z, )12,

e the temperature 0. (t,z) = %<(|v\2 — d)p(v)V/?, he(t,x,v)) 2.

The theorem 4.2.3 tells us that, for s > sg, the sequence (h.)-~¢ converges (up to an
extraction) weakly-* in L{°(H; L2) towards a function h. Such a weak convergence enables

us to use the theorem 1.1 of [10], which is a slight modification of the result in [¢] to get
that

1. his in Ker(L), so of the form

h(t,z,v) = |p(t, ) + v.ult, z) + %(|v|2 —d)o(t,z)| p(v)/?,

2. (pe, ue, 0z) converges weakly™® in L°(H?) towards (p, u, ),

3. (p,u,0) satisfies the incompressible Navier-Stokes equations (4.1.4) as well as the

Boussineq equation (4.1.5).
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4 From Boltzmann to incompressible Navier-Stokes on the torus

If such a result confirms the fact that one can derive the incompressible Navier-Stokes
equations from the Boltzmann equation, it does unfortunately neither give us the conti-
nuity of A nor the initial condition verified by (p, u, 6), depending on (pin, win, Oin ), macro-
scopic quantities associated to h;,. Our next, and final step, is therefore to link the last
two triplets and so to understand the convergence he — h more deeply. This is the purpose

of the next, and last, theorem.

Theorem 4.2.5 Consider s > sqg and hyy, in HS, such that ||hm||7_[g < ds.

v
Then, (he)eso eists for all 0 < € < g4 and converges weakly* in L (HEL2) towards h
such that h € Ker(L), with Vy-u=0 and p+ 60 = 0.

Furthermore, fOT hdt belongs to HSL? and there exists C > 0 such that,
“+o0o “+oo
‘ / hdt — / hEdt'
0 0

One can have a strong convergence in L[20 7] HgL% only if hiy, is in Ker(L) with Vg u, =

< CV/z|in(e)].

H3L3

0 and pip + 0i, = 0 (initial layer conditions).

Moreover, in that case we have

1h—hellz  peps < CVelin(e)],

[0,+00)

and for all & in [0,1], if hiy belongs to HEYOL2,

sup ||h— h6|]H£L% (t) < Cemin(3,1/2)
t€[0,+00) g

This theorem gives us strong convergences for (pe, ue, ;) towards (p,u, ) but above
all it gives us that (p,u, ) is the solution to the incompressible Navier-Stokes equations

together with the Boussineq equation satisfying the initial conditions:

e u(0,z) = Pujn(x), where Pu;,(x) is the divergence-free part of wu;,(z),

o p(0,2) = —0(0,2) = 3(pin(x) — Oin()).

Finally, we emphasize that in the case of initial data satisfying the initial layer condi-
tions, the strong convergence in time requires a little bit more regularity from the initial

data. This fact was already noticed in R (see [10] Lemma 6.1) but overcome by considering

weighted norms in velocity.
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4.3 Toolbox: fluid projection and a priori energy estimates

In this section we are going to give some inequalities we are going to use and to refer to
throughout the sequel. First we start with some properties concerning the projection in

L? onto Ker(L): mr. Then, because we want to estimate all the terms appearing in the

s

H3 ,-norm to estimate the functionals HZ and H;

1, we will give upper bound on their
time derivatives. The proofs are only technical and the interested reader will find them in
Appendix 4.B.

We are assuming there that L is having properties (H1’), (H2’) and (H3), that T’
satisfies (H4) and (H5) and that 0 < e < 1.

4.3.1 Properties concerning the fluid projection 7

We already know that L is acting on L2, with Ker(L) = Span(¢1,...,¢n), with (¢;)1<i<n
an orthonormal family, we obtain directly a useful formula for the orthogonal projection
on Ker(L) in L2, 7p:

Vhe L2, wp(h)= Z (/Rd hqbidv) ;. (4.3.1)

=1

Plus, (H3) states that ¢; = P;(v)e "*/4, where P, is a polynomial. Therefore, direct

computations and Cauchy-Schwarz inequality give that 7 is continuous on Hj , with

Vs € N,3Crs > 0,Yh € Hy ,,  [mn()ll7s . < Crs [Bl7s - (4.3.2)

T

More precisely one can find that for all s in N

. 2
Vil = s he By, ||oim®)| < Cas |, - (433)

Finally, building the A-norm one can find that in all the collisional kinetic equations

concerned here we have that
ICx > 0,Vh e L2, [lmL (D)} < Cr lIRII7 - (4.3.4)

T,

Then we can also use the properties of the torus to obtain Poincare type inequalities.

This can be very useful thanks to the next proposition, which is proved in Appendix 4.5.

Proposition 4.3.1 Let a and b be in R* and consider the operator G = aL —bv.V, acting

1
on Hy ,,.
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4 From Boltzmann to incompressible Navier-Stokes on the torus

If L satisfies (H1) and (H3) then

Ker(G) = Ker(L).

Remark 4.3.2 In this proposition, Ker(G) has to be understood as linear combinations
with constant coefficients of the functions ®;. This subtlety has to be emphasized since in
L%ﬁv, Ker(L) includes all linear combinations of ®; but with coefficients being functions of

x.
Therefore, if we define, for 0 < e < 1:

1 1
GE = *QL - *’U.va”
£ £

then we have a nice desciption of 7g.:

N
Vhe L, mg.(h) = (/ / h; d:cdv) ;.
=1 \/T¢J/Rd

That means that m¢_(h) is, up to a multiplicative constant, the mean of 7y (h) over the
torus. We deduce that if h belongs to Ker(G.)*, m1(h) has zero mean on the torus and is
an operator not depending on the x variable. Thus we can apply Poincaré inequality on

the torus:

VheKer(Go)h, mn(h)2: < CpllVame(h)2; < GylIVuhl2, . (43.5)

4.3.2 A priori energy estimates

Our work in this chapter is to study the evolution of the norms involved in the definition
of the operators HZ and H: | and to combine them to obtain the results stated above. The
Appendix 4.8 contains the proofs, which are technical computations together with some
choices of decomposition, of the following a priori estimates. Note that all the constants
K1, Kg; and Ks_1 used in the inequalities below are independent of ¢, I' and g, and only
depend constructively on the constants defined in the hypocoercivity assumptions or in
the subsection above. The number e can be any positive real number and will be chosen
later.

We would like to study both linear and non-linear models but they appeared to be
very similar. In order to avoid long and similar inequalities we will write in parenthesis

terms we need to add for the full model.
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Let g be a function in HS,. We now consider a function h in Ker(G:)* N Hj ,, for

some s in N*, which is solution of the linear (linearized) Boltzmann equation:
Ouh+ 20.Voh = S L) (+20(g, h)
v Vat = 0 ’
We remind the reader that the following notation is used: ht = h — 7, (h).

4.3.2.1 Time evolutions for quantities in H;yv

We write the wa—norm estimate

dypne o A a])? (L1 g0 2
gz, < =5 Hh HA <+A (Ga(g,h)) ) (4.3.6)

Then the time evolution of the z-derivatives

Gty <=5 [vant] (45 @a)?). (437)

and of the v-derivatives

Kd:c
52

A
VohlZ, < D1 IVahl2 — )2 (43.8)
v L%,v X 62 x L%,v 62 vl A 0.

d 2
& &l
dt| ‘ AjL
3

(5 @201

Finally, we will need a control on the scalar product as well, as explained in the strategy

subsection 4.1.3. Notice that we have some freedom as e can be any positive number.

d CLe n 2 1 2 QCL 2
(Vb Vuh)ry, < S |[Vabt|| < IVl + = IVuAIR

dt
(+5m= @an)?). (4.3.9)

4.3.2.2 Time evolutions for quantities in H; ,

We consider multi-indexes j and [ such that [j]| + |I| = s.

As in the previous case, we have a control on the time evolution of the pure z-derivatives,

d 2 A 2 1,
glornls, <=5 Jorn ] (5 @tom?). (43.10)

In the case where |j| > 1, that is to say when we have at least one derivative in v, we

obtained the following upper bound
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1/ 2d
o+ 2t S etz +

ic (4)>0

<+:fA (G3..(g, h))2> . (4.3.11)

5

ol

We may find useful to consider the particular case where |j| = 1,

A
il < 5],
dt =0z - g2 [[7=07 ]

3up 2 K,_
v L PPl U7

x,v

(5 (@2atam)?). (13.12)

Finally we will need the time evolution of the following scalar product:

d s Cle 2 1 2 20% | 5.
s, < 5 otnt = Clltnlly 2 [t
€ S
(+5m @e.1))). (4.3.13)

where we still have some freedom as e is any positive number.

We just emphasize here that one can see that we were careful about which derivatives
are involved in the terms that contain I'. This is because our operator ||.||,;s controls the

H3(L?)-norm by a mere constant whereas it controls the entire Hj; ,-norm by a factor 1/e.

4.3.2.3 Time evolutions for orthogonal quantities in H; ,

For the theorem 4.2.4 we are going to need four others inequalities which are a little bit
more intricate as they need to know the shape of 77, as described in the subsection above.
The proofs are written in Appendix 4.8 and we are just looking at the whole equation in

the setting g = h.

We want the time evolution of the v-derivatives of the orthogonal (microscopic) part
of h, as suggested in [70] this allows us to really take advantage of the structure of the

linear operator L on its orthogonal:

o],

KIJ_ L2 1 2 V:? 12
< [ o EE Iven - 55| ven |

dt ’ L2, A

o (G (). (4.3.14)
3
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Then we can have a new bound for the scalar product used before

L Vo) < H2 +;HV hLH2
AR T A ACHCRChez I la
1 1C,
—5z IVahllzs + =7 (G2 (k)" (4.3.15)

where e is any number greater than 1.

As usual, we may need the same kind of bounds in higher degree Sobolev spaces. The
reader may notice that the bounds we are about to write are more intricate than the ones
in the previous section because they involve more terms with less derivatives. We consider
multi-indexes j and [ such that |j| 4+ |I| = s. This time we really have to divide in two

different cases.

Firstly when |j| > 2

d |l ip L2 Véx 9(vi)*d %L
oLy, <= % Jein] > ot
dt Hal 2, aj + 2(v3)2vd _(, 9
. (4.3.16)
2 K- s 2
RGOS Rl + =5 HhiHH V—A(gx,vm,h)) .
|V)<s—1 ’ 5
Then the case when |j| =1
d 8(51' hL 2 < Vé\ 8(51‘ hl 2 KL aOh 2 1
g 119, S T || || T R > llow \ng -2 o
xT,v I ‘:S z,v
A (G (h, h)) (4.3.17)

Vs

Finally we give a new version of the control over the scalar product in higher Sobolev’s

spaces.
d ]’%J‘ 2 1 ] 2 1 9
@k, < e[+ qaga [ofant, - oz otz
1 2 2C: , ¢ 2
oD DN 2 P e (G UND) (4.3.18)

[I]<s—1

for any e > 1.
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4.4 Linear case: proof of Theorem 4.2.1

In this section we are looking at the linear equation
Oth = Go(h), on T¢ x R%

Theorem 4.2.1 will be proved by induction on s. We remind here the operator we will

work with on Hy ,

e in the case s = 1:

1020 = AlBIZs  +al[Vahl2s + b2 IVohl2s +as(Voh, Vih)ps

e in the case s > 1:

Iml = > v ofnl,, + > ol llofllyy, + 30 aletol s ot

FIRURS [1]<s [1I<s
l7]=>1 ,¢;(1)>0

U

The Theorem 4.2.1 only requires us to choose suitable coefficients that gives us the expected

inequality and equivalence.

Consider hj, in H, N Dom(G,). Let h be a solution of 9;h = G(h) on T% x R? such
that h(0,-, ) = hin(:, ).

Notice that if h, is in Hj , N Dom(G.) N Ker(Ge) then we have that the associated
solution remains the same in time: J;h = 0. Therefore the fluid part of a solution does not
evolve in time and so the semigroup is identity on Ker(G.). Besides, we can see directly
from the definition and the adjointness property of L that h € Ker(Gg)J- for all ¢ if h;,
belongs in Ker(G.)*.

Therefore, to prove the theorem it is enough to consider hj, in Hj, N Dom(Ge) N
Ker(G:)*t.

4.4.1 The case s=1

For now on we assume that our operator L satisfies the conditions (H1), (H2) and (H3)
and that 0 < e < 1.

If (H3) holds for L then we have that e 2L is a non-positive self-adjoint operator on
wa. Moreover, ¢ 1v - V, is skew-symmetric on wa. Therefore the L%v—norm decreases
along the flow and it can be deduced that G, yields a Cy-semigroup on Li,v for all positive

e (see [01] for general theory and [107] for its use in our case).

Using the toolbox, which is possible since h is in Ker(GE)J— for all ¢, we just have to
consider the linear combination A(4.3.6) + a/(4.3.7) + be?(4.3.8) + a£(4.3.9) to obtain
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d 2 1 1 2 1 L iR 2
Sl < = bKi—AA4] Hh HA+E—2[C ea — Aol vah HA
[2CLa

+

- | IVAIR + B~ al Vahls - (440

Then we make the following choices:

1. We fix b such that —v4'b < —1.

2. We fix A big enough such that [bK; — A\A] < —1.
3. We fix a big enough such that [bKy4, —a] < —1.

4. We fix e big enough such that [L:“ — byé\} < -1

NN
e 2

5. We fix a big enough such that [CLea — )\a} < —1 and such that { “

This leads to, because 0 < e < 1:
Sz < (o[ [Fab |+ 19k 4 1912, )
dt " A A A Law
Finally we can apply the Poincaré inequality (4.3.5) together with the equivalence of
the Liw—norm and the A-norm on the fluid part 7y, equation (4.3.4), to get

1A%
VR

C (P13 + S 192h11: ) |

3C,C' > 0,
O (|9t} + 31920125 )

<
<

Therefore we proved the following result:
5K > 0,90 << 1, ARy < O (BB + [9auhl3)
With these constants, [|.[|; is equivalent to
(1012 + 19kl + <2 190n1E, )"
since a2 < ab and b < « and hence:

b
ARy, + 2 (IVahlZy, + 22 190R13s ) < DRI,

and 5
2 2 « 2 2
Il < AllblZs, + 5 (I9aAITe, +€2 VA3, ) -
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The results above gives us the expected theorem for s = 1.

4.4.2 The induction in higher order Sobolev spaces

Then we assume that the theorem is true up to the integer s — 1, s > 1. Then we suppose
that L satisfies (H1’), (H2’) and (H3) and we consider ¢ in (0, 1].

Let hin be in H , N Dom(G.) N Ker(Ge)* and h be the solution of d;h = G¢(h) such
that h(0,-, ) = hin(:, ).

As before, h belongs to Ker(G.)* for all ¢ and thus we can use the results given by the

toolbox.

Thanks to the proof in the case s = 1 we know that we are able to handle the case
where there is only a difference of one derivative between the number of derivatives in x
and in v. Therefore, instead of working with the entire norm of H; ,, we will look at an

equivalent of the Sobolev semi-norm. We define:

. 2
F) = Y 52BHa;hHL2 +B Y Qut),
l3]+1tl=s Y l1|=s
|J|>2 Z',Ci(l)>0

2 . 2 .
Quity = alofnl, +oc?opsnl|, +ac@f s h o0,

where the constants, strictly positive, will be chosen later.
Like in the section above, we shall study the time evolution of every term involved in

Fy in order to bound above dFs/dt(t) with negative coefficients.

4.4.2.1 The time evolution of @Q;;

We will first study the time evolution of @Q;; for given |j| + |I| = s. The toolbox already
gave us all the bounds we need and we just have to gather them in the following way:
«(4.3.10) + be?(4.3.12) + as(4.3.13). This leads to, because 0 < € < 1,

20Lq

%QM(@ < & [Cea—a] ||opnt]| + [ _ ué‘b] Jops.2||"

3 A
+ [VAU;Ab — a} Hc‘)?h”i% A Koab [l e
570 ’

One can notice that, except for the last term, we have exactly the same kind of bound as
in (4.4.1), in the proof of the case s = 1. Therefore we can choose «, b, a, e, independently
of € such that it exists sg > 0 and Cs_1 > 0 such that for all 0 < e < 1:

o Quilt) ~ [[Pll}, +<2||of s

2
)
L3
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2 ; 2
.$@Aﬂ<—KQO@%W+M$@ﬂh>+@4HW@57

where we used (4.3.4) (equivalence of norms Li,v and A on the fluid part) to get

07112 ' 0y L2 07112
H@MMgCTOMh‘M+H@Mh%>.
4.4.2.2 The time evolution of F; and conclusion
The last result about @);; gives us that

SRS H

[t|=s l1]+151=
\J\>

To study the time evolution of Fy we just need to combine the evolution of );; and the

2
one of H i, which is given in the toolbox by (4.3.11).
e < X dpfon+ ¥ 2 pe 5 ol
at = i R s
9] +iI=s 3] +111= i,ci(4)>0
l71>2 \j\>2
2 5 2
~KoB' Y (Ha{’hHA+ Ha,_éihHJ (4.4.2)
iei()>0

+| Y. KeaB+ Y BCou| bl
[7]+1l=s [l]=s
|71>2 i,¢;(1)>0

Then we choose the following coefficients B = 2/ Vé\ and we can rearrange the sums to

obtain
d 6d(y{\)2 2 i |12 6d V{\)z 2 i |12
L S [ M R S - o |
dt (*) Z ((Vg\yé\)Qg ! A+_Z (Vg\y{)\)Qg @ A

|7+1t= |7 +1l=s

|J|/2 l7]=1

2
(s—1)

+ Y0 (KoB)||oin|| + LTV (B) Al

1]+ tl=5

|7]=0

Therefore we can choose the remaining coefficients:

I, (w5 vg)?
1. ¢4 =minq 1, 6dw)? [
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4 From Boltzmann to incompressible Navier-Stokes on the torus

d I/A 2
i Kal) < -1

2. we fix B’ big enough such that sgB’ > 1 and (

Everything is now fixed in C'J(rsfl)(B’ ) and therefore it is just a constant C’ffl) that

does not depend on . Therefore we then have the final result.

d o )
Vo<e<eq, R0 <OV - [ YD H@%HA .

dt A
l7l+ltl=s

Then, we know that ||.||, controls the L2-norm. And therefore:

d (s) i il
V0 <e<er, 2R <Cf 'HZ; 1 lon]|, ] - |‘|§ lorn)[ ]
7 <s— j =s

This inequality is true for all s and therefore we can take a linear combination of the Fj
to obtain the following, where Cs is a constant that does not depend on ¢ since CJ(FS) does

not depend on it.

d n < 2
Vo<e<es, o (L GRWM | < | X ||on,
=1 i +ll<s

We can use the induction assumption from rank 1 up to rank s — 1 to find that this

linear combination is equivalent to

2 0 |2 2 112
1By, + SNl +=2 > o],
ll|<s U +51<s ©v
l7]>1

and so fits the expected requirements.

4.5 Estimate for the full equation: proof of Proposition 4.2.2

We will prove that proposition by induction on s. For now on we assume that L satisfies
hypothesis (H1’), (H2’) and (H3), that I" satisfies properties (H4) and (H5) and we take g

3 S
in Hy ,.

So we take h;, in Hy , N Ker(G.)* and we consider the associated solution, denoted
by h, of

1 1 1
Oh+ —v-Vyh = —=L(h) + ~T(g,h).
ph+ o L)+ T(g.)
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One can notice that thanks to (H5) and the self-adjointness of L, h remains in Ker(G.)*

for all times.

Besides, while considering the time evolution we find a term due to G. and another
due to I'. Therefore, we will use the results found in the toobox but including the terms

in parenthesis.

4.5.1 The case s=1

We want to study the following operator on Hj ,

12y = AlRIZs +alVahlZs + b [Vohl2s +as(Vah, Voh)ss .

Therefore, using the toolbox we just have to consider the linear combination A(4.3.6)+
(4.3.7) + be?(4.3.8) + as(4.3.9) to yield

d o2 1 O .Y 1)?
Sl < = K1 = A4] Hh HA+€—2[C ea — Aol vah HA

20Lq
+ [ 2 0 | IR + b — a9y (45

e
Avd 2 [au{\ y{\ea} 1 2
AN 7h AN ,h

* ) (Qx(g )) * 7 + CLyf (gi(g ))

RN 2
+ Al A52 (galr,v(gah)) .
Vo'Vs

One can see that we obtained exactly the same upper bound as in the proof of the
previous theorem, equation (4.4.1), adding the terms involving I' (remember that G? is
increasing in s). Therefore we can make the same choices for A, «, b, a and e, independently
of I and g, to get that

2 2 2 2
Vil ~ 10025+ [ VahlZs |+ Vuhl2,

and that, once those parameters are fixed, there exist K(()l), K}l), Kél) > 0 such that for
all 0 < e <1,

d 1 1 2 1 2
Il < =K§7 (IR + 1 Vauhl}) + K1 (29, ) + K5 (Ghu(9.1))

which is the expected result in the case s = 1.

- 165 -



4 From Boltzmann to incompressible Navier-Stokes on the torus

4.5.2 The induction in higher order Sobolev spaces

Then we assume that the theorem is true up to the integer s — 1, s > 1. Then we suppose
that L satisfies (H1’), (H2’) and (H3) and we consider ¢ in (0, 1].

Since hiy, is in Ker(G.)*, h belongs to Ker(G.)* for all ¢ and so we can use the results

given in the toolbox.

As in the proof in the linear case we define:

. 2
R@ = Y @B|on|, +B Y Qu.
1] +1|=s oY |t]=s
[71=2 1,¢;(1)>0

2 : 2 ,
Quilt) = al|fhll, +be? HafiéihHLQ +as(0) 5 h, O h) 2,

where the constants, strictly positive, will be chosen later.

Like in the section above, we shall study the time evolution of every term involved in
F in order to bound above dF/dt(t) with expected coefficients.

4.5.2.1 The time evolution of ();;

We will first study the time evolution of @ ; for given |j| + |I| = s. The toolbox already
gave us all the bounds we need and we just have to gather them in the following way:
«(4.3.10) + be?(4.3.12) + as(4.3.13). This leads to, because 0 < € < 1,

20Lq

9 Qult) < % [CPeaal HalthHiJr[ _ygb] |85

3 A
+ [VAV;Ab - a} Ha?hni% A+ Ko1b [l e
570 ’

A A A
avy viea s 9 3UPb 5, . 2
+ |+ h))” + h))~.
|:Ué\)\ CLV6X:| (gx(g, )) V(I)\V\r/}e (gx,v(g’ ))

One can notice that, except for the term in |[A]| -1, we have exactly the same kind
of bound as in the case s = 1, given by (4.5.1). Therefore we can choose a, b, a, e,
independently of €, I and g such that it exists Kg, Kr1, Kt > 0 and Cs_1 > 0 such that
forall 0 <e < 1:

o Quilt) ~ [[Pll}, +<2||of s

2
)
L3
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2
G0 < o (Jopnl + ot 1] ) + i (G300 Y

+e2Kra (05,9, 1))" + Comt [l o=

where we used (4.3.4) (equivalence of norms L7 , and A on the fluid part) to get

07112 / 0,112 01112
Jepully < (Jobn] + ot ).
4.5.2.2 The time evolution of F; and conclusion
The last result about @Q);; gives us that

SRS H

[t|=s l1]+15]=
\J\>

so it remains to show that F) satisfies the property describe by the theorem for some B
and B’'.

To study the time evolution of Fs we just need to combine the evolution of @);; and

which is given in the toolbox by (4.3.11).

d J 3(’/{\) j—0
a0 < ¥ sl s %t S o,
dt . U5 (Vo
3] +1l=s l3]+lt= i,ci(4)>0
l71>2 m»
07112 s I
o8 3 (b} + o)
s (1) >0
+| Y. KeaB+ Y B'Con| b (4.5.2)
l5]+1t|=s ll=s '
|71>2 i,¢:(1)>0
+ Y B'Kri(Gi(g,h)?
lt|=s
i,Cil(l)>0

RIS 2
+2 | Y BErt+ Y. A—;AB (G3.(9,0))".
lt)=s lil+lil=s 075
i,¢i(1)>0 |71>2

One can easily see that, apart from the terms including I', we have exactly the same
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4 From Boltzmann to incompressible Navier-Stokes on the torus

bound as in the proof in the linear case, equation (4.4.2). Therefore we can choose B, B’

and e4 like we did, thus independent of I and g, to have for all 0 < e < ¢

d

s—1 .12
ORI Aal [T B D CE N

|71+]l|=s
K71 (G3(9,h))? + €2 Ko (G3.0(9, 1)),

with C'J(f_l), Kpy and Ky positive constants independent of e, I' and g.

To conclude we just have to, as in the linear case, take a linear combination of the
F and use the induction hypothesis (remember that both G¥ , and G® are increasin
P/p<s yp 5 g

functions of p) to obtain the expected result: V0 < e < gq4,

s ann)< - k[ X o) + 50 @)
p=1

l7]+11]|<s
s s 2
+ 2K (G5 ,(9,0)%,

with this linear combination being equivalent to

RS o A ol o

l1|<s [L+[71<s
l7]>1

LZ
and so fits the expected requirements.

4.6 Existence and exponential decay: proof of Theorem 4.2.3

One can clearly see that solving the kinetic equation (4.1.2) in the setting f = pu+ eu!/?h
is equivalent to solving the linearized kinetic equation (4.1.3) directly. Therefore we are

going to focus only on this linearized equation.

The proof relies on the a priori estimate derived in the previous section. We shall
use this inequality as a bootstrap to obtain first the existence of solutions thanks to an
iteration scheme and then the exponential decay of those solutions, as long as the initial
data is small enough.

4.6.1 Proof of the existence of global solutions

4.6.1.1 Construction of solutions to a linearized problem

Here we will follow the classical method that is approximating our solution by a sequence

of solutions of a linearization of our initial problem. Then we have to construct a functional
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4.6 Existence and exponential decay: proof of Theorem 4.2.3

on Sobolev spaces for which this sequence can be uniformly bounded in order to be able
to extract a convergent subsequence.
Starting from hg in Hj , N Ker(G.)*, to be define later, we define the function h,1 in

H3 , by induction on n >0 :

1 1 1
athn—i-l + *U‘va}hn-‘rl = ?L(hn—i-l) + *F(hna hn—i—l)
€ c c (4.6.1)
hn+1(0,2,0) = hin(z,v),

First we need to check that our sequence is well-defined.

Lemma 4.6.1 Let L be satisfying assumptions (H1’), (H2’) and (H3), and let T" be satis-
fying assumptions (H4) and (H5).

Then, there exists 0 < eq < 1 such that for all s > sg (defined in (H4)), there exists
ds > 0 such that for all 0 < € < gq, if ||hmHHg < &5 then the sequence (hy)nen is well-

defined, continuous in time, in Hj , and belongs to Ker(G.)* .

Proof of Lemma 4.6.1 By induction, let us suppose that for a fixed n > 0 we have
constructed hy, in H ,,, which is true for hjp.
Using the previous notation one can see that we are in fact trying to solve the linear

equation on the torus:
1
athn—l—l = Ge(hn+1) + gr(hng hn+1)

with h;, as an initial data.

The existence of a solution h, 1 has already been shown for each equation covered by
the hypocoercivity theory in the case ¢ = 1 (see papers described in the introduction). It
was proved by fixed point arguments applied to the Duhamel’s formula. In order not to
write several times the same estimates one may use our next lemma 4.6.2 together with
the Duhamel’s formula (instead of considering directly the time derivative of h,1) to get

a fixed point argument as long as h;, is small enough, the smallness not depending on €.

As shown in the study of the linear part of the linearized model, under assumptions
(H1"), (H2") and (H3) G. generates a C%-semigroup on Hj ,, for all 0 < ¢ < g4. Moreover,
hypothesis (H4) shows us that I'(hy,, ) is a bounded linear operator from (Hj ,, E(-)) to
(H HHHgv) Thus hp1 is in Hg .

The belonging to Ker(G.)* is direct since I'(hy, ) is in Ker(G¢)* (hypothesis (H5)).
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4 From Boltzmann to incompressible Navier-Stokes on the torus

Then we have to strongly bound the sequence, at least in short time, to have a chance

to obtain a convergent subsequence, up to an extraction.

4.6.1.2 Boundedness of the sequence

We are about to prove the global existence in time of solutions in C(R™, ||.||;.). That will
give us existence of solutions in standard Sobolev’s spaces as long as the initial data is
small enough in the sense of the HZ-norm,which is smaller than the standard H; ,-norm.

To achieve that we define a new functional on Hj ,

B0 = sup (IWOIR, + [ 1)1 ds). (4:62)

teRT

Lemma 4.6.2 Let L be satisfying assumptions (H1"), (H2’) and (H3), and let I' be satis-
fying assumptions (H4) and (H5).

Then there exists 0 < €4 < 1 such that for all s > so (defined in (H4)) there exists
ds > 0 independent of €, such that for all 0 < e < eq, if HhmH”H; < 05 then

(E(hn) < 0s) = (E(hnt1) < 05).

Proof of Lemma 4.6.2 We let ¢t > 0.
We know that hj, belongs to Hz , N Ker(G.)*. Moreover we have, thanks to Lemma 4.6.1,
that (h,) is well-defined, in Ker(G.)* and in H3

20> Since s > so. Moreover, I satisfies (H5).

Therefore we can use the Proposition 4.2.2 to write, for ¢ < ¢4 (g4 being the minimum

between the one in Lemma 4.6.1 and the one in Proposition 4.2.2),
d 2 5) 2 (s) (s 2 256) (s 2
@ th-‘rl”?{g < _Ko th-&-l”HK + Kl (gz(hm hn-l-l)) +e K2 (gz,v(hTH hn+1)) .

We can use the hypothesis (H4) and the fact that

2
2
o | S <Cullllgg,,  (46.3)

Co [, + SN2, +22 3 [
|

I<s lt]+]51<s
l71>1

to get the following upper bounds:
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4.6 Existence and exponential decay: proof of Theorem 4.2.3

S 02
(Gs(hny hns1))® < 70:1 (”han{g ||hn+1|ﬁ{; + ||hn+1||72qg ||hn|ﬁfg)
s 2 CE
(G o)) < ooy (Wl Wl + Mnes e Wl )

Therefore we have the following upper bound, where K7 and Ky are constants inde-

pendent of e:

d 2 2 2 2 2 2
Tl < =K Ml + Kol e I + B2 I I 1n g

< [KB(h) = KO i + Ko B(hnsn) a3y -

We consider now that E(hy) < KSS)/2K1.

We can integrate the equation above between 0 and ¢ and one obtains

(s) ot
K
113 + ;/0 thJrlH?{f\ ds < ||hollys + K E(hns1) E(hn).

This is true for all £ > 0, then we define C' = min{1, K\”/2}, if E(hy) < C/2K we

have

2 2
E(hn+1) < & ol -

Therefore choosing M(®) = min{C/2K, K(()S)/2K1} and d; < min{M©)C /2, M)} gives
us the expected result.

4.6.1.3 The global existence of solutions

Now we are able to prove the global existence result:

Theorem 4.6.3 Let L be satisfying assumptions (H1’), (H2’) and (H3), and let T be sat-
isfying assumptions (H4) and (H5).

Then there ezists 0 < 4 < 1 such that for all s > sy (defined in (H4)), there exists s > 0
and for all 0 < e < g4

If [|hinlys < s then there exist a solution of (4.1.3) in C(R*,E(+)) and it satisfies,

for some constant C' > 0,

E(h) < C[[hin3s -
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Proof of Theorem 4.6.3 Regarding Lemma 4.6.2, by induction we can strongly bound
the sequence (hy,)nen, as long as E(hg) < ds, the constant being defined in Lemma 4.6.2 .
Therefore, defining hg to be h;, at t = 0 and 0 elsewhere gives us F(hy) = ”hmHHg < b,
Thus, we have the boundedness of the sequence (hn)nen in L Hj , N L}Hf. By compact
embeddings into smaller Sobolev’s spaces (Rellich theorem) we can take the limit in (4.6.1)

as n tends to +00, since G, and I' are continuous. We obtain h a solution, in C(R*, E(-)),

to
1 1 1
Oth+ —v.Vyh = < L(h)+ -T'(h,h
bt o n = Lo + oo
h(0,z,v) = hin(z,v).
|

4.6.2 Proof of the exponential decay

The function constructed above, h, is in Ker(GE)L for all 0 < € < 1. Moreover, this

function is clearly a solution of the following equation:
1
Oth = G.(h) + gl“(h, h),

with I satisfying (H5). Therefore, we can use the a priori estimate on solutions of the full
perturbative model concerning the time evolution of the HZ-norm (where we will omit to

write the dependence on s for clearness purpose), Proposition 4.2.2.

d
Bl < =Ko [hlf; + K1 (G3(h 1)) + 2K (G5, (h, ).

Moreover, using (4.6.3) and hypothesis (H4) to find:

s 2 202 2 2
(Gz(h,h))" < (7: 1Pl 1711
5 2 203

Hence, K being a constant independent of ¢:
d 2 K IlRl2 K 2
2 Il < (K 1Ay, = Ko) Il

Therefore, one can notice that if HhmH%s < Ko/2K then we have that HhHg_Lé is decreasing

in time. Hence, because the A-norm controls the L?-norm which controls the H-norm:
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d K
L A [

< KO Z/éX

Then we have directly, by Gronwall’s lemma and setting 75 = Koué\ JAviCyy,

—27t

2 2

as long as HhmHg{S < Ko/2K, which is the expected result with d5 < \/Ko/2K.

4.7 Exponential decay of v-derivatives: proof of Theorem
4.2.4

In order to prove this theorem we are going to state a proposition giving an a priori

estimate on a solution to the equation (4.1.3)

1 1 1
Oth + —v.Vzh = < L(h)+ =I'(h, h).
th+ Z0:Voh = L(h) + T, h)

We remind the reader that we work in H; , with the following positive functional

2
G = S0 o) ofa =) HL a7, + D ale(@s s,

3] +111<s s l1|<s
l7]>1 1,¢;(1)>0

One can notice that if we choose coefficients (bg.fl)), (ozl(s)), (ag’sl)) > 0 such that ||H3-[h

is equivalent to
2
> |daa-moy| |, + D ler7,

3] +11<s Bl
l7]>1

then for all € less than some e, |- H?{SL is also equivalent to the latter norm with equivalence

coeflicients not depending on ¢.
Moreover, using equation (4.3.3), we have that
on||” < Coy||00n| dntl’ <20 00|’ i’
Jofn], < Coallofniy, + ofnt], <2cwiliobnliy, + o], -
and therefore

> |otaa—m), + Z 9117,

3 ]+11<s s
l71>1

- 173 -



4 From Boltzmann to incompressible Navier-Stokes on the torus

is equivalent to the standard Sobolev norm. Thus, we will just construct coefficients (b(.s)),

gl
(al(s) ) and (ag’sl) ) so that ||. H?%h is equivalent to the latter norm and then for £ small enough

we will have the equivalence, not depending on ¢, between HH%SL and the Hj -norm.

4.7.1 An a priori estimate

In this subsection we will prove the following proposition:

Proposition 4.7.1 If L is a linear operator satisfying the conditions (H1’), (H2’) and
(H3) and T' a bilinear operator satisfying (H5) then there exists 0 < 4 < 1 such that for

all s in N*,

1. for hin in Ker(G)* if we have h an associated solution of
Ouh+ 20 Voh = S L(R) + ~T(h, h)
—v- = 5 - ) )
e g2 5
2. there exist K(()S), Kfs), (b;fl)), (ozl(s)), (agi)) > 0 such that for all 0 < e < gy
¢ H'H?-,{;L ~ HHH;U:

e Vhi, € Hj , NKer(Ge)*

d 2 ON Nk
%HhHHgl < —Kj ;QHh ‘

D DI 0 P I R (AU

HS
A aggs

Remark 4.7.2 We notice here that in front of the microscopic part of h is a negative
constant order —1/e2 which is the same order than the control derived by Guo in [70] for

his dissipation rate.

We will prove that proposition by induction on s.
So we take h;, in Hj, N Ker(G.)* and we consider the associated solution of (4.1.3),
denoted by h. One can notice that thanks to (H5), h remains in Ker(G¢)* for all times

and thus we are allowed to use the inequalities given in the toolbox

4.7.1.1 The case s=1

In that case we have

2
1hli3s, = Allkllzs, +alIVohlzs, +0]| Vbt

x,

+ as(Vxh, Vvh>L% i)
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with A, «, b and a strictly positive.

Therefore we can study the time evolution of that operator acting on h by gathering
results given in the toolbox. We simply take A(4.3.6) + «(4.3.7) + b(4.3.14) + a=(4.3.15)

- < = _ — —
Sy, < Lo na) o - & e ][
1 1 a v 2 a
Sl R S ) H UhLH Kb — 2] V.2
2 [4Cﬂlc7rcpe 2] Vo[ + [Kbb = 5] VRl
+E(A,0,b,0) (G, (h, ), (4.7.1)

with s a fonction only depending on the coefficients appearing in hypocoercivity hypothesis

and independent of e.

We directly see that we have exactly the same kind of bound as the one we obtain while
working on the a priori estimates for the operator ||h||,;:, equation (4.5.1). Therefore we
can choose of coefficients A, «, b, e and a in the same way (in the right order) and use the

same inequalities to finally obtain the expected result: dsg, K1 >0, V0 < e < 1,

d 1 1 2 1 2 1 2
G, < o8 (G |+ vt 2 o 1)
+KM (G (h,h)°,

with the constants s((]l) and Kfl) independent of ¢, and Hhﬂih equivalent to [|hf72 +

HVJChH%%U + HVUhLHi% K Therefore, for all € small enough we have the expected result in

the case s = 1.

4.7.1.2 The induction in higher order Sobolev spaces

Then we assume that the theorem is true up to the integer s — 1, s > 1. Then we suppose
that L satisfies (H1’), (H2’) and (H3) and we consider ¢ in (0, 1].

Since hy, is in Ker(G.)*, h belongs to Ker(G.)* for all t and so we can use the results
given in the toolbox.

As in the proofs of previous sections, we define on Hj
7

) 2
R = 3 Blaint, +5 X Quw.
l]+1t=s ©Y l]=s

|7]>2 i,¢;(1)>0

o [[9fnll7, + Hafiaith; +as(@f 5,1, 0h)pz

O
~
a&.
~—~
~
N—r
I
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where the constants, strictly positive, will be chosen later.

Like in the section above, we shall study the time evolution of every term involved in

Fy in order to bound above d;} (t) with expected coefficients. However, in this subsection

we will need to control all the @;;’s in the same time rather than treating them separately
as we did in the proof of Proposition (4.2.2), because the toolbox tells us that each @Q;; is

controlled by quantities appearing in the others.

4.7.1.3 The time evolution of ) Q;;

Gathering the toolbox inequalities in the following way: «(4.3.10) 4 b(4.3.17) 4+ a=(4.3.18).
This yields, because 0 < ¢ < 1 and Card{i, ¢;(I) > 0} < d,

1 5 a0 « Al sa] 3 fan;

[t|=s [l|=s
1,¢;(1)>0

1 1 a . 2
= [wﬂscﬂde _”?b] D Halé—dihLHA

|l|=s

i,ci(l)>0
+ [han =S 3 ofnli, +5 D0 llofally,
ll|=s ll|<s—1
S 1|+ Kb e) (G50 h),
Heh o

with s a fonction only depending on the coefficients appearing in hypocoercivity hypothesis
and independent of e.

One can notice that except for the terms in [|A[| ys-1 and > Hc'?thHig , we have exactly
z,v \l|<s—1 x,v

the same bound as in the case s = 1, equation (4.7.1). Therefore we can choose «, b, a, e,

independently of € and I' such that there exist K, > 0, K] > 0 and Cp, C; > 0 such that

forall 0 <e < 1:

2
e > Quit)~ X (Halohni%,erHafi‘sihl‘L%v)

|l]=s |l|=s

1,¢;(1)>0 1,¢;(1)>0
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d
e B LN e o L K
i,clilélz);o lil=s ; cz‘(l)5>0
£ apnl,
|l]=s
* H HHH Crv Y7 [lfhlly,  + K7 (G20 h)*
[I|<s—1

4.7.1.4 The time evolution of F; and conclusion

, equation (4.3.16), so

. 2
We can finally obtain the time evolution of F§, using % Hﬁl]hl‘ L

that there is no more ¢ in front of the I' term:

d 1 V1 8iq L
SR < HE)]h H B Ty oy ot H
IJ\+\l| l3]+12l=s ,c; (5)>0
|.7|>2 ]|/

1 2 1 . 2
o8 | 5 3 bt o X Jaant |+ X loplz,
ll|=s li|=s |l|=s

Z,Cl(l)>0

+ Z BKﬁ—FB,Cl Z Halohuii,u

|j|\+|m=s l]<s—1
j1>2

1 2 : 1 ! 1 2
+§ BKS—l + B C() Hh ngl
7]+ 1t=s
l71>2

3BvA
S S LB (95,0 ),

Va V
lil+li=s 075
l71>2

Therefore we obtain the same bound (except H@OhH 2, ) as in the proof of Propo-
ll]<s—1
sition 4.2.2, equation (4.5.2), and so by choosing coefficients in the same way we have that

there exist C’g_) >0,0<eg <1and K, (%) 0, none of them depending on ¢, such that
for all 0 < e < g4:
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d o [ 1 2
abo< 5 X et - XD llofall,
7]+l <s—1 l|<s—1
1 . 2
= 2 ein]l + el
li[+]i|=s |l|=s

+E{ (63, (b h))?.

This inequality is true for all s and therefore we can take a linear combination of the
F; to obtain the required result. Using the induction hypothesis on F; up to F5_; we also

have the equivalence of norms.

4.7.2 The exponential decay: proof of Theorem 4.2.4

Thanks to Theorem 4.2.3, we know that we have a solution to the equation (4.1.3) for any
given h;, small enough in the standard Sobolev norm. Call h the associated solution of
hin € Hy , to (4.1.3). Since the existence has been proved we can use the a priori estimate
above and the Proposition 4.7.1.

Thus we have

d s 1 2 2 $) /s 2
LUl el U WD DR 1 P S S e G RURD)

1<JlI<s

As before we can use (4.3.4) (equivalence of norms L2, and A on the fluid part) to

get, for |I| > 1,
2
Jepnlly < (Jomn [+ epnl, )

and for the case || < 1 we can apply the Poincare inequality (4.3.5) together with the
equivalence of the L?C’v—norm and the A-norm on the fluid part 7z, (4.3.4) to get

<o (I + 5190012 ).
Vel < ([Vaht+ 3 I9ahIEs ).
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Then we get that

A ISl T - S Il | i

lil+t<s
l71>1

S* s s 2
< KSRl + K (G500 1)

Then for s > sg, defined in (H4), and because I satisfies (H4) we can write

d x
Sl < (KGRI, — K& 1Al

Because HhHHSl and HhH?qs are equivalent, independently of ¢, we finally have

d s
Bl < (KOCEC IRl — K§7) Il -

Therefore if (o)

K. S*

hanlls, < —8
: 2K,” C{C

we have that HhH?_[sl is always decreasing on Rt and so for all £ > 0

KOS*)

o 1Pl -
ok oze

T ||h1”7¢gL

And the H{-norm controls the Hj ,-norm which is equivalent to the H; -norm. Thus

applying Gronwall’s lemma gives us the expected exponential decay.

4.8 Incompressible Navier-Stokes Limit: proof of Theorem
4.2.5

In this section we consider s > s, 0 < & < g4 and we take h;, in H; , such that ||h ||y <
Os.
Therefore we know, thanks to theorem 4.2.3, that we have a solution h. to the linearized

Boltzmann equation

1 1 1
Othe + —v.Vzhe = — L(he) + =T'(he, he),
€ € €
with he(0,z,v) = hip(x,v). Moreover, we also know that (h.) tends weakly-* to h in
L (HZLY).
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The first step towards the proof of Theorem 4.2.5 is to derived a convergence rate in
finite time. Then, as described in Section 4.1.3, we shall interpolate this result with the
exponential decay behaviour of our solutions in order to obtain a global in time conver-
gence.

4.8.1 A convergence in finite time

In Remark 4.8.13, we define Vr(e) and prove the following result

VI'>0, Vr(e)= sup |lhe —h| sz =0, as ¢ = 0.
t€[0,T v

Thanks to this remark we can give an explicit convergence in finite time.

T,V

Theorem 4.8.1 Consider s > so and hy, in Hj , such that ||hi||ys < ds.
(

Then, (he)eso eists for all 0 < € < g4 and converges weakly* in LY (HEL?) towards h

such that h € Ker(L), with Vy -u =10 and p+ 60 = 0.

Furthermore, fOT hdt belongs to HL? and it exists C > 0 such that for all T > 0,

T T
’/ hdt—/ hadt‘
0 0

One can have a strong convergence in L[20 T]HiL% only if hip, is in Ker(L) with V- ujp =0

< Cmax{\e, VTe, TVr(e)}.

HiL3

and pin + 0in, = 0 (initial layer conditions). Moreover, in that case we have, for all T > 0,
||h - h€||L[20 T]HgL% < C’max{\@, \/TVT((?)},
and for all & in [0,1], if hin belongs to HEFOL2,

sup ||h — he| oo (1) < Cmax{e™®O1/2) Vi (e)}.
t€[0,T) v

Remark 4.8.2 We mention here that the obligation of an integration in time for non
special initial condition is only due to the linear part e 2L — e~ 'v - V., whereas the case

T = +o0 is prevented by the second order term T.

We proved in the linear case, theorem 4.2.1, that the linear operator G, = ¢ 2L —
e lv - V, generates a semigroup e‘“s on H; . Therefore we can use Duhamel’s principle

to rewrite our equation under the following form, defining u. = I'(he, h.),

- 180 -
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t
1
he = €'%hy, +/ —et=)Geq (s)ds
o €
= Uhi, + U (ue). (4.8.1)
The article by Ellis and Pinsky [39] gives us a Fourier theory in x of the semigroup

e!G< and therefore we are going to use it to study the strong limit of U®h,, and ¥¢(u,)
as € tends to 0. We will denote by F, the Fourier transform in = on the torus (which is
discrete) and n the discrete variable associated in Z¢.

From [39], we are using Theorem 3.1, rewriten thanks with the Proposition 2.6 and the

Appendix I with § = A\/4 in Proposition 2.3, to get the following theorem

Theorem 4.8.3 There exists ng € R*T, there exists functions
e \j:[—ng,ng] — C, -1<5<2,C®

e e;: [-mg,mo] xSt — L2 , —1<j<d, C®in¢ and C° inw
(Caw) — ej(C)w)
such that

1. for all =1 < j < 2, X\j(¢) = ia;j¢ — BiC* +v;(C), where aj € R, with ap = g = 0,
Bj < 0 and |7;(Q)] < Gy |¢I* with | ()] < 5 I¢*,

2. forall -1 <j<d

e ¢;(C,w) = enj(w) + Cerj(w) + ei(¢,w),
e co1(w)(v) = eon(~w)(v) = A (1—ww+ L) oy r2,

3. we have % = F U (t/e?, en,v)F, where

2
U(t,n,v) Z (t,n,0) + Ug(t,n,v)

with the following properties
g f07" -1 g .7 g 27 ﬁ](t7n7 ’U) = X‘n|<n0€t)\j(‘n|)Pj <|TL| ) |7:LL|> (U)a
P

e for 1 <G <175 (il gy) = s (il i) @ s (Il )

o Py (|nl, ) = zi: (Il ) @ (Inl,72)

e for—1<j <2.P; (Inl ) = Pos () +Inl Py () + Il Poy (Il )
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. Z Pyj = my,
j=—1

e it exists Cr,o > 0 such that for all t € Rt and all n € 74,

11UR(t,n,0)|llz2 < Cre™".

Remark 4.8.4 This decomposition of the spectrum of the linear operator is based on a low
and high frequencies decomposition. It shows that the spectrum of the whole operator can
be viewed as a perturbation of the spectrum of the homogeneous linear operator. It can be
divided into large eigenvalues, which are negative and therefore create a strong semigroup
property for the remainder term, and small eigenvalues around the origin that are smooth

perturbations of the homogeneous ones.

This theorem gives us all the tools we need to study the convergence as € tends to 0
since we have an explicit form for the Fourier transform of the semigroup. We also know
that this semigroup commutes with the pure z-derivatives. Therefore, studying the con-
vergence in the L2 L2-norm will be enough to obtain the desired result in the H?L2-norm.
We are going to prove the following convergences in the different settings stated by The-
orem 4.2.5

1. U%hj, tends to V(t,x,v)hi, with V(0,z,v)hi, = V(0)(hin)(z,v) where V(0) the

projection on the subset of Ker(L) consisting in functions ¢ such that V, - uy, = 0

and py + 0, =0,

2. U&(u.) converges to W(h,h) with U(h,h)(t =0) = 0.

4.8.1.1 Study of the linear part
We remind here that we have

Uthi, = f;lﬁg(t,n, U)ilm(n, v)
with

2
Us(t,n,v) = Z £(t,n,v) + Ug(t,n,v),

. i tln\i n 5 n
05t = ™00 [y (2 el oy (e 2]

We can decompose U J‘E into four different terms
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N iajt|n\

Ui (t,n,v) = e =« _51'””‘2P0j <‘Z‘>

iait|n| ]
+X‘€n|<n06 Z —B;t|n|? (65%’73(\671” — 1> POj <|7”L> (482)
n
ioit|n| ) 2, ¢ .. ~
X ponjnge £ ot ey (‘m,,”>

Id

'L'a]-t\n\

_B:tlnl? n
+ (Xjenjny — 1) e = PRy, <|n|> :

Remark 4.8.5 One can notice that Uy, and Uj, do not depend on €, since g = aa = 0.

We are going to study each of these four terms in two different lemmas and then add
a last lemma to deal with the remainder term Ugh;,. The lemmas will be proven in
Appendix 4.C.

Lemma 4.8.6 For a; # 0 (j = £1) we have that it exists Co > 0 such that for all

T € [0, 4]
T
H/ Ugjhmdt
0

Moreover we have a strong convergence in the L

2

< Coe® il 721z
LIL3

2
[0,400)

Vi Uin =0 and pip + 0 = 0. In that case we have Ugjhm =0.

L2 L%-norm if and only if hi, satisfies

Lemma 4.8.7 For —1 < j < 2 and for 1 < | < 3 we have that the three following
inequalities hold for U,

T 2
2
e JC) > 0,vT > 0, ‘ / Ufjhindt < 0162 HhmHLzLQ,
/ € 2 1.2 2
h; < )
30 il <

l
< OP | hinll}s 2

v

2
o V5 € [0,1],3CY" > 0,vt > 0, HUfjhm(t)‘

L2L

Lemma 4.8.8 For the remainder term we have the two following inequalities
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T 2
e 3C; > 0,VT >0, / Ughindt < C4TE || hinl[72 2,

0 1212 o
e 3C} >0, ||U}§hmHi[20+ JL2L3 < Cje? ||hm||%ng ,

C
e Vg >0,3C, > 0,Yt > to, [|Urhin(t)| 722 < —=¢ [lhin|7212-

N

Moreover, the strong convergence up to ty = 0 is possible if and only if hi, is in Ker(L).

In that case we have

o € [0,1], 308 > 0, > 0, |[Uithinl3212 < CSP? || hinllFrs 15 -

Therefore, gathering lemmas 4.8.6, 4.8.7 and 4.8.8 and reminding Remark 4.8.5, we

proved that, as € tends to 0, (etGE hm) converges to

V (¢, 2, 0)hin(2,0) = F ! [e—ﬁotlnl2poo <‘n”‘> e Ptinl’ p, <‘n"‘>] Fohin.  (4.8.3)

The convergence is strong when we consider the average in time and is strong in
LZHZL? (and in C([0,400), HSL?) if hi, is in HZTOL2 ) if an only if both conditions
found in Lemma 4.8.6 and Lemma 4.8.8 are satisfied. That is to say hsy, belongs to Ker(L)
with Vg - u;n, = 0 and pi, + 0, = 0.

Moreover this also allows us to see that V' (0, x,v)hi, = V(0)(hi,)(z,v) where V(0) is
the projection on the subset of Ker(L) consisting in functions g such that V, - u, = 0 and
pg +04=0.

4.8.1.2 Study of the bilinear part

We recall here that u. = I'(he, he). Therefore, by hypothesis (H5), u. belongs to Ker(L)*.
Then we know that for all —1 < j < 2, Py; (W"') is a projection onto a subspace of Ker(L).

Therefore we have that, in the Fourier space,

n R n R n N
P; <|8n| : Inl) tie = |en| Py <|n|) Qe + |en)? Py <|8n| : nl) .

Thus, recalling that

we can decompose it
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with

t i (t—s)|n|

J - 2, t—s, . N
U(ue) = Fy Xjenl<no / e = A= 1) (P 4 n| Pyj) e (s)ds.
0

= 1/183(%) + d}ij(UE) + ¢§](us) + @ngj(us),

where we have used the same decomposition as in the linear case, equation (4.8.2), sub-
stituting t by ¢t — s, Pyj by |n| Pi; and 151j by [n| Psj. And

Yi(ue) = /0 1U}ig(t — 8)ue(s)ds.

9

Like the linear case, Remark 4.8.5, 1§, and 15, do not depend on ¢ and we are going
to prove the convergence towards W(u) = F, 1 [§,(u) + ¥, (u)] Fe, where u = I'(h, h). To
establish such a result we are going to study each term in three different lemmas and then
a fourth one will deal with the remainder term. The lemmas will be proven in Appendix
4.C.

Lemma 4.8.9 For o # 0 (j = £1) we have the following inequality for yg;:

2

T
3Co > 0,VT > 0, H/ P (ue)dt < CoT??E(he).
0 L2132

Remark 4.8.10 We know that (h:)eso is bounded in L HSL? (see theorems 4.2.3 and
42.4).

This remark gives us the strong convergence to 0 of the average in time and the strong
convergence to 0 without averaging in time as long as h;, belongs to Ker(L) in Lemma
4.8.9.

Lemma 4.8.11 For —1 < j < 2 and for 1 < 1 < 3 we have that the three following
inequalities hold for wfj

e 3G, > 0,YT > 0, HjOT wfj(ug)dt‘ < CT2E(h.)?,

2
LL3

2 -
L2I2 S Cl/€2E(h5)2’

e 3C] > 0,VT > 0, ] W (ue)

Ly 1)

2

e V16| €[0,1],3CY > 0,vT > 0, ‘ < COBE(0h,)2.

0 (ue) (7))

LIL3
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Lemma 4.8.12 For the remainder term we have the three following inequalities

e 304 > 0,%T > 0, HfOT w%(ug)dt‘ < CyT=E(h.)?,

2
LIL3

e 3C > 0,YT > 0, ”w;(ue)ui[% IPITES CleB(he)?,

e 3CY > 0T >0, [[dq(ue)(D)II72, < CleB(he)?.

Gathering all Lemmas 4.8.9, 4.8.11 and 4.8.12 gives us the strong convergence of
Ve (us) — WU(ue) towards 0, thanks to Remark 4.8.10. It remains to prove that we have
indeed the expected convergences of ¥(u.) towards ¥(u) as € tends to 0.

We start this last step by a quick remark relying on Sobolev embeddings and giving

us a strong convergence of h. towards h in L‘[’&T] LL2, for T > 0.

Remark 4.8.13 We know that he — h weakly-* in L&CHSL2, for s > so > d/2. But
we also proved that for all t > 0 that (h.). is bounded in HZL?. Therefore the sequence
(Ihell 2 » € > 0) is bounded in HS and therefore converges strongly in H for all s' < s.

But, by triangular inequality it comes that

< [z = s

||haHH;’L% - HhHH;’Lg Hy
This means that we also have that i% HhEHH;’L% = HhHH;’Lg' The space HS L? is a
Hilbert space and h. tends weakly to h in it, therefore the last result gives us that in fact
he tends strongly to h in H® L2.
This result is for all t > 0 and all 8" < s. Furthermore, s > d/2 and so we can choose
s’ > d/2. By Sobolev’s embedding we obtain that h. tends strongly to h in LL2, for all
t > 0. Reminding that he — h weakly-* in L HSL? and we obtain that we have

VI >0, Vr(e)= sup ||he —h|jecr2 =0, as € = 0.

t€[0,T]

Lemma 4.8.14 We have the following rate of convergence:

e 3C5 > 0,VT > 0,

T T 2 ~
JTw(u)dt — [ \IJ(u)dtHLQ.LQ < CsT2Vip(e)?,
e 3CL > 0,VT >0, ||¥(u.) — \If(ue)ni[zw@% < CLTVr(e)?,

e 3CY > 0,YT >0, [[¥(u) — ¥ (us)||72 2 (T) < CEVir(e)?.
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Thus, those Lemmas, combined with the study of the linear case (Lemmas 4.8.6, 4.8.7
and 4.8.8) prove the Theorem 4.2.5 with the rate of convergence being the maximum of

each rate of convergence. Moreover we have proved
h(t,z,v) =V (t,z,0)hin(z,v) + V(t,z,v)(T(h,h)).

4.8.2 Proof of Theorem 4.2.5

Thanks to Theorem 4.8.1 we can control the convergence of h. towards h for any finite
time T'. Then, thanks to the uniqueness property of Theorem 2.1 and the control on the

remainder of Theorem 2.3 in [50], in the case of a hard potential collision kernel, one has
VT > O, VT(S) < Cve’f.

Finally, thanks to Theorem 4.2.3, we have the exponential decay for both h. and h, leading
to
lhe =l sz <2 ||hz'nHHg e T

1 €
Ty=—-——In|-—-—
SRS <2whm||ﬂg>

VT > Tar, |he = Bllgegs < e

We define

to get that

This conclude the proof Theorem 4.2.5, by applying Theorem 4.8.1 to T}yy.

Appendices

4.A Validation of the assumptions

As said in the introduction, all the hypocoercivity theory assumptions hold for several
different kinetic models. One can find the proof of the assumptions (H1), (H2), (H3),
(H1’) and (H2’) in [32] directly for the linear relaxation (see also [21]), the semi-classical
relaxation (see also [3(]), the linear Fokker-Planck equation, the Boltzmann equation with
hard potential and angular cutoff and the Landau equation with hard and moderately soft
potential (both studied in a constructive way in [/] and [79], for the spectral gaps, see also

[53] and [51] for the Cauchy problems):

e The Linear Relaxation

Of +vaf=" [( / ' f(t,fv,v*)dv*> () - f} |
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The Semi-classical Relaxation

Of +0.0uf = /R 0= ) — a1 5 ) o,

e The Linear Fokker-Planck Equation

Of +0.9uf = V0 (Vuf + f0),

The Boltzmann Equation with hard potential and angular cutoff

1
Ohf +v.Vof = B /Rd . b(cost)|v — v.| " [f'fi — [ [+] dvido,
s

e The Landau Equation with hard and moderately soft potential
1
of +0¥.f = 10 ([ @00l = LN - £

Assumption (H4) is clearly satisfied by the first three as in that case we have either
[-la, = Illlz2 or I' = 0 (see [52]). Moreover, (H5) is obvious in the case of a linear
equation. It thus remains to prove properties (H5) for the semi-classical relaxation and
(H4) and (H5) for the Boltzmann equation and the Landau equation (since our property
(H4) is slightly different from (H4) in [22]).

4.A.1 The semi-classical relaxation

In the case of the semi-classical relaxation, the linearization is slightly different. Indeed,
the unique global equilibrium associated to an initial data fy is (assuming some initial

bounds, see [32])
Kookl

fOO = 1+5/€00M7

where ko, depends on fj.

Thus, we are no longer in the case of a global equilibrium being a Maxwellian. However,

a good way of linearizing this equation is (see [32]) considering
N
= E ——
f =t 14+ 0koopt

Using such a linearization instead of the one used all along this chapter yields the same
general equation (4.1.3) with L and I' satisfying all the requirements (see [32]). Indeed,
one may find that Ker(L) = Span (fs/,/%) and then notice that this is not of the form
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needed in assumption (H3). However, this is bounded by e 1v*/4 and therefore we are still

able to use the toolbox (section 4.3, thus all the theorems.

Let us look at the bilinear operator to show that it fulfils hypothesis (H5). A straight-

forward computation gives us the definition of T,

I'(g,h) = WQ/W

Then, multiplying by a function f, integrating over R? and looking at the change of

hgy + hagldv,.
Hgoo*[ng gldv

variable (v,v4) — (vg,v) yields

Y= Vi Ji
(I'(g,h), [z = Rded — ) (ghs + g+h) [f]w f*m dvdvy.

Therefore, taking f in Ker(L) gives us the expected property.

4.A.2 Boltzmann operator with angular cutoff and hard potential

Notice that, compared to [%2], we defined I" in a way that it is symmetric which gives us,

using the fact that p.u = pl /),

1

(g, h) = 5 / B(u'?).[gLl + gl — guh — ghu]dv.do,
2 (S)d 1

4.A.2.1 Orthogonality to Ker(L): (H5)

A well-known property (see [10] for instance) tells us that for all ¢ in L? decreasing fast

enough at infinity and for all ¥ in L? one has

/lummwwwm= / BlgH + g'H. — guh — gh]
Rd (R’i)2 XS’i 1

((1"2)) + ("2 = (W) = (u2)' ) dvdv.do.

1/2

As shown in [30] or [32] we have that Ker(L) = Span(1,v1,...,vq, |v|?>)u!/? and there-

fore taking 1 to be each of these kernel functions gives us (H5).
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4.A.2.2 Controlling derivatives: (H4)

To prove (H4) we can define

g = [ B(u!/2), gL dv.do,
RdX(S)d 1

I'(g,h) = / B(u'?),g.h dv.do.
R x (S)d—1

By using the change of variable u = v — v, we end up with 8 being a function of u and
o and v = v+ fi(u,0) and v, = v+ fa(u,0), fi and fy being functions. Therefore we
can make this change of variable, take j and [ such that |j| 4 |I| < s and differentiate our

operator I'".

- 1 , :

AT (g,h) = —5 Z /]Rded ) b(cosb |u|78]0 ( (v u)l/Q) 9! g« 92 dudo.
Jjo+i1t+iz2=J
I1+1la=1

Then we can easily compute that, C' being a generic constant,

00 (1w — )2 | < Cputo — w1,
Moreover, we are in the case where v > 0 and therefore we have

(o — ) < O+ o) v — )5,

Combining this and the fact that |b| < Cp (angular cutoff considered here), multiplying

by a function f and integrating over T? x R? yields, using Cauchy-Schwarz two times,

(WF_(g,h),fhgv‘ < C / (14 [v])? ‘3”/1 |f] (/ Ve ‘3519* dv*> dvdzx
' TdxRd
Jjo+i1+iz2=J
l1+la=l
< Ga ) fly,
with
‘ 9 1/2
G*(g,h) =C > [/Td O2h (A Lde] .
i [+l ]+ g2l +E2|<s h
At that point we can use Sobolev embeddings (see [22], corollary I X.13) stating that

if E (so/2) > d/2 then we have m? < Lee.
So, if |j1| + |l1] < s/2 we have
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2 2 2
o, < sl <o
ot < s forial, < |2l .
J1 J1
< G Z Z /TdXRdallerlgallerdivdx (4.A.1)

Ip|<s/2 p1t+p2=p
2
< G HQHH;” )

by a mere Cauchy-Schwarz inequality.

In the other case, |j2| + |l2| < s/2 and by same calculations we show

otz

2 2
[, < Callbliy

Therefore, by just dividing the sum into this two subcases we obtain the result (H4)
for I'", noticing that in the case j = 0 equation (4.A.1) has no v derivatives and the
Cauchy-Schwarz inequality does not create such derivatives so the control is only made by

z-derivatives.

The second term I'" is dealt exactly the same way with, at the end (the study of
G®), another change of variable (v,v,) — (v/,v}) which gives the result since (1 + [v|)7 <
(1+[v])Y + (14 |vg])Y if v > 0.

4.A.3 Landau operator with hard and moderately soft potential

The Landau operator is used to describe plasmas and for instance in the case of particles
interacting via a Coulomb interaction (see [ 12] for more details). The particular case of
Coulomb interaction alone (y = —3) will not be studied here as the Landau linear operator
has a spectral gap if and only if v > —2 (see [53], for not constructive arguments, [%3]
for general constructive case and [!] for explicit construction in the case of hard potential

~v > 0) and so only the case v > —2 may be applicable in this study.

We can compute straightforwardly the bilinear symmetric operator associated with the

Landau equation:

1
I'(g,h) = TVU : / V@ (v — vi) [gxsVoh + b Vg — g(Vyh). — h(V4y9)s] dos,
VHE Rd

where @ : R? — R? is such that ®(z) is the orthogonal projection onto Span(z)* so

Zi%4
®(2)ij = dij — ﬁ

and v belongs to [—2, 1].
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4.A.3.1 Orthogonality to Ker(L): (H5)
Let consider a function ¢ in C75,. A mere integration by part gives us

o)ty == [ 9o (22 ) (VO = )6 du

where

G = g.Vyh+ h.Vyg — g(Voh)s — h(Vypg)s.

Then the change of variable (v,v,) — (v4,v) only changes V(¢ /\/i) to [Vo(v//1)],

and G becomes —G. Therefore we finally obtain

o=} e [((39), (5]

As shown in [30] or [¢2] we have that Ker(L) = Span(1, vy, ...,vq, |v|?)p'/?. Computing
the term inside brackets for each of these functions gives us 0 or, in the case \UP\/,TJ,,
2(vye — ).

However, by definition, ®(v — v)[G] belongs to Span(v —v,)* and therefore ®(v —v,)[G] -
(ve —v) = 0. So I' indeed satisfies (H5).

4.A.3.2 Controlling derivatives: (H4)

The article [53] gives us directly the expected result in its Theorem 3, equation (35) with
0 = 0. The case where there are only z-derivatives is also included if one takes 8 = 0.
4.B Proofs of the results given in the toolbox

We used the estimates given by the toolbox throughout this chapter. This appendix is to
prove all of them. It is divided in two parts. The first one is dedicated to the proof of
the equality between null spaces whereas the second part deals with the time derivatives

inequalities.

4.B.1 Proof of Proposition 4.3.1:

We are about to prove the following proposition.

Proposition 4.B.1 Let a and b be in R* and consider the operator G = aL — bv - V,

acting on H;ﬂ, .
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If L satisfies (H1) and (H3) then

Ker(G) = Ker(L).

To prove this result we will need a lemma.

Lemma 4.B.2 Let f: T% x R — R be continuous on T¢ x R? and differentiable in .
Ifv-Vaf(z,v) =0 for all (x,v) in T¢ x RY then f does not depend on .

Proof of Lemma 4.B.2 Fix z in T% and v Q-free in R%.

For y in R? we will denote by 7 its equivalent class in T¢.

Define g: R — R
t — f(z+to,v)
We find easily that ¢ is differentiable on R and that ¢'(t) = v.Vyf(z,v) = 0 on R.

Therefore:
Vt € R, f(z + tv,v) = f(z,v).

However, a well-known property about the torus is that the set {z + nv,n € Z} is dense in
T¢ for all  in T¢ and v Q-free in R?. This combined with the last result and the continuity
of f leads to:

vy e T fly,v) = f(z,v).

To conclude it is enough to see that the set of Q-free vector in R? is dense in R? and then,

by continuity of f in v:

Yy e T Vv eR?,  f(y,v) = f(=,v).

Now we have all the tools to prove the proposition about the kernel of operators.

Proof of Proposition 4.8.1 Since L satisfies (H1) we know that L acts on L2 and that

its Kernel functions ¢; only depend on v. Thus, we have directly the first inclusion

Ker(L) C Ker(G).

Then, let us consider h in H, , such that G(h) = 0.

Because the transport operator v - V is skew-symmetric in Lfc’v we have

0=(G(h).h)pz, = a/Td<L(h), h) 2 de.
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However, because L satisfies (H3) we obtain:

0> A/Td lh(z,.) — (b, )2, da.

But A is strictly positive and thus:

Vo e T, h(x,) =np(h(z,) = ci(z)¢s.

i=1

Finally we have, by assumption, G(h) = 0 and because h(z,-) belongs to Ker(L) for

all z in T¢ we end up with
Y(z,v) € T x RY, v-Vyh(z,v) =0.

By applying the lemma above we then obtain that h does not depend on z. But (¢;)1<i<d
is an orthonormal family, basis of Ker(L), and therefore we find that for all ¢, ¢; does not
depend on x.

So,we have proved that:
d
V(z,v) € T x R, h(z,v) = Zciqﬁi(v).
i=1

Therefore, h belongs to Ker(L) and only depends on z. m

4.B.2 A priori energy estimates

In this subsection we derive all the inequalities we used. Therefore, we assume that L
satisfies (H1’), (H2") and (H3) while I" has the properties (H4) and (H5), and we pick g in
H; . We consider h in Hj , N Ker(G:)* and we assume that h is a solution to (4.1.3):

1 1 1
Oh + ~v.Vyh = = L(h) + =T(g, h).
th+ —v L) + Tl 1)

In the toolbox, we wrote inequalities on function which were solutions of the linear equa-
tion. As the reader may notice, we will deal with the second order operator just by
applying the first part of (H4) and Young’s inequality. Such an inequality only provides
two positive terms, and thus by just setting I' equal to 0 in the next inequalities we get
the expected bounds in the linear case (not the sharpest ones though). Therefore we will

just describe the more general case and the linear one is included in it.
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4.B.2.1 Time evolution of pure z-derivatives

The operators L and I' only act on the v variable. Thus, for 0 < || < s, 8? commutes
with L and v - V,. Remind that v - V, is skew-symmetric in L%v(Td x R?) and therefore

we can compute
d 2 2 2
T OPnl[ = S(L@Ph), bz, + Z (0T (g, h), bz -
We can then use hypothesis (H3) to obtain
2 22 2
SAL@R), Ofh) iz, < 5 ||@fmy |

We also use (H3) to get (9Ph)+ = dVht.

To deal with the second scalar product, we will use hypothesis (H4) and (H5), which
is still valid for 8ZOF since 77, only acts on the v variable, followed by a Young inequality
with some D7 > 0. This yields

2 2
g(alor(gv h)v aloh>L%w = g<alor(g7 h)aalth>L%w
2
Lol
Dy s 2 1 07, L 2
< S @an) + g ot

Gathering the last two upper bounds we obtain

_ < | == .
gt 100z, < [Dla 52] Halh HA+ : G:lo: 1)

Finally, taking D = €/ gives us inequalities (4.3.6), (4.3.7) and (4.3.10).

4.B.2.2 Time evolution of ||V,h|%,

For that term we get, by applying the equation satisfied by h, the following;:

d 9 2 2 2

p IVohllzs = ;2<VvL(h)a Voh)rz  — g(vv(v -Vah),Voh)rz  + E<VUF(9, h),Vuh)pz .
And by writing the second term on the right-hand side of the equality and integrating by

part in z, we have
(Vo(v-Vzh),Vyh)re = (Vih, Viyh)pa .
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Therefore the following holds:
d 9 2 2 2
dt HV”h”Li,v = ?(va(h)a vvh)L%yv - g<vwhv Vvh>L§,v + g<vvr(97 h), vvh>L§w-

Then we have by (H1) that L = K — A and we can estimate each component thanks to
(H1) and (H2):

—(VoA(R), Voh)z, < vt |BlIZe, = v VORI,
(VoK (h),Voh)z, < C@)[Ihl72, +8IVohlZs

x,v

where 0 is a strictly positive real that we will choose later.

Finally, for a D > 0 that we will choose later, we have the following upper bound, by
Cauchy-Schwarz inequality:

A
"

2 D
_g<vxh’ Vvh>L§7v < = ||V:ch||%gv + ||vvhH?\’

Dl/{]\s

A
using the fact that ||.][%» < 4. 2 Finally, another Young inequality gives us a control
g L A A Y, g q y g
x,v 0

on the last scalar product, for a Dy > 0 to be chosen later
2 .D2 2 1 2
g<vvr<gvh)7vvh>L%v < = (Ganlg,h)” + Dye [Vohl[3 -

We gather here the last three inequalities to obtain our global upper bound:

d 1 D
7 IVohliz, < = (24 +20(9)) IRl72, + - IVahlzz

IV B 208 vit 1
1/6\52 g2 Dsué\ Doe

Do
€

)mhu% (G2 1)?

We can go even further since we have HhH%g L= HhLHig + HTrL(h)Hig .-
But because h is in Ker(G.)* we can use the toolbox and ?ﬁe equation (435) about the
Poincaré inequality:
I (Wl2s < CyIVahls -

This last inequality yields:

- 196 -
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A
4!
A2

753

d 2 G D
AVl < (204 +20(9)) |[nH]| + L;’ (20 +2C(0)) + = | IVahlz2

21/{\5 2”{? V{X 1 2 D2 1 2
- VoAl + 22 )2
yé\g2 2 DEZ/éX + Doe H v ||A + e (gm,v(g ))

Therefore, we can choose § = v}V /61, D = 3vite/uitvd and Dy = 3¢/v4 to get the
equation (4.3.8).

4.B.2.3 Time evolution of (V.h,V,h)r2
In the same way, and integrating by part in = then in v we obtain the following equality:

d
$<Vxh, Vvh>L%v
2

p p
= S{L(Veh), Vohz, = Z(Volv - Vah), Vah)iz |+ 2 (Val(g, 1), Vuh) sz -

By writing explicitly (V,(v - V3h), V,h) r2 , and by integrating by part one can show
that the following holds:

1
(Vo (v.Vzh), vxh>L§,U =3 Hvthig,v :

Therefore we have an explicit formula for that term and we can find the time derivative

of the scalar product being:

d 2 1 2
%<Vzhavvh>L§,v = ?<L(vxh)avvh>L%v Tz Hvxhuig,v + g(VxF(gah)avaLg,v-

We can bound above the first term in the right-hand side of the equality thanks to
(H1) and then Cauchy-Schwarz in z, with a constant 7 > 0 to be define later.

2 2
S (L(V2h), Voh)rz - = ?<L(vxh¢),vvh>%
cr N
< = 2“ xh‘ Wby d
= /., Vel IV ohl|y, dz
CLT] i 2 CL 2
S|V J o 19l

Then applying hypothesis (H4) and Young’s inequality one more time with a constant
D3 > 0 one may find

- xF ,h, vh gi T ah  _ vh .
- (Vallg, ), Vb, < 2 (Gho: )" + 55— [ Vehld
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Hence we end up with the following inequality:

d Ccln 112 ct 2
GO Ttz < O+ (S ) 19l - L,

Now define = e/e, e > 0, and D3 = ¢/C* to obtain equation (4.3.9).

4.B.2.4 Time evolution of H ;

for |j| > 1 and |j|+ |l| = s

This term is the only term far from what we already did since we are mixing more than
one derivative in x and one derivative in v in general. By simply differentiating in time

and integrating by part we find the following equality.

2 . . 2 . .
—Q(G{L(h), Ofh)rz, — —(0] (v.Vah), 0/ h) 2 |

e

= |lein
dt H o2

2 ip -

g(a ( 9, )7al]h>Lg2“J

2 . 2 .
= QWL(M,@M)L;U 2 N (OOl R
1,¢i(§)>0

9 . .

We can then apply Cauchy-Schwarz for the terms inside the sum symbol. For each we

can use a D;; ; > 0 but because they play an equivalent role we will take the same D > 0,

that we will choose later:

<3]h7 8z]+5 h)rz < DVO

iz loinl, 2 oz

Then we can use (H1’) and (H2’), with a 6 > 0 we will choose later, to obtain

2, ; 2 2 [ ovih 12
SOPLM). 0} 1z, < S(C0) + ) Wl + 5 <A - 9) 2w
’ 0

z,v 2 g2

Finally, applying (H4) and Young’s inequality with a constant Dy > 0 we obtain

2, : Dy 2, 1 |y ‘2
- < — =
ST (0. o)1z, < 2 (Gale )+ [|0F] |

Combining these three inequality we find an upper bound for the time evolution. Here

we also use the fact that the number of ¢ such that ¢;(j) > 0 is less or equal to d.
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a1,

A A
vivd 2 (o A 1 H j H2
- |— - — 1 [|8/h
[Deué\ = ( v )t Dae | P 1A

j—0;
> ol

82
i,¢i(3)>0

+@ (G5.(0. )"

Hence, we obtain equations (4.3.11) and (4.3.12) by taking D = 3u1 5/1/0 v, D2 = 35/ué\
and 0 = y{'vd /6v4. Also note that in (4.3.11) we used ‘ o ‘ s'h ’ .

1+6; 140;

4.B.2.5 Time evolution of <816i5ih7 Nh)r2

With no more calculations, we can bound this term in the same way we did for (V;h, V,h).

Here we get

. ct
a s h bz < Hal hLH

5.
dt<

+€D3:| H 1=

Héﬁ

[n62

+& (G3(g, )2

Now define = e/e, e > 0, and D3 = ¢/C* to obtain equation (4.3.13).

In the next paragraphs, we are setting g = h.

4.B.2.6 Time evolution of vathig
By simply differentiating norm and using (H5) to get I'(h, h)* = I'(h, h), we compute

2
V||, = 2ATu(G ) Vbt iz, + 2 (VLT (1), Tl e,

dt ‘ L2,

By applying (H4) and Young’s inequality to the second term on the right-hand side,

with a constant Dy > 0, and controlling the Li’v—norm by the A-norm we obtain:
2 Dy 2 1 2
2V (h h), VohY) 2 < 22 (GL. (h,h 4———HV@hLH
- < ( ) >L320,v A (gx,v( )) + eD, A

Then we have to control the first term. Just by writing it and decomposing terms in

projection onto Ker(L) and onto its orthogonal we yield:
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2 2
2(Vu(Ge() 7, Voh )1z, = S(VoL(h), Voh)1z , = S(Va(v- Vah) ™, Vbt s,
2 2
- ?WUL(hl),vvhﬂng = ~(Vah, Voh ™)1z,

Then we can control the first term on the right-hand side thanks to (H1) and (H2),
0 > 0 to be chosen later:

2 1 1 20CEO) + v VA (|, 0| . 2 (vid A 1|2
VL), Valthag <« S0 e | e 5 (T =8 ) ot

We apply Cauchy-Schwarz inequality to the next term, with D to be chosen later:

2 1 D 2 v 12
_g<vxh, Vvh >L%v § ; HvﬂthL%’v + M vah HA .

For the third term we are going to apply Cauchy-Schwarz inequality and then use the
property (H3). The latter property tells us that the functions in Ker(L) are of the form a
polynomial in v times e~1*/*/4. This fact combined with the shape of 71, equation (4.3.1),
shows us that we can control, by a mere Cauchy-Schwarz inequality, the third term. Then

the property (4.3.3) yields the following upper bound:

2 D 1 2
_g(v . VvvxwL(h),VvhﬂLgv < = [|v - VUwL(Vxh)H%Q + e vahL‘
3 x,v IS

2
La;,v

DCy
3

14

A
1
=
vy De

<

2
IVahls + vahiHA.

Finally, we first use equation (4.3.3) controling the v-derivatives of 7j, and then see
that the norm of 7 (v.f) is easily controled by the norm of f (just use (H3) and the
definition of 77, (4.3.1) and apply Cauchy-Schwarz inequality) by a factor Cr; (increase

this constant if necessary in (4.3.3)):
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2 D’ 2
(VoL (0.Veh), Voh M)y | < 7va(v.vxh)”§%v+ o ]LQ
Dar
< T S, + o Ve,
_D/Ca1 I/A N 2
< IVahls, + o [V !Lgv-

We then gather all those bounds to get the last upper bound for the time derivative of

the v-derivative.

d 2 D D'C? DC’ )
|V hL‘ < D (2 1 2005) HhLH =+ ™IV ,h
dt H ez, vhe? (21 | HL2
vy 20 yf 11 1 H n
A (e g e )b I
+ [1/{)\52 g2 L=y evd D + D’ 5 D + 5D2

+22 (g1, )"

Therefore we obtain (4.3.14) by taking D = D' = D = 9uie /v, § = vvd /6vd and
Dy = 3¢/vi.

4.B.2.7 A new time evolution of (V h, Vvh)ng

By integrating by part in z then in v we obtain the following equality on the evolution of

the scalar product:

d p
5 (Vah Vuh)pz | = 2AVoGe(h), Vo) iz + Z(VuL(h, 1), Vah)pz

We will bound above the first term as in the previous case and for the second term

involving I" we use (H4) and Young’s inequality with a constant D3 > 0:

1
2(VuL(h, h),Vah) 2 | < Ds (GL,(h )+ b Vb3 .

We decompose V,h thanks to 77, and we use (4.3.4) to control the fluid part of it,
2V (h, h), Vahbpa , < D (1, (h, 1))+ - vahLHQ + 5 0L,
) ’ z,v T, o\ D3 A D3 Lz,v

Finally we obtain an upper bound for the time-derivative:
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d Ccln 1 2 Cr C 1
—(Vzh,Vyh < |+ H thH — IVoh|[3 + | =2 — = | [ Vahl
dt<v Voh) 2, [52 +€DJ v A+7752 Vohll5 + D, - IVahllzs

+25.(g1 . m)”.

But now, we can use the properties (4.3.3) and (4.3.4) of the projection 7, to go

further.

2
IVohlR < 2||Vuht|[ +20IVoms (B}
2
< 2||Voht|| 4200 Cr L (A)lZz
2

< 2||Voht|| +200CC, || Vah|3e
A xT,v

where we used Poincare inequality (4.3.5) because h is in Ker(G¢)*.

Hence we have a final upper bound for the time derivative:

d clyp 1 2
VLR Vo) < | | [Vt
2 (Vah, Voh)pz | [52 +5D3] Ve[

201 2 201C1CC, Cr 1
Jwunt] o+ [P 1 S 2 il

e2n eDs

Thus, setting n = 8eCLC’7rlC7GC/5 with e > 1 and D3 = 4C,; we obtain equation
(4.3.15).
2
2

4.B.2.8 Time evolution of H@lthI L j=1land [j|+]l|=s

T,v

We have the following time evolution:

d . . , 2 . )
o], =20yt ot + SO0 ), )

2
L.

As above, we apply (H4) for the last term on the right hand side, with a constant

Dy > 0,

] J 7L s 2 1 J 7L 2

20/ (h, ), 0 )1z | < Da (G2, ()" + - |ofnt]|
! 2

Then we evaluate the first term on the right-hand side.
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2000 (G(h) ", o by, = f<65'L<h>,8{hL>Lg,v—§<8{<v.vxh>i,a{hL>L;U

ro Pl o

= 2L, o s, - §<v L (Voh). O iz,
2 > @S o )

€ -
,¢i(7)>0

(@ mp(v-Voh), o ht) e

™
S

(LI )

Then we shall bound each of these four terms on the right-hand side.
We can first use the properties (H1’) and (H2’) of L to get, for some 0 to be chosen later,

0 A\ lloint|
H§v1+€2 <y(/)\ >H81h HA

For the three remaining terms we will apply Cauchy-Schwarz inequality and use the

2 ; 2
SOIL). 0fh ) 1 < 5 (CO) + 13 Hhi‘

properties of 77, concerning v-derivatives and multiplications by a polynomial in v.
First

2 i ; D , 2 , 2
~Z(0- O (Vo). )z, < va.ﬁleL(Vxh)‘LQ —Ha{m‘
DC’TrS 2 1L
< 2w, » b e
DC;
c : Z HalO/h‘Lg + AD HathH =1
V]=s
<
= DCs 1
- Z [ ’LQ + A H@Jh > 1
[I71<s—1
where we used that |[| = |s| — |j|. Then
2 5. i . 2
j—3; i L
_g<8l+6¢ h’aljh >L§ l+5 Lz, + AD/ Haljh HA

2
h ’L2 can be decomposed thanks

to mz, and its orthogonal projector. Then the fluid part is controlled by the x-derivatives

In the case where |j| > 1 we can also use that H(?l]_;

only.
And finally
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92 . A D 2 1 , 2
SO v Vah), b ), < —Hé){wL(v-Vxh)’B +~7Haghﬂ
DCﬂ'S
< e H@JhLH
( -DCﬂ'S i1 1 2 . .
. lZ [ ) h ’A7 if jl =1
= Be S Jlopn|: +—V1A Hajhi‘Z if 5] > 1
4 L2, AT 1 ) 3
€ et v vy De A

\

We are now able to combine all those estimates to get an upper bound of the time-
derivative we are looking at. We can also give to different bounds, depending on the size

|7]. We also used that the number of i such that ¢;(j) > 0 is less than d.

In the case [j]| > 1,

) vAr1rood 1 1 2
el < (305 ) 5t
dtH L2 82 yé\ B +1/0£ D+D’+D +D2 ! A
D/
i3 el
’ch(j )>0
DCry  D'Crs  DCliry 00112
S Al I S Lo [
[)<s—1

L 2(CE) +vg) HH

g2

HH
+22(3, ()"

And in the case |j| =1,

_ 2 2 (VDS A1 11 1 _ 2
ity < (305 -2) i (550 5) vl lord
dt H =0z, L?(yé\ oA D+D’+D +D2 =07 |5

DCrs D Dcﬂs
+ — 7 > lopallys
[l|=s

2(0(5) +5) HH
g2

+ 1
H3o

+22 G m)?.

By taking D = D = 9uie/vfvd, Dy = 3¢/vd, 6 = v{vd /6v) and D' = 9vide /v, if
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Ij| =1, or D' = 9ude/vivd, if |j| > 1, we obtain (4.3.16) and (4.3.17).

4.B.2.9 A new time evolution of (afi&h,a?hh%v

By integrating by part in z then in v we obtain the following equality on the evolution of

the scalar product.

O O s, =20 5,Ge(h), O h) 1z, + S(O) 5T (B ), )1z,
We will bound above the first term as in the previous case and for the second term
involving I" we use (H4) and Young’s inequality with a constant D3 > 0. Moreover, we

decompose GIoh into its fluid part and its microscopic part and we apply (4.3.4) on the
fluid part. This yields

, s 2 1 2 O 2
2<8l(§iglr(h7 h))aloh>L%w < D3 (g:c,v(h7 h)) + Fg HathJ_HA + Dig Hal(]hHL%,U .

Finally we obtain an upper bound for the time-derivative:

_ crt 1 2 CF s,
di 0 n 0pL 3
(O h O < [52 +DJ |ofn HA+EH81_5ih

4

2 Cr 1
’ (S 1) el

25 G hm)?.

Now we can use the properties of 77, concerning the v-derivatives, equation (4.3.3), the
equivalence of norm under the projection 77, equation (4.3.4), and Poincare inequality get

the following upper bound:

2 2 2
d; Oi O
Hal_(sih‘/\ S A A+2H8l_5i7TL(h)HA
. 2 2
< 2|9 ht A+2c7rscﬂ\}a?_5i(h)||%v
2
< 2|t +20mCe DT |90n]s -

[1|<s—1

Therefore,
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d s Ccln 2
et < (G g otn 4 25 o
Cr 20t CLCr
+ (S -2 oy, + 2 3 ot

2 @1, nm)?.

We finally define n = SeCLCmCﬂd/E, with e > 1, and D3 = 2C; to yield equation
(4.3.18).

4.C Proof of the hydrodynamical limit lemmas

In this section we are going to prove all the different lemmas used in section 9.

All along the demonstration we will use this inequality:

VE>0, k€N, ¢=0,p>0, t9h%e 9 < C,(a)td". (4.C.1)

4.C.1 Study of the linear part
4.C.1.1 Proof of Lemma 4.8.6

Fix T in [0, +o0]. By integrating we compute

T X T o t\n\ 2
/ Upihindt = Z e [/ e —Bitln| dt} Foj (| ’) n(n,v)
0 0

nezZi—{0}

- €
— Z ein-x : . |:
e

nezaqoy  tedlnl =

i T|n\

—B;TInf* _ 1] Pojhm(n v).

The Fourier transform is an isometry in L2 and therefore

T n ~
’ / Ugjhlndt P(]j <) hm(n, )
0 n

Finally, we know that, like eg;, Fp; is continuous on the compact S9! and so is

2 2

2
<52
NP DI e Ty

LA nezd—{0} L3

bounded. But the latter is a linear operator acting on L2 and therefore it is bounded by
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My; in the operator norm on L2. Thus

T 2 2M02- . 2
]

| v, < T2 5 Jpatr,

0 LIL3 7 nezd—{0} v

Mg, )
< @ Mg,

which is the expected result.

Now, let us look at the L2-norm of this operator, to see how the torus case is different
from the case R? studied in [39] and [10].
Consider a direction n; in the Fourier transform space of the torus and define ¢,, =
Fl (eml). We have the following equality

(Ubjhins dni) £z = (Usjhins $ny) 1z = Y (M) hin(n1,0).
If we do not integrate in time, one can easily see that this expression cannot have a limit
as € tends to 0 if Pp; (%) iLm(nl, v) # 0, and so we cannot even have a weak convergence.
The difference with the whole space case is this possibility to single out one mode in the
frequency space in the case of the torus. This leads to the possible existence of periodic
function at a given frequency, the norm of which will never decrease. This is impossible
in the case of a continuous Fourier space, as in R%, and well described by the Riemann-

Lebesgue lemma.

Therefore we have a convergence without averaging in time if and only if

ni ~
Fo; <\n1|> hin(n1,v) =0,
for all j = +£1 and all direction ny. This means that for all j = £1 and all ng,
(€0 (ﬂ—h) ,ﬁin)L% = 0. By the expression known (see theorem 4.8.3) of epy1, this is

true if and only if V4 - u;, = 0 and pjp + 05, = 0.

4.C.1.2 Proof of Lemma 4.8.7

This lemma deals with three different terms and we study them one by one because they

behaviour are quite different.

The term Ufj: We remind that we have

A "'o‘jt‘"‘i ) 2 .. n ~
Ulsjhin = Xlen|<no€ © Bytinl (662%(‘871') - 1) POj <|n|> hin(nu U)'
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If we take T' > 0, by Parseval identity we get

T
/ Ulej hindt = Z Xlen<no|

272
0 LI pezd—{o}

2

T iait|n 2
/ R LLIBPRE (eﬁwusnn_l) dt‘ H Pohan’
0

L3

the computational inequality (4.C.1) to obtain

But then we can use the fact that |e? — 1] < |a| el!, the inequalites satisfied by ; and

T i it|n T .
/ o L = tinf? (e?z%'(‘m') - 1) dt‘ < C,ye/ tlnf e
0 0

. T 1 th.;

< 07803/2 <ﬂ4j>/0 %e_TJ‘ant
. too 9 th;

< 07503/2 <B4]> ) ﬁeiTjdt,

which is independent of n and is written Ie. Therefore we have the expected inequality,

by using the continuity of Fyj,
T
‘ / Uijhindt
0

The last two inequalities we want to show comes from Parseval’s identity, the properties

2
< EPM; | hinlZ2 gz -
L3L3

of 7; and the computational inequality (4.C.1):

2
2 _on. 2 t ... 2 n ~
HUlajhi”H[ﬂ[ﬁ = Z X|en\<noe 285t 6527]‘671' — 1’ ’ P()j <H> hz’n
o nezi—{0} n L2
g2 12 112
< ML T rpant il
nezZd—{0} v
B' Bt 2] 2
< Mj;C3e*Cy (; > Xenjany I e 21 ‘hm |, (@c)
nezd—{0} v

Finally, if we integrate in ¢ betweenﬁO and +o0o we obtain the expected second inequality

ot
of the lemma. If we merely bound e~ 3 Il by one and use the fact that x|.<n, < 1 and
X\an|<n052 In|? < ng we obtain the third inequality of the lemma for § = 1 and § = 0. Then

by interpolation we obtain the general case for 0 < § < 1.

The term UZE]-: Fix T > 0. By Parseval’s identity we have
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T 2 T ioit|n| 2 2
J 2 t ~ A
e o —BitIn|"+-5v;(len 2
H/ Uthindt - E Xlen|<ng / e c el 22l Ddt |€Tl| HPljhm o
0 L%L% neZd 0 v
2
4 2 ~ n ~
E 72 | |4 len|” || P | |en|, W hin ,
: 2
nezd—foy 3 1" Ly

where we used the inequalities satisfied by + and integration in time.
Then, Plj is continuous on the compact [—ng, ng] x S¥~! and so is bounded, as an operator
acting on L2, by M; > 0. Hence, Parseval’s identity offers us the first inequality of the

lemma.

The last two inequalities are just using Parseval’s identity and the continuity of ]51j.
Indeed,

i t|n| 2, ¢ 2 - ~ 2
e 2 =L Byt + s (lenl) 2
HU2jhi”HL2L2 = § Xlen|<no |€ © ! S len|” || P1j(n)hin
v L121
n€Zi—{0}
2
2 2 2 _—tBinl? ||3
< MEE® D Xienjeno Inl? e P hi”‘m'
neZi—{0} v

We recognize here the same form of inequality (4.C.2). Thus, we obtain the last two

inequalities of the statement in the same way.

The term U?fj: We remind the reader that

~ iajt\n\_ ) 2 n
Usj = (Xjenj<no — 1) € = Gitinl” py; <|n|> :
We have the following inequality
en
[Xienj<n = 1] < —.
no

Therefore, replacing P;; by %Poj and 3; by 23; (since 5v;(len|) < % In|?) in the proof
made for Uj; we obtain the expected three inequalities for Us5;hin, the last one only with
0=1.

To have the last inequality in J, it is enough to bound ‘X|6n\<no — 1’ by 1 and then using
the continuity of Fy; to have the result for § = 0. Finally, we interpolate to get the general
result for all 0 < J§ < 1.
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4.C.1.3 Proof of Lemma 4.8.8

Thanks to Theorem 4.8.3 we have that

~ N 2
1Ughinl 221z = |[Or(t/e% en, 0)hin

2 —2% 2
g SCRE T lhinllLaps -
n v

But then we have, thanks to the technical lemma 4.C.1, that e 2 < 01/2(20)%, which

gives us the last two inequalities we wanted. For the first inequality, a mere Cauchy-

Schwartz inequality yields

T
‘ / U hindt
0

which gives us the first inequality by integrating in t.

2 T
< T/ U2 1 dt,

Now, let us suppose that we have the strong convergence down to ¢t = 0. At t = 0 we

can write that '@ = Id and therefore that:

2
n ~
Id = Xen|<no Z P; <|5n| ) W) + Ur(0,en,v).
j=—1

We have the strong convergence down to 0 as € tends to 0. Therefore, taking the latter
2

equality at € = 0 we have, because ) Fy; =7,
Jj=-1

~

Ur(0,0,v) =1d — ..

Then Ughiy tends to 0 as e tends to 0 in C([0,+00), L2L2) if and only if ks, belongs to
Ker(L).

In that case, we can use the proof of Lemma 6.2 of [10] in which they noticed that

2
Us(t,z,v) = etGSU}%(O,l‘,U) =G | F 1 1d - Xlen|<no Z PJ(ETL) Fu

xr
j=—1

Thanks to that new form we have that, if h;, = 71 (hin),

2
Ug(t,z,0)hin = €% | Fo ' | (1= Xjenj<no) = €7 Xjenjzng >, Prj(en) | hin|
j=—1

2
because 7y, = ‘le()j.
j=-
Therefore we can redo the same estimates we worked out in the previous lemmas and use

- 210 -



4.C Proof of the hydrodynamical limit lemmas

the same interpolation method to get the result stated in Lemma 4.8.8.

4.C.2 Study of the bilinear part
4.C.2.1 A simplification without loss of generality

All the terms we are about to study, apart from the remainder term, are of the following

form

with P(n) being a projector in L%, bounded uniformely in n.

Looking at the dual definition of the norm of a function in L2 vy We can consider f
in C° (T4 x R?) such that ||f||;2 = 1 and take the scalar product with ¥5;(us). This

yields, since P is a projector and thus symmetric,

W) P, = | / ST glts ko) (P0)ic, f)pads

nezd—{0}

_ / / gt 5, b, 2) (0, P(n) f)pads.  (4.C.3)

nezd—{0}

We are working in L2 L2 in order to simplify computations as they are exactly the same
in higher Sobolev spaces. Therefore, we can assume that hypothesis (H4) is still valid in

L? without loss of generality. This means

(ﬁap(n)fﬁ%, < ||h||L§Lg ||h||A,, HP(n)fHAv : (4.C.4)

Finally, in terms of Fourier coefficients in =, P(n) is a projector in L? and uniformely
bounded in n as an operator in L2.
Thus, combining (4.C.4) and the definition of the functional E, (4.6.2), we see that

2

|1

is a continuous operator from C(RT,L2L2, E(-)) to C(R*,L2L2 |- HLng)- Looking at

T v v

dt
LIL3

(4.C.3), we can consider without loss of generality that the following holds (even for the

remainder term) for all 7' > 0:

¥5;(ug) = / Z g(t, s, k,x) f-(s, k,v)ds,
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with
2

~

f dt < My; E(h)*.

L2L2

r

4.C.2.2 Proof of Lemma 4.8.9

For the first inequality, fix 7" > 0 and integrate by part in ¢ to obtain

T . T t .ocj(tfs) 2 N
/ Sudt = 3 e / ( / ¢l (=)l | fs(s)ds> dt
0 0

nezd—{0} 0
, e T [ aj(T-s) 2 .
= Z et — : {/ (elem_(T_S)ﬁjl"' — 1) fg(s)ds} :
BN T AN

Finally we can use Parseval’s identity

2

2 c T
N SR L
L212 h Z 27 | + af Jo

nezZ*—{0}

) 2
fg(s,n,v)HL2 ds

T
H /0 (et

QM2
< T HTLE(h)?,
a;

where we used the subsection above and Parseval’s identity again. This is exactly the

expected result.

4.C.2.3 Proof of Lemma 4.8.11

We divide this proof in three paragraphes, each of them studying a different term.

The term ¢j,;: We will just prove the last two inequalities and then merely applying
Cauchy-Schwarz inequality will lead to the first one.
Fix t > 0. By a change of variable we can write

iajs

t
Vi) = Y N ngeny [ € (B ) ] o ).
0

nezZ*—{0}

By the study made in the proof of Lemma 4.8.7 we have that

U iass s N
/ e Bl (e 1) fn fu(t — 5)ds
0

t Bjs .
<G, |n|45/ se— 5 In® ’fa(t - s)‘ ds.
0
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Then we use the computational inequality (4.C.1) and a Cauchy-Schwarz to obtain

t (o)
/ 0 222 n|—B;s1n|? <€E%’Yj(|€n|) _ 1) In| tieds
0
t .5
80 Cl <ﬂ]> ’n’2/ e_%lnﬁ
0
4 o Bi(t—s)
50 o) (53) |n| . |:/ o 1 n|?
Bjn|” LJo

We can obtain the result by using Parseval’s identity, denoting C' a constant indepen-

fa‘ds

~ 12
Je| ds

r/z. (4.C.5)

dent of € and 7', the continuity of P;; and the computational inequality (4.C.1).

_ Bj(t—s)s (t s)s 2 ~ 2
lej ue HL2L2 <C Z Xlen|<no€ ‘n‘ / fE(S)HLQ ds.
nezZd—{0} v
Bj(t— 5>‘ 2 2 2
If we merely bound e~ "I" by one and use the fact that x|z, j<ne < 1 and Xjepj<noe” 2" <

n3 we obtain the third inequality of the lemma for § = 1 and § = 0. Then by interpolation

we obtain the general case for 0 < § < 1.

If we integrate in ¢ between 0 and a fixed T' > 0, a mere integration by part yields the
expected control on the Lf’xw—norm. Finally, from the latter control and a Cauchy-Schwarz

inequality we deduce the first inequality.

The term ¢5;: As in the case Y7, we are going to prove the third inequality only.

Fix T > 0, a change of variable gives us

T
vy = Y aka'mgno/ ¢ LSS+ 55 0em 2 BT — 5)ds
0

neZi—{0}

We can see that

T
/ ¢ Lo lnl=Bislnl+ s enl) . 2
0

fo(T — S)‘ ds.

T 4
< €|n|2/ e_%s‘nﬁ
0

This bound is of the same form as equation (4.C.5). Therefore we have the same result.
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The term ¢5;: As above, we will show the third inequality only.
Fix T > 0, we can write

T . A
U5 = D> € (X enjeng — 1) / e 2 Inl=Bisn 1) £.(T — 5,1, v)ds.
0

nezZt—{0}

Looking at the fact that }X\anléno — 1‘ < %, we find the same kind of inequality as

no
equation (4.C.5). Thus, we reach the same result.

4.C.2.4 Proof of Lemma 4.8.12
We remind the reader that
t
Vi) = | LUR(t~ 5)1(s)ds,
0
and that, by Theorem 4.8.3,
_oot
|Ugfel72 2 < Che = [FAPYE

Hence, a Cauchy-Schwarz inequality gives us the third inequality for ||1/J%(UE)(T)||ig 125

and then the two others inequality stated above.

4.C.2.5 Proof of Lemma 4.8.14
We remind the reader that
U(u) = F, ' [Go(u) + ¥5a(u)] Fo

As above, and because in that case a; = 0, we can write ¢Sj(u5 —u)(T), for some T > 0,

and apply a Cauchy-Schwarz inequality:

T 2
/ e8I LT (he — by he + h)ds| dv
0

2
Ol D SN T
nezd—{0} R
Ml?j 2
5~ Sup [|[T(he — h,he +h) 7272 -
B telo,1) .

N

But because T? is bounded in R? and thanks to (H4) and the boundedness of (h.).
and h (both bounded by M) in HL? (Theorem 4.2.3), we can have the following control:

IT(he = By he + 1) 72 12 < AMPCEVolume(T) |[he — Al oo 2 -
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Therefore we obtain the last inequality and the first two just come from Cauchy-

Schwarz inequality.
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Chapter 5

The Incompressible Navier-Stokes
limit in polynomial weighted

spaces

We study the Boltzmann equation on the d-dimensional torus in a perturbative setting
around a global equilibrium under the Navier-Stokes linearisation. We use a recent func-
tional analysis breakthrough to prove that the linear part of the equation generates a C°-
semigroup with exponential decay in Sobolev spaces with polynomial weight, independently
on the Knudsen number. Finally we show a Cauchy theory and an exponential decay for
the perturbed Boltzmann equation, uniformly in the Knudsen number, in Sobolev spaces
with polynomial weight. The polynomial weight is almost optimal and furthermore, this
result only requires derivatives in the space variable and allows to connect to solutions to

the incompressible Navier-Stokes equations in these spaces.

This is a joint work with Sara Merino-Aceituno and Clément Mouhot, both from the

University of Cambridge.
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5.1 Introduction

5.1 Introduction

This chapter deals with the Boltzmann equation in a perturbative setting as the Knudsen
number tends to zero. This equation rules the dynamics of rarefied gas particles moving
on the flat torus in dimension d, T¢, when the only interactions taken into account are
binary collisions. More precisely, the Boltzmann equation describes the time evolution of
the distribution f = f(¢, z,v) of particles in position x and velocity v. A formal derivation
of the Boltzmann equation from Newton’s laws under the rarefied gas assumption can be
found in [28], while [30] presents Lanford’s Theorem (see [05] and [11] for detailed proofs)
which rigorously proves the derivation in short times.

We denote the Knudsen number by € and the Boltzmann equation reads

Btf+v-fo:%Q(f,f), on T x R,

where @ is the Boltzmann collision operator given by

Q(f, f) :/Rd Sd_lB(\v—v*LcosH) [f'fi = [[] dv.do.

The Boltzmann kernel operator B encodes the physics of the collision process and f’, f,

fL and f are the values taken by f at v, vs, v, and v respectively, where

;o vt Ul v —

o
2 2 _ 0,
,and cosf = i Lo ).
, vdo o—u o—u.]
e

The Boltzmann collision operator comes from a symmetric bilinear operator Q(g, h)
defined by

1

Q(g, h) = 2/Rd Bl cos ) [Hg, + g’ — hg. — h.g] dv.do:
-

It is well-known (see [28], [30] or [10] for example) that the global equilibria for the
Boltzmann equation are the Mazwellians, which are gaussian density functions depending
only on the v variable. Without loss of generality we consider only the case of normalized

Maxwellians:
1 2
p) = —— e T
(2m)2

In this chapter we will assume that the Boltzmann collision kernel is of the following
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5 The Incompressible Navier-Stokes limit in polynomial weighted spaces

form

B (Jv — vi|,cos0) = @ (Jv — vi]) b(cos 0), (5.1.1)

with ® and b positive functions. This hypothesis is satisfied for all physical model and is
more convenient to work with but do not impede the generality of our results.
We also restrict ourselves to the case of hard potential or Mazwellian potential (v = 0),

that is to say there is a constant C's > 0 such that
®(z) = Cp2", ~€]0,1], (5.1.2)

with a strong form of Grad’s angular cutoff (see [1]), expressed here by the fact that we

assume b to be C'' with the controls from above
Vz e [-1,1], b(z), b(z') < C. (5.1.3)

5.1.1 The problem and its motivations

The Knudsen number is the inverse of the average number of collisions for each particle per
unit of time. Therefore, as reviewed in [ | 1], one can expect a convergence, in some sense,
from the Boltzmann model towards the acoustics and the fluids dynamics as the Knudsen
number tends to 0. However, these different models describe physical phenomena that do
not evolve at the same timescale and the right rescaling to approximate the incompressible

Navier-Stokes equation (see [¢][106][111][98]) is the following equation

Ouf- + 20 Vafe = 5QU L), on T x B, (514)

under the linearization f.(t,z,v) = p(v) + ehe(t, z,v). This leads to the perturbed Boltz-

mann equation

1 1 1
athg + E’U . Vxhs = ?E(hs) + gQ(hg, h5>, (515)

where we defined

L(h) = 2Q(u, h).

The hydrodynamical limit of the perturbed equation is the system of equations satisfied
by the limit, as € tends to 0, of the hydrodynamical fluctuations that are the following
physical observables of h.:

pltia) = [ hetwv)o
]Rd

ue(t,r) = /vhg(t,$,v)dv,
Rd

1
0.(t,2) — d/Rd(\vIQ—d)ha(t,x,v) dv.
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Note that (pg,ue,6:) are the linearised fluctuations of the mass, momemtum and the
thermal energy around the global equilibrium pu.

In our perturbative framework, previous studies [¢][10][23] (and also Chapter 4) show
that the hydrodynamical limits p, v and 6 are the weak (in the Leray sense [(0]) solutions

of the linearized incompressible Navier-Stokes equations:

ou —vAu+u-Vu+ Vp=0,
V-u=0, (5.1.6)
0 — kA +u-VO =0,

where p is the pressure function and v and k are constants determined by L (see [¢] or

[16] Theorem 5). They also satisfy the Boussineq relation

V(p+6)=0. (5.1.7)

The aim of the present chapter is to use a constructive method to obtain existence and
exponential decay for solutions to the perturbed Boltzmann equation (5.1.4), uniformly in
the Knudsen number. One will thus be allowed to extract a converging (at least weakly)
subsequence of h. converging to the incompressible Navier-Stokes equations [10][3][23] (see
also Chapter 4). Such uniform results have been obtained on the torus in Sobolev spaces
with exponential weight Hy , (1~Y/2) in [56][23] and the present work improves this strong
weight to a polynomial weight without the need of derivatives in the velocity variable (see
also Chapter 4).

5.1.2 Existing results

The first part of our work is to prove that the linear part of the Boltzmann equation

1 1
ge:ﬁﬁ_*v'vm
13 g

generates a strongly continuous semigroup with an exponential decay in Lebesgue and
Sobolev spaces with polynomial weight, namely 1 + \v]k for some k large enough.

It has been known for long that the linear Boltzmann operator L is a self-adjoint non
positive linear operator in the space L2 (,u_l/ 2). Moreover it has a spectral gap Ag. This
has been proved in [27][15][19] with non constructive methods for hard potential with
cutoff and in [11][15] in the Maxwellian case. These results were made constructive in
[1][79] for more general collision operators. One can easily extend this spectral gap to

Sobolev spaces H,, (u_l/z) (see for instance [51] Section 4.1).

The next step is to see if the latter properties about £ in the velocity space can be
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transposed when one adds the skew-symmetric transport operator —v-V,. The first results
were obtained in [107] where G; was proven to generate a strong continuous semigroup
in L2H$ (p1/%) and in LHS (u=Y2(1 + |v|)¥), for s and k large enough. Then [57]
obtained constructively this result in H7 , (,ufl/ 2) using hypocoercivity properties of the
Boltzmann linear operator. Finally, a recent breakthrough proving abstract extension of
semigroups [71] showed that G; generates a C%-semigroup in all the Sobolev spaces of the
form W WEP(m), for m being an exponential weight (including maxwellian density if
q = p = 2) or a polynomial weight (1 + |v|)¥, as long as a < 8 and k is large enough
depending on ¢ (with k£ > 2 in the case ¢ = 1).

The full Boltzmann equation perturbed around a global equilibrium p(v) (5.1.5) has
also been studied in the case € = 1. The associated Cauchy problem has been worked
on over the past fifty years, starting with Grad [70], and it has been studied in differ-
ent spaces, such as L2HS (u~%/2) spaces [107] or H;, (L=Y2(1 + [o))*) [55])[114]. The
Cauchy theory was then extended to Hj , (,u_l/ 2) where an exponential trend to equilib-
rium has also been obtained. This was obtained using hypocoercivity properties of the
linear operator [32] or nonlinear estimates on fluid and microscopic parts of the equa-
tion [50]. Recently, [71] proved existence and uniqueness for (5.1.5) in more the general
spaces (W{f"l N Wf’q> whr (1 + |v])k) for a < f and § and k large enough with explicit
thresholds. This result therefore gets rid of the exponential weight needed in the previous

studies.

All the results presented above hold in the case of the torus. We refer the reader

interested in the Cauchy problem, both for the torus and the whole space, to the review

[110].

For physical purposes, these studies for ¢ = 1 are relevant since mere rescalings or
changes of physical units changes (5.1.4) to the case where the Knudsen number equals
1. However, if one wants to study the hydrodynamical limits of the Boltzmann equation,
one needs to obtain explicit dependencies on the Knudsen number. Using hypocoercivity
methods [23] (see also Chapter 4) gave a constructive uniform approach on the semigroup
generated by Gc in Hj , (,u_l/ 2) and its exponential decay. The study of the full perturbed
Boltzmann equation (5.1.5) taking into account the dependencies on the Knudsen number
has been obtained [50][23] in the same spaces Hj , (,u_l/Q), for s large enough (see also
Chapter 4). More precisely, for initial data sufficiently close to u there exists a unique
non-negative solution to (5.1.4) and it decays exponentially fast towards its equilibrium.
The smallness assumption was proven to be independent of the Knudsen number as well

as the rate of decay and the methods used in [23] (see also Chapter 4) are constructive.
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5.1.3 Our contributions and strategy

The present work brings two major improvements.

In the spirit of [51], we first prove that G. generates a strong continuous semigroup in
Sobolev spaces W' Wi+ (1+ [v])¥) for & < B and B and k large enough with explicit
thresholds. It is done by starting from existing results in H , (,u_l/ 2) and then decom-
posing the linear operator G. into a dissipative part and a regularising part that is then
treated in more and more regular spaces up to the space where the semigroup properties
have been derived in previous articles. We thus improve the existing result [23], also given
in Chapter 4. Our main contribution is an adapted version of the abstract extension the-
orem developed in [51] that takes into account the dependencies on the Knudsen number

as well as a careful study of the dissipative and the regularising parts of the operator G..

The second contribution of this chapter is the solution to the Cauchy problem with

exponential trend to equilibrium, independently on ¢, in spaces
Wl bl (1 + m“’) and WolHP (1 + W*O) ,

for § large enough and all o < . First, this result makes the recent study [51] uniform
in the Knudsen number. Second, it improves the Cauchy theory developed uniformly in €
in [56][23] by dropping the exponential weight and the v-derivatives. Moreover, one can
notice that the polynomial weight is almost the optimal one for the Boltzmann equation
(conservation of mass and energy).

The main issue to obtain uniform results is that the bilinear operator e ~'Q cannot be
treated as a mere perturbation that evolves under the flow of Sg_, the semigroup generated
by Ge, since the latter has an exponential decay of order O(1) that is negligeable compared
to O(e~!) as ¢ tends to zero. We develop an analytic point of view about the extension
theorem in [5 1] and include the bilinear term. More precisely, we decompose the perturbed
equation (5.1.5) into a hierarchy of equations taking place in spaces that have more and
more regularity up to Hj , (u_l/ ?) where estimates had been derived in [23] (see also
Chapter 4). At each step we use the dissipative part of the linear operator to control
the remainder term £~ whereas the regularising part is controlled in spaces with higher

regularity.

5.1.4 Organization of the chapter

Section 5.2 first introduces the different notations and definitions we will use throughout
the chapter and then states the precise theorems we prove in this work. Section 5.2.2 deals
with the semigroup generated by the full linear operator e 2L —e~!v -V, whereas Section

5.2.3 is dedicated to the full Boltzmann equation.
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5 The Incompressible Navier-Stokes limit in polynomial weighted spaces

The full linear part of the Boltzmann operator is proven to generate a strongly con-
tinuous semigroup in Lebesgue and Sobolev spaces with polynomial weight in Section
5.3.

We start with Section 5.3.1, a thorough description of our strategy and a version of

the extension theorem of [51] that takes into account the dependencies in e.

We show in this section that e 2L — e~ v - V,, can be decompose into a regularising

operator in the velocity variable (Section 5.3.2) and a dissipative one (Section 5.3.3).

We then combine the last two properties to gain regularity both in space and veloc-
ity (Section 5.3.4) to finally prove the existence and exponential decay of the associated

semigroup (Section 5.3.5).

The last section, Section 5.4, proves existence, uniqueness and exponential decay of

solutions to the perturbed Boltzmann equation (5.1.5).

Section 5.4.1 gives a new point of view on the extension we used to generate the
semigroup associated to e 2L —e~!v-V, and how it can be used with the bilinear operator.
This strategy is developed through Sections 5.4.2 and 5.4.3 and it leads to the proof of the

exponential decay towards equilibrium in Section 5.4.4.

5.2 Main results

5.2.1 Notations

We gather here the notations we will use throughout this chapter.

Function spaces. We first define the following shorthand notation,

(=1

The convention we choose is to index the space by the name of the concerned variable

so we have, for p in [1, 4+o00],
Ligg = L7 ([0, T1), Lizsz(Td>, ‘L€::Lp<Rd>.

Let p and ¢ be in [1,+00), @ and 8 in N and m : R? — RT a strictly positive
measurable function. For any multi-indexes j = (j1,...,jq) and I = (I1,...,13) in N¢ we

denote the (4,1)!" partial derivative by

& = aLoy.
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We define the space W "WEP (m) by the norm

Flhyensrom = > ||(15)m

i< ltI<p
|t +]j]<max(a,8)

)

LiLg

where we used the Lebesgue norm

qa/p 1/q
HQHL%[}; = [/Rd </1Id |f(x,v)[P dx) d’u] .

Linear Boltzmann operator. First we use a writing convention. This chapter aims
at extending results known in a small space E, namely H; , (/fl/ 2) with s sufficiently
large, into a larger space £, namely Lebesgue and Sobolev spaces with polynomial weight.
We will use curly letters for operators in £ and their non-curly equivalent to denote their

restriction to E. For instance, we will denote

The linear Boltzmann operator L has several properties we will use throughout this
chapter (see [28][30][112][71] for instance).
L is a closed self-adjoint operator in L2 (,u_l/ 2) with kernel

Ker (L) = Span {¢o(v), ..., par1(v)} 1,

where ¢g(v) =1, for i = 1,...,d we defined ¢;(v) = v; and ¢g11 = (]v|2 - d) /V2d. The
family (¢;)o<i<a+1 is an orthonormal basis of Ker (L) in L? (1~/2) and we denote 7/, the
orthogonal projection onto Ker (L) in L2 (/Fl/Q) :
d+1
) =Y (/Rd h(w) i () du> i (0)(v), (5.2.1)
=0

and we define 771% =1Id — 1. We will also denote the full linear Boltzmann operator by

11
G.= 5L~ vV,
3 9

For s in N we will use the convention

(ga) ’H;w(“—l/Q) - Ga'

It has been proven ([23] Proposition 3.1 or see Proposition 4.3.1 in Chapter 4) that the

kernel of G, does not depend on ¢ and that its generators in wa (u‘l/ ?) are the same
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5 The Incompressible Navier-Stokes limit in polynomial weighted spaces

than the ones of Ker (L). We therefore have that the orthogonal projection onto Ker (G;)
in L%}U (,u_l/Q) is given by

d+1
ton) =T, (1) = Y- ([ hewortu) dedu) sstomnte), (522
i—0 Tdx R4
and we define Hé =1d — Ilq.
Note that for a function A in L%m (,u_1/2) we have that

V(z,v) € T x RY,  Tig(h)(z,v) = /Td 7L (h(Zx, ) (V) day.

5.2.2 Results about the full linear part

We first deal with G., the linear part of the perturbed Boltzmann operator. We prove that
it generates a strongly continuous semigroup with an exponential decay in Lebesgue and
Sobolev spaces with a weight (v)* as long as k is large enough. The precise statement is

the following.

Theorem 5.2.1 Let B be a Boltzmann collision kernel satisfying (5.1.1)-(5.1.2)-(5.1.3).
There exists 0 < g4 < 1 such that for all p, q in [1,4+00], all o, B in N with o < 8 and all

k > ky, where

q

3+ /49— 48 1
jr— 5t ; /q+’y<1—q>, (5.2.3)

with v defined in (5.1.2),

1. for all0 < e < &g, Ge = e 2L — e 1v -V, generates a C°-semigroup, Sg.(t), on
Wf’qu’p (<v>k)7

2. for all T > 0, there exist Cg(T), Ao > 0, such that for all 0 < € < gg4 and for all hy,
m Wf’qu’f’p ((v)k), forallt > 7

15G. (8)(hin) — Tg (hin)llyyeary g (o) < Co(T)e™ [ hin — g (hin) lyyeayys (e

where Ilg is the spectral projector onto Ker (G.) which is given, for all €, by
d+1

Hg(g) = ( /T - dxdv) Pip. (5.2.4)

=0
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The constants 4, Cg(T) and Ao are constructive and only depends on d, p, q, k, o, 8 and

the kernel of the Boltzmann operator.
We refer to [01] and [51] Section 2 for definitions and properties of spectral projectors.

Remark 5.2.2 We can make a couple of remarks about this theorem.

1. It has been proven in [27] Section 3 (or Chapter 4 Section 4.3), that in H%’v(/fl/Q),
Ker (G.) does not depend on ¢ if € is positive and we therefore can define Il = Ilg, .
During the proof of Theorem 5.2.1 we will show that (Hgs)’H;,U(VW) = Ilg, and
thus g is well-defined and is independent of € and given by (5.2.2).

2. As noticed in [71], the rate of decay Ao can be taken equal to the spectral gap of
Ll s (u=1/2) (see [25] or Chapter 4), for s as large as wanted, when k is big enough

(and we obtained a constructive threshold).

3. Finally, we emphasize that in the case ¢ = 1, the result holds for all k > 2. This
is almost the minimal regularity L? (1 + ]v|2> for the Boltzmann equation, that is

solutions with bounded mass and energy.

5.2.3 Existence, uniqueness and trend to equilibrium

A physically relevant requirement for solutions to the Boltzmann equation are that their

mass, momentum and energy are preserved with time. This is also an a priori property

of the Boltzmann equation on the torus (see [112] Chapter 1 Section 2 for instance) which
reads
1
vVt >0, / v fe(t,z,v) dedv = / v fe(0,z,v) dxdv.
Tdx R4 "U‘Q Tdx R4 "U‘Q

If one expects trend to the equilibrium u(v) for the solutions f. = p + ehe of the
Boltzmann equation (5.1.4) then it must be that

1
vt >0, / v he(t,x,v) dedv = 0,
TdxR4

[ol?

that is IIg_(he(t,-,-)) = 0 for all ¢, which is a property that is indeed preserved along
time for solution to the perturbed Boltzmann equation (5.1.5), see [23] or Chapter 4 for

instance.
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5 The Incompressible Navier-Stokes limit in polynomial weighted spaces

We hence state the following theorem answering the Cauchy problem and the expo-

nential convergence towards the equilibrium pu.

Theorem 5.2.3 Let B be a Boltzmann collision kernel satisfying (5.1.1)-(5.1.2)-(5.1.3)
and letp=1 orp=2.
There exists 0 < eq < 1 and By in N such that

o for all o, B in N such that 8 > By and o < B and for all k > 2 define

& =W wir ("),

o for any X\ in (0,X0) (Ao defined in Theorem 5.2.1) there exist Co 8, Nap > 0 such
that for any 0 < € < g4, for any distribution 0 < fin, = p + €hiy:

If
(i) hip is in Ker(G.)* in &P,

(i) Nhinllgr < N

then there exists a unique global solution f. = f-(t,x,v) to (5.1.4) in EP which, moreover,
satisfies fo = M + eh. > 0 with:

e h. belongs to Ker(G.)* for all times,
Ihellen < Cag llhinllgn €™

The constants Cy 3 and nq.p are constructive and depends only on «, B, k, d, X and the

kernel of the Boltzmann operator.

5.3 The linear part: a C’-semigroup in spaces with polyno-

mial weight, proof of Theorem 5.2.1

In this section we focus on the linear part of the perturbed Boltzmann equation in
Wy Be ( <v>k) We thus consider the following equation:

Oh = G- (h). (5.3.1)
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5.2.1

5.3.1 Strategy of the proof

If we denote & = W WP ((v)*) and E = H , (n=/?) we have that E C &, dense with
continuous embedding for s large enough. [23] Theorem 2.1 (with the norm of Theorem 2.4)
states that G. = (G:)| generates a strongly continuous semigroup in £ with exponential
decay (these results are given in Chapter 4 Section 4.2). Theorem 5.2.1 can therefore be
understood as the possibility to extend properties of G¢ in a small space E to G, in a
larger space €.

This issue of extending spectral gap properties as well as semigroup properties has
been first tackled by Mouhot to obtain constructive rates of convergence to equilibrium
for the homogeneous Boltzmann equation [¢0]. Recently, Gualdani, Mischler and Mouhot
[51] proposed a more abstract approach that allows to deal with the full linear operator.
In their work, they proved that if some conditions on G. and G. are satisfied then we
can pass on some semigroup properties from E to £. The main argument of the proof of
Theorem 5.2.1 is to show that we can use their result in our setting, independently of e.

To be more precise, we give below a modified version of their main functional anal-
ysis theorem which is combination of Theorem 2.13 and Lemma 2.17 where we added
dependencies on €.

We refer to [71] Section 2 for the definition of hypodissipativity (roughly speaking it
is a dissipative property in a different norm on a Banach space) and the definition of the
convolution of two semigroups of operators (denoted by the symbol (x)). In the sequel
we will use ¢'(E) for the set of closed operators on E and #(F) for the set of bounded
operators on E. For any operator G in ¢ (F) we denote R(G) its range and 3(QG) its

spectrum.

Theorem 5.3.1 (Modified extension theorem from [51]) Lete be a parameter such
that 0 < e < 1.

Let E, € be two Banach spaces with E C £ dense with continuous embedding, and consider
G. in € (E), Ge in € (£) with (G:)|p = G and a > 0.

We assume the following

(A1) G. generates a semigroup S, on E, Ge+a is hypodissipative on R (Id —Ilg_,) and

Y (G:)N{z €C, Re(z) > —a} = {0} is a discrete eigenvalue.

(A2) There exists A.,Be in € (£) such that G. = A. + Be (with corresponding restrictions

Ac, B: on E) and there exist some “intermediate spaces” (not necessarily ordered)
E=E&;,&E1,....,&6, 6 =€

such that, still denoting B; = (B:)|¢, and A := (Ac)lg,
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5 The Incompressible Navier-Stokes limit in polynomial weighted spaces

(i) (ZS’E +a/ 52) is hypodissipative on E;;
(ii) Ac € B (&) with | Ac|| e,y < Ca/e?;
(iii) there are some constants ly,l; e N*, C >1, K € R, a € [0,1) such that

eKt/52

Ve 20, Tz, e S Ca

for 1 < j < J—1, with the notation T} := (.AESBE)(*Z).

Then G. is hypodissipative in & and for all a’ < a there exists n =n(a’) = 1 and some

positive constants Cy and C!, such that

Ca’ _ ’t/ 2'
i a't/em (5.3.2)

ITn ()l 56y <

n—1

S6.(1) = S (0TIg + 3 (~1)' (14~ Ig) S, +Ty(t) + (~1)" [(1d — Tig) Sz ]+ Ty (); (5.3.3)
=0
85,0~ Se. (0115 - (-1 (14 = Mg) S« Tuto)| . < Clrmrgigrye ™, (53

where I1g has been defined in (5.2.4).

We will use Theorem 5.3.1 to directly prove Theorem 5.2.1. Indeed, [23] Theorem
2.1 states that G generates a strongly continuous semigroup with exponential decay in
E = H;, (/fl/ 2), which is the required assumption (A1) (properties about the spectral
gap of the spectrum can be found in [1]). Therefore if G. fulfils hypothesis (A2) then it
generates a strongly continuous semigroup, with an exponential decay of order a’ for all
a < a, since for all o, B, n > 0, all t > tg > 0 and all 0 < 27 < 7,

o

+ n_t / !
=3¢ 7 < Coapt® P32 < gyt e < Crpappe T, (5.3.5)

for 0 <e < 1.

5.3.2 Decomposition of the operator and assumption (A2)(ii)

In this section we find a decomposition G- = A. + B that will fit the requirements
(A1) — (A2) of Theorem 5.3.1. This decomposition has been found in [5!] in the case
e = 1. We will use exactly the same operators but including the dependencies in €. All
the results presented in the rest of this section are true for ¢ = 1 (see [51] Section 4) so we

will try to relate as much as possible our computations with the ones for ¢ = 1.

For 0 in (0,1), to be chosen later, we consider ©5 = O5(v, vi,0) in C* that is bounded
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5.2.1
by one on the set
{lvf]<d6' and 26<|v—0v, <6 and |cosf] <1-—25}
and whose support is included in
{Iv| < 2071 and < |v—wv,|<207' and |eosf| <1 —6}.
We define the splitting
ga — AS) + B§5)’
with )
APh(v) = = / Op [1l ! + 1/ b, — phy] b(cos 0) [v — v.|" doduv,
€% JRdxsd—1
and ) )
BOn(v) = By h(v) — SV()h(©) = v Vah(o),
where
1
Béi)h(v) = 2/ (1 —0y) [pih + W'h, — phy] b(cos 8) [v — v,|” dodv,
’ €% JRdxsd—1
and v(v) is the standard collision frequency
v(v) = / b (cos ) v — vi|” px dodu,.
R xSd-1
Note that there exists vy, 1 > 0 such that
Yo e RY wo(1+ |u|") < v(v) < vi(1+ |v]?). (5.3.6)

We have that

1 J L g6
AP = AP and BY) = 5BY).

We therefore obtain the following controls on .A?).

Proposition 5.3.2 For all 0 < e < €%, for any q in [1,+00] and o > 0, the operator .,45;6)
maps L{ into W1 with compact support.
There exists Cs 4, Bs > 0 independent of € such that

Cs.a
vhe L, supp (ADR) € BO,Ry), |[ADh]| < =5 ]y
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Moreover, for any p in [1,+00] and for all h in LILE,

42n

< [ A9 (inil )

LirP L}

Remark 5.3.3 We notice here that this Proposition gives the point (A2)(ii) of Theorem
5.3.1 if the &; are Sobolev spaces.

Proof of Proposition 5.3.2 The kernel of the operator Affs) is of compact support so its

Carleman representation (see [27]) gives the existence of &) in C2° (R? x R?) such that
1
AP p(v) = 62/ kO (v, v,)h(v,) dus, (5.3.7)
Rd

and therefore the control on HAEJ”hHWm is straightforward.

comes directly from Minkowski’s integral inequality which

The control of HA&‘”h‘

states

pql/p 1/p
[/ </ k(5)(v,v*)h(x,v*)dv*> dm} < / </ k(‘s)(v,v*)ph(x,v*)pd$> dvy.
Td \JRd Rd \.JTd

LILE

5.3.3 Dissipativity estimates for Béa), assumption (A2)(7)

One can find in [51] proof of Lemma 4.14 case (W2) and (W3) the following estimate on

the operator Béd) in the case ¢ = 1.

Lemma 5.3.4 For all p,q in [1,4+0o0], for all k > 2 and for any 6 in (0,1) and all h in
LILE ((v)k),

k q—p p—1 13(9) q
Ad<v> 1 Hh’”Lg (/]I‘d Sgn(h‘) ’h’ Bl hd$> dv < [Ak—'y/q’,q((s) - 1] ”h”Lng(<v>klll/q) ;

where ¢ is the conjugate exponent of 1/q and Ay 4(0) is a constructive constant such that

_ 4 1/q 4 1-1/q
%L%Akyq(‘s) = ¢q(k) = <k‘—|—2> <k‘—1> )
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Remark 5.3.5 As noticed in [01] Remark 4.3, the quantity ¢q4(k) is strictly less than one
Jor k bigger than a constant k;*. The constant k; we are considering is not optimal and
is such that ¢q(k —v/q') < 1, where ¢’ is the conjugate exponent of q. This appearance of
k—~/q is due to a loss of weight of order v in the estimate of the spectral gap, see
proof of Proposition 5.3.6.

In the case of the Boltzmann operator with hard potential and angular cutoff, point
(A2)(7) is fulfilled by B for § small enough. This is the purpose of the following lemma.
We recall here that vy = infd(y(v)) > 0 and that we define

veER

Fweowsrqon = > [lf]

|Ul+|j| <max(a,B)
i< lll<B

LILE ((0)k)

Proposition 5.3.6 Consider p,q in [1,+o0], k > kj, defined by (5.2.3), and a, 3 in N
such that o < 5.

Then there exists 0y 4 in (0,1) such that for all 0 < 6 < 0y 4 there exists \g = Ao(k, q,9) in
(0,10) such that for all0 <e < 1,

o \o(k,q,0) tends to \j(k,q) as § goes to 0,
o \(k,q) tends to vy when k goes to 400,

o (Bg‘s) + )\0/52> is dissipative in W TWE?P ((v)*).

Proof of Proposition 5.3.6 Let hy be in WS IWSP ((v)*) and considert h to be a

solution to the linear equation
Oih = BOh = B%h———h ﬂ)Vh (5.3.8)

with initial value hyg.
Since the z-derivative commutes with the equation we can consider only the case when
B = a. The proof is split into two parts. First we prove Proposition 5.3.6 in the case

a = 0 and then we study the case with v-derivatives.

Step 1: the case o = 0. Take p, ¢ in [1,+00).
We recall that

1/q
||h||Lng(<U>k) = [/R 1 + [o]® (/ |h|P d:r) dv] :
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Therefore we can compute

d
S cgze () = WAl gy

></ (1+\vy’“)q|yh|y%;p </ sgn(h)\h|p18£5)hdm> dv.
Rd “ Td

(5.3.9)

Observing that

1
/ sgn(h) |h|P~ v - Vohde = ~v - / V. (|hF) dz =0,
Td p Td

we deduce

at ||h||LgL§( ) — |’hHLqu(<v> F)

1 Y _ B s
< [ (et i (s p=t 500 ) an

We can therefore use Lemma 5.3.4 which leads to

1
% HhHLng((Uyc) < _? [1 - Akf'y/q/,q( )] HhHLqLP( k l/q) H ||LL1LP(< Y )7 (5310)

We already noticed that Aj_j /g 4(0) is strictly less than 1 for § smaller than some dy , (see
Remark 5.3.5). Therefore, because v(v) > 1y for all v we have that for all § smaller than
0k,q the following holds,

d Yo
2 g () < =5 (1= Aoayg O] 1PNy oo (e -

This concludes the proof of Proposition 5.3.6 for « = 0 and 1 < p,q < +00. The cases
p = oo and ¢ = oo are respectively dealt with by taking the limit p — co and ¢ — o
which is possible since 6, 4 is independent of p and can be chosen to converge to a strictly

positive constant when ¢ goes to oo, thanks to the definition of Ay 4(0).

Step 2: the case with v-derivatives. Take p,q in [1,+oc] and o = 5 = 1.
Since the x-derivative commutes with (5.3.8) the equation satisfied by h, we have that
(5.3.10) holds for a-derivatives. Notice that 1 — ¢ < 0 gives

d

= (10l 2o oy + I9ahl g e

Ji-1/a (5.3.11)
-2 [1 - Akf'y/q’,q((s)] (HhHLZL?;((U)kyUQ) + HvthLng((wkyl/q)) :

<
22
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Applying a v-derivatives to (5.3.8) yields

oV = BI(V.h)+ (V,BD) (k)

1
= BY(V,h) - gvggh + RW(h),

where RE(h) = (VuBE)) (h) = £V, )k = ZRP ().

From (5.3.11), our computations in Step 1 with § < d;, and the following norm

HhHWUlqua}vP« Vk ) HhHLqu( ) + HV hHLqu( (v)k ) +n vahHLng((v)k) )

n

with n > 0 to be fixed later, we obtain

d
dat ||h||le‘1W17P(<U>k)n
1-1
L /q[ —A ()] (thl + | Vahl) )
= £2 k=v/q',q LELE ((vykvt/a) el L3 L2 ((yku/a)
yl 1/q
-n : [1_Ak—w/q’7q( )} HV h”LqL”( k 1/q)

IV, ol >)/Rd (") 190hl1gy” < /T sgn(h) [Voh"™! vxhdx> dv
+ =3 2 HV hHLqu( o)k )/]Rd ((v)k>qHVvthL§p </Td sgn(h) |V, h|P~? 6)(h) dx) dv.

We take the absolute value and use Holder inequality twice on the last two terms which

makes the terms in V,h disappear, and this gives

d
at Mhwwie (o),
1-1/q
v
S - 052 [ _Ak—v/q’,q(‘;)] (”hHLng(@)kyl/«z) +77||Vvh||Lng(<v>kV1/q)>

1 _ _
+ 22 (5’7’/0 Va _ Vé 1/q [1 — Ak—v/q’,q((s)D Hvxh||Lng(<U>k,,1/q)
+ RV

LILE((0)F)

One can find in [51] proof of Lemma 4.14 case (W2) and (W3) the following estimate

|RP )|

L3L£(<U>k) < C& ||h||Lng(<v)kV1/q) 5

where Cs > 0 is a constant only depending on §.
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Because € < 1, this latter estimates yields

d 1
at HhHWJ,qW;,p(@)k) §*2 (an —1/q [1 — Ak,,y/qf,q((s)]) ”h”L%Lg(@)kyl/q)
1 -1 1-1
+ ? (77’/0 . R fa [1 - Ak—’Y/ql»Q< ]) HV hHLqu( k l/q)
Vl—l/q
-0 052 [1 o Ak‘—’v/Q’vq((S)] vah||Lng(<v)kl,1/q) ,
(5.3.12)

which concludes the proof if we take 1 small enough in terms of §, for § < oy .

The case where 1 < a = 3 is dealt with in the same way with the norm

Ilygawer oy = o 1 [&fh)

T ogljlHl<a

LILE((w)k)’
with n small enough in terms of §. m

5.3.4 Estimates on the iterated convolution product, assumption (A2)(iii)

In order to use Theorem 5.3.1, it remains to show that our equation (5.3.1) satisfies

(+0)
hypothesis (A2)(ii7), that is we need to control the iterated quantities 7} := (Ag B(a))

for some [ in N. The following proposition describes such controls when p = 1.

Proposition 5.3.7 Consider k > k;, defined by (5.2.3), and s in N .
For any § in (0,0k,4] and any X in (0, o) (0,4 and Ao defined in Proposition 5.3.6), there
exists C1 = C1(\y,0) > 0 and R = R() > 0 such that for any t > 0,

Vn e N, suppT,(t)h C K := B(0, R)

and
Aot
Vs> 1, | Tu(0hllysi i < oS S Il o (5.3.13)
)\Ot
Vs 20, [Tk ) < cleT 1 llys ey - (5.3.14)

Proof of Proposition 5.3.7
Most of the proof is an adaptation of [51] proof of Lemma 4.19 to keep track of the

dependencies on €. We will refer to it when we are using some of its computations.

Control of T1(t)h: The a-derivatives commutes with T} (¢) and therefore it is enough

to consider h in W' Wl ((v)%), with s > 1, and to control HTl(t)hHWs+1,1W1,1(K). This
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5.2.1

gives

”Tl(t)h”Werl,le%,l(K) < ”Tl(t)h’”WjJrl’nglc(K) + HvrTl(t)h”Wj“’lL}c(K)'

(5.3.15)

The first term is easily dealt with thanks to the estimate on Aé‘”, Proposition 5.3.2,

and the dissipativity property of Béé) , Proposition 5.3.6,

_ || 40 -9t
I3 0)blhwzonya) = A9 S0k gy < 26 Wlanagn - (5310
For the second term, define f(t) = S s h and
Dy = 'V, +V,. (5.3.17)
By direct computations we have that
VLT (Oh = AD(Df) — (V.AD) §,
which leads to, by Proposition 5.3.2,
VLT (t)h <% ip 5.3.18
IV bl ) < 55 (1Dl ey + 1oy (e - (5.3.18)
The dissipativity property of Béa), in particular (5.3.10) with ¢ = 1, yields
d Ao
at HfHL_Jz,v((v)k) < 2 ||f||L}E’v(<v>kV) . (5.3.19)
Direct computations yields
1
Ou(Dof) = B (Dif) + 5T,
where
T =v, (BP()) - B (V. () (5.3.20)
is independent of ¢ and satisfies (see [51] proof of Lemma 4.19) for all g in L} ((v)*v)

|7

< .
sy S G190z

In the same way as proof of Proposition 5.3.6 we obtain
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d Ao Cs
1PNy ey < =2 IPef iy prn) + =2 IF Ny (oo - (5.3.21)

We then consider \j in (0, \g) and define n = (A\g — Aj)/Cs. We compute, with (5.3.19),

d [ 2,
% |:652 (77 HthHL}c,v(@)k) + ’f‘L%,u(@)k))] <o
and thus
Y
1Du gy q#) + WLy ey <72 Wbl gy ey (5322

To conclude we plug (5.3.22) into (5.3.18) and we combine it with (5.3.16) into (5.3.15).
This yields, because s > 1,

2%,
e <2
ITL Ol wir i) S €5 Il a o)

which implies the expected result (5.3.13) because 77 (t) commutes with x-derivatives.

Control of T»(t)h: For s > 0 we can interpolate (for interpolation theory in Sobolev
spaces see [13] Chapters 6) between (5.3.16) and (5.3.13) to get

_ 2oy
e =2
1T @) llyyp 12 ey < CeTﬁ rllvwst 2y cpry

Then, we firstly use the inequality above and secondly (5.3.16) to obtain

t
HTQ(t)hHWZS"‘;I/z’l(K) < /0 HTl(t— S)Tl(s)hHW;;l/Q’l(K) ds
_AO—A()S

C ,ﬁ te 2
< e /Ot_sds A/ ——

which is the expected result (5.3.14).
[

The aim is to link our space LIL% ((v)k) to the space H; , (u‘1/2). We thus state the

following control on the iterated convolution in the case p = 2.

Proposition 5.3.8 Consider k >k, defined by (5.2.3), and s in N .
For any & in (0,0k4] there exists Co = C2(d) > 0 and R = R(5) > 0 such that for any
t>0,

Vn €N, suppT,(t)h C K := B(0, R)
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5.2.1

and o
T
Vs 20, [T2@)hl sz g < 120 2. oy - (5.3.23)

= e5/2
Proof of Proposition 5.3.8 Consider h in Wiz ((0)¥), s in N.
This Proposition is easier than when p = 1 because there exists velocity averaging
lemmas in this framework, as discussed in [5!] Remark 4.21. The z-derivative commutes
with 77 and therefore we suppose there is no derivative in space.

Define f(t) = Sy, (t)(h) so that f is solution to the kinetic equation

1
8tf + gv . vmf = Se(t,l‘,’U),

with sc(t,2,v) = - 2vf + E_Qb’gizf.
Let j be a multi-index such that [j| < s. We apply 88 to the latter equation, which
gives
J 1 ' j 1 i
ACHE 0V, (947) = dfsc(t.,0) + - > audif, (5.3.24)
lil+121=l4]
where a; ; are non-negative numbers.

A classical averaging lemma (see [20] Lemma 1 and [2!] in which we emphasize the
dependencies in ¢) reads, for (5.3.24) with 88f(0,x,v) = Ggh(x,v), for all ¢ in D (RY)

3 f (t,2,v)1(v) dv

R Lz (H?)
(5.3.25)

< % Hagh(x,v)u% + Hag;Se

1 i
ot > aydif

oY i|+|l=|4
il +1=1i] 2.,

We use [51], Lemmas 4.4 and 4.7, in order to bound the terms involving Béi) = 5*2852

we have that
1 C C _2g,
HSaHH;’U((wk) < ) HS]~||H§7U(<'U>19) < 22 HfHH;’U(<v>ky) < 22°¢ < HhHH;’U(<'y>ky)7

where the last inequality comes from the hypodissipativity properties of Sg_(t), see Propo-
sition 5.3.6.

Using the dissipativity properties of Sg_(t) one more time we deduce that

C
HTl(t)hHLg(H;fvm((v)k)) < S Pl (i) - (5.3.26)
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To conclude we notice that fot T1(t — s)T1(s) ds is a continuous linear operator on the

Hilbert space Hj#ﬂ( K) and thus we can see it as an element of HSH/Q( K) by Riesz’s
representation theorem. Hence, thanks to Cauchy-Schwartz,
t
Ty = | ( /O Ti(t = 9Ti(5) ds ) (1) e
< bl ey [ 172650735 )H%(m (o o) 2
1/2
< Wiy (1109 ) )
1/2
2
. ( [ M, ) .09 i)
1/2
C C'A 20
< ”hHH;’U(@)ku)f_ﬁ/Q( 0 E—Qe £2 dS)
C
S on 1Allezg., oy

where we used Proposition 5.3.2 and the fact that SB<5) is a contraction semigroup on Hj ,
with spectral gap \)/e?
|

5.3.5 Proof of Theorem 5.2.1

As we explained it in Section 5.3.1, the proof of Theorem 5.2.1 is direct from the application
of Theorem 5.3.1. This theorem is clearly applicable in our case and we emphasize it
through the extreme case of no derivative in space or velocity variables.

Indeed, we consider s in N to be chosen big enough later. We define & = L{LE ((v)k)
and F = Hj ( -1/ 2) and we have E C & for s big enough (dense with continuous
embedding). Indeed in the case ¢ > 2 and p > 2, standard Sobolev embeddings (see [22]
Section I1X.3.) imply E C L{LE (p *1/2). In the case p < 2 we have, on the torus, L2 C L%
and H: C L2 by the same Sobolev embeddings. Finally, in the case ¢ < 2 we have that
L? (/fl/2) c L ((v}k) (it can be done by a mere Cauchy-Schwarz inequality) and the
same Sobolev embeddings give H (,u_l/Q) crL? (,u_l/z).

On the torus we have the following embedding: L} C Ll. Thanks to Proposition 5.3.2

and Proposition 5.3.6 we obtain (same arguments as (5.3.16))

C ,70
”Tl(t)h”g <C HAgé)SB(&h’ < 52 t”hHLlLl ((v)k) * (5327)

€

LiL;(K)

We therefore define & = LILL((v)F).
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Then we define by &; = Wéﬂ,_g)/g’l((v)k) for j from 2 to m with m big enough such that
Wi (k) € L2, ((0)F). Then we denote & = HYy ™ V*((0)%) up J — 1 where
HE "2 (0)) € B

Point (A1) of Theorem 5.3.1 is satisfied thanks to [!] and [23] Theorem 2.1 (with the
norm of Theorem 2.4), point (A2)(4) by Proposition 5.3.6 and point (A2)(i7) by Proposition
5.3.2. Finally, point (A2)(#) is given by (5.3.27) for £ and &, then by Proposition 5.3.7
(5.3.14) up to &, and by Proposition 5.3.8 from &,, to £; and E.

5.4 An a priort estimate for the full perturbed equation:

proof of Theorem 5.2.3

In this section we work in W' H2 (<v>k) or in Welwit (<v)k), with o < 3 on the full

perturbed Boltzmann equation

Ouh = Go(h) + 1 Q(h ).

5.4.1 Description of the problem and notations

When e = 1, the linear part G. has the same order of magnitude than the bilinear term
@ in the linearized Boltzmann equation (5.1.5). In this case, Theorem 5.2.1 suffices to
obtain existence and exponential decay since the contraction property of the semigroup
Sg, controls the bilinear part for small initial data (see [51]).

In the general case, Sg. only generates a semigroup with a spectral gap of order 1,
insufficient to control e1Q. However, [70][23] (and Chapter 4) show that a careful study
of e71Q compared to G yields existence and exponential decay of solutions to (5.1.5) in
H;, (,u_l/ ?) for s large enough (see Theorem 5.4.7 for an adapted version of this result).
Our strategy is to use the same kind of ideas as when we extended the semigroup properties
from Hﬁv (,u_l/z) to Wf’leﬁ ((v)k) and Wt f’l (<v>k) but including the bilinear term.
Namely, we shall decompose the partial differential equation (5.1.5) into a system of partial
differential equations from W' HY ((v)*) or wetwi! ((v)*) to HP (,u_l/z) and use the

perturbative estimates of [23] (that are given in Chapter 4).

As noticed in Remark 2.16 of [51], Theorem 5.3.1 extending the semigroup generated
by G. in H*® (,u_l/2) to LEL ((v)¥) can be interpreted as a decomposition of

of =G:f,

into a system of partial differential equations, involving operators G. = A. + B, (defined
in Section 5.3.2), with f = f! +--- + f” satisfying
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o flisin LLL ((v)*) and fl, = fin in Ker(G:)*,
o forall2<j<J—1, f7 is in &; andfngO,

e f/isin H® (/fl/z), {L = 0 and in that space we can use the contraction property
of Sg..

We will decompose the linearized Boltzmann equation in a similar way than the one

explained above. We shall define a sequence of spaces (&;) In each space &;, 1 <

1<<J”
j < J —1, a piece of the bilinear term, of order ¢!, will be added and controlled by the

dissipativity property of Béé), of order e72. Contrary to the study in the linear case, the

bilinear operator generates terms involving functions in all the spaces &; which have to be

compared and controlled. This imposes to construct (&), <j<g 82 nested sequence.

The difficult part of the linear operator, namely Ag), enjoys a regularising effect and
could therefore be treated in more regular spaces. Of course, our decomposition will be
much easier since we solely want to go from an exponential weight into a polynomial weight

Sobolev spaces, without losing any derivatives in z or v.

In order to shorten notations we define, for p = 1,2 and k to be defined later,
g = woslpyhe <<v>k) and F=HP, (,,,—1/2) . (5.4.1)
We take h;, in EP and we decompose the partial differential equation,
O = G.(h) + 2 Qb ) = AD (1) + BO () + ~Q(h. 1)
into an equivalent system of partial differential equations for the following decomposition
h(t,z,v) = h2(t, z,v) + hl(t, z,v), (5.4.2)

with

1. In &P, hY_, = hyy, and
1 2
O = B () + ZQUH, h°) + ZQ (W, b, (5.43)
2. In E, h}_, =0 and

Ot = G(h) + QU 1) + AL (1), (5.4.4)

The aim of this Section is to establish the following estimate of solutions to the system
(5.4.3) — (5.4.4).
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Theorem 5.4.1 Let p =1 or p =2. There exist 5y in N and ¢4 in (0,1] depending on d
and the kernel of the Boltzmann operator such that:
For all B > By, for any 6 in (0, k1] and any Xj in (0, Xo) (0,1 and Ao defined in Proposition
5.3.6) there exist Cg, ng > 0 such that for any 0 < € < eq and hyy, in EP,
if

(Z) ||hin‘|gp < 13,

(ii) (h°, h') is solution to the system (5.4.3) — (5.4.4),

then

Hho + thgp <Cp Hhianp e M.

The constants Cg and ng are constructive and depends only on [3, d, §, X and the kernel

of the Boltzmann operator.

Remark 5.4.2 (Link with Theorem 5.2.3) The existence and uniqueness for the per-
turbed Boltzmann equation (5.1.5) in EP has been proved for e = 1, that is equivalent of e
fized with constant depending on it, in [51] Theorems 5.3 and 5.5 respectively. The con-
stants, as well as the smallness assumption on the initial data, in the theorem above are
independent of € and therefore this a priori result combined with existence and uniqueness
developed in [71] and in [25] (for existence and uniqueness in E, see statements in Chapter

4) implies the existence and uniqueness independently of € which is Theorem 5.2.3.

The next subsections deal with the estimates one can get for solutions to the system
(5.4.3) — (5.4.4). We study each of them independently and the a priori exponential decay
will be a straightforward application of these results together with a maximum principle
argument.

Section 5.4.2 focuses on the a priori study of the equation in £P. Section 5.4.3 deals
with (5.4.4) in E. Finally, Section 5.4.4 gathers the previous results to prove Theorem
5.4.1.

5.4.2 Study of equation (5.4.3) in &

In this section we prove the following general proposition about the equation taking place
in &P = Wtwpr ((v)k), for p =1 or p = 2. We define the shorthand notation

£ = welwhe ((@’m) .
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Proposition 5.4.3 Letp=1orp=2and0<e < 1. Let k> ki =2, 3> 2d/p.
Let h;y, be in EP and ht in EV.
For any ¢ in (0,01] and any X in (0, Xo) (0,1 and N defined in Proposition 5.3.6) there
exist no > 0 such that
if
(i) ”hinHSP <o, HhIHé‘f < 1o,

(ii) hO satisfies hY_q = hi, and is solution to
0 ©) 10y L L0 20y, 2 0 1
Oph” = B (h )+EQ(h h )‘i‘gQ(h hY)

then ,
0 ~29¢
1Rlgp < €72 lanlles -
The constant ng is constructive and depends only on &, N, and the kernel of the Boltzmann

operator.
We need to control the bilinear term (), which is given by the following lemma.

Lemma 5.4.4 For all p=1,2 and o, B in N such that 8 > 2d/p, there exists Cg, > 0
such that oll f and g

1R, )ler < Cp (llgllez 1fller + Ngller 1 £1lep) -

This lemma has been proved in Lemma 5.16 in [5 1], which is adapted from interpolation

results in [] or duality arguments as in [%/] Theorem 2.1.

Proof of Proposition 5.4.3
Consider ¢ in (0, dy,1] and A in (0, Ag). Take p =1 or p =2 and § > 2d/p.
We have that
oih? = BO (h°) + éQ(hO, h%) + gQ (h0,n1).

(9)
3

Thanks to the dissipativity of property of Bz "/, more precisely the proof of Lemma 5.3.6,

we have

d A 1

g 11 < =50 10 lgg + 2 (@R, H) + 2QUH0, W), )|
A 1

<=2 [%lleg + 1R 1%) + 2Q(R%, 1Y),
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where we used the scalar product notation to refer to the product operator appearing in
WS WEP when one differentiates ([ Al] et ¥ (of the same form as (5.3.9)). For the

second inequality we used Holder inequality between L% and Lg/ P ingide the product

WP ((v)

oper ator:
/ gn(h )‘h ‘ ' (h )dx< Hh ‘ Zg,:lH (h )HLIx'
Td

Then estimating () using Lemma 5.4.4 yields

d 1 (A 2
e <= 120 = 2oy (110 4 210N )| g 549
we recall vgp = inf (v(v)) > 0.
veERM
Therefore, if
Ao — A Ao — A
[ |gr < 5_1(52050) and  |[he=ol[¢r < 5_1W=
P P

then HhOH op 18 always decreasing in time with

o

d
E1l < -2

(s

£

which hence yields the expected exponential decay by Grénwall Lemma.

5.4.3 Study of equations (5.4.4) in E

In the space ' = Hg,v (,u_l/Q), solutions to the perturbed Boltzmann equation enjoy an
exponential decay. More precisely, [23] derived a precise Gronwall that we will now use to

obtain estimates on the solution h'. We will use the following shorthand notation
B, = HP, <M_1/2V1/2)

In this section we use the previous theorem to obtain exponential decay of h' in E. This
result is stated in the following proposition, where C? denotes the space of time-continuous

functions.

Proposition 5.4.5 Letp=10rp=2,0<e<e? <1, B> 50 and a < B (eq and sg
being constructive constants that will be defined in Theorem 5.4.7).

Let hiy be in EP and hY in CPEP.

For any ¢ in (0,061] and any X, in (0, Xg) (0,1 and N defined in Proposition 5.3.6) there
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exist m, C1 > 0 such that
if

(1) [hinller < 1,
N EDY
(ii) there exists Cop > 0 such that Hh(]ng < Cpe~ 22! |\ hinl|gp »
(iii) h' satisfies hi_y = 0 and is solution to

oht =G.(h') + %Q(hl, hY) + AL (R0)

then

HhIHE < Cle_)\ét ||hin||gp

The constants Cy and ny are constructive and depends only on §, X, and the kernel of the

Boltzmann operator.

In order to prove Proposition 5.4.5 we need a new control on the bilinear term.
For any operator F' : E x E — E, we will say that F' satisfies the property (H) if the
following holds.

Property (H):

1. for all g', g% in E we have 7y, (F(gl,gQ)) = 0, where 7, is the orthogonal projection
on Ker (L) in L? (M’1/2) (see (5.2.1)),

2. for all s’ > 0 there exists F f; : E x E — RT such that for all multi-indexes j and I
such that [j] + [I] < &,

’<8Z]F(gl’g?)’93>L%,v(lf1/2) < Fr (91792) H93HL%7U(M71/2V1/2) )

with Fy < Foth,

Lemma 5.4.6 The Boltzmann linear operator Q satisfies the property (H) with

Vs >d, 30 >0, Folg.h) < Cs[Ilflglallg, + 1f1lg, llgllg] -

The latter control on the bilinear part is from [23] Appendix A.2 (see Chapter 4 Ap-
pendix 4.A4).
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Proof of Proposition 5.4.5 We state below the estimate derived in [23] (note that this
is a version of [23] Theorem 2.4 extended by estimates proved in [23] Propositions 2.2 and
7.1).

Theorem 5.4.7 There exist 0 < g4 < 1 and so in N such that for any s > so and any \j
in (0, \g) there exists ds, Cs > 0 such that,

e for any hin in Hy , (,u_l/Q) with
HhmHH;,v(u‘l/Q) < 4,

e for any operator F : Hj , (/fl/2) x H3, (M*I/Q) — Hj, (;fl/2) satisfying the
property (H);
Then for all 0 < e < eq and for all g*, ¢° in H;, (,u_l/Q), if h is a solution to

1
Oth = G.(h) + EF(91,92)

hi—o = hin,

and h is in Ker (G¢) for all time, then

o\

d
+ =2 2 _2%0
1

< 2
||h”§{;’v(u71/2y) + Cs (]_—F(g1’gz)) .

Now, let \” be in (0, \), s > sp and 0 < € < &4.
The proof of Proposition 5.4.5 will be done in two steps. First we study the projection of
h! onto Ker (G.) and then its orthogonal part.

Estimate on the projection part. We have that, see the decomposition (5.4.2),
that h' = h — kY with h solution to the perturbed Boltzmann equation and thus satisfying
IIg(h) = 0. We therefore have that

lg(h') = ~TIg(n%).
Moreover, Theorem 5.2.1 tells us that IIg and Ilg coincide on E and thus
g (h') = ~Ig(h%),

and assumption (i7) together with the shape of IIg (see (5.2.4)), there exists a constant
Cr > 0, depending only on the dimension d and s and the constant Cp, such that

Ao+

)\l
[Te(h)] 5, < Cne™ 27" hinlles (5.4.6)
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Estimate on the orthogonal part. Applying II} = Id — Ilg, the orthogonal pro-
jection onto (Ker (G:))" in wa (/ufl/ %), to the differential equation satisfied by h' yields

o (M) = Gelh!)+ 1 (ZQUit ) + A9 )
= G. (Hé(h1)> + 115 CQ(hl, Ay + A@(ho)) : (5.4.7)
Moreover, we have by definition of Il and 77, (see (5.2.4) and (5.2.1)) that
(mp(h) =0) = (Ha(h) =0)
and therefore

I (Q(h', k') = Q(h', h1),

since @ satisfies property (H).1. by Lemma 5.4.6. Plugging the latter equality into (5.4.7)
gives

o (Hé(hl)) =G, (Hé(hl)) + %Q(hl, Yy + 114 (,4§5>(h0)) .

By definition, II5(h!) is in (Ker (G.))* for all time and thanks to the control on
the Boltzmann operator @ in E (Lemma 5.4.6), we are able to use Theorem 5.4.7 with
Ao > Aj to which we have to add the source term IT§ (Aﬁ‘” (ho)). This yields the following

differential inequality, where we denote by C' any positive constant independent of &,

— [|I&(hY) (5.4.8)
dt ”
<- AO e+ O (Fpht 1) + |11 (AD R ) )
< =28 g [, + I 1, + s (490) |, ]

where we used a Cauchy-Schwarz inequality on the last term on the right-hand side.

Then we can decompose ht = Il (h') 4+ II5 (k1) to get first

11 11

2
b <4HW ) e’

8
+ = a7, [mEe!
0

|z, |-,

+ eI,
0

into which we can plug the control on |[IIg(h') HE we derived in (5.4.6) to obtain, with
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HhmH m,

11 191,

2 2 2 _2(0+A0)
<d|mamd], [mswh, +ont [me], +0e Il
(5.4.9)

And finally, this inequality together with assumption (i7) gives the existence of a con-
stant C'4 > 0 such that

A

e (a0, o], < % o 55 o] o0

I

We plug (5.4.9) and (5.4.10) into (5.4.8) and obtain, with C' and C’ being positive

constants independent of ¢,

gl <= [ - (afson] +ont)] s

2
E,
1 ’\0“‘*0
+0 (Il + 5 il t

e R

We now choose 7; sufficiently small so that

)\// _ )\/

2 0 0

0771 < 2 )
Yo

which in turns implies

i e[, <= [ - g | Jnéon)

2
i [meeh ], <=5

E,

i (5.4.11)
) T

1
4
+0 (Wil + 5 il

We define " ,
Ao — )‘0‘

2
4

T =
We have that h}_, = 0 so we can define
TNk
to = sup{t > 0, HHG(h )HE <n.}).

Suppose that tg < 400, we therefore have for all ¢ in [0, ¢o]

2\ 2 M _ Ao+Ag
5 0 |ly7Lnt 4 t
& e} < -2 e} + 0 (innlits+ L e ) 5
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which gives

1/l 2
vt € [0, tol, ‘HG(h )HE < —2),

2 ) _Xo+Xp
dt’ Hé(hl)HE+0’<||hmH§p \ﬁnhmug,,) el

and by Gronwall lemma with Hé(hl)(tzo) =0,

2 % t 0+ ’ /
vt € [0, to), HHL HE < C <\|hm|y§p+“§ Hhmugp) </ e~ hers 2/\05ds> e~ 2Nt
€ 0

(2 4 oo alt A{) u —2)\’ t
< O (P hinllbs + i Mhanlles) ([ e du) e,
0

where we used the change of variable u = £ 2s and we considered ¢ < 1/4 (which only

amounts to decreasing £4).

Hence, there exists K > 0 independent of € such that

vie 0l a0 < Kort +mym).

If we thus chose 77 sufficiently small such that (17‘1L + mme) K < /2 we reach a
contradiction when ¢ goes to ty since HHl h! H E ) = n«. Therefore, choosing n; small

enough independently on € implies first that tg = +o0o and second that
vt € [0, +o0), HHG (n) H < O [|hin %y e=2%0t. (5.4.12)

End of the proof. By just decomposing h! into its projection and orthogonal part and
using the estimates (5.4.6) and (5.4.12) gives the expected exponential decay for h! in E.
]

5.4.4 Proof of Theorem 5.4.1

Let p=1orp=2, )" bein (0,), = o = so and 0 < £ < g4. All the constants used in
this section are the ones constructed in Proposition 5.4.3 with (Ao + \{))/2 and Proposition
5.4.5 with Aj.

E is continuously embedded in &£ because L2 (,u_l/ 2) c L? (<U>k) (mere Cauchy-
Schwarz inequality) and L2 C Ll because T? is bounded. Hence, there exists Cpg > 0
such that

1
v Fllep < lgz < Crell-lle- (5.4.13)

We define

— min _ o
n Mo, M, 2CE,ECI 3
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and we assume ||hn | gp < 7. Since hj_, = 0 we also define

to = sup{t > 0, thugﬁ <o}

Suppose that tg < +o00. Then, thanks to Proposition 5.4.3 we have that

PP
vt (0,00 (A% g < Nhinllgne 22

We can thus apply Proposition 5.4.5 and get

7o

1
vt € [0, o], Hh 2Cp¢’

HE < C1 [[hinllgr e " < O <

which is in contradiction with the definition of ¢y thanks to (5.4.13). Therefore ty = +o0

and we have the expected exponential decay stated in Theorem 5.4.1 for all time.
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Part III

A QUANTIC VERSION OF
BOLTZMANN EQUATION FOR
GASES OF BOSONS AND
FERMIONS






Chapter 6

The homogeneous
Boltzmann-Nordheim equation for
bosons: local existence and

uniqueness

The Boltzmann-Nordheim equation is a modification, based on physical considerations, of
the Boltzmann equation that describes the dynamics of the distribution of particles in a
quantum gas composed by bosons or fermions. We investigate the homogeneous Boltzmann-
Nordheim equation for the particular case of bosons. We solve existence and uniqueness
locally in time for any initial data that are bounded and with finite mass and energy, without
any assumption of isotropy. We also show that moments of all order appear immediately
for such solutions. Finally, we discuss the phenomenon of Bose-Einstein condensate in a

gas of bosons at low temperature and the recent results associated to it.
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6.1 Introduction

6.1 Introduction

This chapter deals with the dynamics of the distribution of particles in time and velocity,
f(t,v) > 0in Rt xR? (d > 2), for a dilute homogeneous quantum gas of bosons. In greater
generality, the dynamics of particles undergoing binary collisions in quantum statistics is
given by the Boltzmann-Nordheim equation

oaf = Q(f), onRT xR?
= /Rd i B(v,v.,0) [/ A+ af) fi(l+af) — fF(L+af) fo(1+ afl)] dv.do,

where f’) fi, fi and f are the values taken by f at v/, vy, v and v respectively and B is

the collision kernel which encodes the physical properties of the collision process. Define:

P S |v — vy

o
2 2 U — Uy
,and cosf = ,O ).
U,:v+v*_\v—v*| v — vy
* 2 2
This equation has been derived by Nordheim (see [29]) using quantum statistics con-

siderations. Basically, when a = 0 one recovers exactly the Boltzmann equation which
rules the dynamics of particles in a dilute gas when only elastic binary collisions are taken
into account. The main difference with the Boltzmann-Nordheim equation is that in quan-
tum statistics the probability of two particles colliding not only depends on the number of
particles undergoing the collision but also the number of particles already in the final state
the latter collision yields. In the case of fermions (o« = —1), this probability decreases and

in the case of bosons it increases (o = 1).

The collision kernel B > 0 contains all the information about the interaction between
two particles with velocities v and vy, and is determined by physics. We can mention here
that one can derive this type of equations from Newton mechanics (coupled with quantum
effects in the case of the Boltzmann-Nordheim equation) at least formally, see [28] or
[30] for the classical mechanics case and [29] or [3?] in the quantum case. However, if
mathematically rigorous derivations are known for small times for the classical Boltzmann
equation (Landford’s theorem, see [(05] or more recently [11][90]), we do not have, at the

moment, the same kind of proof for the Boltzmann-Nordheim equation.

6.1.1 The problem and its motivations

All along this chapter we will assume that the collision kernel B can be decomposed as

B(v,v4,0) = ® (J[v — vi|) b(cos ),
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6 The homogeneous Boltzmann-Nordheim equation for bosons

which is a common assumption as it is more convenient and also covers a wide range of

physical applications.

Moreover, we will consider only kernels with hard potentials or Maxwellian potentials

(v = 0 hereinbelow), that is to say there is a constant Cy > 0 such that
O(z) =Cs2”, v€10,1], (6.1.1)

and satisfying Grad’s angular cutoff (see [15]), expressed here by the fact that we assume

b o cos to be continuous on (0, 7) and to be integrable on the sphere:

Iy = / b(cos ) do = ‘Sd_2’ / b (cos 0) sin?~20 df < oo. (6.1.2)
sd—1 0

All those assumptions allow us to rewrite the Boltzmann-Nordheim equation with

a =1, into the equation we are going to study
orf = Co /R o D (s O [P A+ T4 ) = F10 4+ 4 f)] dvdo. (619
i
with the following decomposition
of =Q"(f) - fQ(f)
where we defined
QT (f) = Co /Rdxgdl 0 — 0.1 (cos 0) ' f1(1 + f + f.)dvedo,  (6.1.4)

Q(f) = C‘P/Rd o= b (e0s0) £1 4 £+ fl)dder (6.1.5)

In this chapter, we are first interested in the existence and uniqueness properties of
(6.1.3). Then, we shall understand and quantify the possible appearance, in finite time,
of a Bose-Einstein condensate in a gas of bosons. This condensate is a concentration of
mass in velocity at the mean velocity. In mathematical terms, this can be seen as the
appearance of a dirac function in the solution of the equation (6.1.3), noticeable by a

blow-up in finite time.

Such a concentration is physically expected, based on various experiments and numer-
ical simulations (see [10] for an overview of these results), as long as the temperature T’
of the gas is below a critical temperature T.(My) which depends on the mass My of the

bosonic gas.
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6.1.2 A priori expectations for the creation of a Bose-Einstein conden-
sate

In this section, we use some properties of the Boltzmann-Nordheim equation for bosons
to understand why a concentration phenomenon is expected. We emphasize here that

everything is done a prior: and should not be considered as a rigorous proof.

The first thing to notice is the symmetry property of the Boltzmann-Nordheim oper-

ator.

Lemma 6.1.1 Let f be such that Q(f) is well-defined. Then for all ¥(v) we have

Q(f)¥ dv = Ce g(f)(v,0.) [V, + 9 — W, — U] dodvdo.,
2 _
R4 Rd x R4 xSd—1

with
q(f)(v,v) = [v = va|"b (cos0) ff (1 + f' + fi) -

This result is well-known for the Boltzmann equation and is simply a play with the
changes of variables (v,v,) — (v«,v) and (v, v,) — (v/,v,) and the symmetries of the oper-
ator q(f). A straightforward consequence is the a priori conservation of mass, momentum

and energy for a solution of (6.1.3), f, associated to an initial data fy, that is

1 1
/Rd v f(v)dv = /]Rd v fo(v) dv (6.1.6)

[of? Kl
The entropy associated to (6.1.3) is the following operator

S(5) = [, 10+ 1og(1 + 1) = flog(1) do

which is, a priori, always increasing in time. It has been proven (see [5%]) that for given
mass My, momentum vy and energy Ej, there exists a unique maximizer of S of mass M,

momentum vy and energy Fy and this maximizer is of the form

1

Fpp(v) = mod(v —
55 (v) = mod(v = vo) + e§(|v_vo|2—u) -1

, (6.1.7)

with mg > 0, 8 in (0, 400] is the inverse of the equilibrium temperature and —oco < u < 0
is the chemical potential. Moreover, the following equality is satisfied: p.mg = 0.

Besides, functions of the form Fpg fulfilling the same constraints are the only maximizers of
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6 The homogeneous Boltzmann-Nordheim equation for bosons

the entropy. Therefore, for a given initial data fy, the associated solution of the Boltzmann-
Nordheim equation (6.1.3) should converge, in some sense, to the function Fpp associated

to the physical quantities of fy. Hence the appearance of a dirac function at vy if mgy # 0.

One can find in [69] or [11] that for a given (My,vo, Ep) we have that my = 0 if and
only if
3/2)  [(4r\*®
0 < L)SS (”) B (6.1.8)
(¢(5/2))" \ 3
According to [32], Chap. 2, the kinetic temperature of a bosonic gas is given by
_m Eo
 3kp Mo

which implies that, by plugging it into (6.1.8), mo = 0 if and only if T" > T.(My) where

we compute

_me/2) (M \*
Te(Mo) = 2mkp((3/2) (C(3/02)> '

In the equations above, kp is the constant of Boltzmann.

Initial data satisfying (6.1.8) are called subcritical (or critical in case of equality).

Therefore, for low temperature 7' < T.(Mp) we expect our solution to split into a
regular part and a dirac mass at vy as it converges towards its equilibrium Fpgp with
mo # 0. Spohn, in [102], used this idea of a splitting into a regular and a singular part to
derive a physical quantitative study of the Bose-Einstein condensate and its interactions

with the normal fluid, in the case of radially symmetric (isotropic) solutions.

6.1.3 Comparison with previous results

The first theorem of the present chapter deals with local-in-time existence and uniqueness
of solutions to the bosonic Boltzmann-Nordheim equation for bounded initial datum fy
with bounded mass and energy (second moment).

The issue of existence and uniqueness for the homogeneous bosonic Boltzmann-Nordheim
equation has been studied recently, especially by X. Lu [09][70][71] and M. Escobedo and
J. J. L. Velazquez [10][11]. However, all those studies focused on the case of radially
symmetric solutions f(¢,v) = f(¢, |v]*) and in the case of hard potential with angular
cut-off.

In his papers [09] and [70], X. Lu developped a global-in-time Cauchy theory for
isotropic initial data with bounded mass and energy and extended the concept of so-
lutions for isotropic distributions. In these cases he proved existence and uniqueness of
radially symmetric solutions that preserve mass and energy. Moreover, he showed the

boundedness of moments of order s > 2 as long as the initial data has a moment of order
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Very recently, M. Escobedo and J. J. L. Veldzquez in [10] used an idea developped by
Carleman for the Boltzmann equation ([20]) in order to obtain a result of uniqueness and
existence locally in time for radially symmetric solutions in the spaces L®(1 + |v|®T°). We
discussed above that the creation of the Bose-Einstein condensate leads to a blow-up in
finite time. Therefore one cannot expect more than local-in-time results in L°°-spaces.

The a priori conservation of mass, momentum and energy seems to imply that the
most natural space to tackle the Cauchy problem is L}, the space of positive functions
with bounded mass and energy. This was indeed the case for the homogeneous Boltzmann
equation (see [68] and [77]). However, our quick look at the Bose-Einstein condensate
told us that one may physically expect that a solution to (6.1.3) is bounded up to the
appearance of a blow-up. Moreover, the L°°-norm is of great importance in the study
of the Boltzmann-Nordheim operator in order to be able to deal with the trilinear part
of the operator (). Therefore it seems that the natural framework of the homogeneous
Boltzmann-Nordheim equation for bosons is L% N L.

The present work shows a local-in-time existence and uniqueness result for initial data
in L3N L% without any isotropic requirement. Along the way, it also proves the immediate

appearance of moments of all orders for these solutions.

The issue of the creation of a condensate of Bose-Einstein has been extensively stud-
ied experimentally and numerically in physics (see [!0] for references on these results).
Mathematically, a formal derivation of some properties of this condensate as well as its
interactions with the regular part of the bosonic part has been studied in [102] in an
isotropic framework.

In the series of papers [09][70][71], X. Lu proved, with not entirely constructive meth-
ods, a condensate phenomenon in the limit ¢ goes to infinity. Indeed, he proved that the
isotropic solutions he constructed tend to the regular part of their associated equilibrium
FpE (see (6.1.7)). But for low temperatures, the regular part of Fpr does not have the
same mass than the initial solutions. This loss of mass proves the creation of a singular
part in the limit. As mentionned in [71], this argument does not require the solution to
be isotropic and the condensate Lu catches is to be understood as a concentration phe-
nomenon in the limit ¢ goes to infinity. This limiting behaviour neither prove nor prevent
the creation of a Bose-Einstein condensate in finite time.

The appearance of Bose-Einstein in finite time has been mathematically shown in a
recent breakthrough [10][11]. In the article [10] the authors showed that if the initial data

is isotropic in L®(1 4 |v|®T°) and satisfies some properties about its distribution of mass
near |v|2 = 0 then the associated isotropic solution is only define in finite time and its L°°-

norm blows up. They achieve this work thanks to a thorough study of the concentration

phenomenon occuring in a bosonic gas. The article [11] proves that supercritical initial
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data indeed satisfy the blow-up assumptions in the case of radially symmetric solutions.

6.1.4 Our strategy

We tackle the issue of the existence of solutions with an approximative scheme (see Section
6.7). More precisely, we truncate the Boltzmann-Nordheim operator @ and solve the
associated differential equation using a Euler scheme. The sequence of functions we obtain
is then proved to be weakly compact and goes to a solution of (6.1.3). The key ingredients
are a new control on the operator Q@ for high and small relative velocities v — v, as well

as an extended version of Povzner inequality (see Section 6.3).

The proof of the uniqueness follows very closely the proof of uniqueness developped
by S. Mischler and B. Wennberg in [77] for the homogeneous Boltzmann equation. Our
extended version of Povzner inequality matches the main features of their proof. The
main issue is the control of terms of the form |v — v*|2+7 that appear when one studies the
evolution of the energy of solutions. This is achieve by the fact that bounded solutions of
(6.1.3) happen to have more regularity (see Proposition 6.4.1) and thanks to an explicit
control on the explosion at ¢ = 0 of the moment of order 2 + v of solutions to (6.1.3)
(see Proposition 6.5.5). The speed of the blow-up is exactly the one required to use a
Nagumo’s type uniqueness criterion in small times. The uniqueness for later time uses
a Gronwall-type lemma which is available thanks to the boundedness of the moment of

order 2 + v whenever ¢ > 0 (see Section 6.5).

6.1.5 Organisation of the chapter

Section 6.2 is dedicated to the statement and the description of the main results proved

in this chapter.

The first problem we shall deal with is the uniqueness result. As said when we described
our strategy (Section 6.1.4), this part requires the control of a little bit more than the L°°-
norm as well as the control of moments of order greater than 2.

A very important tool is an extended version of the Povzner inequality (first derived
in [91] ) and we shall use it throughout this chapter. The statement of this lemma and its
proof are given in Section 6.3.

Section 6.4 focuses on an a priori boundedness property of solutions to the bosonic
Boltzmann-Nordheim equation. Proposition 6.4.1 will allow us to control terms of the
form |v|” f(t,v) in L°°.

The next section, Section 6.5, deals with the moments of solutions to (6.1.3). It is
divided in two subsections. The first one is dedicated to the immediate appearance of
bounded moments of all order, see Proposition 6.5.1. Then, Section 6.5.2 quantifies the

explosion near t = 0 of the moment of order 2 + 7.
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Finally, Section 6.6 proves the uniqueness of bounded solutions preserving mass and

energy.

Then we turn to the proof of existence of such bounded, mass and energy preserving
solutions in Section 6.7. We construct our sequence of approximations in Section 6.7.2 and
derive some of their properties. Section 6.7.3 shows that this sequence converges toward
a mass-preserving solution of (6.1.3) and finally Section 6.7.4 proves that this limit is also

energy-preserving.

6.2 Main results

We begin with the notations we shall use all along the chapter.
We are going to use spaces in the v and the ¢ variables. Therefore, to shorten notations,

we will index by v or ¢ the spaces we are working on. The subscript v will always refer as
RY, for instance L. = L'(R%), 0.T],0 = L>=([0,T] x RY). Moreover, we define

Ly, = {f €Ly, H(l + yv|2)fHL1 < —I-oo} .
Finally, we denote, for all s and ¢ in R,

M,(t) = /Rd lv]® £(t,v) dv. (6.2.1)

The first main theorem is the Cauchy problem for the Boltzmann-Nordheim equation

for bosons.

Theorem 6.2.1 Let fy(v) be in L%,v NLyY.
Then there exists Ty > 0, depending only on Cs, ly, 7, ||f0HL% and || foll j00, such that
there exists a unique f in LSO ([O,To),L%’v N L) solution on (6.1.3) on [0,Tp) x R that

loc

preserves mass and ENETGY.

Moreover, this solution satisfies

o Tp =400 or lim ||f| = 400,
T—Ty [0,T] xR

e [ preserves the momentum of fo,

o for all s >0 and for all 0 < T < Tp,

M(t) € Lig ([T, To)) -
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o for all T < Ty,

sup (f(t,v) + /Ot (1+1[v]") f(s,v) d5> < 00.

[0,T)|xR4

Remark 6.2.2 We empasize here that moments appear as soon as t is strictly positive.
However, we only get that M(t) is in LS. ([T, To)). This is slightly weaker than the result
derived in [77] for the Boltzmann equation but it is explained by the fact that at Ty we
can obtain a blow-up of the L*-norm. The latter norm is not required for the control
of the bilinear Boltzmann operator but is of great importance for the trilinear part of the

Boltzmann-Nordheim operator.

Let us mention here that Theorem 6.2.1 implies a Bose-Einstein concentration phe-
nomenon as time goes to infinity for subcritical initial data if they are globally defined.
Indeed, Lu ([71] Theorem 2) proved in the case T' < T.(My) that distributional solutions
(not necessarily isotropic) with finite mass and energy present a concentration phenomenon
in the limit ¢ goes to infinity.

The latter argument is however non explicit and does not prove any blow-up in finite
time whereas [10] gives the appearance of a Bose-Einstein condensate in finite time in the
isotropic setting. A work in progress is the proof of the creation of a condensate in finite

time in our more general framework.

6.3 An extended version of a Povzner-type inequality

This section is dedicated to proving a refinement of a result in [77], which extends a
Povzner-type inequality (see [91]) which captures the geometry of the collisions inside the

Boltzmann kernel. The statement of the lemma is very close to Lemma 2.2 in [77].

Lemma 6.3.1 Assume that b(0) is a locally bounded function and consider F > 1 a
function in L®°(R% x RY x §9-1).

For a given function 1 let
2 2
Koo, = [ F0,000000) (0(1e2]) +0(00) = 0l ) = (o) o
Then one can write Ky(v,vs) = Gy(v,ve) — Hy(v,v4), where Gy and Hy satisfies the

following inequalities (where we omit the subscript V).

Let X(v,v4) = 1 = Ly <ju.|<2foly then
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i) If ¥(x) = 217 with o > 0 then
|G (v, 0:)] < Caa(Jo] va])' T

and
H(v,0,) > Crrar ([0 + o) x(o,0.).

i) If ¥(x) = 217 with —1 < a < 0 then
|G (v,v.)] < Ca lal (o] [o.])

and
~H(v,0.) > Cp laf (ol + [0.27) x(v,0.).

iit) If v is a positive convex function that can be written ¥(x) = x¢(x), where ¢ is
concave, increasing to infinity, and such that for any € > 0 and any « in (0,1), it
satisfies (p(z) — p(ax)) x® — 00 as © — co. Then, for all e > 0,

G(v,0.)] < Ca vl & (Iof?) ol & (low)

and
H(v,0.) > Cpr (o7 + 0>~ x(v, v0).

In addition, there is a constant C' > 0 such that ¢'(z) < C/(1+x) implies G(v,v,) <
Ca [l |ve]-

The constants in the Lemma depends on o, ¢, €, b and ||[F||; .

o

Remark 6.3.2 As noticed in [77], the operator Hy, can be taken monotonous in 1 in
the following sense. If 11 — 1o = 0 is convex then Hy, — Hy, > 0. This property will
prove itself really useful to apply Lemma 6.3.1 to truncated sequences converging to convex

functions.

Proof of Lemma 6.3.1 The proof of this result has been done in Lemma 2.2 of [77] in
the case where F' = 1. Therefore, our goal will be to compare our new operators H and
G with H; and G (obtained when F' = 1) in each of the three cases.
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We start with the term H which is quite straightforward. We define H to be the

following operator, which coincides with H; in [77] when F =1,

/2 B 3 _
H(v,v*):4/0 [B(0) (v, 0., 0) + B(r/2 — 0)F(v, vy, 7/2 — 0)]

0 F
X |:COS29 (0 (|v|2) + sin%0 ¢ (|v*| ) <|v 12 cos?0 + || stGH de,
(6.3.1)

where b(0) = b(0) |do|(0) and F(v,vs,0) = [T F(v,vs,0) dw where (6,w) are spherical

coordinates parametrising S?! (w is then a (d — 2)-uple of angles).

The core of the proof is the fact that the term
2 2 .2 2 2 2 2 .2
cos“0 (|v| ) + sin“0 ¢ (|v*] ) — 1 (]U| cos“0 + |v,|” sin 9)

keeps the same sign if ¢ is convex (positive sign) and if ¢ is concave (negative sign). We
have that
1< F(v,0s,0) < [|F]| oo

U, V% ,0

and therefore when 1 is convex we have
H(v,v) > Hi(v,vs)

and if v is concave
H(v,0.) < |Fll s, Hi(v,.).

V,V%,0

This yields the expected inequalities i), i) and iii) for the operator H since they hold

true for Hy.

The proof for the operator G is more intricate and we shall write it in dimension d = 3
for sake of simplicity.

We follow the proof in [77] and we parametrise the sphere S? by
S?={(0w), ~-T<w<T 0<I<T/2}

with the measure
do = 4sin fcos 0 dOdw.

To shorten notation we define, for a given v and a given v,

Y () = |[v|* cos? 0 + |v.|* sin? 6,
Z(0) = 2 |v] |vy| sin Ocos 6.
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In these coordinates, with the notations above, we have geometrically that

’v"Q =Y(0)+1Z(f)cosw
v, |” = Y (/2 — 0) — 7Z(0)cos w,

where 7 denotes the sine of the angle between the vector v and vx.

With these notations we obtain
K(v,vy) = G(v,vs) — H(v,v4)

where H is given by (6.3.1) (after the change of variable § — 7/2 — 6) and

/2 T
Glo,v,) = 4 /0 5(0) / Fv,v.,0) [t (Y(0) + 72(0)cos w) — (Y (6))] dwdd

—T

/2 ™
+4 /0 b(6) / P, 00,0) [10 (Y (72 — 0) — 7Z(0)cos w) — v (Y (/2 — 0))] dwd.

—T

The two terms on the right-hand side will be treated the same way and therefore we focus

only on
/2 T
[=14 / 5(0) / Fo,v.,0) [ (Y(0) + 72(0)cos w) — 1 (Y (8))] duwdd.
0 -7

Since 1) is increasing in all the cases we have that ¢ (Y (0) + 7Z(0)cosw) — ¢ (Y (0)) is

positive when —7/2 < w < 7/2 and negative elsewhere on [—m, 7]. Thus,

w/2 ™
1< APl [ we) [

—T

w/2 T
= 8Pl [ 00 |

/2
Sl [ 50 (6.32)

V,V%,0

b (Y(0) + 7Z(0)cos w) — v (Y(9)) ‘ dwdd

b (Y (0) + 7Z(0)cos w) — v (Y (9)) ] dwde

w/2
X /0 [ (Y (0)+7Z(0)cosw) — 1 (Y(0) — 7Z(6)cos w)] dwdb,

where we just made the change of variable w — 7 —w on [7/2, 7].

Upper bound in cases i) and ii). In these cases, we have that v is twice differen-

tiable and therefore we can integrate by part twice in the integral with respect to w. The
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first time we consider 1 to be the derivative of w to get

/2
N<81Flg,, [ W02
/2
X / (wsinw [/ (Y + 17Zcosw) + ¢ (Y — 7Zcos w)]) dwd,
0

and in the second integration by part considers wsin w as a derivative to get

w/2

/2
|| <8 F|| 00 / b(G)TZZQ/ (sin w — wcos w)
UV, V% ,0 0 0

x ["(Y + 1Zcosw) — " (Y — 7Zcos w)] dwdf (6.3.3)
T2
+ 16 [|F|| foo. / b(0)TZ(0)' (Y (0)) df.
o [
On [0, 7/2], sin w — wcos w is positive and thus

(sinw — weos w) [¢" (Y + 7Zcos w) — " (Y — 7Zcos w)]
< (sinw — weosw) [[¢" (Y + 7Zcos w)| + [ (Y = 1 Zcosw)]]

which is the integrand dealt with in the case F' =1 in Lemma 2.2 in [77]. Hence, (6.3.3)

becomes
T2
1 < IFlle, |1+ 16(1+ ) 1P oo / B(0)7Z(8)Y (6)" db. (6.3.4)
T vs,o [

It only remains to control the last integral which can be achieve thanks to the fact that
for 6 in [0, 7/2],
ZO)Y (0) < [olval (1o + o) (6.3.5)

In the case —1 < a < 0 we have easily that (6.3.5) yields
«a « 2 2 Ita
20 (0 <2 (jof + o)
which, combined with (6.3.4) gives us the expected inequality in point 7).
In the case @ > 0 we use (6.3.5) in two different ways. First of all we notice the

following
|v]

VL <ol <20el, ZO)Y(O)T < 2205 (fo] o) (6.3.6)

Then basic computations yields

a 1 1+a
Ve > 0, Yo, vy, \vy|v*|(yv|2+|v*|2) <E—a(\v||v*|)1+a+5(|v|2+|v*\2) . (6.3.7)
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To conclude in that case we gather (6.3.6) and (6.3.7) to obtain that

14+«
Ve >0, ZOY(0) < Ce ol o) e (Jol + [0u?) T x(w,v.).

This last bound combined with (6.3.4) gives the inequality of point i), up to the fact that
we choose € small enough so that the second term in the right-hand side of the inequality
above can be included in the inequality satisfied by H, which only leads to a slight change

of definition for H in that case.

Upper bound in cases iii). We start from (6.3.2)

1] <8|1Fll e,

*,0

w2 w/2
< / 5(0) / [ (Y (6) + 72(8)cos w) — 1 (Y(8) — 7Z(8)cos w)] dudd.
0 0

In case #ii) we consider ¥ (z) = xz¢(x) with ¢ being convex and ¢ being concave. Therefore,

the latters are almost everywhere differentiable with

(Y — 17Zcosw)

Y (Y) —1Zcos wy/(Y),
¢ (Y +71Zcos w) 0]

P
< ¢ (Y) + 1Zcoswe’ (V).

Hence, developing every term in (6.3.2) yields
1| <8I F| o0

sUx,0

/2 /2
X / b(0) / [27Zcos wp(Y) + 27 Zcos wY ¢/ (V) + T2 Z%cos? w¢' (V)] dwds.
0 0
We recognize here the term I for F' = 1, see proof of Lemma 2.2 in [77]. Therefore
11 <20Fl g, |0,

and hence iii) follows directly from the case where F' = 1.

This concludes the proof of Lemma 6.3.1. m

6.4 A priori control on the L ((1+ |v]")L})

This section is dedicated to proving an a prior: estimate in the L;° space for solutions to
(6.1.3), in small times. We cannot expect more than small times as we know from [10]
that, even for radially symmetric solutions, there exists solutions with a blow-up in finite
time.

We will prove the following result
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6 The homogeneous Boltzmann-Nordheim equation for bosons

Proposition 6.4.1 Let fo(v) be in Ly, N L.

Let f be a non-negative solution of (6.1.3) in L‘[’(?TO) (L%’v ﬂL;’o), with initial value fo,

satisfying the conservation of mass and energy.
Then for all 0 < T < Ty there exists Cr > 0 such that following controls holds

sup (f(t,o)+/ot(1+w) £(5,0) ds> <cr

[0,T]xRd

6.4.1 Some properties of the Boltzmann-Nordheim operator

Here we gather and prove some useful properties about the positive operator @~ and Q.

First, we have the following control on the negative part

Lemma 6.4.2 Let f >0 be in Ly,,. Then there exists Co, > 0 (given by (6.4.2)) such that

Vo e R, Q(f)(v) = Caly (1+ o) | fllpy — CoCils Il

Proof of Lemma 6.4.2 We have that

@ (D) =Ca [ o= u1beos O [1+ £+ £] doado.

RdxSd—1

We supposed that f is positive, thus

Q™ (f)(v) = Co |v — vy|" b(cos 0) fi dvido
R xSd—1

Since 7y is in [0, 1], we know that the following triangular inequality holds
(o] = oul”) < v = vl " < (o] + Jva]7) - (6.4.1)
This yields

Q" (f)(v)

WV

Cay [ (1 ) = (1-+ 0. )) . do

> Cola [0+ D) 1 = © [ @ P o).
because v < 1 and so there exists C, > 0 such that for all x > 0,

(1+27) <O, (1+ 2?). (6.4.2)
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Remark 6.4.3 If fRd finf dv was finite then it would be possible to lower bound Q= (f)
by a quantity that is strictly positive. Unfortunately, this quantity decreases in the case of
the classical Boltzmann equation whereas the decrease of entropy for Boltzmann-Nordheim

is given by the decrease of

/[Rd [(1+ f)ln(1+ f) — finf] dv

which does not bring any knowledge about a non-concentration property for f.
Moreover we also have the following general bound on the positive part

Lemma 6.4.4 Let f and h be in L%m NLP (1+ |v|]"). Then we have that for all X > 0
there exists C(X) > 0 such that

Jim C(A) =

and such that

Ccp/ |v — v, |70 (cos 0) f'h.dv.do
Rdx§d—1

=2 (6.4.3)
2d 2
<O\ Caly Il |COVIG+ 107l + 3 Co 1y,
and
HCq,/ |v — v, |70 (cos 0) f'h,dv.do
e b (6.4.4)

2d 2
< (L [o]") O Coly [|1l| 1y [ M I llpge + sg= £y | »

where C., has been defined in (6.4.2) and C(\) is given by (6.4.7).
Proof of Lemma 6.4.4 The L;°-norm is intricate and for this purpose we write the
operator under another form. We use the Carleman representation of the operator (see

[27]), which uses the final velocities after a collision, v' and v}, as the parameters we

integrate against:

/ |v — vy |70 (cos 0) f'h.dv.do
RdxSd—1

v — vl
—Cq>/ dv/ dvl, ———— <2v—v'—v;,/7> f'hl.
R4 E,./ /’ v —U*‘
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In this form we have that E,,, is the hyperplane orthogonal to v — v’ going throught v and

the new operator B is such that

With this new representation we have that

/ |v — v, |70 (cos 0) f'h.dv.do
R xSd-1

1+ [v'7) (1+ ||
<2d2c¢olb/ ( +|U| )( +|U*| )f/h; d'l)/d’l}fk

RY xRd v — /|41
1 1Y /
< 2772Co O, ||R| 11 / % dv'. (6.4.5)
2 Jrd |v — /|

Now we are going to split our integral into velocities far from v and velocities close to

v. Let us consider A > 0,

A+ T f a c
/Rd To— o1 dv' < [[(1+ [v[) fll oo P ot My, - (6:4.6)

lv—w Jo—v'|<A U —

The function 1/ |z|%"! is integrable near 0 and therefore we can define

CON) = 29-2(1 4 \) / v (6.4.7)

jalen |4

which fulfils the requirements of (6.4.3) in Lemma 6.4.4.
In (6.4.6), instead of taking ||(1 + |v]”)f]| ;. we could also use

(1 + ‘v"ﬂy) < (1 + ‘v — U'W) (14 |v|7)

and the fact that 0 < < 1. Then taking the L{°-norm of f leads to the expected (6.4.4)
with C'(\) described by (6.4.7). =

6.4.2 A priori estimate: proof of Proposition 6.4.1

Let f be a solution of the Boltzmann-Nordheim equation (6.1.3), satisfying the assump-

tions of Proposition 6.4.1. This means that

V(t,v) € [0,To) x R?,  f(t,v) = fo(v) +/0 Q(f(s,-)) (v) ds. (6.4.8)

We consider 0 < T < Ty and we define the following quantities, for 0 < ¢ < 7T and v in
R:
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e(f)(t v)

/ (14 o]") f(s,v) ds,
0

E(f)(t,v) = f(to)+ /0 (1 + o)) f(s,0) ds.

In (6.4.8), we apply to Q(f) the Lemmas 6.4.2 and 6.4.4 (with A\; and Ay to be defined
later) together with the conservations laws satisfied by f (6.1.6) to get

t
f(tv) < ”fOHLgo — Coly ”fOHL}) /0 (14 |v|) f(s,v)ds

—i—Co/Otf(s,v) ds

2d—20 (649)
+Co |C(M) sup  (e(f)(t,u) + =T [ foll 1
lu—v|<As AL v
24-2¢
+2C0 || £l L C(A2) sup (e(f)(t,w) + =T | follpy |
[0,7]xRd lu—v|<Ae g 2,0

where we set

My = wmin{1, Caly | foll 11},
Co = CyColyllfolly, -

We emphasize here that we slightly changed Lemma 6.4.4 since we put the integrale in
time before taking the supremum in v. Which is obtain by exactly the same proof but

integrating first in time.

By bounding all quantities in (6.4.9) in time and velocities, one gets

M0E<f><t,v><[coc<A1>+2coc<A2> T ] sip E(f)
[0,7]xR% | [0, T]x B(v,A\1+A2)

_l’_

1 Ml
d—2 t,v
[foll oo + CoT HfHL‘E;T]XRd +CoC27  follpy, T <>\cll—1 + )|

To conclude, we notice that by assumption || f||; «  Is finite and therefore we fix Ay
0, T] xR
and A small enough such that CoC'(A1) + 2CoC(A2) || fll 1 o< My/2. Then we take
[0, T xR

the supremum over ¢ in [0,7] and v in R? to obtain the expected result.

- 273 -



6 The homogeneous Boltzmann-Nordheim equation for bosons

6.5 Creation of moments of all order

In this section we prove that moments of all order appear immediately for solutions of the
Boltzmann-Nordheim equation, as long as they are in L{%, ([O, To), Lé’v N LSO).

The first part of this section is dedicated to the proof of this a priori result. It thoroughly
follows the proof established in [77] for the Boltzmann equation which was relying on a
subtle Povzner inequality. Our extension of their Povzner-type inequality, see Section 6.3,
allows us to apply their methods directly to the Boltzmann-Nordheim equation.

th

Then, in a second part we quantify the explosion of the (2 + )" moment as time
goes to 0. This estimate will be of great importance in the proof of the uniqueness, see
Section 6.6. Here again we copy the arguments of [77] thanks to the extension of Povzner
inequality, Lemma 6.3.1.

All the details of the proofs are exactly the same as for the Boltzmann equation given
by S. Mischler and B. Wennberg in [77]. However, we still write them down roughly in
order to show that they are indeed a straight combination of their proofs and our Povzner-
type inequality. Basically we show that we can apply our inequality each time they applied

theirs and that the outcome is the same.

6.5.1 A priori estimate on the moments of a solution

The immediate appearance of moments is characterized by the following proposition.

Proposition 6.5.1 Let fo(v) be in Lé,v N L.
Let f be a non-negative solution of (6.1.3) in L3S, ([O,T()),L%m N Lgo), with initial value

fo, satisfying the conservation of mass and energy.
Then for all for all s > 0 and for all 0 < T < Ty,

/Rd [v|* f(t,v) dv € LY. ([T, To)

The proof of that proposition is done by induction and requires two lemmas, which

gives the same estimates as the ones for the Boltzmann equation in [77]. The first one is

1

9~ /2,0"1OTTIL, and the second lemma

the initialisation of the induction, it controls the L
gives an inductive bound on moments.

We start by taking fo, f, Tp as in Proposition 6.5.1. We have that fy is positive
and such that (1 + |v|2> fo(v) is in L}. Proposition Al in the appendix of [77] gives the

existence of 1 a positive convex function on R™ such that there exists C' > 0 such that

/Rd " (W) folv) dv < C.
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Moreover, 1 can be written ¥ (x) = x¢(x), where ¢ is concave, increasing to infinity, and

such that for any € > 0 and any « in (0, 1), it satisfies (¢(z) — ¢(ax)) 2° — 00 as © — oo.

Lemma 6.5.2 We have that for all T in [0,Tp) there exists cp, Cr > 0 such that for all
0<t<T,

[ a0y (o) dv—i—cT/Ot 700 [Morp 5 (1)) dvar
g/ ¢<|v|2> folv) dv + COrt. (6.5.1)
R

Proof of Lemma 6.5.2 We fix 7" in [0, 7)) and we consider 0 <t < 7.

As proved in the proof of uniqueness in [77], we can construct an increasing sequence
(Yn) ey of convex function converging pointwise to ¢ and such that 1,11 — v, is convex.
The 1, are such that there exists a sequence (py),,cy of polynomial of order 1 such that
Yn — pp 1s of compact support.

Moreover, for a given I’ satisfying the assumptions of Lemma 6.3.1, we have that Hy,
is non-negative and converges pointwise to Hy (see Remark 6.3.2) and |Gy, (v,v4)| <

Cq |v||vs| for all n.

We know that f preserves mass and energy and therefore

/Rd [7(.0)  fo()] ¥ (10 do = /Rd F(t0) = fo@)] (n (10) = pn (I0f?)) do.

Now, %, — p, is of compact support so we can use the fact that f is solution to the
Boltzmann-Nordheim equation and the integral property of the operator ), Lemma 6.1.1.
This yields

[ U0 = (@ (1) ao
Rd
G [ R
= /0 /RdedXsdlq(f)(r,v,v*) (W, 4+ YL, — Yns — ] dvdv.dr,

with
a(f)(1,0,04) = [v =0 [Yb(cos 0) f(7) fu(r) (14 f(7) + fil7)) -

We can decompose the left handside as in point #ii) of Lemma 6.3.1 with F\(v,vs,0) =
1+ fI + f’ which fulfils the assumptions needed since f is in Lig - We obtain
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/ f(t,v)Y, |U| dv+ / / )i [0 — vs|? Hy,, dvsdvdr
Rded

/fo )¥n \v! dv+ // )i [v — vi|T Gy, dvidvdT(6.5.2)
RdXRd

Thanks to Lemma 6.3.1, our operators Hy, , Gy,,, Hy and Gy, satisfies exactly the same
properties than the operators Hy,, , Gy, Hy and Gy, in step 1 of proof of Theorem 1.1’ in
[77], with Cy and Cg depending on T which has been fixed. Equality (6.5.2) is exactly
equality (3.4) in step 1 of proof of Theorem 1.1" in [77]. Thus we can compute this equality
in exactly the same way as Mischler and Wennberg did.

This yields the inequality of Lemma 6.5.2. =

We turn to the induction property.

Lemma 6.5.3 Let T be in (0,Tp).

For all n in N there exists T,, > 0 as small as we want such that

My 2n41)y/2(Th) < o0

and such that for all t in [T,,,T) there exists Cr > 0 and cr,, 7 > 0 such that

t
M2+(2n+1)7/2 (t) + CT/T [M2+(2n+1)'y/2(7-) + M2+(2n+3),},/2(7)j| d’T < CTT“T(]. + t), (653)

where Ms(t) is the moment of order s at time t, see (6.2.1).

Proof of Lemma 6.5.3 The fact that there exists T,,+1 as small as we want such that
My (2n+43)y/2(Th) < 0o is given by the second term on the left-hand side of inequality
(6.5.3) at rank n, and from the second term on the left-hand side of inequality (6.5.1) in
Lemma 6.5.2 for n = 0.

Then the proof amounts to using Povzner inequality of Lemma 6.3.1 in exactly the
same way as in [77], this time considering the function 1 to be 1 (x) = 21T +3)7/4 (50 we
use point ) of Lemma 6.3.1). We can therefore follow the proof of [77] (step 2 of proof of
Theorem 1.1") and apply our Lemma 6.3.1 with F(v,v,,0) = 1+ f'+ f. and the constants
Cy and Cg depending on T via ||f||[0,T},v- [ ]

We are now able to finish the proof of the main proposition of this section.
Proof of Proposition 6.5.1 First of all we notice that f is in Liv and therefore the

Proposition is true for all s in [0, 2].
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For s > 2 we just have to notice that the first term on the left-hand side of inequality
(6.5.3) in Lemma 6.5.3 gives that My (2,11)y/2(t) < Cr,, (1 +T) for all t in [T;,,T], T,
given but being as small as we want. This being true for all n gives that M is bounded
on [T1,Ty) forall0 <1 < To <Tp. m

Remark 6.5.4 We can emphasize here that this result is slightly different from the one
in the Boltzmann equation. Indeed, in that case Ty = +o0o and the bounds on the moments
on [T,Ty) only depend on T. For the Boltzmann-Nordheim equation in our settings we
can only reach locally bounded moments since we require the boundedness of the solution
f in order to apply Povzner inequality. This boundedness property is only local (as shown
by the explosion at T, of the L*>-norm) and so we cannot expect the moments to be in

L([)(iTo] even if Ty = +00.

6.5.2 Control of the explosion of the Léﬂ’v-norm at time 0

In this section we show that Ms. explodes at most like 1/t when t goes to zero. This is

the purpose of the next proposition.

Proposition 6.5.5 Let fo(v) be in Lé,v N L.

Let f be a non-negative solution of (6.1.3) in L3S,

([O,TO),L%W N L,ﬁo), with initial value
fo, satisfying the conservation of mass and energy.
Then there exists 0 < 7 < Ty and there exists C; > 0 such that

C,
YVt € (0,7_], M2+ry(t) < 7

Proof of Proposition 6.5.5 We take 0 < t < T < Tp. Thanks to Proposition 6.5.1 we
know that M,(t) is bounded by a constant C7 > 0 depending on 7" and t.
The technical Lemma 6.1.1 yields
d Gy

@Mg—w(t) =3 /Rded [V = 0| f fie K14y 12 (0, 04) dvsd, (6.5.4)

where Ky, /5(v,vs) is given in Lemma 6.3.1 for i (x) = x117/2. We can use point 7) of
Lemma 6.3.1 since f is bounded on [0,7]. Hence, (6.5.4) becomes

d C
Moy () < =2 / v — vl £ o [Cl o 72 o972 — Cly [027] dvad,
dt 2 Rd xRd

where C¢ and Cg are given in Lemma 6.3.1 (up to a multiplicative constant only depending

on 7).
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Since f preserves the mass and the energy and since 0 < v < 1, a mere triangular
inequality in the first term in the integral yields

d CyCly

Zi M2 (8) < CoCy [l foll g Mitsy/2 — =

[ foll L M2y, (6.5.5)
where C has been defined in (6.4.2). Besides,
Ve >0, [P e 4 Lo

Then, because 2y < 2 and taking € small enough, (6.5.5) shows that there exists ¢y and
Cr positive constants depending on T" and independent of ¢ such that

d
£M2+w(t) < e — CrMayoy(1).

We have the following Holder’s inequality

1/2 4 r1/2
Moy < Mz/ M24/r27

and therefore J

£M2+7(t) g cr — CTM22+y(t)'
So we have two cases to consider. Either My, (t) is bounded when ¢ goes to 0 and then
Proposition 6.5.5 is proven. Or there exists 7 such that May~(7) > \/2cr/Cr and then

for all t < 7, Moy (t) is decreasing and

d
vt € (057-]7 7M2+’Y(t) < -

dt M22+'y(t)v

2

which gives the expected bound on My, (t). =

6.6 Uniqueness of solution for the Boltzmann-Nordheim equa-

tion

In this section we prove that there exists at most one solution to the Boltzmann-Nordheim
equation for bosons (6.1.3) in the space L ([O, To), L%’U N Lﬁjo) for Ty > 0.

loc

The proof relies on precise estimates on the L., the Liv and the Lj°-norms of the

difference of two solutions. The main problem arises when, in order to control the Liv—
norm, one has to deal with terms of the form |U|2+7. A careful study allows us to control
this weight thanks to the 2+~ moment of the solution (which has been studied in Section
6.5.2) and the fact that if f in L ([O,T(]),L%ﬂ} N LX) is a solution to the Boltzmann-

loc
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Nordheim equation then, by Proposition 6.4.1,

VT €[0,Tp), 3Ny >0,  sup E[f](t,v) < Nr, (6.6.1)
[0,T)xR4

where

E[f](t,v) —f(t,v)+/0 (1+ |v]?) f(s,v) ds.

These estimates lead to a system of three differential and non-differential inequalities that
we solve thanks to an extended Nagumo’s uniqueness criterion for small times and an
extended Gronwall lemma for larger times.

In the end, we prove the following theorem.

Theorem 6.6.1 Let ho(v) be in Lé’v NLy.

Let f and g be two non-negative solutions of (6.1.3) in LS,

([0, To), L%,v N L;’O) satisfying
the conservation of mass and energy.
If f and g have the same initial data ho then f =g on [0,T)).

For now on we take f and g satisfying the assumptions of Theorem 6.6.1. In order to
shorten notations we still denote by Np the maximum of Np for f and for g, defined in
(6.6.1).

6.6.1 Evolution of | f — g,

First of all we can write the following algebraic identity which we are going to use through-

out this section.

a+d

abe — def = %(a —detef)+ N b—e) et Ee—fHbre).  (6.6.2)

We have the following differential inequality,

Lemma 6.6.2 For all T in [0,Tp), there exists Cp > 0 such that for all t in [0,T],

d
S Nf =gl <Cr[If = glly + 15— gllny |-

Cr only depends on Cy, Iy, 7, HhOHL; and Nt (see (6.6.1)).

Proof of Lemma 6.6.2 We fix T in [0,7)) and we consider ¢ in [0,7]. Thanks to the
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integral property of ), Lemma 6.1.1,

G =gl = [ sen(s = 9)0i(f g dv = [ sgn(r - 9) Q) - Qo) do

o (6.6.3)
=2 b(cos 0) [v — v P(f,g) [V, + ¥ — U, — U] dodv.dov,
2 RdxRdxSd—1
where we wrote V(¢,v) = sgn(f — g)(t,v) and
P(f,9) = ffQ+ '+ f) — 99:(1 + ¢ + ) (6.6.4)

We easily have that |[¥), + U/ — U, — U] < 4.
Furthermore, using the arithmetic identity (6.6.2) we compute

1+2NT|f— (et g+ TG or — gl

(f+g) Fitg:) [\f g’|+\fifgl}]-

|P(f,9)| <

We plug these two inequalities inside (6.6.3) which we cut into for integrals. The change
of variable (v, v,) — (v, v) shows that the first two terms are equal as well as the last two.
Thus,

d
g I = allpy < 2Cely (1 + 2NT)/ v =" [f = gl (fi + g+) dvidv
R4 x R4

+ C¢,/ b(cos ) [v —v.|Y(f + 9)(f« + g) | [ — ¢| dodv.dv.
RIxRIxS4—1

The first integral is easily dealt with by a mere triangular inequality together with (6.4.2).
In the second integral we use the change of variable (v,v,) — (v/,v}) and the terms in v’
and v}, are dealt with Lemma 6.4.4, inequality (6.4.4) with A\ = 1. Therefore,

d
S 1 = glly < 2Caly (1+2N7) Cy (Ihollyy 1F = glly + Iholly If = gllzy, )

+C,Caly Iholl 5, [2C)NT + 29718, [l /R (el If gl do

By setting Cr the maximum among the multiplicative constants above, we reach the

inequality of Lemma 6.6.2. =

6.6.2 Evolution of ||f — gl

The differential inequality satisfies by ||f — g|| L4 is more intricate and requires to control

the (2 +’y)th moments of g and f by the Ll-norm of the difference. This is achieve thanks
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6.6 Uniqueness of solution for the Boltzmann-Nordheim equation

to the next lemma.

Lemma 6.6.3 For all T in [0,Ty), there exists Cr > 0 such that for all t in [0,T],

d
S = glly, < Cr [Masa @I = glloy + 15 = glloy, +17 —gllz, .

Mo is the (2 + W)th moment of f + g (see (6.2.1)) and Cp only depends on Cy, lp, 7,
HhOHL; and Np (see (6.6.1)).

Proof of Lemma 6.6.3 We fix T" in [0,T) and we consider ¢ in [0,7]. As in the proof of

Lemma 6.6.2 we have

d
- I1f = glls = Co blo — v | "P(f,g) [V, + V' — ¥, — ¥] dodv.dv, (6.6.5)

2 R xRd xSd—1

where this time we wrote W (¢,v) = sgn(f — g)(¢,v) (1 + |v|2) and P(f,g) is still given by
(6.6.4).
Using the algebraic inequality (6.6.2) and using the change of variable (v,v.) — (vs,v)

we obtain

d 1. 1, 1. 1
U f - — iy .y iy s .y 6.6.6
I =gl C¢<21+42+83+44> (6.6.6)

with
n- blo — w7 [G(®) — U] ( = g)(fs + g.) dodvdo,
R xRd xSd—1
I = / blo — vV [G(W) = O] (f — g)(fu(f" + fL) + 9:(g" + 4)) dodvdv,
R xRdxSd—1
I = / blv — v [V [G(T) = U] (f + 9)(fi — 9 (' + fL+ g + g.) dodv.dv,
R xRIxSd—1
no- o — 0. [G() — W] (f + ) (s + g2) (. — o) dordu.do,
RAxRIxSd—1
where we defined G(¥) = ¥/, + ¥/ — U, and we have straightforwardly
G <3+ [0+ [l + o =2 (14 o) + (14 0P). (667)
Thanks to the latter bound on G(V) and the fact U.(f —g) = (1 + |v\2) |f — g| we find

Ll < 20 / (1 0u?) (ol + a1 = gl (2 + g.) dudo.
R4 x R4

< AC2lhollgy 1 — gl + 260, Mags |f — glly (6.6.8)
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where C, has been defined in (6.4.2).

The term I5 is dealt exactly the same way, remembering the f and g are bounded by
Nr.
|Io| < 8NTUCT lholly I1F = gll s+ ANTIC, Moy ||f = gl - (6.6.9)

In the term I3 we make the change of variable (v,v.) — (vs,v) and after bounding the

terms in v’ and v}, by Ny we recover |I1|. Therefore,
5] < 8N2bCFllholl g I1F = glly |+ ANTIC Moy [1f = gll s - (6.6.10)

The last term, I4, is more intricate and we have to deal with it carefully so that the terms

of order 2 + v in v only appear in front of the Lé’v—norm of f—g.

First of all, thanks to (6.6.7), we have
|G(¥) —¥| <2 {(1 + |v|2) + (1 + ymz)} ;
so that

|I4) < 2/ blv — vs]? [(1 + \1;12) + (1 + ‘U*‘Q):| (f +9)(f« + g) | f1 — 6| dodv.dv.
RQdXSd—l

Then, the change of variable (v,v.) — (vs,v) followed by the change of variable 0 — —o,

which brings v’ to v/, and reciprocally, gives

/ b(cos 0) [ = val" (L4 [0a]?) (f + ) (fu + 9.) | f1 = 9] dodv.dv
R4 xR4 xSd—1

-/ b(—cos0) [v— . (1 [0) (/ +)(fs + 9 | £ — gL dordvsd,
R xRdxSd—1
Therefore, if we denote b(z) = b(x) + b(—xz) we obtain

n o< zf b — .7 (14 o) (7 +)(fs +92) | — gt] dordvsdo
R xRd xSd—1

< 1648, lholldy If = gl (6.6.11)

[0,T],v

w2 [ o (e B P (o) [ B g £ - gl dodo.
R4 RdxSd—1

The last integral is dealt with in the same way as in the proof of Lemma 6.4.4, (6.4.6), by

studying the cases v’ is close to v and when not. We use the Carleman representation of
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this integral, which reads, with v, = v}, +v' — v,

i ;
/ B(fs + g2) |f. — gl| dodv, = / b (fr g |f - g v,
Ré x§d—1 RIXE,,, | — /|

b
R4 Re v — V|

<ty [ 172~ 0| (200)Nr + 2172 2 hally ) il

where C(1) is defined in (6.4.7).
We plug the latter inequality into (6.6.11) to obtain the following control from above

L] < 160C, IRollFy | I1F = gllps,  +4BC, (COONp +272 kol 1y ) Moy If = gl -
(6.6.12)

To conclude we gather (6.6.8), (6.6.9), (6.6.10) and (6.6.12) into (6.6.6) m

6.6.3 Control of ||f — g||;~

[0,T],v

For the L®°-norm of f — g, we derive the following inequality

Lemma 6.6.4 There exists T in [0,Ty), there exists Cr > 0 such that for all t in [0, 7]

and for all m in N,

If =gl < Crosup |[f =gl -
[O,t],’U [07t]7v v

Cr only depends on Cg, ly, v, HhOHL% , T and N, (see (6.6.1)).

Proof of Lemma 6.6.2 We fix T in [0,Tp) and we consider ¢ in [0,7]. We have the

following decomposition
t
ft,v) —g(t,v) = Cq;/ / b(cosO) |v—v|" P(f', ') dodv.ds
0 JRdxSd-1
t
—Cq>/ / b(cos 0) v —v.|" P(f,g) dodv.ds
0 JRdxsd-1
¢ t
= / Ji(s,v) ds —I—/ Ja(s,v) ds,
0 0

where P is given by (6.6.4).
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We have that at ¢t =0, f(0,v) — ¢(0,v) = 0 for all v and therefore

F-gltty) = @u—yuawds=/"%Mf—gxaw@uwﬂo—waw>%
0 0

|J1] (s,v) ds + / sgn(f — g)(s,v)Ja(s,v) ds. (6.6.13)
0 0

We start by the first term J;. Using the algebraic equality (6.6.2) and the definition
of P one can bound P(f',¢") by

P <t Np) |~ g/ (£ 4+ gl) + LN

F 0 =l S+ gl

[0,t],v

\fi—d] (f'+9)

The change of variable 0 — —o sends v’ to v/, and reciprocally. Therefore we have

t t B
/ |1 d5<20¢(1+2NT)/ / b(cos 8) [v — v, | | fi = gi| (f' + ¢') dodv.ds
0 R xSd—1
Cs ! AW / / /
+ I =gl b(cos 0) [v— vl |fi + gi| (f +¢') dodv.ds,
2 0.0 Jo Jrdxsd—1

where we defined b(x) = b(z) + b(—z).
For both integrals, we use Lemma 6.4.4 with A > 0 to be chosen later. This yields

/|J1| ds < 4C C’q>lb(1+2NT)s[u[])<||f glliy >[QC(I)NT+2d_2t||h0||Lé’J

2d 2
+530Cab ] = gl 2l [2CO0Ne + 22t ol .
We choose A small enough such that
1
20, Csly, Hh0||L% i} C(A)Np < T (6.6.14)
and we define 7 < T such that
2d4-1 1
CyCaly lIhollry , yg=r Ihollry 7 < - (6.6.15)
These choices of constants lead to
¢ 1
vt € [0, 7], / || ds < = If —9gllpec . +Crsup|lf —gll;1 (6.6.16)
0 2 0,410 [0,4] 2

with C; a constant depending on 7.
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We now turn to the last term J; in (6.6.13). By using (6.6.2) and the change of variable

o — —o we get

/0 sgn(f — g)(s,v)Ja(s,v) ds

Co [
<G [ [ b=l 66

X (fe(L+ f 4+ f2) + 9(1+ ' + gi)) dvuds (6.6.17)

C t
+@<2+4NT>zb// 0= v fs = go| ( + g) duveds
4 0 JRIxSd-1

C ¢ ~
w2 [ b=l () (fe g2 |1~ o] dodu.ds,
0 JRdxSd-1

where we wrote b(x) = b(z) + b(—z).

The second integral is easily dealt with and we have

t
/0 /R o [0 =0T = el (£ 4 g) dowds < 2N2Cy sup |1 = gllyy (6.6.18)
x - ’

[0,¢],0

The third and last integral is a bit more intricate and we use the Carleman represen-
tation of the integral against (o, v.). We emphasize that in the integral against (v/,v}) we

denote v, = v, +v' — v. This yields

t
/ / blo—v.|” (f + 9)(fe + g4) | fL — g.| dodv.ds
0 JRdxSd-1

! I Y (L+[']") ' ’
</0(9+f) </Rd‘f* g*‘(1+‘v*‘ ) [/}Rd |’U—U/|dl(f*+g*)dv] dv*) ds

and we follow the idea developed in Lemma 6.4.4 with A =1

t ~
[ b=l (7 +0)(0. + 9 |f: - | dodv.ds

0 JRIxSd-1

t
< [aspmen
</d £ = gi| (1+ [0L]") [2NTC(1) 4 241 lhollzy (1 + }v;\”)} dv;> ds.
R U
« is in [0, 1] and thus we have

t ~
L[ b=l G+ 9+ 0|1 - 6| dodu.ds
0 JRdxSd-1

(6.6.19)
< 20N [N+ 2 ol | sup 17 =iy,
’ 0,t],v !
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The first integral on the left-hand side of (6.6.17) is negative because f and g are both
non-negative solutions. Thus we plug (6.6.18) and (6.6.19) in (6.6.17), which gives

t
vt € 10,71, / sen(f —g)(s,v)Ja(s,v)ds < Cp sup ||f — gHL;U, (6.6.20)
0

[0,t],v
where Cr is a constant depending on T'.

Therefore, if we take 7 given by (6.6.15), we can use (6.6.16) and (6.6.20) inside (6.6.13).

This yields the result given in the statement of Lemma 6.6.4. m

6.6.4 Uniqueness result: proof of Theorem 6.6.1

In this section we prove the uniqueness result stated in Theorem 6.6.1.
We set 7 to be the minimum between 7 in Proposition 6.5.5 and 7 in Lemma 6.6.4.
Throughout this section, C' will stand for a positive generic constant depending only on
7, N, on the parameters of the operator () and on Hh0||L%m.

We use Lemma 6.6.2, Lemma 6.6.3 and Lemma 6.6.4 together to see that there exists
7 such that if ¢ belongs to [0, 7] then

d

S = glloy <CIF =gl +11f ~glly, |

d

a 1f = QHL%W <C [M2+~/(t) If— 9||L11J +If = g”L%w +f - g“L[o(iT],v] (6.6.21)

If =gl <Csupllf—gly -

0.1 0.0

The L., L%,U and Lf(it],v

first inequality in (6.6.21) gives || f — g|| ;1 < Ct.
Moreover, Proposition 6.5.5 says that for ¢ in (0, 7], Mai(t) <

-norms of f and g are bounded by assumption. Therefore, the

&
¢
fined in Proposition 6.5.5 and therefore the second inequality in (6.6.21) gives || f — g|| Ly, <

Ct. |

We can use these results to get || f — gHLfo ] < Ct in the third inequality in (6.6.21).
0,t],v

, where C; has been de-

We can use this argument again to obtain that in fact || f — g||;1 < Ct, || f — 9HL§ <
Ct? and ||f — g|l;« < Ct2. By induction we obtain that for all n in N, || f — g| .. < Ct",
0,t],v v
I~ olyy, <O analf gl <O

Remark 6.6.5 We emphasize here that one would like to take the limit as n goes to +00

to obtain the uniqueness on short times. Unfortunately, C is a generic constant and we

do not explicitely mentionned that this constant is increasing with n.
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Therefore the three norms are time-differentiable at 0 with their time-derivatives being
0 at ¢ = 0. Therefore we can use (6.6.21) for all ¢ in [0, 7] and combining the second with

the third one we get

d K
T elorl, LIS =gy, < I =gl +Kesuwp If =gl (6622)

0,t],v
where K7, K5 > 0 only depend on 7, hg and the operator Q.

We fix n > K; and we defined X(t) = [|f — g||L%7U /t". We have that X (t) < C,t?
which means that X () is continuous at 0 and also right-differentiable at 0 with X’(0) = 0.

We differentiate X (t) in the same spirit that Nagumo’s fixed point theorem. The main
difference relies on the fact that we shall have to deal with terms of the form sup X in the
differential inequality. Thanks to (6.6.22) we have

d 1 /d n
axw) = 5 (E0-oluy, 215l
Ko
< B - gl
2 s ol
< Ko sup X(s).

[0,¢],0

We integrate in time between 0 and ¢ and because X (t) is positive we obtain

X(t) < tKy sup X(s)
[0,t],v

and by induction we obtain

Vi e [0,7], Ym e N, X(t) < (tK3)™ sup X(s).
[0,t],v

Hence, we can take the limit as m goes to +oo for all ¢ < 1/Ks. Which means that
Vt € [0, min(7,1/K2)], X(t)=0
and as a result, if we denote 71 = min(7,1/K>),

vie[0,n, [f =gl =0 (6.6.23)

To conclude for all time in [0, 7] we know that for t > 71, My (t) is bounded by C;/m
(see Proposition 6.5.5) and therefore (6.6.22) becomes

d
VT e ln,tl S gl < Kallf —gly, + K2 sup [ gl

0,t],v
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— Koyt

which we can multiply by e , which is decreasing in ¢, to use an extended Gronwall

lemma:

d - - s
VI €Tl g (TS gl ) () < Ko s (S — gl (9)).
, up ,

which once again gives uniqueness between |71, 271] and by induction we obtain that

If =gl =0

on [0, 7].

Finally, the uniqueness on [0, 7] is obtain by interating the latter proof starting from
T to go up to 27. Indeed, 7 only depends on the operator @, Ny and on HhOHL%W which
is equal to HgHL%W and ||fHL5,v at time 7 since these two solutions preserves mass and
energy. Therefore starting the proof at 7 will give us the uniqueness between 7 and 27.
By induction we have that f = g on [0,7] for all 0 < T < Tp.

6.7 Local existence of solutions

This section is dedicated to proving the following theorem

Theorem 6.7.1 Let fo(v) be in Ly, N LY.
Then there exists Ty > 0, depending only on Cg, ly, 7, ”f0HL§ and || foll jee, such that
there exists f in L52, ([0, Tp), L%}U N L) solution on (6.1.3) on [0,Th) x R? such that

loc

o Tp=+0c0 or lim [|f|;~ = 400,
T—Ty [0,T] xRE

o f preserves the mass, momentum and energy of fo,

o for all T < Tp,

sup <f(t,v) +/0t (1+v]") f(s,v) ds> < oo.

[0,T)xR4

For now on, we take fy, non identically 0, in L%’v N L.

The proof of this theorem relies on a time discretisation of equation (6.1.3) together
with an approximation of the Boltzmann-Nordheim operator (). This raises a sequence of
functions (fy,)nen that will be proven to be approximations of a solution of the Boltzmann-
Nordheim equation. This step is done by establishing the weak convergence of the sequence
(fn)nen to the unique solution of (6.1.3) (see Theorem 6.6.1).

- 288 -



6.7 Local existence of solutions

We shall first derive some properties for truncated operators approximating the Boltzmann-
Nordheim operator. Then we define some constants and construct a sequence of functions

and finally show that this sequence convergences to a solution of equation (6.1.3).

6.7.1 Some properties of truncated operators

This idea of approximating the collision kernel in the case of hard potentials is a common
one in the Boltzmann equation litterature (see for instance [2] or [77]). We consider now

the following truncated operators, where n is a positive integer,

Qn(f) = C@/ (lv = v An)Y O [ffiL+ f+ fo) = fAQ+ '+ f1)] dvido.

RdxSd—1

where a A b = min(a, b).

We associate to these operator the natural decomposition (6.1.4) — (6.1.5):

Qn(f) = —fQu () + Qr (f)-

The truncated operators are much easier to handle because they are easily bounded in
Lé,v N Lg°, which is not the case for the full Boltzmann-Nordheim operator (). Indeed, we

have the following controls on the negative part

Lemma 6.7.2 Let f be in Lé,v N LS°. Then we have the following inequalities
_ 2
o 1£Qu(Nley, < Calon? (14201l ) 113y,

o 1Q (Nl < Colon” (14201 fll 50 ) 1

o if, moreover, f >0, then there exists C, > 0 (defined by (6.4.2)) such that

Yo €RY Qu () = Caly (07 AL+ ) Iy = CaCily £l -

Proof of Lemma 6.7.2 We have that

QO =Co [ nalo— ol beosO)f. [L+ f+ 1] dudo.

RdxSd—1

Therefore the first two inequalities are trivially obtained by bounding f + f" by 2| f|| ;.
and the kernel by n?b(cos #) and then taking the supremum in v or integrating against
(14 [vf*) dv.
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Now we suppose that f is positive and we copy the proof of Lemma 6.4.2, thus

Qn(flv) = %/Rd . (n A v —v.])7 b(cos 0) f, dv,do

/ v — |7 fi dv*+/ nY fi dvg | .
|[v—vs|<n [v—v«|>n

Since « is in [0, 1], we know that the following triangular inequality holds

> Cosly

(lol" = Jvul?) <o = vul” < (Jo" + [ou]) -

This yields

Qn(f)w) = Caly / (L [o") = (L4 Jva]")) £ dvs + / n’ fi dv*]
|[v—vs|<n [v—vs|=n
= Coly [ (0" A+ o)) [flly — Cy e (1 +Josl®) fs dv*] ,

by definition of C., see (6.4.2). We obtained the expected lower bound. m

Moreover we also have the following bounds on the positive part

Lemma 6.7.3 Let f be in L%ﬂ} N Ly°. Then we have the following inequalities

o 1QF Wy, < Calon (12010 ) 115
o for all A >0,

(n" A (A [u]”)) f(u)

|d_1 du

1QF (NNl e < CalsCo 1y, (1420115 ) [/

lu—v|<A |lu — v

C
bz Iy, |

Proof of Lemma 6.7.3 For the first inequality, we just have to notice that, after the

change of variable (v/,v)) — (v,v.) one obtains

[ asrmeido= [ @ op) 1@ do
R4 R4
and we deal with the Liv—norm the same way we did in proof of Lemma 6.7.2.

For the L:°-norm, we use exactly the same approach than in Lemma 6.4.4, using

Carleman representation. This yields
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I v
Qi <2 2cn [tz ] [ S ppavan. 61y

Rixrd v —o/|?7!
We just have to deal with the integral whether (1 + |v|”) is smaller than n” or not.

In the case where (1 + |v|”) < n” we bound the integral from above in the following

way,

/ / Yy / 1Y
V=V AN vV —
/]Rd Rd . : : ffedv'dv, < /R | *_1 ff. dv/dv,
X

v — /|41 axpe v — 0|7

1L+ )
< C’Y ||f||L%v /[Rd m]ﬂ ClUl, (672)

since v is in [0, 1] and therefore, thanks to (6.4.2),
o =< (7 ) < G (1 ) ()

We obtain the expected result in the case (14 |v|”) < n? by splitting the integral in (6.7.2)

into small and large relative velocities v — v,.

The case (1+|v]|”) > n” is dealt with in exactly the same way but we bound (Jv" — v}| A

n) by n in (6.7.2). This gives us the expected result. m

6.7.2 Construction of a sequence of approximations

We now fix a positive integer n and we want to discretise in time the Boltzmann-Nordheim
equation associated to the truncated operators @),. Thus we need to work on a closed

interval. More precisely, we shall solve the truncated Boltzmann-Nordheim equation

8tfn = Qn(fn)

by a implicit Euler scheme on an interval [0, 7p], Ty not depending on n.

To this end, we require to fix some constants (like the ones appearing in Lemma 6.7.3)
that we are going to define below.

First of all, in order to shorten notations, we define

Cr = Coly || foll s (6.7.3)

Csl,C, ||f0”L5m
0~ min (1,Cr)

(6.7.4)
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where C, has been defined in (6.4.2). Then, we define

21| foll L

We have that ]u\l_d is integrable near 0 in R?. Therefore we can consider A strictly

positive such that

1 1
C(A :/ ——du ———————. 6.7.6
) < [ul®! 2C (1 + 2K)) ( )
Now we are able to define the time interval we shall work on,

-1

Ky C
20 o g, | (6.7.7)

Ty = 2
07 40,

We emphasize here that all the constants are independent of the integer n.

We consider the following explicit Euler scheme on [0, Tp],

fi2(0) = fo(v)
D) = fP @) (1= 8005 (£9)) + 2005 (£7), fork e {OTO}

Ap,

(6.7.8)

where @, and @, have been defined in (6.1.4) — (6.1.5). A,, is the time step such that
A, =min |1 ! (6.7.9)

n — 1 ) . .

2Calyn? | foll £y [T + 2K0]
We first need to prove that the sequence ( fT(Lk))k {0 7 } is well-defined. This is the
€{0,..., 2>

purpose of the next proposition.

Proposition 6.7.4 For all k in {0,...,Ty/A,}, we have that fr(Lk), see (6.7.8), is well-
defined and

i) 19 >0,
o] £

i) || £

Cand fou v dv = [pavfodv,

v

|U\2f0‘

= ol

L} L

iii)
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k-1
W) < folv) = Cry  An (7 A(L+[0]") £
i=0
C’\/
HRARCCyly [ folloy, |1+ (1+2K0) 757 1 follny,,
, : ,
1

i (i)
;) Ay (YA (1A [u]™)) fo (u)

ColsCy foll . (1+ 2K0)/ du.

lu—v|<A lu — o4t

i) if we define
Eo(f{) = sup [ fP() + A0 )~ (07 AL+ o)) £ ()

then
E, (/) < Ko,

where C, has been defined in (6.4.2) and Cr, X\, Ko, Ty and A, have been defined in
(6.7.3) — (6.7.9).

Remark 6.7.5 In particular, point iv) gives a uniform control on the LS°-norm of fr(Lk)
which is bounded by K.

Proof of Proposition 6.7.4 The proof of the proposition above will be done by induction.
The step k = 0 is direct since Ko > || foll;~ (see (6.7.5)). So let us assume that this is
true at rank k with k < Ty/A,,.

Combining Lemma 6.7.2 and points i7) and iv) of Proposition 6.7.4 at rank k we have
that
A,

N

Qn (#9)], < AnCalin™ ol (1+ 26K0) <

Therefore we have that, by definition of fékﬂ), (6.7.8),

WV

f(kJrl)(v)

n

SO + 2,08 (59)

and because fT(Lk) > 0 we obtain that f,ng) > 0, which is 7).
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6 The homogeneous Boltzmann-Nordheim equation for bosons

Furthermore, féﬂl) > 0 implies that, thanks to Definition (6.7.8),

1
l o | D _ / o | £ ) d
]Rd
ElE

Ly

1
- / o | P @) do+ A, / o | QuF®)(w) do.
Rd R4 ’ |2

The last term on the right hand side is zero since @), satisfies the same integral prop-

erty than the non-truncated Boltzmann-Nordheim operator, Lemma 6.1.1. Hence, f,(LkH)

satisfies point 7).

In order to prove iii) we use Lemma 6.7.2 (fT(Lk) being positive), Lemma 6.7.3 and the
fact that Hf,gk) HL < Kj in the definition of f,(LkH), (6.7.8). This yields

FED@) < FP () = CLa, (07 A (L+ o)) £

C
O ol |1+ (14 260) 355 Lol |

YA (1 7)) £
+AnC¢leﬂ\fo\|L%U(1+2K0)/ (A QA [u])) fo () o

Ju—v|<A lu — o4

Then, by applying i) for fé’“) we obtain #i7) for ,(lkﬂ).

Thanks to iv) at rank k& we have that for all v in R?

E
—_

ALY (0 AL+ o) f9) () < kARRTK,.

<.
Il
o

k=1 ,
Thus, sup A, Y, (Y A (1+ |v]")) ,S])(v) exists and is finite.
veRd  j=0
Hence, we can consider property iii) at rank k + 1 and take the essential supremum

over v in R?, noticing that k + 1 < Tp/A,,

Ky C
E,(f*Y) < P+ ToCo |1+ (142K0) 175 I folly,

CoC(N) (1 + 2Ko) E(f{FD),
Ky 1
c Bo 1 (k+1)
~ 2 + QEH(fn )a

by definition of Tp, see (6.7.7) and of A, see (6.7.6). This gives us the expected result iv)
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for 7(Lk+1). [ |

6.7.3 Convergence towards a mass and momentum preserving solution
of the Boltzmann-Nordheim equation

For each n in N we have built a sequence of functions ( fT(Lk)) in L3 N L.
k€{0,....To/ A} ’

We shall see these functions as piecewise constant functions of time. Therefore we define

Vn € N, V(t,v) € [kAn, (k+ 1)An) x RY,  fo(t,v) = £ (v). (6.7.10)

n

We are about to prove that (f,)nen converges weakly in L([0,Ty] x R?) towards
fin Ll([O,Tg],L%’v) N L>([0, Tp] x R?), the mass and energy preserving solution of the
Boltzmann-Nordheim equation (6.1.3) with initial data fo (which is unique thanks to
Theorem 6.6.1). This is the purpose of the following proposition.

Proposition 6.7.6 There exists f in L'([0, To] x RY) N L>([0, Tp] x RY) such that a subse-
quence of (fn)nen, see (6.7.10) and (6.7.8), converges towards f weakly in L'([0, Tp] x RY)
and weakly-* in L°°(]0,Tp] x R?). Moreover, f satisfies

o [ is a solution of the Boltzmann-Nordheim equation (6.1.3) with initial data fo,

e [ is positive and for all t in [0,To], [[f(t, )|, = [lfoll, and Jravf(t,v) dv =
fRd v fo(v) do,

e recalling the definition of Ko > 0 (see (6.7.5)), f satisfies

sup <f(t,v) + /Ot(l + [v|") f(s,v) ds> < 2K.

[0,Tp] x R4

Proof of Proposition 6.7.6 Thanks to point ii) of Proposition 6.7.4 we have that (f,,)nen
is bounded in L!([0,Tp] x RY) but also have a uniform bound on its second moment.
Therefore it is a tight sequence. Moreover, point iv) of Proposition 6.7.4 gives us that
(fn)nen is bounded in L>([0, Ty] x R?) and thus it is equi-integrable. The Dunford-Pettis
theorem concludes that (f,)nen is weakly compact in L'([0, Tp] x R9).

Therefore, there exists f in L!([0, 7o) x R?) such that there exists a subsequence of (f,) ven,
that we will keep denoting by f,, which converges weakly in L' ([0, Ty] x RY) towards f.

Point i) of Proposition 6.7.4 tells us that f > 0. The sequence (f,(¢,-))nen is tight

and its tightness property is independent of the time t (see the uniform control of the
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6 The homogeneous Boltzmann-Nordheim equation for bosons

second moment, point ii) of Proposition 6.7.4). Therefore, for all € > 0, it exists R, > 0

such that for all n and ¢t we have

/Rd Lpj<rey fu(t,v) dv = || fol g — &

Since 1y,|<p.} is in Ly we can take the weak limit as n tends to +oo in the inequality

above to obtain
1)y > /Rd Lijoicrayf(E0) dv 2 [ foll =€,

this being true for all e. Thus, ||f(¢,-)|.1 = [|foll;1. But Fatou’s Lemma offers us straight-
forwardly the opposite inequality.
This indicates that for all ¢ in [0, Tol, || f(,-)[;1 = [[follz1- A similar argument proves that

f(t,-) has the same momentum as fy for all ¢ > 0.

The last point of Proposition 6.7.4, shows that (f,)nen is bounded in L*([0, Tp] x R9)
and therefore is weakly-* compact in this space. We can extract a subsequence of f,,
still denoted by f,,, which converges weakly-* in L>([0, Ty] x R?). But since f,, converges
weakly in L'([0, Ty] x R?) to f and therefore the weak-* limit in L>°(]0, Ty] x R?) can only
be f.

Thus f belongs to L>([0, Tp] x R%).

Thanks to point iv) of Proposition 6.7.4, we have, for all n in N and & in {0, ..., To/A,—
1}, for all (t,v) in [kA,, (k+1)A,) x R?,

t k—1
falt,v) + /0 (0 AL+ [0) fuls,0)ds = fP@)+ 3 A (07 AL+ [o]) £9) (0)
7=0

+ 00 (= kA) (07 A (14 o) £ (0)
KO + A?L'RWKO
2Ko. (6.7.11)

NN

Therefore, if we define
t
Wn €N, V(t,0) € [0,T)] x RY,  gn(t,0) = / (WA L+ [o]) falsiv) s, (6.7.12)
0

we have that the sequence (gy),,cy is bounded in L>([0, Tp] x R?) and therefore is weakly-

* compact. There exists a subsequence, still denoted by g,, that converges weakly-* in

L>=([0, Tp] x RY) to, say, g.
Besides, since 0 < v < 1, we have that (gn),,cy is bounded in L'([0, Tp] x R?) and such
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that for all ¢ in [0, Tp],

[l gt ) do 20T ol

where C, has been defined in (6.4.2). Therefore (gn),cy is tight and equi-integrable and
therefore is weakly compact in L'([0,7p] x R?). As we did for f, we obtain that g,
converges (up to a subsequence) weakly to g in L'([0, Tp] x R?).

We are going to prove that

glt,v) = /0 (1+ ) f(s,0) ds. (6.7.13)

As we emphasised before, the compactness properties of f,, and g,, are the same for f,(t, )
and g, (t,-) for a given t, because our bounds are independent of ¢. Therefore we fix a ¢ in
[0, Tp] and we take ¢ in C°(RY). By weak convergence of f,, in L'([0,Tp] x RY) we have

t
/ / (1+|v|") ¢(v) f(s,v) dsdv = lim / / (1+|v]") p(v) fu(t,v) dsdv = lim I,,.

R4 Jo n—oo Rd n—oo

But we have the following
t
= st o+ [ (W0 A (L4 0]")) 0(0)f(5,v) dds
(1+]v[7) 0 J(1+[v[")>n7
¢ is of compact support so for n big enough we have that
Vs € [0, 4], / (07 A (L + [0]")) $(0) fuls, 0) dv = 0.
(I+[oM)>nY

Finally, by the weak convergence of g, in L1 we obtain

lim [, = /Rd g(t,v)p(v) dv.

n—o0

Thus,

voecx®), [ o ot~ [ a+iom s as] dv=o.

This gives us the expected equality (6.7.13), since both functions are in L}.

As a result, we have that fot (14 |v|") f(s,v) ds is in L>([0,Tp] x R?). Thanks to
(6.7.11) we also find

sup (f(t,v) + /Ot (1+1v|") f(s,v) ds) < 2K). (6.7.14)

[O,To] xRd
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To conclude the proof of Proposition 6.7.6 it remains to show that f is a solution of the
Boltzmann-Nordheim equation (6.1.3). However, this is now pretty straightforward since
gn(t,-) converges weakly-* in L and f,(¢t,-) converges weakly in L, for all t. Therefore,
thanks to the definition of fr(bk)7 see (6.7.8), we can take the limit in

[ sttty do= [ o) [0+ [ @uio )] s,

for all test functions ¢ in C°(R?). Indeed, Q™ is basically a convolution operator with a
kernel not growing faster than (n? A (14 |v|”)). Then, since we have the equality (6.7.13),

we obtain that for all test function ¢

/Rd o(v) [f(t, v) — <fo(v) +/OtQ(f(s’ ) () ds)} o,
and thanks to (6.7.14) we have that f(¢,v) — <fo(v) + f(f Q(f(s,-))(v) dS) belongs to LN

L7® and therefore we obtain

f@@—M@+AQU@WWM&

which means that f is a solution of the Boltzmann-Nordheim equation (6.1.3). m

6.7.4 Preservation of the energy

This section is devoted to the proof of the following result, which is the fact that f preserves

the energy of the initial data.

Proposition 6.7.7 Let f be the function obtained in Proposition 6.7.6.
Then for all t in [0, Tp],

10 ret,0)]

o = || o)

Ly’

Proof of Proposition 6.7.7 We have, thanks to Proposition 6.7.4, that for all ¢ in [0, o]

the sequence <|v]2 fn(t,v)> N is bounded in L. with the following preservation of the
ne

1
L,-norm,

Vn € N,Vt € [0, Tp), / 102 fult,v) dv = H|v|2 fo‘
Rd

Ly’

Therefore, we fix t and notice that for all R > 0 we have that, since f, > 0,

(6.7.15)

|U\2f0‘

1 2 (t, dg‘ .
L Yatem of o) do "
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As we saw in the proof of Proposition 6.7.6, (fn(t,-)),cn converges weakly (up to a sub-

sequence) in L. towards f. We can then take the limit as n in (6.7.15),

)

[ Ly 1o £lt,0) do < [[1of 1o
R4

Ly

which is true for all R. Thus, the positivity of f yields

[ ol £60) do < ol (6.7.16)

It remains to prove the opposite inequality.
To this end we shall show that (|v\2 fn(t,v)) N is tight in L}, uniformly in ¢. Indeed,
ne

such a tighness property will yiels

— &

Ve >0, dR. > 0, Vn,t, / 1jo<Rr.} ]0\2 fn(t,v) dv > HIU\Q fo‘ o
Rd 5

and since 1y),|<p.) is in Lg” we can take the weak limit as n tends to +o0 in the inequality

above to obtain (remember that f is positive)

10 f(t.0)]

) >/ Ljol<rey [V f(t,0) do > H|U\2fo‘
Ly R4

— 57
Ly
this being true for all e.

The tightness of our sequence of approximation is dealt with below. =

We have that fj is positive and such that (1 + |v[2) fo(v) is in LL. Proposition A1l in
the appendix of [77] gives the existence of ¥ a positive convex function on Rt such that
there exists C' > 0 such that

/Rdz/J (1o?) fo(w) o < .

Moreover, 1 can be written ¢ (z) = x¢(z), where ¢ is concave, increasing to infinity, and
such that for any € > 0 and any « in (0, 1), it satisfies (¢(z) — ¢p(ax)) 2° — 0o as x — 0.
To prove that (]v|2 falt, v))nEN is tight in L] we are going to need the technical lemma
about Povner-type inequality, Lemma 6.3.1.
The tightness of (|v\2 falt, v))neN directly follows from the following control of the tail
of the distribution f, (¢, v).

Proposition 6.7.8 For all n in N, for all k in {0,...,To/An},

L 59w (1) do < [ o (10F) o) + 50+ DACCE Il
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6 The homogeneous Boltzmann-Nordheim equation for bosons

where Cq has been defined in Lemma 6.3.1.

Remark 6.7.9 We would like to emphasize here that Cg depends on b, 1 (which depends
k)
fi

Proposition 6.7.4). Therefore, Cq is a constant of our problem, independent of k and n.

only on fo) and an upper bound for

. which is bounded by Ky (see point iv) of

Proof of Proposition 6.7.8 The proof will be done by induction. The case k& = 0 is
obvious so let us assume that this is true up to rank k < T/ A,,.

To shorten computation we set
= [ 10w (o) o
Rd

By definition of ﬁgk—'—l), see (6.7.8), we obtain, after integrating in v and the use of the

usual changes of variables (v,v,) = (vs,v) and (v,v,) — (V/,0)),

MFED = MB 4 A, [ Qu(F) (v) dv
]Rd

— M® 4 Bn / (n Ao —va])? £ @) £9) (w,)
2 JrdxRrd

X [/ [1 + B @'y + £ (v;)} b(cos 0) (VL + ' — by — ) do| dv.dv
Sd—1

An

_
M + =

/Rded (n A v — ) £ (0) £ (0,) [G (v, v) — H (v, v4)] dvsdo.
(6.7.17)

We can use Lemma 6.3.1 with

Ca [v] o],

<
= 0.

This yields, applied to (6.7.17) because fék) is positive (see Proposition 6.7.4),

MED < M,S’“)JrA”CG/ [0 = 0] o] [ue| £ (0) £ (04) dvdo
2 RdXRd
A 2
< M+ S [[ e p il oo ]
Rd

Because 7 belongs to [0, 1] we also have (up to a change of constant C in (6.4.2))

L+ D) ol <& (14 0P),
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which yields, thanks to the preservation of the Liv—norm (see Proposition 6.7.4),

An

M,gkﬂ) < M}Lk) + 70003 HfOH%%,U '

Applying the induction hypothesis at rank k gives us the expected result. m

The tightness of (f(t,-)),cy follows straightforwardly from the growing property of v

and Proposition 6.7.8 which states the following control, uniform in n and ¢,

[ anteeoni (108) o< [ gty (1) do+ S CaC2 a0l <o,

since k < Ty/A,, and Cg is a constant (see Remark 6.7.9).

This concludes the proof of Theorem 6.7.1 since f is a positive solution of (6.1.3), mass
and energy preserving and in L7%. ([O,T 0),L§,U N Lf,o). Therefore, see Theorem 6.6.1, f
is the unique solution satisfying those properties and f preserves the momentum. Thus
the sequence (fy,), <y converges weakly in Proposition 6.7.6, not only just a subsequence,
towards f.

If at Tp we have that | f|| L, < M then we can apply our proof starting at Ty and
construct a solution up to 7; (depending only on M, which depends only on fjy, and
Il f (T, ‘)HL%W = Hf0||L%U) and by uniqueness we have in fact extended f to T7. We can

inductively build a solution on [0,T) up to the point where

lim oo = 400.
T—T- ”fHL[o,T]xIRd
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