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Chapter 1

Introduction

The present thesis deals with the mathematical treatment of kinetic theory and focuses more

precisely on the Boltzmann equation. The latter equation describes the evolution in position

and velocity of rarefied gas particles with a statistical point of view. It plays a central role

in mathematical physics as it builds a bridge between Newtonian systems of particles and

fluid dynamics. In this chapter, we start with a brief overview of the Boltzmann equation

and its main features (Section 1.1). We then present some mathematical problems such

as the quantification of positivity of solutions (Section 1.2) and the Cauchy theory and the

trend to equilibrium in a perturbative setting (Section 1.3); which is a short introduction to

the hydrodynamical limits of the Boltzmann equation which will be studied more thoroughly

in Part II. We conclude by a quantic version of the Boltzmann equation that is used to

describe gases of bosons and fermions and also contains the mechanisms of the Bose-

Einstein condensate (Section 1.4). We give, in each section, a brief description of our

main contributions in those domains.

The reader will also find an index of the notations we use for functional spaces in

Appendix 1.A.
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1.1 General presentation of the Boltzmann equation

1.1 General presentation of the Boltzmann equation

In this section we gather some general definitions, descriptions and properties of kinetic

theory and the Boltzmann equation in rather informal statements. We refer to the stan-

dard books [28][32][30] or the review article [112] for deeper considerations and rigorous

statements.

1.1.1 Models in kinetic theory

1.1.1.1 Kinetic theory and physics of particles and fluids

If one considers a system of N bodies, which can be particles, stars or galaxies for instance,

moving in a domain Ω ⊂ Rd with velocities in Rd, the Newton’s laws of motion describes

the dynamics of the latter system. These laws are the foundations of classical mechanics

and generate, in that case, an Hamiltonian system in the phase space
(
Ω× Rd

)N
. This

system of evolution equations encodes the particular dynamics of each body, this is called

the microscopic scale.

Unfortunately, the N -body problem is renowned to be of a tremendous mathemati-

cal difficulty (even when N = 3) and is therefore hardly useful to study or predict the

behaviour of a large number of entities. In the case of a large system, it is often more

interesting to look into the general, the average, behaviour rather than following each

particle individually. Applying Newton’s laws to infinitesimal volume of particles at equi-

librium inside this volume leads to the equations of fluids mechanics, such as Euler or

Navier-Stokes equations. This point of view is called the macroscopic scale.

The macroscopic scale proved itself useful to describe the average dynamics of systems

(sea or car traffic for example). It however comes with the drawback that is the loss

of the microscopic dynamics inside the system. Kinetic theory stands right between the

microscopic and the macroscopic scale, it is called the mesoscopic scale. It adopts a

probabilistic approach to the problem in order to decrease the degrees of freedom of the

Hamiltonian system but still keeps track of the microscopic dynamics.

A deeper presentation of these physical points of view as well as their different connec-

tions is given in Chapter 3.

The aim of kinetic theory is to model a system constituted of a large number of particles

by a distribution function, in the one particle phase space of position and velocity, that

evolves with time. More precisely, the dynamics of the system is encoded in a density

function

f : [0, T ]× Ω× Rd −→ R+

(t, x, v) 7−→ f(t, x, v),

where T > 0 can be infinite and Ω× Rd is the particle phase space introduced earlier.

- 13 -



1 Introduction

Physically speaking, for a given position x and velocity v, the quantity f(t, x, v)dxdv is

the probability of having a particle in the ball B(x, dx) with a velocity in the ball B(v, dv)

at time t. One can understand f as an approximation, in the limit when N tends to

infinity, of the first marginal of the empirical measure of the system

1

N

N∑
i=1

δxi(t)(x)δvi(t)(v),

where (xi(t), vi(t)) is the position and velocity of the ith particle at time t. A more precise

description is given in Chapter 3.

Moreover, for kinetic theory to have a physical meaning, one expects that the total mass

of the system remains finite in bounded domains and therefore, the minimal assumption

required for f is that

∀t ∈ [0, T ], f(t, ·, ·) ∈ L1
loc

(
Ω, L1

v

(
Rd
))

.

In this point of view, physical observables can be expressed as averages in velocities.

We therefore obtain the following local macroscopic quantities of the system of N particles.

� the local density:

ρ(t, x) =

∫
Rd
f(t, x, v) dv,

� the local velocity:

u(t, x) =
1

ρ(t, x)

∫
Rd
vf(t, x, v) dv,

� the local temperature:

θ(t, x) =
1

dρ(t, x)

∫
Rd
|v − u|2 f(t, x, v) dv,

or, equivalently, the local energy:

E(t, x) =

∫
Rd

|v|2
2
f(t, x, v) dv = ρ(t, x)

|u|2
2

+ d
ρ(t, x)θ(t, x)

2
.

The mass, mean velocity and temperature of the system being the integral against the space

variable x over the spatial domain Ω of the local observables. In order to be physically

relevant, kinetic theory focuses on density functions f that have finite mass, mean velocity

and energy at each time.

- 14 -



1.1 General presentation of the Boltzmann equation

1.1.1.2 Evolution equations in kinetic theory

As described before, the kinetic theory point of view is to model the dynamics of a large

number of particles thanks to an evolution equation satisfied by a density function f =

f(t, x, v). This equation has to take into account the free motion of a particle and the

possible distortion it undergoes due to an external force or interactions with other particles.

As we will see, the latter interactions play a major role in physical studies and contain

most of the mathematical difficulties.

In the case of non-interacting particles and in the absence of external force, the motion

remains straight lines travelled along with constant velocity. The corresponding equation

is the free transport equation

∂tf + v · ∇xf = 0. (1.1.1)

When the system is influenced by an external force Fext = Fext(x) acting on the particles,

corrections have to be made to (1.1.1). The new equation is called the linear Vlasov

equation and reads

∂tf + v · ∇xf + Fext(x) · ∇vf = 0. (1.1.2)

Even though these equations are deeper than they look, especially in bounded domains,

they neglect the interactions which may exist between particles. These interactions could

be attractive or repulsive, thinking of electromagnetism for instance, but also should model

what happens when two, or more, particles collide with each other.

The modelling of one-to-one interaction between particles can be done in two different

ways, and one can, of course, combine them. The idea of how to derive them from

microscopic behaviours is given in Chapter 3, Section 3.2.

If the range of the interaction is macroscopic then the evolution equation is called a

mean-field equation. This type of kinetic equation is non-linear and has the following

form.

∂tf + v · ∇xf +∇xΨ(t, x) · ∇vf = 0, (1.1.3)

with

Ψ(t, x) = −ψ ∗x
∫
Rd
f(t, x, v)dv.

A typical example of a mean-field equation is the Vlasov-Poisson equation used to described

plasmas and for which ψ is the Coulomb interaction for electromagnetism:

ψ(z) =
q2

4πε0 |z|
,

where q is the electric charge of a particle and ε0 is the vacuum permittivity.

Our work will, however, be about another way of modelling interactions between par-

- 15 -



1 Introduction

ticles. In that case, the range of the interaction is assumed to be so small that it can be

considered as a localised interaction. This happens when the trajectory of a particle is

distorted when passing very close to another one or, in the simplest physical case, when

the particles bounce again each other when colliding. The kinetic equations describing

this type of interactions are called collision equations and read

∂tf + v · ∇xf = Q(f), (1.1.4)

where Q can be non-linear and encodes the physical properties of the collision process.

One of the most fundamental collision equation in kinetic theory gives the dynamics

of rarefied gases. This equation is called the Boltzmann equation and will be the subject

of this entire thesis.

1.1.2 The collisional model of the Boltzmann equation

As mentionned above, we will only be interested in the case of the collisional model (1.1.4)

described by the Boltzmann equation (even if some of our results will apply to more models,

see Chapter 4. We give below some elementary properties of the Boltzmann collisional

operator Q.

1.1.2.1 The Boltzmann collision operator

The kinetic theory point of view begins with the microscopic modelling of the collisional

interactions between particles. The Boltzmann equation rules a particular sort of many

particles system. We restrain ourselves to the case of monoatomistic system with elas-

tic collisions. The formal derivation of the Boltzmann equation relies on the following

assumptions on the physical process. We refer to [28][30], first chapter, for a complete

description.

1. We suppose that the interaction is a binary collision, which means that when two

particles are close enough to each other their trajectories are deviated. The con-

sequence of such a postulate is that one can neglect collisions involving more than

two particles, which implies that the system is comparable to a dilute (rarefied) gas.

Mathematically, if the system contains N particles of radius r, we suppose that we

are in the Boltzmann-Grad limit: Nr3 << 1 and Nr2 = O(1).

2. The collisions are considered to be localised both in space and time. This conveys

the idea of the fact that the trajectories are deviated very quickly and it translates

mathematically under the hypothesis that a collision takes place at a position x and

a time t.

- 16 -



1.1 General presentation of the Boltzmann equation

3. We also suppose that the collisions are elastic. In other terms, the momentum and

the kinetic energy are preserved throughout the collision process. If two particles

of respective velocities v′ and v′∗ collide, then their outcoming velocities v and v∗

satisfies 
v′ + v′∗ = v + v∗∣∣v′∣∣2 +

∣∣v′∗∣∣2 = |v|2 + |v∗|2 .

We remark here that the mass is the same for all the particles in a monoatomistic

gas and considering several species requires a different version of the preservation of

kinetic energy and therefore different outcoming velocities.

4. The physics of the process is assumed to be microreversible, which means that the

microscopic dynamics are reversible in time. In other terms, the probability that

velocities (v′, v′∗) are changed into (v, v∗) during a collision is equal to the probability

of changing velocities from (v, v∗) into (v′, v′∗).

5. We further suppose Boltzmann molecular choas inside the system. This states that

before they collide, two particles evolve independently one from the other. This hy-

pothesis implies an asymmetry in the arrow of time since after collision the velocities

of the two particles are correlated (via the preservation of momentum and kinetic

energy).

The formal derivation, from Newton’s laws, of the kinetic model associated to the

assumptions above (see Chapter 3.2 for a brief explaination or [28], chapter 3) yields the

Boltzmann equation. Note that the rigorous mathematical derivation is still a very hard

problem even if in 1974 Lanford [65], and recently ameliorated in [44][96], proved it for

very short time (typically, shorter than the mean time of first collision).

The Boltzmann collision operator is therefore a bilinear operator encoding the proba-

bility for two particles with velocities v′ and v′∗ to undergo a collision resulting in velocities

v and v∗. The laws of elasticity link (v′, v′∗) to (v, v∗) in a bijective correspondance (easily

deduced from Figure 1.1) we call the “σ-representation”. If we denote

σ =
v′ − v′∗
|v′ − v′∗|

,

then σ varies on Sd−1 when (v′, v′∗) varies in R2d and we have the following relation
v′ =

v + v∗
2

+
|v − v∗|

2
σ

v′∗ =
v + v∗

2
− |v − v∗|

2
σ.
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v′∗v

v′ v∗

θ

ω

σ

Figure 1.1: Correspondance between pre and post collision velocities

Under this representation we obtain an explicit form for the Boltzmann equation,

∂tf + v · ∇xf = Q(f, f), (1.1.5)

with Q being the Boltzmann collision operator given by

Q(f, f) =

∫
Rd×Sd−1

B (|v − v∗|, cos θ)
[
f ′f ′∗ − ff∗

]
dv∗dσ. (1.1.6)

In the expression above, B is called the Boltzmann collision kernel and encodes the physics

of the collision process, θ is the angle between v − v∗ and σ, and we use the standard

notations f = f(t, x, v), f∗ = f(t, x, v∗), f
′ = f(t, x, v′) and f ′∗ = f(t, x, v′∗).

1.1.2.2 The different collision kernels of the Boltzmann operator

Alternative representations. The first thing one can notice about the Boltzmann

collision kernel is that its form (1.1.6) depends on the choice we made to express (v′, v′∗)

in terms of (v, v∗). There exists other parametrisations and we refer to [112] Chapter 1 for

advantages and inconveniences of each of them. We nonetheless present two alternative

representations of the Boltzmann collision operator that will be use later in this work.

The most common alternative way of writing the Boltzmann operator Q is the so-called

“ω-representation” (which can also be easily deduced from Figure 1.1). In this case, we

consider the unit vector

ω =
v − v′
|v − v′|

- 18 -



1.1 General presentation of the Boltzmann equation

to obtain a new bijective correspondance bewteen (v′, v′∗) and (v, v∗), namely
v′ = v − 〈v − v∗, ω〉 ω

v′∗ = v∗ − 〈v∗ − v, ω〉 ω.

In the “ω-representation”, the collision operator reads

Q(f, f) =

∫
Rd×Sd−1

B̃ (v − v∗, ω)
[
f ′f ′∗ − ff∗

]
dv∗dω,

where the correspondance with the “σ-representation” is given by

B̃ (z, ω) = 2d−1

∣∣∣∣〈 z|z| , ω〉
∣∣∣∣d−2

B(|z| , σ).

The second representation we want to introduce has been proposed by Carleman [27]

and takes v′ and v′∗ as integration parameters and defines v∗ = v′ + v′∗ − v. With these

choices, the Boltzmann collision operator reads

Q(f, f) =

∫
Rd

(∫
Ev,v′

1

|v − v′|d−1
B̃

(
2v − v′ − v′∗,

v′ − v′∗
|v′ − v′∗|

)[
f ′f ′∗ − ff∗

]
dv′∗

)
dv′,

where Ev,v′ is the hyperplane going through v and orthogonal to v − v′.
The Carleman representation will play an important role in Chapter 6.

Different collisional interactions. The physics of the collision process is encoded in

the Boltzmann collision kernel B. For simplicity reasons, we will always assume that this

kernel is of the form

B (|v − v∗| , cos θ) = Φ(|v − v∗|)b(cos θ),

where Φ and b are positive and locally integrable functions except, eventually, at respec-

tively 0 and 1. This assumption is made without loss of generality on the kernel but

reduce the complexity of later computations. Moreover, it is satisfied in all the physically

relevant cases that we describe below. We refer to [28] Chapter 2 or [112] Chapter 1 for a

derivation of B from the interaction laws.

A very important case is the one of hard spheres which correspond to the case where

particles are considered as billiard balls bouncing on each other. For this specific interac-

tion one has

∃ CΦ > 0, B (|v − v∗| , cos θ) = CΦ |v − v∗| .

In a more general setting, we will always assume that the kinetic collision kernel Φ
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satisfies either

∀z ∈ R, cΦ |z|γ 6 Φ(z) 6 CΦ |z|γ

or a mollified version 
∀ |z| > 1 ∈ R, cΦ |z|γ 6 Φ(z) 6 CΦ |z|γ

∀ |z| 6 1 ∈ R, cΦ 6 Φ(z) 6 CΦ,

cΦ and CΦ being strictly positive constants and γ belonging to (−d, 1]. The collision

kernel is said to be “hard potential” in the case of γ > 0, “soft potential” if γ < 0 and

“Maxwellian” if γ = 0.

The angular collision kernel b is seldom known explicitely. However, we will assume

(b ◦ cos) to be a continuous function on θ in (0, π], strictly positive near θ ∼ π/2, which

satisfies

b (cos θ) sind−2θ ∼
θ→0+

b0 θ
−(1+ν),

for b0 > 0 and ν in (−∞, 2). The case when b is locally integrable, ν < 0, is referred to by

the Grad’s cutoff assumption (first introduce in [48]) and therefore B will be said to be a

cutoff collision kernel. This case is of tremendous importance since it allows to decompose

the Boltzmann operator Q = Q+ −Q−. The case ν > 0 will be designated by non-cutoff

collision kernel.

We can mention here that in the physically important case of inverse-power laws in

dimension d = 3,

Φ(z) = CΦ |z|γ

and γ and ν are not independent since there exists s > 2 such that
γ =

s− 5

s− 1

ν =
2

s− 1
.

Moreover, in the case of Coulomb interactions s = 2, we have an explicit formula for the

angular kernel in dimension d = 3, which is

b (cos θ) =
b0

sin4 θ
.

The mathematical treatment of these different collision kernels reveals different be-

haviours for solutions to the Boltzmann equation, depending where the singularities of

both the kinetic and the angular collision kernels occur. In other terms, the decay at

infinity or even the regularity properties, both in the velocity variable, of solutions to the
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Boltzmann equation (1.1.5) are very sensitive to the way Φ behaves for small or large

relative velocities and the way (b ◦ cos) blows up at θ ∼ 0+.

1.1.2.3 Initial data and boundary conditions

The Boltzmann equation has to describe, at a mesoscopic scale, the motion of particles

evolving in time in the spatial domain Ω. We therefore need to prescribe an initial dis-

tribution fin(x, v) as well as a modelling of the interactions between a particle and the

boundary of Ω, in the case it exists.

The problem of the initial data is quite obvious

∀x ∈ Ω, ∀v ∈ Rd, f(0, x, v) = fin(x, v).

However, there exists density functions that are not physically relevant, as discussed in Sec-

tion 1.1.1.1. In that respect, the physically relevant solutions to the Boltzmann equation

must have finite mass and energy at least in bounded sets. The minimum requirements

one should ask for fin are thus

1. fin(x, v) > 0 almost everywhere in Ω× Rd,

2. for all K compact in Ω,∫
K

∫
Rd

(
1 + |v|2

)
fin(x, v) dxdv < +∞.

There exist several modellings of the interactions between a particle and the boundary

of Ω.

In the case Ω = Rd, no boundary condition is needed. However, the relevant solutions

need to satisfy an integrability condition at infinity.

In the case ∂Ω 6= ∅, particles will interact with the frontier of the domain. The most

common behaviours are the following.

� The bounce-back condition

∀(t, x, v) ∈ R+ × ∂Ω× Rd, f(t, x, v) = f(t, x,−v).

� If Ω is regular enough, then one can consider the specular reflection boundary con-

dition

∀(t, x, v) ∈ R+ × ∂Ω× Rd, f(t, x, v) = f(t, x,Rx(v)),
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Rx, for x on ∂Ω, stands for the specular reflection at that point against the boundary.

One can compute, denoting by nx the outward normal at a point x on ∂Ω,

∀v ∈ Rd, Rx(v) = v − 2〈v, nx〉nx.

� If Ω is regular enough and ∂Ω has a temperature T∂ then one can impose the

Maxwellian diffusion boundary condition

∀(t, x, v) ∈ R+×∂Ω×Rd, f(t, x, v) =

[∫
v·nx>0

f(t, x, v) (v · nx) dv

]
1

(2π)
d−1

2 T
d+1

2
∂

e
− |v|

2

2T∂ .

Note that the first two boundary conditions convey the idea of particles bouncing against

the wall, in two different manners, whereas the third one expresses the fact that particles

are absorbed by the wall and then emitted back into Ω according to the thermodynamical

equilibrium distribution M∂ between the wall and the gas,

M∂(v) =
1

(2π)
d−1

2 T
d+1

2
∂

e
− |v|

2

2T∂ .

The last case we will consider is the periodic case when Ω is the d-dimensional torus Td.
This will be of particular interest since it is a bounded domain without boundary conditions

except for the periodicity condition. This case is also physically and mathematically

interesting because it has been proven (see [30] Chapter 7) that it is equivalent to the case

when Ω is a box with specular reflection boundary conditions.

1.1.2.4 Conservation laws and entropy dissipation

There are some few interesting facts that one can rapidly discover about the solutions to

the Boltzmann equation, at least formally. Its collision operator

Q(f, f) =

∫
Rd×Sd−1

B (|v − v∗|, cos θ)
[
f ′f ′∗ − ff∗

]
dv∗dσ

encodes the microscopic behaviour of the gas in the case of elastic collisions. This particular

case of interaction preserves the mass, the momentum and the energy and this reflects

on the macroscopic observables. Indeed, the Boltzmann collision kernel is invariant, for

instance, under the changes of variable

(v, v∗, σ)→ (v′, v′∗, k) with k =
v − v∗
|v − v∗|

and

(v, v∗, σ)→ (v∗, v,−σ).
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These invariances formally give (see [46] Chapter 1 for a rigorous statement) that for a

given test function φ(v),∫
Rd
Q(f, f)(v)φ(v) dv = −1

4

∫
Rd×Rd×Sd−1

B
[
f ′f ′∗ − ff∗

] (
φ′∗ + φ′ − φ∗ − φ

)
dvdv∗dσ.

(1.1.7)

The latter property has two major consequences that are related to macroscopic laws.

In full generality (1.1.7) implies first that

∫
Rd
Q(f, f)

 1

v

|v|2

 dv = 0 (1.1.8)

and second

D(f) := −
∫
Rd
Q(f, f) logf dv > 0. (1.1.9)

In the case when f is solution to the Boltzmann equation

∂tf + v · ∇xf = Q(f, f),

we have that, by integrating in v the differential equation, (1.1.8) comes out as

� the preservation of the total mass

d

dt

∫
Ω
ρ(t, x) dx = 0,

� the preservation of total energy if Ω has no boundary or if boundary conditions are

bounce-back or specular reflections

d

dt

∫
Ω
E(t, x) dx = 0,

� the preservation of total momentum if Ω has no boundary

d

dt

∫
Ω
ρ(t, x)u(t, x) dx = 0,

The consequence of (1.1.9) applied to solutions to the Boltzmann equation, at least at

a formal level, is known as the Boltzmann H-theorem. The latter theorem states, if Ω has

no boundary or if boundary conditions are bounce-back or specular reflections, that the
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entropy of a solution f , defined as

S(f) =

∫
Ω×Rd

f logf dxdv

which is the opposite of the thermodynamical entropy, can only decrease in time

d

dt
S(f) = −

∫
Ω
D(f) dx 6 0.

Such a result is much deeper than it looks and was subject to a lot of discussions and

rejections from the scientific community when Boltzmann discovered it. The entropy

dissipation indeed implies time irreversibility of the Boltzmann equation which seems

unnatural since the Newton dynamics of the microscopic processes it describes are time-

reversible.

We conclude this brief introduction to the Boltzmann equation by describing its steady

states. The entropy dissipation states that we are at a local thermodynamic equilibrium

if

D(f)(t, x) = 0,

which is possible if and only if

∀v ∈ Rd, f(t, x, v) = M(ρ(t,x),u(t,x),θ(t,x))(v),

where M(ρ,u,θ) is called a Maxwellian distribution and is defined by

M(ρ,u,θ)(v) =
ρ

(2πθ)d/2
e−
|v−u|2

2θ .

Moreover, for all ρ = ρ(t, x), u = u(t, x) and θ = θ(t, x) the following holds

Q(M(ρ,u,θ),M(ρ,u,θ)) = 0,

and therefore a local thermodynamic equilibrium is global if and only if

∀(x, v) ∈ Ω× Rd, v · ∇xM(ρ,u,θ) = 0.

In the case of the torus, this condition yields a unique global equilibrium for the Boltzmann

equation that is the Maxwellian independent of t and x that has the same total mass,

momentum and energy as the initial configuration fin. This is also the case if Ω is a

non axis-symmetric bounded domain with bounce-back or specular reflection boundary

conditions. We refer to [46] Chapter 1 and [112] Section 2.5 for more details and references.

In these cases, we can always consider, without loss of generality, that the equilibrium
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is a centred gaussian with mass and variance 1. We denote

µ(v) =
1

(2π)d/2
e−
|v|2

2 .

1.2 Quantitative study of the positivity of solutions (Part

I)

Part I deals with some quantitative and qualitative aspects of solutions to the Boltzmann

equation (1.1.5).

The aim of Chapter 2 is to prove that non-negative solutions to the Boltzmann equation

are in fact strictly positive and bounded from below by an exponential lower bound. This

is an a priori result where we will not tackle the issue of existence. We solely make the

hypothesis that a solution exists and it has some uniform regularity properties we present

below.

The framework of this study is quite wide since we consider all types of collision

operator (hard and soft potentials with or without angular cutoff) and Ω is a C2 convex

bounded domain with specular reflection boundary conditions.

1.2.1 Motivations and state of the art

The issue of quantifying the positivity of solutions to the Boltzmann equation has been

investigated for a long time. It is of great interest for physical purposes but, more re-

cently, it has also proven itself of significant importance for the mathematical study of the

Boltzmann equation. The development of entropy-entropy production methods (see [112]

Chapter 3 and [113]) to study the convergence to equilibrium [35][36][37] requires this type

of exponential lower bounds.

The first quantitative statement on positivity of the solutions to the Boltzmann equa-

tion goes back to Carleman [26] where he dealt with the spatially homogeneous equation.

The radially symmetric solutions f(t, v) = f(t, |v|) he constructed in dimension d = 3 for

hard sphere collision operator, satisfy an almost Maxwellian lower bound

∀t > t0, ∀v ∈ R3, f(t, v) > C1e
−C2|v|2+ε

,

C1, C2 > 0 for all t0 > 0 and ε > 0. The constants C1 and C2 depends only on t0, ε and a

priori estimates on the solution f .

Pulvirenti and Wennberg [95] then extended the latter inequality to solutions to the

spatially homogeneous Boltzmann equation with hard potential and cutoff in dimension

d = 3 with more general initial data. They proved that if the solution has finite mass,
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energy and entropy then it is bounded from below by a Maxwellian lower bound of the

type

∀t > t0, ∀v ∈ R3, f(t, v) > C1e
−C2|v|2 ,

for all t0 > 0.

Finally, Mouhot [78] dealt with the full Boltzmann equation on the torus. He not only

proved the same result as Pulvirenti and Wennberg in the case of hard potential with

angular cutoff but he also obtained the Maxwellian lower bound for soft potential with

cutoff collision kernels. He also derived the same kind of results in the non-cutoff case in

the torus, the immediate appearance of an exponential lower bound of the form

∀t > t0, ∀(x, v) ∈ Td × Rd, f(t, v) > C1(ε)e−C2(ε)|v|K+ε

,

for all t0 > 0, all ε > 0 and K = K(ν) with K(0) = 2 (thus recovering the cutoff case in

the limit).

All these results deeply rely on a spreading property of the gain part Q+ of the Boltz-

mann collision operator that arises as soon as the solution has a non-concentration property

which means, roughly speaking, an initial lower bound. This “upheaval point” results from

non-concentration properties of the gain operator ([95]) or continuity-compactness argu-

ments (Chapter 2). The case of spatially inhomogeneous solutions [78] is based on these

arguments and a method to make them uniform under the flow of characteristics.

The case where Ω is bounded implies a different behaviour for the characteristics and

our main contribution is the derivation of a spreading method that remains invariant under

the characteristics flow. For instance, boundaries imply the existence of grazing collisions

where the strategy develop on the torus fails and we had to create a geometrical approach

of those problematic trajectories.

1.2.2 The free transport equation in convex bounded domain (Chapter

2)

The first task is to establish a rigorous description of characteristic trajectories for the free

transport equation

∂tf + v∇xf = 0

with specular reflection boundary conditions, which can be seen has billiard balls trajec-

tories. Although it has been studied in numerous works [93][33][104][105] and has been

used in kinetic theory [52][59], a complete study in the case of mere specular reflections

and convexity seemed to be missing. The cited works indeed contain assumptions on the

boundary (electromagnetism or strict convexity for example) that lead to clear rebounds

against the boundary whereas a general study should also consider rolling trajectories for
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instance.

Chapter 2 starts with an extensive and descriptive study of the characteristics of the

free transport equation in a C1 convex bounded domain. One of our most relevant con-

tribution is the extension of a result of Tabachnikov [104] that states that the set of

points (x, v) that comes from infinitely many rebounds in finite time is negligeable. More

precisely, we proved the following.

Proposition 1.2.1 Let Ω be a C1 open, bounded domain in Rd and let (x, v) be in Ω̄×Rd.
Then for all t > 0 the trajectory finishing at (x, v) after a time t has at most a countable

number of rebounds.

Moreover, this number is finite almost surely with respect to the Lebesgue measure on

Ω̄× Rd.

The main idea was to generate a parametrisation of Ω̄ that links the trajectories to

their footprints, where this result is known to hold thanks to the work of Tabachnikov.

1.2.3 An exponential lower bound (Chapter 2)

In what follows, we are going to need bounds on some physical observables of solution to

the Boltzmann equation and we describe them below.

We consider a function f(t, x, v) > 0 defined on [0, T ) × Ω × Rd and we recall the

definitions of its local physical quantities.

� its local energy

ef (t, x) =

∫
Rd
|v|2 f(t, x, v)dv,

� its local weighted energy

e′f (t, x) =

∫
Rd
|v|γ̃ f(t, x, v)dv,

where γ̃ = (2 + γ)+,

� its local Lp norm (p ∈ [1,+∞))

lpf (t, x) = ‖f(t, x, ·)‖Lpv ,

� its local W 2,∞ norm

wf (t, x) = ‖f(t, x, ·)‖
W 2,∞
v

.
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The solutions to the Boltzmann equation are assumed to satisfy some properties about

their local hydrodynamical quantities. These properties will differ depending on which

case of collision kernel we are considering and are given by what follows.

� In the case of hard or Maxwellian potentials with cutoff (γ > 0 and ν < 0):

sup
(t,x)∈[0,T )×Ω

ef (t, x) < +∞. (1.2.1)

� In the case of a singularity of the kinetic collision kernel (γ ∈ (−d, 0)) we shall make

the additional assumption

sup
(t,x)∈[0,T )×Ω

lpf (t, x) < +∞, (1.2.2)

where pγ > d/(d+ γ).

� In the case of a singularity of the angular collision kernel (ν ∈ [0, 2)) we shall make

the additional assumption

sup
(t,x)∈[0,T )×Ω

wf (t, x) and sup
(t,x)∈[0,T )×Ω

e′f (t, x) < +∞. (1.2.3)

We now state the result of Chapter 2 in a rather informal way. For a more detailed

and more rigorous statement, we refer to Section 2.2.

Theorem 1.2.2 Let Ω be Td or a C2 open convex bounded domain in Rd and let fin be a

non-negative continuous function on Ω̄× Rd with strictly positive mass and finite energy.

Let f(t, x, v) be a continuous non-negative solution of the Boltzmann equation in Ω̄ × Rd

on some time interval [0, T ), T ∈ (0,+∞], which satisfies

� if the collision kernel is hard or Maxwellian potential with cutoff, then f satisfies

(1.2.1);

� if the collision kernel is soft potential, then f satisfies (1.2.1) and (1.2.2);

� if the collision kernel is non-cutoff, then f satisfies (1.2.3).

Then

(i) for cutoff collision kernels: for all τ ∈ (0, T ) there exists ρ > 0 and θ > 0,

depending on τ , Ef (and L
pγ
f if B is a soft potential kernel), such that for all t ∈ [τ, T )
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the solution f is bounded from below, almost everywhere, by a global Maxwellian

distribution with density ρ and temperature θ, i.e.

∀t ∈ [τ, T ), ∀(x, v) ∈ Ω̄× Rd, f(t, x, v) >
ρ

(2πθ)d/2
e−
|v|2
2θ .

(ii) for non-cutoff collision kernels: for all τ ∈ (0, T ) and for any exponent K such

that

K > 2
log
(

2 + 2ν
2−ν

)
log2

,

there exists C1, C2 > 0, depending on τ , K, Ef , E′f , Wf (and L
pγ
f if B is a soft

potential kernel), such that

∀t ∈ [τ, T ), ∀(x, v) ∈ Ω̄× Rd, f(t, x, v) > C1e
−C2|v|K .

As an important remark, let us emphasize that in the case of a C3 bounded strictly

convex domain with f having uniformly bounded local mass and entropy, our proofs are

entirely constructive.

1.3 The incompressible Navier-Stokes limit of the Boltz-

mann equation (Part II)

1.3.1 Going from Boltzmann equation to incompressible Navier-Stokes

equations (Chapter 3)

The Boltzmann equation rules the mesocopic evolution of a rarefied gas and is established

on the microscopic dynamics of the particles. It therefore stands in between the micro-

scopic scale and the macroscopic scale described by the acoustics and fluids evolution

equations. A natural question thus arises: does there exist a link between the physical

observables of solutions to the Boltzmann equation and solutions to fluid dynamics ?

It is physically relevant to derive a non-dimensional form of the Boltzmann equation

[46][98] which reads

∂tfε + v · ∇xfε =
1

ε
Q(fε, fε), (1.3.1)

where ε is called the Knudsen number of the gas. Physically, ε−1 represents the average

number of collisions for each particle per unit of time. Therefore, as reviewed in [111], one

can expect a convergence from the Boltzmann model towards the acoustics and the fluids

dynamics as the Knudsen number ε tends to 0.
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The study of the latter convergence is called the hydrodynamical limits of the Boltz-

mann equation and is of tremendous importance to mathematically prove the coherence

of the different scales of description in physics. Chapter 3 is dedicated to the issue of

hydrodynamical limits and gives a state of the art in the domain. We therefore just de-

scribe briefly here the incompressible Navier-Stokes framework that we thoroughly study

in Chapters 4 and 5. The incompressible Navier-Stokes equations read

∂tu− ν∆u+ u · ∇u+∇p = 0,

∇ · u = 0, (1.3.2)

∂tθ − κ∆θ + u · ∇θ = 0,

to which we can add the Boussineq relation

∇(ρ+ θ) = 0, (1.3.3)

where p is the pressure, ν and κ are respectively the dynamic viscosity and the thermal

conductivity of the fluid.

The Boltzmann equation and the incompressible Navier-Stokes equations describe

physical phenomenon that do not evolve at the same timescale. As suggested in pre-

vious studies [46][111][98] we need to rescale (1.3.1) in time by a factor ε, to get rid of

these time scale differences. Moreover, they also suggested that a perturbation of order ε

around the global equilibrium

µ(v) =
1

(2π)d/2
e−
|v|2

2

should approximate, as the Knudsen number tends to 0, the incompressible Navier-Stokes

equations.

We hence study the following equation

∂tfε +
1

ε
v · ∇xfε =

1

ε2
Q(fε, fε) , on R+ × Td × Rd, (1.3.4)

under the linearization fε(t, x, v) = µ(v) + εhε(t, x, v). This leads to the perturbed Boltz-

mann equation

∂thε +
1

ε
v · ∇xhε =

1

ε2
L(hε) +

1

ε
Γ(hε, hε). (1.3.5)

that we will study thoroughly, and where we defined
L(h) = [Q(µ, h) +Q(h, µ)]

Γ(g, h) =
1

2
[Q(g, h) +Q(h, g)] .
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Roughly speaking, the dissipation of entropy discussed in Section 1.1.2.4 is expected,

in the case of small initial perturbation hε(0, x, v), to make fε(t, x, v) = µ(v) + εhε(t, x, v)

converge towards its global equilibrium µ(v) as time goes to infinity. This trend to equi-

librium would give bounds on fε and if the latter bounds are uniform in ε one can study

the hydrodynamical limit

lim
ε→0
‖fε‖ ,

where the norm of the convergence will be rigorously defined later. The main goal to

study the limit for Boltzmann equation towards incompressible Navier-Stokes equation is

therefore to develop a Cauchy theory and prove a trend to equilibrium for (1.3.5) that will

be uniform in ε.

1.3.2 Hydrodynamical limit in Hs
x,v

(
µ−1/2

)
(Chapter 4)

Chapter 4 rigorously justifies the discussion of previous subsection in the Sobolev space

Hs
x,v

(
µ−1/2

)
for s large. More precisely, it constructs a Cauchy theory for small initial

data of the perturbed Boltzmann equation (1.3.5). This theory is uniform in the Knudsen

number, that is to say the smallness assumption is independent of ε. Moreover, we show an

exponential decay for hε, uniformly in ε. The latter decay allows us to rigorously prove the

convergence of the observables of hε towards solutions to the incompressible Navier-Stokes

equation (1.3.2), satisfying the Boussineq equation (1.3.3).

We emphasize here that all the results in Chapter 4 are obtained constructively, which

is of great importance for physical purposes and seldom the case in Boltzmann perturbative

theory. Our main contribution is the derivation of hypocoercive estimates independent on

ε in new distorted norms catching the dependencies in the Knudsen number.

We refer to Sections 4.1.4 and 5.1.2 for a state of the art of the study of the semigroup

and the Cauchy problem.

In this section we consider the Boltzmann equation with hard potential or Maxwellian

potential (γ = 0), that is to say there is a constant CΦ > 0 such that

B (|v − v∗|, θ) = Φ (|v − v∗|) b (cos θ)

with

Φ(z) = CΦz
γ , γ ∈ [0, 1],

and a strong form of Grad’s angular cutoff, expressed here by the fact that we assume b

to be C1 with the controls from above

∀z ∈ [−1, 1], b(z), b(z′) 6 Cb.
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For the sake of clearness, we study (1.3.4) with the linearization fε(t, x, v) = µ(v) +

εµ1/2hε(t, x, v) which amounts to working on hε in the space Hs
x,v without any weight.

The sole changes are in the linear and bilinear operators:
L(h) =

[
Q(µ, µ

1
2h) +Q(µ

1
2h, µ)

]
µ−

1
2

Γ(g, h) =
1

2

[
Q(µ

1
2 g, µ

1
2h) +Q(µ

1
2h, µ

1
2 g)
]
µ−

1
2 .

(1.3.6)

1.3.2.1 The linear Boltzmann operator

A common strategy in perturbative framework is to study the properties of the linear

operator part and then consider the bilinear as a remainder term. We therefore focus first

on the linear part of the perturbed Boltzmann equation

Gε =
1

ε2
L− 1

ε
v · ∇x.

In the case of hard potential with angular cutoff, it is known that L is a negative

self-adjoint operator in L2
v. More importantly, L in hypocoercive. This translates into the

following properties.

Properties in H1
x,v :

(H1): Coercivity and general controls

L : L2
v −→ L2

v is a closed and self-adjoint operator with L = K − Λ such that:

� Λ is coercive:

– it exists ‖.‖Λv norm on L2
v such that

∀h ∈ L2
v , ν

Λ
0 ‖h‖2L2

v
6 νΛ

1 ‖h‖2Λv 6 〈Λ(h), h〉L2
v
6 νΛ

2 ‖h‖2Λv ,

– Λ has a defect of coercivity regarding its v derivatives:

∀h ∈ H1
v , 〈∇vΛ(h),∇vh〉L2

v
> νΛ

3 ‖∇vh‖2Λv − ν
Λ
4 ‖h‖2Λv .

� There exists CL > 0 such that

∀h ∈ L2
v , ∀g ∈ L2

v , 〈L(h), g〉L2
v
6 CL ‖h‖Λv ‖g‖Λv ,

where (νΛ
k )16k64 are strictly positive constants depending on the operator and the dimen-

sion d.
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We define a new norm on L2
x,v:

‖.‖Λ =
∥∥‖.‖Λv∥∥L2

x
.

(H2): Mixing property in velocity

∀δ > 0 , ∃C(δ) > 0 , ∀h ∈ H1
v , 〈∇vK(h),∇vh〉L2

v
6 C(δ) ‖h‖2L2

v
+ δ ‖∇vh‖2L2

v
.

(H3): Relaxation to equilibrium

The kernel of L is generated by d+2 functions which form an orthonormal basis for Ker(L):

Ker(L) = Span{φ1(v), . . . , φd+2(v)}.

Moreover, the φi are of the form Pi(v)e−|v|
2/4, where Pi is a polynomial.

Furthermore, denoting by πL the orthogonal projector in L2
v on Ker(L) we have the

following local coercivity property:

∃λ > 0 , ∀h ∈ L2
v , 〈L(h), h〉L2

v
6 −λ

∥∥∥h⊥∥∥∥2

Λv
,

where h⊥ = h−πL(h) denotes the microscopic part of h (the orthogonal to Ker(L) in L2
v).

Assumptions in Hs
x,v, s > 1 :

(H1’): Defect of coercivity for higher derivatives

L satisfies the following property: for all s > 1, for all |j|+ |l| = s such that |j| > 1,

∀h ∈ Hs
x,v , 〈∂jl Λ(h), ∂jl h〉L2

x,v
> νΛ

5

∥∥∥∂jl h∥∥∥2

Λ
− νΛ

6 ‖h‖Hs−1
x,v

,

where νΛ
5 and νΛ

6 are strictly positive constants depending on L and d.

We also define a new norm on Hs
x,v:

‖.‖Hs
Λ

=

 ∑
|j|+|l|6s

∥∥∥∂jl .∥∥∥2

Λ

1/2

.

(H2’): Mixing properties

(H2) extends to higher Sobolev’s spaces: for all s > 1, for all |j|+ |l| = s such that |j| > 1,

∀δ > 0 , ∃C(δ) > 0 , ∀h ∈ Hs
x,v , 〈∂jlK(h), ∂jl h〉L2

x,v
6 C(δ) ‖h‖2

Hs−1
x,v

+ δ
∥∥∥∂jl h∥∥∥2

L2
x,v

.

All the constants are explicit thanks to the works of C. Baranger and C. Mouhot [4]

and C. Mouhot [79].
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The first important result derive in Chapter 4, is the fact that the linear part of the

Boltzmann operator generates a contraction semigroup in Hs
x,v.

Theorem 1.3.1 If L is a linear operator satisfying the conditions (H1’), (H2’) and (H3)

then there exists 0 < εd 6 1 such that for all s in N∗,

1. for all 0 < ε 6 εd , Gε = ε−2L− ε−1v · ∇x generates a C0-semigroup on Hs
x,v.

2. there exist C
(s)
G > 0 and a norm ‖·‖Hsε such that for all 0 < ε 6 εd:

‖·‖2Hsε ∼

‖·‖2L2
x,v

+
∑
|l|6s

∥∥∂0
l ·
∥∥2

L2
x,v

+ ε2
∑
|l|+|j|6s
|j|>1

∥∥∥∂jl ·∥∥∥2

L2
x,v

 ,

and for all h in Hs
x,v,

〈Gε(h), h〉Hsε 6 −C
(s)
G ‖h− πGε(h))‖2Hs

Λ
.

The modified norm ‖·‖Hsε is dependent on ε. We can however make two remarks.

1. The dependence on ε only appears in front of v-derivatives which disappear in the

process of the hydrodynamical limit since only integral against the v variable are of

interest.

2. In the next subsection, another norm is constructed and do not involve any ε depen-

dencies. With this norm, a same result than Theorem 1.3.1 can be obtained with

similar arguments.

1.3.2.2 The perturbed Cauchy problem and trend to equilibrium

The hypocoercivity features of the linear Boltzmann operator and the generation of a

strongly continuous semigroup in Hs
x,v discussed in the previous subsection were used by

C. Mouhot and L. Neumann [82] to obtain existence, uniqueness and exponential decay

to equilibrium in the case ε = 1, with constructive methods. Such results were known to

exist since the first rigorous studies by S. Ukai [107][108] but the methods of the proof

were not constructive and thus did not give explicit statements.

The controls we have on the bilinear remainder term Γ are the following.

(H4): Control on the second order operator

Γ : L2
v × L2

v −→ L2
v is a bilinear symmetric operator such that for all multi-indexes j and

l such that |j|+ |l| 6 s, s > 0,
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∣∣∣〈∂jl Γ(g, h), f〉L2
x,v

∣∣∣ 6
 G

s
x,v(g, h) ‖f‖Λ , if j 6= 0

Gsx(g, h) ‖f‖Λ , if j = 0
,

Gsx,v and Gsx being such that Gsx,v 6 Gs+1
x,v , Gsx 6 Gs+1

x and satisfying the following property:

∃s0 ∈ N , ∀s > s0 , ∃CΓ > 0 ,


Gsx,v(g, h) 6 CΓ

(
‖g‖Hs

x,v
‖h‖Hs

Λ
+ ‖h‖Hs

x,v
‖g‖Hs

Λ

)
Gsx(g, h) 6 CΓ

(
‖h‖Hs

xL
2
v
‖g‖Hs

Λ
+ ‖g‖Hs

xL
2
v
‖h‖Hs

Λ

)
.

The uniform Cauchy theory we present in Chapter 4 is an extension of the results

derived in [82] to obtain estimates that are uniform in the Knudsen number. However, in

the case ε = 1, the linear part G1 and the bilinear remainder term Γ are of the same order

and can be compared. The main difficulty for general Knudsen number is the fact that

the linear part Gε generates a contraction semigroup with a spectral gap of order 0(1)

whereas the bilinear part is of order O(ε−1). This makes impossible to consider ε−1Γ as a

mere error term since it explodes as ε goes to 0. Our main contributions are

� A method mixing the hypocoercivity properties of the linear operator L with the a

priori estimates on the bilinear operator, in particular thanks to an orthogonality

property of the symmetrised operator Γ.

(H5): Orthogonality to the Kernel of the linear operator

∀h, g ∈ Dom(Γ) ∩ L2
v , Γ(g, h) ∈ Ker(L)⊥.

� The construction of a new norm in Hs
x,v combining the idea of [82] and [56] to study

both the microscopic and the fluid part of the solution.

The main result is the following theorem.

Theorem 1.3.2 Let Q be a bilinear operator such that:

� the equation (1.3.4) admits an equilibrium 0 6 µ ∈ L1(Td × Rd),

� the linearized operator L = L(h) around µ with the scaling f = µ + εµ1/2h satisfies

(H1’), (H2’) and (H3),

� the bilinear remaining term Γ = Γ(h, h) in the linearization satisfies (H4) and (H5).

Then

� there exists 0 < εd 6 1 and a norm ‖·‖Hsε⊥ such that for any s > s0 (defined in (H4))

and any 0 < ε 6 εd, ‖·‖Hsε⊥ ∼ ‖·‖Hs
x,v

, independently of ε,
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� there exist δs > 0, Cs > 0 and τs > 0 such that for all 0 < ε 6 εd:

For any distribution 0 6 fin ∈ L1(Td ×Rd) with fin = µ+ εµ1/2hin > 0, hin in Ker(Gε)
⊥

and

‖hin‖Hsε⊥ 6 δs,

there exists a unique global smooth (in Hs
x,v, continuous in time) solution fε = fε(t, x, v)

to (1.3.4) which, moreover, satisfies fε = µ+ εµ1/2hε > 0 with:

‖hε‖Hsε⊥ 6 δse
−τst,

We emphasize here that this Theorem is more general than just the case of the Boltz-

mann equation. It is indeed applicable to several other kinetic models such as the linear

relaxation, the semi-classical relaxation, the linear Fokker-Planck equation and the Landau

equation with hard and moderately soft potential.

1.3.2.3 The limit towards the incompressible Navier-Stokes equations

Theorem 1.3.2 implies that the sequence (hε)0<ε6εd
is bounded in L∞t H

s
x,v. Such a bound-

edness property is enough (see [8]) to obtain a weak convergence result hε ⇀ h in distri-

butions as ε goes to 0 with

1. h is in Ker(L), so of the form

h(t, x, v) =

[
ρ(t, x) + v.u(t, x) +

1

2
(|v|2 − d)θ(t, x)

]
µ(v)1/2,

2. (ρε, uε, θε) converges weakly-* in L∞t (Hs
x) towards (ρ, u, θ),

3. (ρ, u, θ) satisfies the incompressible Navier-Stokes equations (1.3.2) in the Leray sense

[66] as well as the Boussineq equation (1.3.3).

In fact this convergence is strong and Chapter 4 gives explicit rates of convergence.

Theorem 1.3.3 Consider s > s0 and hin in Hs
x,v such that ‖hin‖Hsε 6 δs.

Then, (hε)ε>0 exists for all 0 < ε 6 εd and converges weakly* in L∞t (Hs
xL

2
v) towards h

such that h ∈ Ker(L), with ∇x · u = 0 and ρ+ θ = 0.

Furthermore,
∫ T

0 hdt belongs to Hs
xL

2
v and it exists C > 0 such that,∥∥∥∥∫ +∞

0
hdt−

∫ +∞

0
hεdt

∥∥∥∥
Hs
xL

2
v

6 C
√
ε |ln(ε)|.
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One can have a strong convergence in L2
[0,T ]H

s
xL

2
v only if hin is in Ker(L) with ∇x ·uin = 0

and ρin + θin = 0 (initial layer conditions).

Moreover, in that case we have

‖h− hε‖L2
[0,+∞)

Hs
xL

2
v
6 C

√
ε |ln(ε)|,

and for all δ in [0, 1], if hin belongs to Hs+δ
x L2

v,

sup
t∈[0,+∞)

‖h− hε‖Hs
xL

2
v

(t) 6 Cεmin(δ,1/2).

This theorem gives a strong convergence for (ρε, uε, θε) towards (ρ, u, θ) but above all it

gives us that (ρ, u, θ) is the solution to the incompressible Navier-Stokes equations together

with the Boussineq equation satisfying the initial conditions:

� u(0, x) = Puin(x), where Puin(x) is the divergence-free part of uin(x),

� ρ(0, x) = −θ(0, x) = 1
2(ρin(x)− θin(x)).

A similar convergence was known to exist (see [10]) in the case where the spatial domain

was Rd, but did not require any integration in time. Our main contribution was to adapt

the arguments to the case of the torus where the integration in time is compulsory to

control the Fourier transform of the semigroup generated by Gε that was derived in [39].

1.3.3 Hydrodynamical limit in polynomial weighted spaces (Chapter 5)

This work has been done jointly with Sara Merino-Aceituno and Clément Mouhot, both

from the University of Cambridge.

The aim of Chapter 5 is to extend the previous semigroup properties of the linear part

Gε and the Cauchy theory for the full perturbed equation to more general space. The ulti-

mate goal is to derive those results, uniform in the Knudsen number, in L1
vL
∞
x

(
1 + |v|2

)
.

This space is indeed optimal in the velocity variable, since it incorporates bounded mass

and energy densities, in the Boltwmann framework whereas L∞x is problematic for the

Navier-Stokes equations. We would therefore be able to construct solutions to the incom-

pressible Navier-Stokes equations in L∞x via the Boltzmann equation and its hydrodynam-

ical limit. Here again we hope to use constructive arguments and obtain explicit rates of

convergence.

This aim has not been achieved yet but it is still a work in progress with Sara Merino-

Aceituno and Clément Mouhot. We so far managed to drop the strong exponential weight

for a polynomial one, almost optimal, and we can deal with spaces without any derivatives

in v for the Cauchy problem. The semigroup properties are extended in all Lebesgue and
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Sobolev spaces with a polynomial weight (1 + |v|)k, for k large enough and k > 2 in the

L1
v case. Chapter 5 presents our joint work.

We recall that we are working on the dimensionless Boltzmann equation

∂tfε +
1

ε
v · ∇xfε =

1

ε2
Q(fε, fε) , on TN × RN , (1.3.7)

under the linearization fε(t, x, v) = µ(v) +εhε(t, x, v), which leads to the perturbed Boltz-

mann equation

∂thε +
1

ε
v · ∇xhε =

1

ε2
L(hε) +

1

ε
Q(hε, hε), (1.3.8)

where we defined

L(h) = 2Q(µ, h).

Note that we will use curly letters for operators in that Section and standard ones to talk

about the restrictions of these operators to Hs
x,v

(
µ−1/2

)
. For instance, we recover the

operator of previous section

(Gε)|Hs
x,v(µ−1/2) = Gε.

We still consider the Boltzmann equation with hard potential or Maxwellian potential

(γ = 0), that is to say

B (|v − v∗|, cos θ) = Φ (|v − v∗|) b (cos θ) , (1.3.9)

with Φ and b be positive functions. This hypothesis is satisfied for all physical model and

is more convenient to work with but do not impede the generality of our results.

We also restrict ourselves to the case of hard potential or Maxwellian potential (γ = 0),

that is to say there is a constant CΦ > 0 such that

Φ(z) = CΦz
γ , γ ∈ [0, 1], (1.3.10)

with a strong form of Grad’s angular cutoff (see [48]), expressed here by the fact that we

assume b to be C1 with the controls from above

∀z ∈ [−1, 1], b(z), b(z′) 6 Cb. (1.3.11)

1.3.3.1 Semigroup properties in Lebesgue and Sobolev spaces

In a recent article [51], an abstract extension theorem allows, under certain assumptions,

to extend semigroup properties from a space E into a larger space E . The latter theo-

rem allowed to prove that G1 generates a strongly continuous semigroup in Lebesgue and

Sobolev spaces with polynomial weight [51].

- 38 -



1.3 The incompressible Navier-Stokes limit of the Boltzmann equation (Part II)

In the same spirit, we show that Gε generates a strong continuous semigroup in

Lebesgue and Sobolev spaces of the form Wα,1
v W β,p

x

(
1 + |v|)k

)
for α 6 β and k large

enough with explicit thresholds independent of ε. It is done by starting from existing

results in Hs
x,v

(
µ−1/2

)
and then decomposing the linear operator Gε into a dissipative

part and a regularising part that are then treated in larger and larger spaces up to the

space where the semigroup properties have been derived in previous articles. We thus

improve the existing result [23]. Our main contribution is an adapted version of the ab-

stract extension theorem developed in [51] that takes into account the dependencies on the

Knudsen number as well as a careful study of the dissipative and the regularising parts of

the operator Gε.

Theorem 1.3.4 Let B be a Boltzmann collision kernel satisfying (1.3.9)-(1.3.10)-(1.3.11).

There exists 0 < εd 6 1 such that for all p, q in [1,+∞], all α, β in N with α 6 β and all

k > k∗q , where

k∗q =
3 +

√
49− 48/q

2
+ γ

(
1− 1

q

)
, (1.3.12)

1. for all 0 < ε 6 εd , Gε = ε−2L − ε−1v · ∇x generates a C0-semigroup, SGε(t), on

Wα,q
v W β,p

x

(
〈v〉k

)
,

2. for all τ > 0, there exist CG(τ), λ0 > 0, such that for all 0 < ε 6 εd and for all hin

in Wα,q
v W β,p

x

(
〈v〉k

)
, for all t > τ

‖SGε(t)(hin)−ΠG(hin)‖
Wα,q
v Wβ,p

x (〈v〉k) 6 CG(τ)e−λ0t ‖hin −ΠG(hin)‖
Wα,q
v Wβ,p

x (〈v〉k) ,

where ΠG is the spectral projector onto Ker (Gε) which is given, for all ε, by

ΠG(g) =
d+1∑
i=0

(∫
Td×Rd

gφi dxdv

)
φiµ, (1.3.13)

where φ0(v) = 1, for i = 1, . . . , d we defined φi(v) = vi and φd+1 =
(
|v|2 − d

)
/
√

2d.

The constants εd, CG(τ) and λ0 are constructive and only depends on d, p, q, k, α, β and

the kernel of the Boltzmann operator.

The rate of decay λ0 can be taken equal to the spectral gap of L|Hs
x,v(µ−1/2) (see [23]),

for s as large as wanted, when k is large enough (and we obtained a constructive threshold).

Finally, we emphasize that in the case q = 1, the result holds for all k > 2. This is

almost the minimal regularity L2
v

(
1 + |v|2

)
for the Boltzmann equation, that is solutions

with bounded mass and energy.
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1.3.3.2 Cauchy problem and exponential decay in Sobolev spaces with poly-

nomial weight

The second part of Chapter 5 deals with the uniform, in the Knudsen number, Cauchy

problem and the exponential decay towards equilibrium in larger spaces than the expo-

nential weight framework we dealt with in Chapter 4.

The spaces where we developed our theory are of the following forms

Wα,1
v W β,1

x

(
1 + |v|2+0

)
and Wα,1

v Hβ
x

(
1 + |v|2+0

)
,

for s large enough and all α 6 β. This improves the Cauchy theory developed in Chapter

4 by dropping the exponential weight and the v-derivatives. Again, the polynomial weight

is almost the optimal one for the Boltzmann equation (conservation of mass and energy).

Such results have recently been obtained [51] for fixed ε, in which case the rate of decay

of the semigroup generated by Gε is of the same order than the remainder term Q(h, h).

However, in order to obtain uniform results we have to handle the remainder term ε−1Q

and it cannot be treated as a mere perturbation that evolves under the flow of SGε , the

semigroup generated by Gε, since the latter has an exponential decay of order O(1).

Our main contribution is a new analytic point of view about the extension theorem in

[51] and includes the bilinear term. More precisely, we decompose the perturbed equation

(1.3.8) into a hierarchy of equations taking place in spaces that have more and more

regularity up to Hs
x,v

(
µ−1/2

)
where estimates had been derived in Chapter 4. At each

step we use the dissipative part of the linear operator to control the remainder term ε−1Q

whereas the regularising part is controlled in spaces with higher regularity.

We hence state the following theorem tackling the Cauchy problem and the exponential

convergence towards the equilibrium µ.

Theorem 1.3.5 Let B be a Boltzmann collision kernel satisfying (1.3.9)-(1.3.10)-(1.3.11)

and let p = 1 or p = 2.

There exists 0 < εd 6 1 and β0 in N such that

� for all α, β in N such that β > β0 and α 6 β and for all k > 2 define

Ep = Wα,1
v W β,p

x

(
〈v〉k

)
,

� for any λ′0 in (0, λ0) (λ0 defined in Theorem 1.3.4) there exist Cα,β, ηα,β > 0 such

that for any 0 < ε 6 εd, for any distribution fin = µ+ εhin > 0:

If

(i) hin is in Ker(Gε)⊥ in Ep,
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(ii) ‖hin‖Ep 6 ηα,β,

Then there exists a unique global solution fε = fε(t, x, v) to (1.3.7) in Ep which, moreover,

satisfies fε = µ+ εhε > 0 with:

� hε belongs to Ker(Gε)⊥ for all times,

�

‖hε‖Ep 6 Cα,β ‖hin‖Ep e−λ
′
0t.

The constants Cα,β and ηα,β are constructive and depends only on α, β, k, d, λ′0 and the

kernel of the Boltzmann operator.

1.4 A quantic version of Boltzmann equation (Part III)

1.4.1 The Boltzmann-Nordheim equation

As we mentionned before, the Boltzmann equation describes, at a mesoscopic level, the

dynamics of a monoatomistic rarefied gas with elastic collisions. There exists different

modifications of this kinetic model, for polyatomistic gases for instance (see [29]).

For all these models, the Boltzmann equation arises from microscopic behaviours ruled

by classical physics, where the probability of two particles colliding depends only on the

number of particles moving at the incoming velocities. The case of quantum mechanics

is rather different since the probability of two particles colliding not only depends on

the velocity of the particles undergoing the collision but also the outcoming velocity the

collision yields. We refer to [32] Chapter 17 for more details.

Using quatum statistical physics instead of classical statistical physics, Nordheim [89]

derived a quantic version of the Boltzmann equation for bosons and fermions.

The latter evolution equation is called the Boltzmann-Nordheim equation and reads

as follow, with the usual shorthand notations.

∂tf + v · ∇xf = Qα(f),

with

Qα(f) =

∫
RN×Sd−1

B (v, v∗, θ)
[
f ′(1 + αf)f ′∗(1 + αf∗)− f(1 + αf ′)f∗(1 + αf ′∗)

]
dv∗dσ.

The Boltzmann-Nordheim equation thus rules the dynamics of the distribution of par-

ticles for a dilute quantum gas of bosons (α = 1) or fermions (α = −1). Note that in the

classical case α = 0 one recovers the Boltzmann equation.
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In Chapter 6, our study applies to the case where the collision kernel B is hard poten-

tial with angular cutoff. More precisely, the collision operator is supposed to satisfy the

following properties.

1. B(v, v∗, θ) = Φ (|v − v∗|) b (cos θ) ,

2. there exist CΦ > 0 and γ in [0, 1] such that Φ(z) = CΦz
γ ,

3. (b ◦ cos) is continuous on (0, π) and integrable on the sphere:

lb =

∫
Sd−1

b (cos θ) dσ =
∣∣∣Sd−2

∣∣∣ ∫ π

0
b (cos θ) sind−2θ dθ < +∞.

Moreover, we restrain ourselves to the spatially homogeneous case for a gas of bosons

∂tf + v · ∇xf = Q(f), (1.4.1)

with

Q(f) =

∫
RN×Sd−1

B (v, v∗, θ)
[
f ′(1 + f)f ′∗(1 + f∗)− f(1 + f ′)f∗(1 + f ′∗)

]
dv∗dσ. (1.4.2)

1.4.2 Cauchy problem and the Bose-Einstein condensate (Chapter 6)

The Boltzmann-Nordheim collision operator (1.4.2) is in fact the addition of the classical

Boltzmann collision operator with a trilinear operator. If some properties of the classical

Boltzmann equation still hold true for the Boltzmann-Nordheim equation, such as the

a priori preservation of mass, momemtum and energy

∫
Rd

 1

v

|v|2

 f(v) dv =

∫
Rd

 1

v

|v|2

 f0(v) dv,

the trilinear term implies rather different behaviours.

Indeed, physical observations and numerical simulations (see [40] for an overview of

these results) in the isotropic setting f(t, v) = f(t, |v|) showed that there exists a critical

temperature Tc(M0), depending on the mass M0 of the bosonic gas. If the temperature

of the initial datum fin is below Tc(M0) then the solution of the Boltzmann-Nordheim

equation will develop a dirac mass at |v| = 0 in finite time. This blow-up phenomenon is

known as the Bose-Einstein condensate.

From the mathematical point of view, the only rigorously known results focused on the

isotropic framework. X. Lu [69][70][71] built solutions in L1
2 and proved a Cauchy theory

for measures. He also proved, with not entirely constructive methods, a concentration
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phenomenon for subcritical temperature in the limit t goes to infinity. We emphasize here

that this asymptotic result does not imply the appearance of a Bose-Einstein condensate

in finite time. Recently, other isotropic solutions have been constructed in L1(1 + |v|3+0)

by M. Escobedo and J. J. L. Velázquez [40]. Moreover, they made a major breakthrough

by proving the appearance of a Bose-Einstein condensate in finite time under some as-

sumptions on the solution [40] and for subcritical temperatures [41].

In Chapter 6 we develop a local in time Cauchy theory in the non-isotropic setting in

L1
2 ∩ L∞. The latter space is the most general one can hope for a Cauchy theory that

catches the Bose-Einstein condensate. Solutions are indeed physically expect to have finite

mass and energy and the creation of a dirac mass creates a blow-up in L∞ whereas it only

leads to a loss of mass in L1.

Our main contributions are a new version of Povzner inequality [94], which bounds the

evolution of convex functions through a collision, and a new control on the operator Q+ for

high and small relative velocities v − v∗. We also control the higher moments of solutions

to the Boltzmann-Nordheim equation and derive a precise estimate on the blow-up of the

(2 + γ)th moment of solutions at time t = 0, in the spirit of [77], to obtain uniqueness.

We denote, for all s and t in R+,

Ms(t) =

∫
Rd
|v|s f(t, v) dv,

the sth moment of a function f(t, v). The main result of Chapter 6 is the following Cauchy

theorem for the Boltzmann-Nordheim equation for bosons.

Theorem 1.4.1 Let f0(v) be in L1
2,v ∩ L∞v .

Then there exists T0 > 0, depending only on CΦ, lb, γ, ‖f0‖L1
2,v

and ‖f0‖L∞v , such that

there exists a unique f in L∞loc
(
[0, T0), L1

2,v ∩ L∞v
)

solution of (6.1.3) on [0, T0) × Rd that

preserves mass and energy.

Moreover, this solution satisfies

� T0 = +∞ or lim
T→T−0

‖f‖L∞
[0,T ]×Rd

= +∞,

� f preserves the momentum of f0,

� for all s > 0 and for all 0 < T < T0,

Ms(t) ∈ L∞loc ([T, T0)) .

� for all T < T0,

sup
[0,T ]×Rd

(
f(t, v) +

∫ t

0
(1 + |v|γ) f(s, v) ds

)
<∞.
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Let us mention here that Theorem 6.2.1 implies a Bose-Einstein concentration phe-

nomenon as time goes to infinity for subcritical initial data if they are globally defined

thanks to the work of Lu ([71] Theorem 2).

The latter argument is however non explicit and does not prove any blow-up in finite

time whereas [40] gives the apparition of the Bose-Einstein condensate in finite time in the

isotropic setting. A work in progress is the proof of the creation of a condensate in finite

time in our more general framework.

Appendices

1.A Notations

We will work in different function spaces. We gather in this appendix the different nota-

tions we will use throughout the sequel.

We first emphasize the fact that we consider that 0 belongs to the following sets: N,

Z+, Q+, (R−Q)+ and R+.

We then define the following shorthand notation,

〈·〉 =

√
1 + |·|2.

1.A.1 Function spaces for one variable

Here, the term “variable” has to be understood as being in a particular vector space of

dimension N , namely RN . Basically, when there is not any combination of time, space

and velocity spaces.

Let p be in [1,+∞), q in R, s in R+ and m : RN −→ R+ a strictly positive measurable

function.

Weighted Lebesgue spaces. We define the space Lp (m) by the norm

‖f‖Lp(m) =

[∫
Rd
|f(y)|pm(y)p dy

] 1
p

,

and the space L∞ (m) by the norm

‖f‖L∞(m) = sup
y∈RN

(|f(y)|m(y)) .

In the case when m(y) = 〈y〉 is a power of 〈·〉 we use the shorthand notations

Lpq = Lp (mq) and L∞q = L∞ (mq) .
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Weighted Sobolev spaces In the case where s is a natural number, for any multi-index

k = (k1, . . . , kN ) in NN we denote

� the kth partial derivative by

∂k =
∂k1

∂yk1
1

· · · ∂
kN

∂ykNN
,

� for i in {1, . . . , N} we denote by ci(k) the ith coordinate of k,

� the length of k will be written |k| = ∑i ci(k),

� the multi-index δi0 by : ci(δi0) = 1 if i = i0 and 0 elsewhere.

With these conventions, we define the space W s,p (m) by the norm

‖f‖W s,p(m) =

∑
|k|6s

∥∥∥∂kf∥∥∥p
Lp(m)

 1
p

,

and the space W∞,p (m) by the norm

‖f‖W s,∞(m) =
∑
|k|6s

∥∥∥∂kf∥∥∥
L∞(m)

.

In the case m(y) = 〈y〉 we use the obvious shorthand notations W s,p
q and W s,∞

q .

These definitions can be extended by interpolation, or via the theory of Fourier trans-

form, to the case s in R+.

In the particular case p = 2, we will write Hs (m) = W s,2 (m) and Hs
q = W s,2

q .

1.A.2 Function spaces for several varaiables

In the case where the functions we consider are functions of time, space and velocity we

need distinctive notations. The convention we chose is to index the space by the name of

the concerned variable. For instance, for a measurable function

f(t, x, v) : [0, T )× Ω× Rd −→ R+,

with Ω ⊂ Rd, we will denote for p in [1,+∞]

Lpt = Lp ([0, T )) , Lpx = Lpx (Ω) and Lpv = Lp(Rd).

We extend these notations verbatim to weighted Lebesgue and weighted Sobolev spaces.

In the case of norm involving all the different variables we need new definitions. We

consider functions f(x, v) defined in Ω× Rd with Ω ⊂ Rd.
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Let p and q be in [1,+∞), α and s in R+ and m : Rd −→ R+ a strictly positive

measurable function.

In the case where s is a natural number, for any multi-indexes j = (j1, . . . , jN ) and

l = (l1, . . . , lN ) in NN we denote the (j, l)th partial derivative by

∂jl = ∂lx∂
j
v,

with multi-index partial derivatives being defined in previous subsection. We define the

space Wα,q
v W β,p

x (m) by the norm

‖f‖
Wα,q
v Wβ,p

x (m)
=

∑
|j|6α,|l|6β

|l|+|j|6max(α,β)

∥∥∥∂jl f∥∥∥
LqvL

p
x(m)

.

We emphasize here that in the case α = β and p = q this definition is equivalent to the

W β,p
x,v (m)-norm on Ω×Rd we defined in the previous subsection. Again, in the particular

case p = 2 or q = 2 we will use the notations, respectively, Hβ
x and Hβ

v .
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Chapter 2

Instantaneous filling of the

vacuum for the full Boltzmann

equation in bounded domains

We prove the immediate appearance of a lower bound for continuous mild solutions to the

full Boltzmann equation in the torus or a C2 convex domain with specular boundary condi-

tions, under the sole assumption of regularity of the solution. We investigate a wide range

of collision kernels, some satisfying Grad’s cutoff assumption and others not. We show

that this lower bound is exponential, independent of time and space with explicit constants

depending only on the a priori bounds on the solution. In particular, this lower bound

is Maxwellian in the case of cutoff collision kernels. A thorough study of characteristic

trajectories, as well as a geometric approach of grazing collisions against the boundary are

derived.

These results are entirely constructive if the domain is C3 and strictly convex.
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2.1 Introduction

This chapter deals with the Boltzmann equation, which rules the behaviour of rarefied

gas particles moving in a domain Ω of Rd with velocities in Rd (d > 2) when the only

interactions taken into account are binary collisions. More precisely, the Boltzmann equa-

tion describes the time evolution of f(t, x, v), the distribution of particles in position and

velocity, starting from an initial distribution f0(x, v) .

We investigate the case where Ω is either the torus or a C2 convex bounded domain.

The Boltzmann equation reads

∀t > 0 , ∀(x, v) ∈ Ω× Rd, ∂tf + v · ∇xf = Q(f, f), (2.1.1)

∀(x, v) ∈ Ω̄× Rd, f(0, x, v) = f0(x, v),

with f being periodic in the case of Ω = Td, the torus, or with f satisfying the specular

reflections boundary condition if Ω is a C2 convex bounded domain:

∀(x, v) ∈ ∂Ω× Rd, f(t, x, v) = f(t, x,Rx(v)). (2.1.2)

Rx, for x on the boundary of Ω, stands for the specular reflection at that point of the

boundary. One can compute, denoting by n(x) the outward normal at a point x on ∂Ω,

∀v ∈ Rd, Rx(v) = v − 2(v · n(x))n(x).

The quadratic operator Q(f, f) is local in time and space and is given by

Q(f, f) =

∫
Rd×Sd−1

B (|v − v∗|, cos θ)
[
f ′f ′∗ − ff∗

]
dv∗dσ,

where f ′, f∗, f
′
∗ and f are the values taken by f at v′, v∗, v

′
∗ and v respectively. Define:

v′ =
v + v∗

2
+
|v − v∗|

2
σ

v′∗ =
v + v∗

2
− |v − v∗|

2
σ

, and cos θ = 〈 v − v∗|v − v∗|
, σ〉.

The collision kernel B > 0 contains all the information about the interaction between

two particles and is determined by physics (see [28] or [30] for a formal derivation for the

hard sphere model of particles). In this chapter we shall only be interested in the case of
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B satisfying the following product form

B (|v − v∗|, cos θ) = Φ (|v − v∗|) b (cos θ) , (2.1.3)

which is a common assumption as it is more convenient and also covers a wide range of

physical applications. Moreover, we shall assume that Φ satisfies either

∀z ∈ R, cΦ |z|γ 6 Φ(z) 6 CΦ |z|γ (2.1.4)

or a mollified assumption
∀ |z| > 1 ∈ R, cΦ |z|γ 6 Φ(z) 6 CΦ |z|γ

∀ |z| 6 1 ∈ R, cΦ 6 Φ(z) 6 CΦ,
(2.1.5)

cΦ and CΦ being strictly positive constants and γ in (−d, 1]. The collision kernel is said

to be “hard potential” in the case of γ > 0, “soft potential” if γ < 0 and “Maxwellian” if

γ = 0.

Finally, we shall consider b to be a continuous function on θ in (0, π], strictly positive

near θ ∼ π/2, which satisfies

b (cos θ) sind−2θ ∼
θ→0+

b0θ
−(1+ν) (2.1.6)

for b0 > 0 and ν in (−∞, 2). The case when b is locally integrable, ν < 0, is referred to by

the Grad’s cutoff assumption (first introduce in [48]) and therefore B will be said to be a

cutoff collision kernel. The case ν > 0 will be designated by non-cutoff collision kernel.

2.1.1 Motivations and comparison with previous results

The aim of this chapter is to show and to quantify the strict positivity of the solutions to

the Boltzmann equation when the gas particles move in a bounded domain. This issue has

been investigated for a long time since it not only presents a great physical interest but

also appears to be of significant importance for the mathematical study of the Boltzmann

equation.

Moreover, our results only require some regularity on the solution and no further

assumption on its local density, which was assumed to be uniformly bounded from below

in previous studies (which is equivalent of assuming a priori either that there is no vacuum

or that the solution is strictly positive).

More precisely, we shall prove that continuous solutions to the Boltzmann equation

with angular cutoff in a C2 convex bounded domain or the torus which have uniformly
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bounded energy satisfy an immediate Maxwellian lower bound:

∀t0 > 0, ∃ρ, θ > 0, ∀t > t0, ∀(x, v) ∈ Ω× Rd, f(t, x, v) >
ρ

(2πθ)d/2
e−
|v|2
2θ .

The strict positivity of the solutions to the Boltzmann equation standing in the form of

an exponential lower bound was already noticed by Carleman in [26] for the spatially homo-

geneous equation. In his article he proved that such a lower bound is created immediately

in time in the case of hard potential kernels with cutoff in dimension 3. More precisely, the

radially symmetric solutions he constructed in [26] satisfies an almost Maxwellian lower

bound,

∀t > t0, ∀v ∈ R3, f(t, v) > C1e
−C2|v|2+ε

,

C1, C2 > 0 for all t0 > 0 and ε > 0. His breakthrough was to notice that a part Q+ of the

Boltzmann operator Q satisfies a spreading property, roughly speaking

Q+(1B(v̄,r),1B(v̄,r)) > C+1B(v̄,
√

2r),

with C+ < 1 (see Lemma 2.4.2 for an exact statement).

The spreading strategy was used by Pulvirenti and Wennberg in [95] to extend the

latter inequality to solutions to the spatially homogeneous Boltzmann equation with hard

potential and cutoff in dimension 3 with more general initial data. Their contribution was

to get rid of the inital boundedness suggested in [26] by Carleman thanks to the use of

an iterative regularity property of the Q+ operator. This property allowed them to imme-

diately create an “upheaval point” that they then spread with the method of Carleman.

Moreover, they obtain an exact Maxwellian lower bound of the form by controlling the

decay of Cn+

∀t > t0,∀v ∈ R3, f(t, v) > C1e
−C2|v|2 ,

for all t0 > 0.

Finally, Mouhot in [78] dealt with the full Boltzmann equation in the torus. He derived

a spreading method that is invariant under the flow of the characteristics, obtaining lower

bounds uniformly in space as long as the solution has uniformly bounded density, energy

and entropy (for the hard potential case) together with uniform bounds on higher moments

(for the soft and Maxwellian potentials case). However, he also implicitly assumed that

the initial data had to be bounded from below uniformly in space. He also derived ([78])

the same kind of results in the non-cutoff case in the torus, the immediate appearance of

an exponential lower bound of the form

∀t > t0,∀(x, v) ∈ Td × Rd, f(t, v) > C1(ε)e−C2(ε)|v|K+ε

,
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for all t0 > 0, all ε > 0 and K = K(ν) with K(0) = 2 (thus recovering the cutoff case in

the limit). His idea was to split further the Q operator into a cutoff part and a non-cutoff

part that is seen as a small perturbation of his original spreading method.

Our results extend those in [78] in the case of C2 bounded convex domain. Our

main contribution is the derivation of a spreading method that remains invariant under

the characteristics flow that, unlike the torus case, changes the direction of velocities at

the boundary. Moreover, we emphasize here that the existence of boundaries implies the

existence of grazing collisions against the latter, where the strategies developped in [95] and

[78] fail. We therefore to derive a geometrical approach to those problematic trajectories.

Furthermore, we do not assume any uniform boundedness on the initial data but we

require the continuity of the solution to the Boltzmann equation. However, if we keep the

assumptions made in [78] and further assume that the domain is C3 and strictly convex

then our proofs are constructive.

The quantification of the strict positivity, and above all the appearance of an expo-

nential lower bound, has been seen to be of great mathematical interest thanks to the

development of the entropy-entropy production method. This method (see [112], Chapter

3, and [113]) provides a useful way of investigating the long-time behaviour of solutions

to kinetic equations. Indeed, it has been successfully used to prove convergence to the

equilibrium in non-pertubative cases for the Fokker-Planck equation, [36], and the full

Boltzmann equation in the torus or in C1 bounded connected domains with specular re-

flections, [37]. This entropy-entropy production method requires (see Theorem 2 in [37])

uniform boundedness on moments and Sobolev norms for the solutions to the Boltzmann

equation but also an a priori exponential lower bound of the form

f(t, x, v) > C1e
−C2|v|q ,

with q > 2.

Therefore, the present chapter allows us to prove that the latter a priori assumption

is in fact satisfied for a lot of different cases (see [78], Section 5 for an overview). We

also emphasize here that the assumption of continuity of the solution we have made does

not reduce the range of applications since a lot more regularity is usually asked for the

entropy-entropy production method. Moreover, our method, unlike the ones developed in

[95] and [78], does not require a uniform bound on the local density of solutions, which

is not a requirement for the entropy-entropy production method either (see [37], Theorem

2).

To conclude we note that our investigations require a deep and detailed understanding

of the geometry and properties of characteristic trajectories for the free transport equation.

In particular, a geometric approach of grazing collisions against the boundary is derived
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and is the key ingredient to study the strict positivity of solutions to the Boltzmann

equation. The existing strategies as well as our improvements are discussed in the next

section.

2.1.2 Our strategy

Our strategy to tackle this issue will follow the method introduced by Carleman [26]

together with the idea of Mouhot [78] to find a spreading method that will be invariant

along the characteristic trajectories. Roughly speaking we shall built characteristics in

a C2 bounded convex domain, create an “upheaval point” (as in [95] and [78]) that we

spread and expand uniformly along the characteristics. Finally, once the lower bound can

be compared to an exponential one we reach the expected result.

However, the existence of rebounds against the boundary leads to difficulties. We

describe them below and point out how we shall overcome them.

Creating an “upheaval point” was achieved, in [95] and [78], by using an iterated

Duhamel formula and a regularity property of the collision operator relying on a uniform

lower bound of the local density of the function. But the use of this property requires

a uniform control along the characteristics of the density, the energy and the entropy of

the solutions to the Boltzmann equation which is natural in the homogeneous case but

made Mouhot consider initial datum bounded from below uniformly in space. Our way

of dealing with the appearance of the “upheaval point” is rather different but includes

more general initial datum. We make the assumption of continuity of solutions to the

Boltzmann equation and by compactness arguments we can construct a partition of our

phase space where initial localised lower bounds exist, i.e., localised “upheaval points”.

The case on the torus studied by Mouhot tells us that an exponential lower bound

should arise immediately and therefore we expect the same to happen as long as the

characteristic trajectory is a straight line. Unfortunately, the possibility for a trajectory

to remain a line depends on the distance from the boundary of the starting point, which can

be as short as one wants. This thought is the basis of our means for spreading the initial

lower bound. We divided our trajectories into two categories, the ones which always stay

close to the boundary (grazing collisions) and the others. For the latter we can spread our

lower bound uniformly as noticed in [78]. The key contribution of our proof is a thorough

investigation of the geometry of grazing collisions. We show that their velocity does not

evolve a lot along time and mix it with the spreading property of the collision operator.

Notice here that the convexity of Ω is needed for the study of grazing trajectories.

The last behaviour to notice is the fact that specular reflections completely change ve-

locities but preserve their norm. Therefore, the existence of rebounds against the boundary

prevents us from obtaining a uniform spreading method straight from the ”upheaval point”

unless it is depending only on the norm of the velocity. Our strategy is to spread the lower
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bound created at the “upheaval points” independently for grazing and non-grazing colli-

sions up to the point when the lower bound we obtain depends only on the norm of the

velocity. Roughly, our lower bounds will be balls in velocity that can be centred away from

the origin and we shall grow them up finitely many times to balls containing the origin

and finally be able to generate a uniform spreading method.

Collision kernels satisfying a cutoff property as well as collision kernels with a non-

cutoff property will be treated following the strategy described above. The only difference

is the decomposition of the Boltzmann bilinear operator Q we consider in each case. In the

case of a non-cutoff collision kernel, we shall divide it into a cutoff collision kernel and a

remainder. The cutoff part will already be dealt with and a careful control of the L∞-norm

of the remainder will give us the expected lower bound, smaller than a Maxwellian lower

bound.

A preliminary to our study is to be able to construct the characteristic trajectories

associated to the Boltzmann equation with specular reflections in a C2 bounded convex

domain. These trajectories are merely those of the free transport and so can be seen as

the movement of a billiard ball inside the boundary of our domain.

Such a free transport in a convex domain has been studied in [33] (see also [93], [104]

or [105] for geometrical properties) and has been used in kinetic theory by Guo, [52], or

Hwang, [59], for instance. Yet, the common feature in [33], [52] and [59] is that their as-

sumptions on the boundary always lead to clear rebounds of the characteristic trajectories.

That is to say, the absoption phenomenon of [33], the electromagnetic field in [52] and [59]

or the smooth strict convexity assumption used in [57], prevent the characteristics to roll

on the boundary which is one of the possible behaviour we have to take into account in

our general settings. As briefly mentionned in the introduction of [105], the behaviour at

some specific boundary points is mathematically quite unexpected, even if that is of no

physical relevance. We thus classify all the possible outcomes of a rebound against the

boundary and study them carefully to analytically build the characteristics for the free

transport equation in our domain Ω.

Finally, we need to control the number of rebounds that can happen in a finite time. In

[104], Tabachnikov focuses on the footprints on the boundary of the trajectories of billiard

balls and shows that the initial conditions leading to infinitely many rebounds on the

boudary is a set of measure 0. We extend this to the whole trajectory (see Appendix 2.3.1,

Proposition 2.3.4), not only its footprints on the boundary, allowing us to consider only

finitely many rebounds in finite time and to have an analytic formula for the characteristics

which we shall use throughout the chapter.

Notice that all this study of the free transport equation will be done in the case of a

merely C1 bounded domain.
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2.1.3 Organisation of the chapter

Section 2.2 is dedicated to the statement and the description of the main results proved

in this chapter. It contains four different parts

Section 2.2.1 defines all the notations which will be used throughout the chapter.

As mentioned above, we shall investigate in detail the characteristics and the free

transport equation in a C1 bounded domain. Section 2.2.2 mathematically formulates the

intuitive ideas of trajectories.

The last subsections, 2.2.3 and 2.2.4, are dedicated to a mathematical formulation

of the results related to the lower bound in, respectively, the cutoff case and the non-

cutoff case, described in Section 2.1.2. It also defines the concept of mild solutions to the

Boltzmann equation in each case.

Sections 2.4 to 2.7 focuse on the Maxwellian lower bound in the cutoff case. It is

divided into the four main arguments of the proof.

Following our strategy, Section 2.4 creates the localised “upheaval points” whereas

Section 2.5 and Section 2.6 spread them along non-grazing and grazing trajectories re-

spectively.

Section 2.7 concludes by describing the immediate appearance of a lower bound depend-

ing only on the norm of the velocity ( Proposition 2.2.4) as well as proving the immediate

Maxwellian lower bound (proof of Theorem 2.2.3).

Finally, we deal with non-cutoff collision kernels in Section 2.8 where we prove the

immediate appearance of an exponential lower bound (Theorem 2.2.6). The proof follows

exactly the same steps as in the case of cutoff kernels and is thus divided into Section

2.8.1, where we construct a lower bound only depending on the norm of the velocity, and

Section 2.8.2, where we derive the exponential lower bound.

As mentioned before, we need to study the free transport equation and the different

important properties of the characteristics. Appendix 2.3 formulates these issues, investi-

gates all the different behaviours of rebounds against the boundary (Section 2.3.1), builds

the characteristics and derives their properties (Section 2.3.2) and solves the free transport

equation (Section 2.3.3).

2.2 Main results

We begin with the notations we shall use all along the chapter.

2.2.1 Notations

We denote 〈·〉 =
√

1 + |·|2 and y+ = max{0, y}, the positive part of y.

This study will hold in specific functional spaces regarding the v variable that we describe
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here and use throughout the sequel. Most of them are based on natural Lebesgue spaces

Lpv = Lp
(
Rd
)

with a weight:

� for p ∈ [1,∞] and q ∈ R, Lpq,v is the Lebesgue space with the following norm

‖f‖Lpq,v = ‖〈v〉qf‖Lpv ,

� for p ∈ [1,∞] and k ∈ N we use the Sobolev spaces W k,p
v by the norm

‖f‖
Wk,p
v

=

∑
|s|6k

‖∂sf(v)‖p
Lpv

1/p

,

with the usual convention Hk
v = W k,2

v .

In what follows, we are going to need bounds on some physical observables of solution

to the Boltzmann equation (2.1.1).

We consider here a function f(t, x, v) > 0 defined on [0, T )×Ω×Rd and we recall the

definitions of its local hydrodynamical quantities.

� its local energy

ef (t, x) =

∫
Rd
|v|2 f(t, x, v)dv,

� its local weighted energy

e′f (t, x) =

∫
Rd
|v|γ̃ f(t, x, v)dv,

where γ̃ = (2 + γ)+,

� its local Lp norm (p ∈ [1,+∞))

lpf (t, x) = ‖f(t, x, ·)‖Lpv ,

� its local W 2,∞ norm

wf (t, x) = ‖f(t, x, ·)‖
W 2,∞
v

.

Our results depend on uniform bounds on those quantities and therefore, to shorten

calculations we will use the following
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Ef = sup
(t,x)∈[0,T )×Ω

ef (t, x) , E′f = sup
(t,x)∈[0,T )×Ω

e′f (t, x),

Lpf = sup
(t,x)∈[0,T )×Ω

lpf (t, x) , Wf = sup
(t,x)∈[0,T )×Ω

wf (t, x).

In our theorems we are giving a priori lower bound results for solutions to (2.1.1)

satisfying some properties about their local hydrodynamical quantities. Those properties

will differ depending on which case of collision kernel we are considering. We will take

them as assumptions in our proofs and they are the following.

� In the case of hard or Maxwellian potentials with cutoff (γ > 0 and ν < 0):

Ef < +∞. (2.2.1)

� In the case of a singularity of the kinetic collision kernel (γ ∈ (−d, 0)) we shall make

the additional assumption

L
pγ
f < +∞, (2.2.2)

where pγ > d/(d+ γ).

� In the case of a singularity of the angular collision kernel (ν ∈ [0, 2)) we shall make

the additional assumption

Wf < +∞, E′f < +∞. (2.2.3)

As noticed in [78], in some cases several assumptions might be redundant.

Furthermore, in the case of the torus with periodic conditions or the case of bounded

domain with specular boundary reflections, solutions to (2.1.1) also satisfy the following

conservation laws (see [28], [30] or [112] for instance) for the total mass and the total

energy:

∃M, E > 0, ∀t ∈ R+,


∫

Ω

∫
Rd
f(t, x, v) dxdv = M,∫

Ω

∫
Rd
|v|2 f(t, x, v) dxdv = E.

(2.2.4)

2.2.2 Results about the free transport equation

Our investigations start with the study of the characteristics of the free transport equation.

We only focus on the case where Ω is not the torus (the characteristics in the torus being

merely straight lines) but we will use the same notations in both cases. This is achieved

by the following theorem.

- 60 -



2.2 Main results

Theorem 2.2.1 Let Ω be an open, bounded and C1 domain in Rd.
Let u0 : Ω̄× Rd −→ R be C1 in x ∈ Ω and in L2

x,v.

The free transport equation with specular reflections reads

∀t > 0 , ∀(x, v) ∈ Ω× Rd, ∂tu(t, x, v) +Dx(v)(u)(t, x, v) = 0, (2.2.5)

∀(x, v) ∈ Ω̄× Rd, u(0, x, v) = u0(x, v), (2.2.6)

∀(x, v) ∈ ∂Ω× Rd, u(t, x, v) = u(t, x,Rx(v)), (2.2.7)

where Rx stands for the specular reflection at a point x and Dx(v) is the directional

derivative at x in the direction of v.

Then this equation has a unique solution u : R+ × Ω̄ × Rd −→ R which is C1 in time,

admits a directional derivative in space in the direction of v and is in L2
x,v.

Moreover, for all (t, x, v) in R+ × Ω̄ × Rd, there exists xfin(t, x, v), vfin(t, x, v) and

tfin(t, x, v) (see Definition 2.3.6) such that

u(t, x, v) = u0 (xfin − (t− tfin)vfin, vfin) .

2.2.3 Maxwellian lower bound for cutoff collision kernels

The final theorem we prove in the case of cutoff collision kernel is the immediate appearance

of a uniform Maxwellian lower bound. We use, in that case, the Grad’s splitting for the

bilinear operator Q such that the Boltzmann equation reads

Q(g, h) =

∫
Rd×Sd−1

Φ (|v − v∗|) b (cos θ)
[
h′g′∗ − hg∗

]
dv∗dσ

= Q+(g, h)−Q−(g, h),

where we used the following definitions

Q+(g, h) =

∫
Rd×Sd−1

Φ (|v − v∗|) b (cos θ)h′g′∗ dv∗dσ,

Q−(g, h) = nb (Φ ∗ g(v))h = L[g](v)h, (2.2.8)

where

nb =

∫
Sd−1

b (cos θ) dσ =
∣∣∣Sd−2

∣∣∣ ∫ π

0
b (cos θ) sind−2θ dθ. (2.2.9)

In Section 2.3 we prove that we are able to construct the characteristics (Xt(x, v), Vt(x, v)),

for all (t, x, v) in R+ × Ω̄ × Rd, of the transport equation (Proposition (2.3.8)). Thanks

to this Proposition we can define a mild solution of the Boltzmann equation in the cutoff
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case. This weaker form of solutions is actually the key point for our result and also gives

a more general statement.

Definition 2.2.2 Let f0 be a measurable function, non-negative almost everywhere on

Ω̄× Rd.
A measurable function f = f(t, x, v) on [0, T )× Ω̄×Rd is a mild solution of the Boltzmann

equation associated to the initial datum f0(x, v) if

1. f is non-negative on Ω̄× Rd,

2. for every (x, v) in Ω× Rd:

t 7−→ L[f(t,Xt(x, v), ·)](Vt(x, v)), t 7−→ Q+[f(t,Xt(x, v), ·), f(t,Xt(x, v), ·)](Vt(x, v))

are in L1
loc([0, T )),

3. and for each t ∈ [0, T ), for all x ∈ Ω and v ∈ Rd,

f(t,Xt(x, v), Vt(x, v)) = f0(x, v)exp

[
−
∫ t

0
L[f(s,Xs(x, v), ·)](Vs(x, v)) ds

]
+

∫ t

0
exp

(
−
∫ t

s
L[f(s′, Xs′(x, v), ·)](Vs′(x, v)) ds′

)
Q+[f(s,Xs(x, v), ·), f(s,Xs(x, v), ·)](Vs(x, v)) ds.

(2.2.10)

Now we state our result.

Theorem 2.2.3 Let Ω be Td or a C2 open convex bounded domain in Rd and let f0 be a

non-negative continuous function on Ω̄ × Rd. Let B = Φb be a collision kernel satisfying

(2.1.3), with Φ satisfying (2.1.4) or (2.1.5) and b satisfying (2.1.6) with ν < 0. Let f(t, x, v)

be a mild solution of the Boltzmann equation in Ω̄ × Rd on some time interval [0, T ),

T ∈ (0,+∞], which satisfies

� f is continuous on [0, T )×Ω̄×Rd, f(0, x, v) = f0(x, v),M > 0 and E <∞ in (2.2.4);

� if Φ satisfies (2.1.4) with γ > 0 or if Φ satisfies (2.1.5), then f satisfies (2.2.1);

� if Φ satisfies (2.1.4) with γ < 0, then f satisfies (2.2.1) and (2.2.2).

Then for all τ ∈ (0, T ) there exists ρ > 0 and θ > 0, depending on τ , Ef (and L
pγ
f

if Φ satisfies (2.1.4) with γ < 0), such that for all t ∈ [τ, T ) the solution f is bounded

from below, almost everywhere, by a global Maxwellian distribution with density ρ and

temperature θ, i.e.

∀t ∈ [τ, T ), ∀(x, v) ∈ Ω̄× Rd, f(t, x, v) >
ρ

(2πθ)d/2
e−
|v|2
2θ .
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If we add the assumptions of uniform boundedness of f0 and of the mass and entropy

of the solution f we can use the arguments originated in [95] to construct explicitely the

initial “upheaval point”, without any compactness argument (see Section 2.4.2). Moreover,

if we further suppose that Ω is C3 and strictly convex, the use of tools developed by Guo

[57] yields a constructive method to control grazing collisions (see Remark 2.6.3). We thus

have the following corollary.

Corollary 1 Suppose that conditions of Theorem 2.2.3 are satisfied (the continuity as-

sumption on f0 can be dropped) and further assume that Ω is C3 and strictly convex, i.e.

there exists ξ : Rd −→ R to be C3 such that

Ω = {x ∈ Rd, ξ(x) < 0}

and such that ∇ξ 6= 0 on ∂Ω and there exists Cξ > 0 such that

∂ijξ(x)vivj > Cξ ‖v‖2

for all x in Ω̄ and all v in Rd. Further assume that f0 is uniformly bounded from below

∀(x, v) ∈ Ω× Rd, f0(x, v) > ϕ(v) > 0,

and that f has a bounded local mass and entropy

Rf = inf
(t,x)∈[0,T )×Ω

∫
Rd
f(t, x, v) dv > 0

Hf = sup
(t,x)∈[0,T )×Ω

∣∣∣∣∫
Rd
f(t, x, v)logf(t, x, v) dv

∣∣∣∣ < +∞.

Then conclusion of Theorem 2.2.3 holds true with the constants ρ and θ being explicitely

constructed in terms of τ , Ef , Hf , L
pγ
f and upper and lower bounds on |∇ξ| and

∣∣∇2ξ
∣∣on

∂Ω.

As stated in Subsection 2.1.2, the main result to reach Theorem 2.2.3 is the construction

of an immediate lower bound only depending on the norm of the velocity:

Proposition 2.2.4 Let f be the mild solution of the Boltzmann equation described in

Theorem 2.2.3.

For all 0 < τ < T there exists rV , a0(τ) > 0 such that

∀t ∈ [τ/2, τ ], ∀(x, v) ∈ Ω̄× Rd, f(t, x, v) > a0(τ)1B(0,rV )(v),
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rV and a0(τ) only depending on τ , Ef (and L
pγ
f if Φ satisfies (2.1.4) with γ < 0).

2.2.4 Exponential lower bound for non-cutoff collision kernels

In the case of non-cutoff collision kernels (0 6 ν < 2 in (2.1.6)), Grad’s splitting does not

make sense anymore and so we have to find a new way to define mild solutions to the

Boltzmann equation (2.1.1). The splitting we are going to use is a standard one and it

reads

Q(g, h) =

∫
Rd×Sd−1

Φ (|v − v∗|) b (cos θ)
[
h′g′∗ − hg∗

]
dv∗dσ

= Q1
b(g, h)−Q2

b(g, h),

where we used the following definitions

Q1
b(g, h) =

∫
Rd×Sd−1

Φ (|v − v∗|) b (cos θ) g′∗
(
h′ − h

)
dv∗dσ,

Q2
b(g, h) = −

(∫
Rd×Sd−1

Φ (|v − v∗|) b (cos θ)
[
g′∗ − g∗

]
dv∗dσ

)
h (2.2.11)

= S[g](v)h.

We would like to use the properties we derived in the study of collision kernels with

cutoff. Therefore we will consider additional splitting of Q.

For ε in (0, π/4) we define a cutoff angular collision kernel

bCOε (cos θ) = b (cos θ) 1|θ|>ε

and a non-cutoff one

bNCOε (cos θ) = b (cos θ) 1|θ|6ε.

Considering the two collision kernels BCO
ε = ΦbCOε and BNCO

ε = ΦbNCOε , we can

combine Grad’s splitting (2.2.8) applied to BCO
ε with the non-cutoff splitting (2.2.11)

applied to BNCO
ε . This yields the splitting we shall use to deal with non-cutoff collision

kernels,

Q = Q+
ε −Q−ε +Q1

ε −Q2
ε, (2.2.12)

where we use the shortened notations Q±ε = Q±
bCOε

and Qiε = Qi
bNCOε

, for i = 1, 2.

Thanks to the splitting (2.2.12) and the study of characteristics mentionned in Section

2.2.2, we are able to define mild solutions to the Boltzmann equation with non-cutoff

collision kernels. This is obtained by considering the Duhamel formula associated to the

splitting (2.2.12) along the characteristics (as in the cutoff case).
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Definition 2.2.5 Let f0 be a measurable function, non-negative almost everywhere on

Ω̄× Rd.
A measurable function f = f(t, x, v) on [0, T )× Ω̄×Rd is a mild solution of the Boltzmann

equation with non-cutoff angular collision kernel associated to the initial datum f0(x, v) if

there exists 0 < ε0 < π/4 such that for all 0 < ε < ε0:

1. f is non-negative on Ω̄× Rd,

2. for every (x, v) in Ω× Rd:

t 7−→ Lε[f(t,Xt(x, v), ·)](Vt(x, v)), t 7−→ Q+
ε [f(t,Xt(x, v), ·), f(t,Xt(x, v), ·)](Vt(x, v))

t 7−→ Sε[f(t,Xt(x, v), ·)](Vt(x, v)), t 7−→ Q1
ε[f(t,Xt(x, v), ·), f(t,Xt(x, v), ·)](Vt(x, v))

are in L1
loc([0, T )),

3. and for each t ∈ [0, T ), for all x ∈ Ω and v ∈ Rd,

f(t,Xt(x, v), Vt(x, v)) = f0(x, v)exp

[
−
∫ t

0
(Lε + Sε) [f(s,Xs(x, v), ·)](Vs(x, v)) ds

]
+

∫ t

0
exp

(
−
∫ t

s
(Lε + Sε) [f(s′, Xs′(x, v), ·)](Vs′(x, v)) ds′

)
(
Q+
ε +Q1

ε

)
[f(s,Xs(x, v), ·), f(s,Xs(x, v), ·)](Vs(x, v)) ds.

(2.2.13)

Now we state our result.

Theorem 2.2.6 Let Ω be Td or a C2 open convex bounded domain in Rd and f0 be a

continuous function on Ω̄×Rd. Let B = Φb be a collision kernel satisfying (2.1.3), with Φ

satisfying (2.1.4) or (2.1.5) and b satisfying (2.1.6) with ν in [0, 2). Let f(t, x, v) be a mild

solution of the Boltzmann equation in Ω̄× Rd on some time interval [0, T ), T ∈ (0,+∞],

which satisfies

� f is continuous on [0, T ) × Ω̄ × Rd and f(0, x, v) = f0(x, v),M > 0 and E < ∞ in

(2.2.4);

� if Φ satisfies (2.1.4) with γ > 0 or if Φ satisfies (2.1.5), then f satisfies (2.2.1) and

(2.2.3);

� if Φ satisfies (2.1.4) with γ < 0, then f satisfies (2.2.1), (2.2.2) and (2.2.3).
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Then for all τ ∈ (0, T ) and for any exponent K such that

K > 2
log
(

2 + 2ν
2−ν

)
log2

,

there exists C1, C2 > 0, depending on τ , K, Ef , E′f , Wf (and L
pγ
f if Φ satisfies (2.1.4)

with γ < 0), such that

∀t ∈ [τ, T ), ∀(x, v) ∈ Ω̄× Rd, f(t, x, v) > C1e
−C2|v|K .

Moreover, in the case ν = 0, one can take K = 2 (Maxwellian lower bound).

We emphasize here that, in the same spirit as in the cutoff case, the main part of the

proof will rely on the establishment of an equivalent to Proposition 2.2.4 for non-cutoff

collision kernels.

Corollary 2 As for Corollary 1, if if f0 is bounded uniformly from below as well as the

local mass of f , the local entropy of f is uniformly bounded from above and Ω is C3

and strictly convex then the conclusion of Theorem 2.2.6 holds true with constants being

explicitely constructed in terms of τ , K, Ef , E′f , Wf , Hf , L
pγ
f and upper and lower bounds

on |∇ξ| and
∣∣∇2ξ

∣∣on ∂Ω.

Remark 2.2.7 Throughout the chapter, we are going to deal with the case where Ω is

a C2 convex bounded domain since it is the case where the most important difficulties

arise. However, if Ω = Td, we can follow the same proofs by letting the first time of

collision with the boundary to be +∞ (see Section 2.3) and by making the definition that

the distance to the boundary (which does not exist) is +∞ (which rules out the case of

grazing trajectories).

2.3 The free transport equation: proof of Theorem 2.2.1

In this section, we study the transport equation with a given initial data and boundary

condition in a bounded domain Ω. We will only consider the case of purely specular

reflections on the boundary ∂Ω. Those kind of interaction cannot occur for all velocities

at the boundary. Indeed, for a particle to bounce back at the boundary, we need its

velocity to come from inside the domain Ω. To express this fact mathematically, we define

Λ+ =
{

(x, v) ∈ ∂Ω× Rd : v · n(x) > 0
}
,
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where we denote by n(x) the exterior normal to ∂Ω at x.

Consider u0 : Ω̄ × Rd −→ R which is C1 in x ∈ Ω and L2(Ω̄ × Rd) = L2
x,v. We are

interested in the problem stated in Theorem 2.2.1, (2.2.5)− (2.2.7).

If Dx(v)(u) denotes the directional derivate of u in x in the direction of v we have, in

the case of functions that are C1 in x,

Dx(v)(u) = v · ∇xu.

Therefore, instead of imposing that the solution to the transport equation should be C1

in x, we reformulate the problem with directional derivatives.

Physically, the free transport equation means that a particle evolves freely in Ω at a

velocity v until it reaches the boundary. Then it bounces back and moves straight until it

reaches the boundary for the second time and so on so forth up to time t. The method of

characteristics is therefore the best way to link u(t, x, v) to u0 by just following the path

used by the particle, backwards from t to 0 (see Figure 2.1). This method has been used

~v

tmin(x, v)

t1(t, x, v)

t2(t, x, v)

tfin(t, x, v)

Ω

x

Figure 2.1: Backward trajectory with standard rebounds

in [52] on the half-line and in [33], [59], for instance, in the case of convex media. However,

in both articles they only deal with finite, or countably many, numbers of rebounds in

finite time. Indeed, the electrical field in [52] and [59] makes the particles always reach the

boundary with v · n(x) > 0 and [33] has a specular boundary problem with an absorption

coefficient α ∈ [0, 1): u(t, x, v) = αu(t, x,Rx(v)). Therefore, in the case the particle arrives

tangentially to the boundary, i.e. v · n(x) = 0, we have Rx(v) = v and so u(t, x, v) = 0.
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This vanishing property allowed the authors to not care about the special cases where the

particle starts to roll on the boundary.

Another way of looking at the characteristics method is to study the footprints of the

trajectories on the boundary. This problem, as well as the possibility of having infinitely

many rebounds in a finite time, has been tackled by Tabachnikov in [104]. Tabachnikov

only focused on boundary points since the description of the trajectories by only consider-

ing their collisions with the boundary holds a symplectic property and a volume-preserving

transformation. Such properties allowed him to show that the set of points on the bound-

ary that lead to infinitely many rebounds in finite time is of measure 0 ([104], Lemma

1.7, 1). Unfortunately, in our case we would like to follow the characteristics and the study

of trajectories only via their footprints on the boundary is no longer a volume-preserving

transformation.

In our case we need to follow the path of a particle along the characteristics of the

equation to know the value of our function at each step. If the particle starts to roll

on the boundary (see Figure 2.2) we require to know for how long it will do so. The

major issue is the fact that v · n(x) = 0 does not tell us much about the geometry of ∂Ω

at x and the possibility, or lack of, for the particle to keep moving tangentially to the

boundary. Moreover, some cases lead to non physical behaviour since the sole specular

collision condition implies that some pairs (x, v) ∈ ∂Ω × Rd can only be starting points,

they cannot be generated by any trajectories (see Figure 2.3). This case is mentioned

quickly in the first chapter of [105] but not dealt with.

Ω

~v

x

tmin(x, v) t2(t, x, v)

tfin(t, x, v)

Figure 2.2: Backward trajectory rolling on the boundary

- 68 -



2.3 The free transport equation: proof of Theorem 2.2.1

~v

x

~v1(x, v)

~n

Ω

tmin(x, v)

Figure 2.3: Backward trajectory that reaches an end

Therefore, in order to prove the well-posedness of the transport equation (2.2.5) −
(2.2.7), we follow the ideas developed in [52] and [59], which consist of studying the back-

ward trajectories that can lead to a point (t, x, v), combined with the idea of countably

many collisions in finite time used in [33]. However, we have to deal with the issues de-

scribed above and to do so we introduce a new classification of possible interactions with

the boundary (see Definition 2.3.1). We also extend the result of [104], in terms of pair

(x, v) leading to infinitely many rebounds in finite time, to the whole domain Ω (Proposi-

tion 2.3.4). To do so we link up the study on the boundary made in [104] with the Lebesgue

measure on Ω by artificially creating volume on ∂Ω thanks to time and a foliation of the

domain by parallel trajectories.

The section is divided as follows. First of all we shall describe and classify the col-

lisions with the boundary in order to describe very accurately the backward trajectories

of a point (x, v) in ∂Ω × Rd. We will name trajectory or characteristic any solution

(X(t, x, v), V (t, x, v)) satisfying the initial condition (X(0, x, v), V (0, x, v)) = (x, v), the

boundary condition (2.2.7) and satisfying, in Ω,
dX

dt
= V

dV

dt
= 0.

This will give us an explicit form for the characteristics and allow us to link u(t, x, v) with

u0(x∗, v∗), for some x∗ and v∗. Finally, we will show that the function we constructed is,

indeed, a solution to the transport equation with initial data u0 and specular boundary

condition and that such a solution is unique.
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2.3.1 Study of rebounds on the boundary

As mentionned in the introduction of this section, when a particle reaches a point at the

boundary with a velocity v it can bounce back (Figure 2.1), keep moving straight (Figure

2.2) or stop moving because the specular reflection does not allow it to do anything else

(Figure 2.3), which is physically unexpected. The next definition gives a partition of the

points at the boundary which takes into account those properties.

Definition 2.3.1 We define here a partition of ∂Ω × Rd that focuses on the outcome of

a collision in each of the sets.

� The set coming from a rebound without rolling

Ωrebounds =
{

(x, v) ∈ ∂Ω× Rd : v · n(x) < 0
}
.

� The set coming from rolling on the boundary

Ωrolling =
{

(x, v) ∈ ∂Ω× Rd : v · n(x) = 0 and ∃δ > 0,∀t ∈ [0, δ], x− vt ∈ Ω̄
}
.

� The set of only starting points

Ωstop =
{

(x, v) ∈ ∂Ω× Rd : v · n(x) = 0 and ∀δ > 0,∃t ∈ [0, δ], x− vt /∈ Ω̄
}
.

� The set coming from straight line

Ωline =
{

(x, v) ∈ ∂Ω× Rd : v · n(x) > 0
}
.

One has to notice that any point of Ωline indeed comes from a straight line arriving at

x with direction v since Ω is open and is C1 (so there is no cusp).

In order to understand the behaviour expected at Ωstop we have the following proposition.

The proof of it gives insight into the nature of specular reflections.

Proposition 2.3.2 If we have (x, v) in Ωstop then there is no trajectory with specular

boundary reflections that leads to (x, v).

Proof of Proposition 2.3.2 Let us assume the contrary, that is to say (x, v) is in Ωstop

comes from a trajectory with specular boundary reflection.

We have that (x, v) belongs to ∂Ω × Rd and so if (x, v) comes from a straight line it

can only be (by definition of trajectories) a line containing x with direction v which means
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that (x, v) comes from {(x − vt, v), t ∈ [0, T ]}, for some T > 0. But the trajectory is

necessarily in Ω̄ and this is in contradiction with the definition of Ωstop.

Therefore, (x, v) must come from a rebound after a straight line trajectory. But again

we obtain a contradiction because the velocity before the rebound is Rx(v) = v and the

backward trajectory is the one studied above.

Now we have our partition of points on the boundary of Ω, we are able to generate the

backward trajectory associated to a starting point (x, v) in Ω̄×Rd. The first step towards

its resolution is to find the first point of real collision (if it exists) that generates (x, v)

(see Figure 2.1). The next proposition-definition proves mathematically what the figure

shows.

Proposition 2.3.3 Let Ω be an open, bounded and C1 domain in Rd. Let (x, v) be in

Ω̄× Rd, then we can define

tmin(x, v) = max
{
t > 0 : x− vs ∈ Ω̄, ∀ 0 6 s 6 t

}
.

Moreover we have the following properties:

1. if there exists t in (0, tmin(x, v)) such that x− vt hits ∂Ω then (x− vt, v) belongs to

Ωrolling.

2. tmin(x, v) = 0 if and only if (x, v) belongs to Ωstop ∪ Ωrebounds.

3. (x− vtmin(x, v), v) belongs to Ωstop ∪ Ωrebounds.

Property (1) emphasises the fact that if, on the straight line between x and x −
vtmin(x, v), the particle hits the boundary it will not be reflected and so just rolls on.

Then property (2) tells us than tmin(x,v) is always strictly positive except if (x, v) does

not come from any trajectory of a particle or if it is the outcome of a rebound without

rolling. Finally, property (3) finishes the study since at x− vtmin(x, v) the particles either

come from a reflection (case Ωrebounds), and we can keep tracking backwards, or started

its trajectory at x− vtmin(x, v) (case Ωstop).

Proop of Proposition 2.3.3 First of all we have that Ω is bounded and so there exists

R such that Ω̄ ⊂ B(0, R), the ball of radius R in Rd.
Then we notice that 0 belongs to

A(x, v) =
{
t > 0 : x− vs ∈ Ω̄, ∀ 0 6 s 6 t

}
.
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Therefore A(x, v) is not empty. Moreover, this set is bounded above by 2R/ ‖v‖ since for

all t in A(x, v)

R > ‖x− vt‖ > t ‖v‖ − ‖x‖ .

Therefore we can talk about the supremum tmin(x, v) of A(x, v). Let (tn)n∈N be increasing

sequence in A(x, v) that tends to tmin(x, v). As Ω̄ is closed we have that x − vtmin(x, v)

belongs to Ω̄. Then, if 0 6 s < tmin(x, v) there exists n such that 0 6 s 6 tn and so, by

the property of tn, x−vs is in Ω̄. This conclude the fact that tmin(x, v) belongs to A(x, v)

and so is a maximum.

We now turn to the proof of properties.

Let (x, v) be in Ω̄ and 0 < t < tmin(x, v) such that x− vt belongs to ∂Ω. Then for all

0 < t1 < t < t2 < tmin(x, v), x − vt1 and x − vt2 are in Ω̄ and so, by the definition of an

exterior normal to a surface we have

[(x− vt)− (x− vt1)] · n(x− vt) > 0 and [(x− vt)− (x− vt2)] · n(x− vt) > 0,

which gives v · n(x− vt) = 0.

Moreover, since t2 belongs to A(x, v), for all s in [0, t2 − t], (x − vt) − vs is in Ω̄, which

means that (x− vt, v) belongs to Ωrolling.

Property (2) is direct since if tmin(x, v) = 0 then for all t > 0, there exists 0 < s 6 t

such that x−vs does not belong to Ω̄ and then v ·n(x) 6 0. So (x, v) belongs to Ωrebounds,

if v · n(x) > 0, or to Ωstop.

Finally, property (3) is straightforward since x − vtmin(x, v) is in ∂Ω (because Ω is

open) and since for all 0 6 t 6 tmin(x, v), x − vt is in Ω̄. Thus [(x− vtmin)− (x− vt)] ·
n(x − vtmin(x, v)) > 0, which yields v · n(x − vtmin(x, v)) 6 0.Then, by the definition of

A(x, v) and the fact that tmin(x, v) is its maximum, we have that either (x−vtmin(x, v), v)

belongs to Ωrebounds or belongs to Ωstop.

Up to now we focused solely on the case of the first possible collision with the boundary.

In order to conclude the study of rebounds for any given characteristics we have to, in

some sense, count the number of rebounds without rolling that can happen in finite time.

This is the purpose of the next proposition.

Proposition 2.3.4 Let Ω be a C1 open, bounded domain in Rd and let (x, v) be in Ω̄×Rd.
Then for all t > 0 the trajectory finishing at (x, v) after a time t has at most a countable

number of rebounds without rolling.

Moreover, this number is finite almost surely with respect to the Lebesgue measure on

Ω̄× Rd
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Proof of Proposition 2.3.4 The fact that there is countably many rebounds without

rolling comes directly from the fact that tmin(x, v) > 0 except if (x, v) is a starting/stopping

point (and then did not move from 0 to t) or if (x, v) is the outcome of a rebound (and so

comes from (x,Rx(v)) which belongs to Ωline, implying that tmin(x,Rx(v)) > 0).

Now we shall prove that the set of points in Ω̄× Rd which lead to an infinite number

of rebounds in a finite time is of measure 0. To do so, we first need some definitions. The

measure µ in Ω̄×Rd is the one induced by the Lebesgue measure and we denote by λ the

measure on ∂Ω× Rd (see Section 1.7 of [104]).

We will also denote

Ω =
{

(x, v) ∈ Ω×
(
Rd − {0}

)
coming from an infinite number of rebounds

}
,

Ω∂ =
{

(x, v) ∈ ∂Ω×
(
Rd − {0}

)
coming from an infinite number of rebounds

}
.

We know ([104] Lemma 1.7.1) that λ(Ω∂) = 0 and we are going to establish a link between

the measure of Ω and the one of Ω∂ . Those two sets do not live in the same topology nor

same dimension and so we build a function that artificially recreates them via time.

Because Ω is bounded we can find time TM > 0 such that for all x in Ω̄ and v in

Rd − {0}, (x− TMv/ ‖v‖) does not belong to Ω̄. Furthermore, in the same way as for

tmin(x, v), we can define, for (x, v) in Ω̄× Rd,

T (x, v) =


min{t > 0 : x+ vt ∈ ∂Ω} if (x, v) ∈ Ω ∪ Ωrebounds

0 otherwise
.

We define the following function which is clearly C1.

F : [0, TM ]× Rd ×
(
Rd − {0}

)
−→ Rd ×

(
Rd − {0}

)
(t, x, v) 7−→ (x+ v

‖v‖ t, v).

We also define the set

B =
{

(t, x, v) : x ∈ ∂Ω, v ∈ (Rd − {0}), t ∈ [0, T (x, v))
}
.

and claim that F is injective on the set B. Indeed, if (t, x, v) and (t∗, x∗, v∗) are in B such

that F (t, x, v) = F (t∗, x∗, v∗) then v = v∗ and x+ tv/ ‖v‖ = x∗ + t∗v/ ‖v‖.
Let assume that t∗ > t, therefore we have that

x = x∗ + (t∗ − t) v

‖v‖ ∈ ∂Ω
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and thus t∗ − t > T (x∗, v). However, t∗ 6 T (x∗, v) so we reach a contradiction and t∗ 6 t.

By symmetry we have t = t∗ and then x = x∗. We also notice that [0, TM ] × Ωstop and

[0, TM ]× Ωrolling do not intersect B.

Finally we have that Ω = F (B ∩ ([0, TM ]× Ω∂)). Indeed, if (t, x, v) belongs to B ∩
([0, TM ]× Ω∂) then F (t, x, v) = (x+tv/ ‖v‖ , v) and x+tv/ ‖v‖ is in Ω and its first rebound

backward in time is (x, v) which lead to infinitely many rebounds in finite time. Therefore

x+ t
v

‖v‖ ∈ Ω.

The converse is direct, by considering the first collision with the boundary of the backward

trajectory starting at (x, v) in Ω.

All those properties allow us to compute µ(Ω) by a change of variable in B ∩ Ω∂ .

µ(Ω) = µ(F (B ∩ ([0, TM ]× Ω∂)))

=

∫
Ω̄×Rd

1F (B∩([0,TM ]×Ω∂))(x, v)dxdvdt

=

∫
B∩([0,TM ]×Ω∂)

∣∣Jac(F−1)
∣∣ dλ(x, v)dt

6 TM sup
[0,TM ]×Ω̄

(∣∣Jac(F−1)
∣∣)λ(Ω∂) = 0.

2.3.2 Description of characteristics

In the previous section we derived all the relevant properties of when, where and how

a trajectory can bounce against the boundary of Ω. As was shown, the characteristic

starting from a point (t, x, v) in R+× Ω̄×Rd is the backward trajectory satisfying specular

boundary reflections that leads to (x, v) in time t. Basically, it consists in a straight line

as long as it stays inside Ω or it rolls on the boundary. Then it reaches a boundary point

where it does not move any more (Ωstop) or bounces back (Ωrebounds).

Thanks to Proposition 2.3.4 we can generate the countable (and almost surely finite)

sequence of collisions with the boundary associated to the future point (x, v). We shall

construct it by induction. We consider (x, v) in Ω̄× Rd.
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� Step 1: initialisation: we define
x0(x, v) = x,

v0(x, v) = v,

t0(x, v) = 0.

� Step 2: induction: if (xk(x, v), vk(x, v)) ∈ Ωstop then we define
xk+1(x, v) = xk(x, v),

vk+1(x, v) = vk(x, v),

tk+1(x, v) = +∞,

if (xk(x, v), vk(x, v)) /∈ Ωstop then we define
xk+1(x, v) = xk(x, v)− vk(x, v)tmin(xk(x, v), vk(x, v)),

vk+1(x, v) = Rxk+1(x,v)(vk(x, v)),

tk+1(x, v) = tk(x, v) + tmin(xk(x, v), vk(x, v)).

Remark 2.3.5 Let us make a few comments on the accuracy of the sequence we just built.

1. Looking at Proposition 2.3.3, we know that at each step (apart from 0) we necessary

have that (xk(x, v), vk(x, v)) belongs to either Ωstop or Ωrebounds and so the char-

acteristic stops for ever (case 1 in induction) or bounces without rolling and start

another straight line (case 2). Thus the sequence of footprints defined above captures

the trajectories as long as there are rebounds and then becomes constant once the

trajectory reach a stopping point.

2. If tmin(xk(x, v), vk(x, v)) = 0 for some k > 0 then, by properties 2. and 3. of Propo-

sition 2.3.3, we must have (xk(x, v), vk(x, v)) ∈ Ωstop (since vk(x, v) is the specular

reflection at xk(x, v) of vk−1(x, v) and (xk(x, v), vk−1(x, v)) is in Ωrebounds ∪ Ωstop).

Thus, (tk(x, v))k∈N is strictly increasing as long as it does not reach the value +∞,

where it remains constant.

Finally, it remains to connect the time variable to those quantities. In fact, the time will

determine how many rebounds can lead to (x, v) in a time t. The reader must remember

that the backward trajectory can lead to a point in Ωstop before time t.

Since the characteristics method helps us to find the value of the solution of the trans-

port equation at a given point using its trajectory, the next definition links a triplet (t, x, v)
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to the first rebound of the trajectory that leads to (x, v) in a time t.

Definition 2.3.6 Let Ω be an open, bounded and C1 domain in Rd.
Let (t, x, v) be in R+ × Ω̄× Rd. Then we can define

n(t, x, v) =


max{k ∈ N : tk(x, v) 6 t}, if it exists,

+∞, if (tk(x, v))k is bounded by t.

The last rebound is then define by

� if n(t, x, v) < +∞ and tn(t,x,v)+1 = +∞, then
xfin(t, x, v) = xn(t,x,v)(x, v),

vfin(t, x, v) = vn(t,x,v)(x, v),

tfin(t, x, v) = t,

� if n(t, x, v) < +∞ and tn(t,x,v)+1 < +∞, then
xfin(t, x, v) = xn(t,x,v)(x, v),

vfin(t, x, v) = vn(t,x,v)(x, v),

tfin(t, x, v) = tn(t,x,v)(x, v),

� if n(t, x, v) = +∞, then 

xfin(t, x, v) = lim
k→+∞

xk(x, v),

vfin(t, x, v) = lim
k→+∞

vk(x, v),

tfin(t, x, v) = lim
k→+∞

tk(x, v).

Remark 2.3.7 Let us make a few comments on the definition above and the existence of

limits.

1. After the last rebound, occuring at tn(t,x,v), the backward trajectory can only be a

straight line during the time period t − tn(t,x,v) (see Figure 2.1). That is why we

defined tfin(t, x, v) = tn(t,x,v) if we reached a point on Ωrebounds and tfin(t, x, v) = t

if the last rebound reaches Ωstop (the trajectory can only start from there).
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2. In the last case of the definition, we remind the reader that (tk(x, v))k∈N is strictly

increasing and so converges if bounded by t. But then, because (‖vk(x, v)‖)k∈N is

constant and xk(x, v) = xk−1(x, v) − tmin(xk(x, v), vk(x, v))vk(x, v), we have that

(xk(x, v))k∈N is a Cauchy sequence.

3. The last case in Definition 2.3.6 almost surely never happens, as proved in Proposi-

tion 2.3.4.

To conclude this study of the characteristics we just have to make one more com-

ment. We studied the characteristics that go backward in time because it simplifies the

construction of a solution to the free transport equation. However, it is easy to prove

(just requires the inductive construction of vk and xk) that the forward trajectory of (x, v)

during a period t is the backward trajectory over a period t of (x,−v). This gives the final

proposition.

Proposition 2.3.8 Let Ω be an open, bounded and C1 domain in Rd. Then for all (x, v)

in Ω̄×Rd we have existence and uniqueness of the characteristic (Xt(x, v), Vt(x, v)) given

by, for all t > 0,

Xt(x, v) = xfin(t, x,−v) + (t− tfin(t, x,−v))vfin(t, x,−v),

Vt(x, v) = −vfin(t, x,−v).

Moreover, we have that Vt(x, v) = Ot,x,v(v) with Ot,x,v an orthogonal transformation, and

that for almost every (x, v) in Ω̄× Rd we have the following

∀t > 0, (x, v) = (Xt(Xt(x,−v),−Vt(x,−v)), Vt(Xt(x,−v),−Vt(x,−v))). (2.3.1)

Proof of Proposition 2.3.8 By construction we have that

Ot,x,v = Rxfin(t,x,v) ◦ · · · ◦ Rx1(t,x,v).

It only remains to show the last equation (2.3.1), but it follows directly from the fact

that the backward trajectory of (x, v) is the forward trajectory of (x,−v).

We can reach a point on Ωstop after a time t1 and so the forward trajectory of that

point during a time t > t1 does not come back to the original point (since we stayed in

Ωstop for a period t− t1).
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However, the set of points that reach Ωstop belongs to the set of points that bounce

infinitely many times in a finite time and this set is of measure zero (see Proposition 2.3.4).

2.3.3 Existence and uniqueness of solution to (2.2.5)− (2.2.7)

2.3.3.1 Proof of uniqueness

The uniqueness of a solution with u0 in C1
x∩L2

x,v comes directly from the fact that we have

a preserved quantity through time, thanks to the specular reflection property. Indeed, let

us assume that u is a solution to our free transport equation satisfying specular boundary

condition and the initial value problem u0. Then, a mere integration by part gives us

∀t > 0, ‖u(t, ·, ·)‖2L2
x,v

= ‖u0‖2L2
x,v
,

which directly implies the uniqueness of a solution, since the transport equation (2.2.5) is

linear.

2.3.3.2 Construction of the solution

It remains to construct a function u that will be constant on the characteristic trajectories

and check that we indeed obtain a function that is differentiable in t and x which satisfies

the transport equation. The first point of Remark 2.3.7 gives us the answer as we expect

the following behaviour

u(t, x, v) = u(t− t1(x, v), x1(x, v), v1(x, v)) = · · · = u(t− tk(x, v), xk(x, v), vk(x, v)),

up to the point where there are no more rebound in the time interval [0, t]. From there we

continue in a straight line.

Thus, we define: ∀(t, x, v) ∈ R+ × Ω̄× Rd,

u(t, x, v) = u0 (xfin(t, x, v)− (t− tfin(t, x, v))vfin(t, x, v), vfin(t, x, v)) .

2.3.3.3 Boundary and initial conditions

First of all, u satisfies the initial condition (2.2.6) as n(0, x, v) = 0 (since tmin(x, v) > 0).

u also satifies the specular boundary condition (2.2.7). Indeed, if (x, v) is in Λ+,

then either v · n(x) = 0 and the result is obvious since Rx(v) = v, or v · n(x) > 0 and

thus (x,Rx(v)) belongs to Ωrebounds so tmin(x,Rx(v)) = 0 (Proposition 2.3.3). An easy

induction shows

xk(x, v) = xk+1(x,Rx(v)), vk(x, v) = vk+1(x,Rx(v)), tk(x, v) = tk+1(x,Rx(v)),
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for all k in N.

The last equality gives us that n(t, x, v) = n(t, x,Rx(v))− 1 and therefore, combined with

the two other equalities,

xfin(t, x, v) = xfin(t, x,Rx(v)), vfin(t, x, v) = vfin(t, x,Rx(v)),

tfin(t, x, v) = tfin(t, x,Rx(v)),

which leads to the specular reflection boundary condition.

2.3.3.4 Time differentiability

Here we prove that u is differentiable in time on R+. Let us fix (x, v) in Ω× Rd.
By construction, we know that n(t, x, v) is piecewise constant. Since (tk(x, v))k∈N is strictly

increasing up to the step where it takes the value +∞, for tk(x, v) < t < tk+1(x, v) we

have that for all s ∈ R such that tk(x, v) < t+ s < tk+1(x, v),

xfin(t, x, v) = xfin(t+ s, x, v), vfin(t, x, v) = vfin(t+ s, x, v),

tfin(t, x, v) = tfin(t+ s, x, v).

Therefore, we have that

u(t+ s, x, v)− u(t, x, v)

s

=
u0(xfin − (t+ s− tfin)vfin, vfin)− u0(xfin − (t− tfin)vfin, vfin)

s
→
s→0
−vfin · (∇xu0) (xfin − (t− tfin)vfin, vfin),

because u0 is C1 in x. So u is differentiable at t if t in strictly between two times tk(x, v).

We thus find that u is differentiable at t and that its derivative is continuous (since xfin,

vfin and tfin are continuous when x and v are fixed).

In the case t = tk(x, v) we can use what we just proved to show that we have the

existence of right (except for t = 0) and left limits of ∂tu(t, x, v) as t tends to tk(x, v). We

use the specular reflection boundary condition of u0 together with the fact that it is C1

in x and that tk(x, v) = tk+1(x,Rx(v)) to obtain the equality of the two limits.

2.3.3.5 Space differentiability and solvability of the transport equation

Here we prove that u is differentiable in x in Ω, which follows directly from the time

differentiability. Let us fix t in R+ and v in Rd, we shall study the differentiability of

u(t, ·, v) in the direction of v.
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Ω is open and so

∀x ∈ Ω, ∃δ > 0, ∀s ∈ [−δ, δ], x+ sv ∈ Ω.

Thanks to the inductive construction, one find easily that

u(t, x+ sv, v) = u(t− s, x, v).

Therefore, since u is time differentiable, we have that u(t, ·, v) admits a directional deriva-

tive in the direction of v and that

Dx(v)(u)(t, x, v) = −∂tu(t, x, v).

2.4 The cutoff case: localized “upheaval points”

In this section and the next three we are going to prove a Maxwellian lower bound for a

solution to the Boltzmann equation (2.1.1) in the case where the collision kernel satisfies

a cutoff property.

The strategy to tackle this result follows the main idea used in [95] and [78] which

relies on finding an “upheaval point” (a first minoration uniform in time and space but

localised in velocity) and spreading this bound, thanks to the spreading property of the

Q+ operator, in order to include larger and larger velocities.

We gather here two lemmas, proven in [78], that we will frequently use in this section.

We remind the reader that we are using Grad’s splitting (2.2.8). Let us first give an L∞

bound on the loss term (Corollary 2.2 in [78]).

Lemma 2.4.1 Let g be a measurable function on Rd. Then

∀v ∈ Rd, |L[g](v)| 6 CLg 〈v〉γ
+
,

where CLg is defined by:

1. If Φ satisfies (2.1.4) with γ > 0 or if Φ satisfies (2.1.5), then

CLg = cst nbCΦeg.

2. If Φ satisfies (2.1.4) with γ ∈ (−d, 0), then

CLg = cst nbCΦ

[
eg + lpg

]
, p > d/(d+ γ).
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The spreading property of Q+ is given by the following lemma (Lemma 2.4 in [78]),

where we define

lb = inf
π/46θ63π/4

b (cos θ) . (2.4.1)

Lemma 2.4.2 Let B = Φb be a collision kernel satisfying (2.1.3), with Φ satisfying (2.1.4)

or (2.1.5) and b satisfying (2.1.6) with ν 6 0. Then for any v̄ ∈ Rd, 0 < r 6 R, ξ ∈ (0, 1),

we have

Q+(1B(v̄,R),1B(v̄,r)) > cst lbcΦr
d−3R3+γξ

d
2
−11B(v̄,

√
r2+R2(1−ξ)).

As a consequence in the particular quadratic case δ = r = R, we obtain

Q+(1B(v̄,δ),1B(v̄,δ)) > cst lbcΦδ
d+γξ

d
2
−11B(v̄,δ

√
2(1−ξ)),

for any v̄ ∈ Rd and ξ ∈ (0, 1).

The case of the torus, studied in [78], indicates that without rebounding the expected

minoration is created after time t = 0 as quickly as one wants. Therefore we expect the

same kind of bound to arise on each characteristic trajectory before its first rebound.

However, in the case of a bounded domain, rebounds against the boundary can occur

very close to the time t = 0 and a rebound preserves only the norm of the velocity.

Therefore, we will fail finding a uniformly (in space) small time where a uniform bound

arises. Nevertheless, the convexity and the smoothness of the domain implies that grazing

collisions against the boundary do not change the velocity very much.

Thus our study will be split in three parts, which are the next three sections. The first

step will be to partition the position and velocity spaces so that we have an immediate

appearance of an “upheaval point” in each of those partitions. The second one is to obtain

a uniform lower bound which will depend only on the norm of the velocity. Then the final

part will use the standard spreading method used in [95] and [78] which will allow us to

deal with large velocities and derive the exponential lower bound uniformly.

2.4.1 Partition of the phase space and first localised lower bounds

In this section we use the continuity of f together with the conservation laws (2.2.4)

to obtain a point in the phase space where f is strictly positive. Then, thanks to the

continuity of f , its Duhamel representation (2.2.10) and the spreading property of the Q+

operator (Lemma 2.4.2) we extend this positivity to high velocities at that particular point

(Lemma 2.4.3). Finally, the free transport part of the solution f will imply the immediate

appearance of the localised lower bounds (Proposition 2.4.4).
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2 Instantaneous filling of the vacuum

Moreover we define constants that we will use in the next two subsections in order to

have a uniform lower bound.

We define some shorthand notations. For x in Ω̄, v in Rd and s, t > 0 we denote the

point at time s of the forward characteristic passing through (x, v) at time t by

Xs,t(x, v) = Xs(Xt(x,−v),−Vt(x,−v))

Vs,t(x, v) = Vs(Xt(x,−v),−Vt(x,−v)),

which has been derived from (2.3.1).

We start by the strict positivity of our function at one point for all velocities:

Lemma 2.4.3 Let f be the mild solution of the Boltzmann equation described in Theorem

2.2.3.

Then there exists (x1, v1) in Ω×Rd and ∆ > 0 such that for all n ∈ N and all t in [0,∆],

there exists rn > 0, depending only on n, and αn(t) > 0 such that

∀x ∈ B
(
x1,

∆

2n

)
, ∀v ∈ Rd, f(t, x, v) > αn(t)1B(v1,rn)(v),

with α0 > 0 independent of t and the induction formula

αn+1(t) = CQ
rd+γ
n

4d/2−1

∫ min(t,∆/(2n+1(2rn+‖v1‖))

0
e−sCL〈2rn+‖v1‖〉γ

+

α2
n(s) ds

where CQ = cstlbcΦ is defined in Lemma 2.4.2 and CL = cstnbCΦEf (or CL = cstnbCΦ(Ef+

Lpf )) is defined in Lemma 2.4.1, and

r0 = ∆, rn+1 =
3
√

2

4
rn.

Proof of Lemma 2.4.3 The proof is an induction on n.

Step 1: Initialization. We recall the conservation laws satisfied by a solution to the

Boltzmann equation, (2.2.4),

∀t ∈ R+,

∫
Ω

∫
Rd
f(t, x, v) dxdv = M,

∫
Ω

∫
Rd
|v|2 f(t, x, v) dxdv = E,

with M > 0 and E <∞.

Since Ω is bounded, and so is included in, say, B(0, RX), we also have that

∀t ∈ R+,

∫
Ω

∫
Rd

(
|x|2 + |v|2

)
f(t, x, v) dxdv 6 α = MR2

X + E < +∞.
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2.4 The cutoff case: localized “upheaval points”

Therefore if we take t = 0 and Rmin =
√

2α/M , we have the following∫
B(0,Rmin)

∫
B(0,Rmin)

f0(x, v) dxdv >
M

2
> 0.

Therefore we have that there exists x1 in Ω and v1 in B(0, Rmin) such that

f0(x1, v1) >
M

4Vol(B(0, Rmin))2
> 0.

The first step of the induction is then due to the continuity of f at (0, x1, v1). Indeed,

there exists δT , δX , δV > 0 such that

∀t ∈ [0, δT ], ∀x ∈ B(x1, δX), ∀v ∈ B(v1, δV ), f(t, x, v) >
M

8Vol(B(0, Rmin))2
.

and we define ∆ = min(δT , δX , δV ).

Step 2: Proof of the induction. We assume the conjecture is valid for n.

Let x be in B(x1,∆/2
n+1), v in B(0, ‖v1‖+ 2rn) and t in [0,∆].

We use the fact that f is a mild solution to write f(t, x, v) under its Duhamel form

(2.2.10). The control we have on the L operator, Lemma 2.4.1, allows us to bound from

above the second integral term (the first term is positive). Moreover, this bound on L is

independent on t, x and v since it only depends on an upper bound on the energy ef(t,x,·)

(and its local Lp norm lpf(t,x,·)) which is uniformly bounded by Ef (and by Lpf ). This yields,

for τn(t) = min
(
t,∆/(2n+1(2rn + ‖v1‖))

)

f(t, x, v) >
∫ τn(t)

0
e−sCL〈‖v1‖+2rn〉γ

+

Q+ [f(s,Xs,t(x, v), ·), f(s,Xs,t(x, v), ·)] (Vs,t(x, v)) ds,

(2.4.2)

where CL = cst nbCΦEf (or CL = cst nbCΦ(Ef + Lpf )), see Lemma 2.4.1, and we used

‖Vs,t(x, v)‖ = ‖v‖ 6 2rn + ‖v1‖.

Besides, we have that B(x1,∆) ⊂ Ω and also

∀s ∈
[
0,

∆

2n+1(2rn + ‖v1‖)

]
, ∀v∗ ∈ B(0, ‖v1‖+ 2rn), ‖x1 − (x+ sv∗)‖ 6

∆

2n

which, by definition of the characteristics (see Section 2.3.2), yields

∀s ∈ [0, τn(t)] , ∀v∗ ∈ B(0, ‖v1‖+ 2rn),


Xs,t(x, v∗) = x+ sv∗ ∈ B

(
x1,

∆

2n

)
Vs,t(x, v∗) = v∗.
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2 Instantaneous filling of the vacuum

Therefore, by calling v∗ the integration parametre in the operator Q+ we can apply

the induction property to f(s,Xs,t(x, v), v∗) which implies, in (2.4.2),

f(t, x, v) >
∫ τn(t)

0
e−sCL〈‖v1‖+2rn〉γ

+

α2
n(s)Q+

[
1B(v1,rn),1B(v1,rn)

]
ds(v).

Applying the spreading property of Q+, Lemma 2.4.2, with ξ = 1/4 gives us the

expected result for the step n+ 1 since B(v1, rn+1) ⊂ B(0, ‖v1‖+ 2rn).

We now have all the tools to prove the next proposition which is the immediate ap-

pearance of localised “upheaval points”.

Proposition 2.4.4 Let f be the mild solution of the Boltzmann equation described in

Theorem 2.2.3.

Then there exists ∆ > 0 such that for all 0 < τ0 6 ∆, there exists δT (τ0), δX(τ0), δV (τ0),

Rmin(τ0), a0(τ0) > 0 such that for all N in N there exists NX in N∗ and x1, . . . , xNX in

Ω and v1, . . . , vNX in B(0, Rmin(τ0)) and

� Ω̄ ⊂ ⋃
16i6NX

B
(
xi, δX(τ0)/2N

)
;

� ∀t ∈ [τ0, δT (τ0)], ∀x ∈ B(xi, δX(τ0)),∀v ∈ Rd,

f(t, x, v) > a0(τ0)1B(vi,δV (τ0))(v),

with B (vi, δV (τ0)) ⊂ B(0, Rmin(τ0)).

Proof of Proposition 2.4.4 We are going to use the free transport part of the Duhamel

form of f (2.2.10), to create localised lower bounds out of Lemma 2.4.3.

We take 0 < τ0 6 ∆, where ∆ is defined in Lemma 2.4.3.

Ω is bounded so let us denote its diameter by dΩ. Let n be big enough such that rn >

2dΩ/τ0 + ‖v1‖ and define Rmin(τ0) = 2dΩ/τ0.

Thanks to Lemma 2.4.3 applied to this particular n we have that

∀t ∈
[τ0

2
,∆
]
, ∀x ∈ B(x1,∆/2

n), f(t, x, v) > αn

(τ0

2

)
1B(v1,rn)(v), (2.4.3)

where we used the fact that αn(t) is an increasing function.

Define

a0(τ0) =
1

2
αn

(τ0

2

)
e
− τ0

2
CL〈

2dΩ
τ0
〉γ+

.
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2.4 The cutoff case: localized “upheaval points”

We remark that f is continuous on the compact [τ0,∆] × Ω̄ × B(0, Rmin(τ0)) and hence

uniformly continuous. Therefore it exists δ′T (τ0), δ′X(τ0), δ′V (τ0) > 0 such that

∀|t− t′| 6 δ′T (τ0), ∀
∥∥x− x′∥∥ 6 δ′X(τ0), ∀

∥∥v − v′∥∥ 6 δ′V (τ0),

∣∣f(t, x, v)− f(t′, x′, v′)
∣∣ 6 a0(τ0). (2.4.4)

We conclude our definition by taking

δT (τ0) = min(∆, τ0 + δ′T (τ0)),

δX(τ0) = min(δ′X(τ0),∆/2n),

δV (τ0) = min(δ′V (τ0), rn).

Finally, we take N ∈ N and notice that Ω̄ is compact so there exists x1, . . . , xNX in Ω

such that Ω̄ ⊂ ⋃
16i6NX

B
(
xi, δX(τ0)/2N

)
. Moreover, we construct them such that x1 is the

one defined in Lemma 2.4.3.

We then take v1 to be the one defined in Lemma 2.4.3 and we define

∀i ∈ {2, . . . , NX}, vi =
2

τ0
(xi − x1).

Because Ω is convex we have that

Xτ0/2,τ0(xi, vi) = x1, (2.4.5)

Vτ0/2,τ0(xi, vi) = vi,

Using the fact that f is a mild solution of the Boltzmann equation, we write it under

its Duhamel form (2.2.10) and we drop the last term which is positive. As in the proof of

Lemma 2.4.3 we can control the L operator appearing in the first term in the right-hand

side of (2.2.10) (corresponding to the free transport). Thus, we use the Duhamel form

(2.2.10) between τ0 and τ0/2 and we combine it with (2.4.5). This yields

f(τ0, xi, vi) > f
(τ0

2
, x1, vi

)
e
− τ0

2
CL〈 2

τ0
(xi−x1)〉γ+

> αn

(τ0

2

)
e
− τ0

2
CL〈

2dΩ
τ0
〉γ+

1B(v1,rn)(vi)

> 2a0(τ0)1B(v1,rn)(vi),
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2 Instantaneous filling of the vacuum

where we used (2.4.3) for the second inequality. We see here that vi belongs toB(0, Rmin(τ0))

and that B(0, Rmin(τ0)) ⊂ B(v1, rn) and therefore

f(τ0, xi, vi) > 2a0(τ0). (2.4.6)

Finally, combining (2.4.6) with the uniform continuity of f , (2.4.4) we have that for

all t in [τ0, δT (τ0)], x in B(xi, δX(τ0)) and v in B(vi, δV (τ0)),

f(t, x, v) > a0(τ0).

Remark 2.4.5 This last proposition tells us that localised lower bounds appear immedi-

ately, that is to say after any time τ0 > 0. The exponential lower bound we expect will

appear immediately after those initial localised lower bounds, i.e. for all τ1 > τ0. There-

fore, to shorten notation and lighten our presentation, we are going to study the case

of solution to the Boltzmann equation which satisfies Proposition 2.4.4 at τ0 = 0. Then

we will immediatly create the exponential lower bound after 0 and apply this result to

F (t, x, v) = f(t+ τ0, x, v).

2.4.2 A constructive approach to the initial lower bound, Corollary 1

The initial lower bounds we just derived relies on compactness arguments and their con-

struction is therefore not explicit. However, as mentioned in Section 2.2.3, a few more

assumptions on f0 and f suffice to obatin a completely constructive approach for the “up-

heaval point”. This method is based on a property of the iterated Q+ operator discovered

by Pulvirenty and Wennberg [95] and reformulated by Mouhot ([78] Lemma 2.3) as follows.

Lemma 2.4.6 Let B = Φb be a collision kernel satisfying (2.1.3), with Φ satisfying (2.1.4)

or (2.1.5) and b satisfying (2.1.6) with ν 6 0. Let g(v) be a nonnegative function on Rd

with bounded energy eg and entropy hg and a mass ρg such that 0 < ρg < +∞. Then there

exist R0 , δ0 , η0 > 0 and v̄ ∈ B(0, R0) such that

Q+
(
Q+

(
g1B(0,R0), g1B(0,R0)

)
, g1B(0,R0)

)
> η01B(v̄,δ0),

with R0 , δ0 , η0 being constructive in terms on ρg, eg and hg.

We now suppose that 0 < ρf0 < +∞, hf0 < +∞ and that

∀(x, v) ∈ Ω× Rd, f0(x, v) > ϕ(v) > 0
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2.4 The cutoff case: localized “upheaval points”

and we follow the argument used in[78].

By the Duhamel definition (2.2.10) of f being a mild solution and Lemma 2.4.1 we

have

f(t,Xt(x, v), Vt(x, v)) > f0(x, v)e−tCL〈v〉
γ+

(2.4.7)

and

f(t, x, v) >
∫ t

0
e−(t−s)CL〈v〉γ

+

Q+ [f(s,Xs,t(x, v), ·), f(s,Xs,t(x, v), ·)] (Vs,t(x, v)) ds.

Define t(x, v) > 0 the time of first contact with ∂Ω of the trajectory x+ sv (see rigorous

definition in Proposition 2.3.3). For all t in [0, t(x, v)] we have

X0,t(x, v) = x+ tv,

V0,t(x, v) = v.

Thus, for all 0 6 t 6 t(x, v),

f(t, x, v) >
∫ t

0
e−(t−s)CL〈v〉γ

+

Q+ [f(s, x+ sv, ·), f(s, x+ sv, ·)] (v) ds,

and we can iterate the latter inequality

f(t, x, v) >
∫ t

0
e−(t−s)CL〈v〉γ

+

Q+

[∫ s

0
e−(s−s′)CL〈v〉γ

+

Q+
(
f(s, x+ s′v, ·), f(s, x+ s′v, ·)

)
(·)ds′, f(t, x+ sv, ·)

]
(v) ds.

(2.4.8)

(2.4.7) and (2.4.8) are exactly the same bounds than the ones obtained in [78], Step

1 of proof of Proposition 3.2, and we can therefore conclude the same way with Lemma

2.4.6

f(t, x, v) > a0(τ0)1B(v̄,δ0),

as long as v is in B(0, R0) and 0 6 t 6 τ0.

The only difference with [78] is the fact that we need τ0 to be in [0, t(x, v)], giving local

lower bounds instead of a global one.

2.4.3 A lower bound depending only on the norm of the velocity: strat-

egy of the proof of Proposition 2.2.4

As stated in the introduction, the spreading property of the bilinear operator Q+ cannot

be used (at least uniformly in time and space) when we are really close to the boundary
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due to the lack of control over the rebounds. However, if we have a lower bound depending

only on the norm of the velocity then the latter bound will not take into account rebounds

as they preserve the norm, allowing us to spread this minoration up to an exponential one.

The next two sections are dedicated to the creation of such a uniform lower bound

depending solely on the norm of the velocity. In order to do so we restrain the problem

without taking into account large velocities and divide the study to two cases: if the

trajectory stays close to the boundary or if it does not. In both cases we will start from

the localised “upheaval points” constructed in Section 2.4.1 and spread them to the point

where one gets a lower bound depending only on the norm of the velocity.

The next sections tackle each of these points. We first study the case when a charac-

teristic reaches a point far from the boundary and finally we focus on the case of grazing

characteristics. We fix δT , δX , δV , Rmin and a0 to be the ones described in Proposition

2.4.4 at time τ0 = 0.

The result we will derive out of those studies is Proposition 2.2.4 and from now on,

dependencies on physical observables of f (Ef and L
pγ
f ) will be mentionned but will not

be explicitly written everytime.

2.5 The cutoff case: characteristics passing by a point far

from the boundary

In this section we manage to spread the lower bounds created in Proposition 2.4.4 up to

a ball in velocity centred at zero as long as the trajectory we look at reaches a point far

enough from the boundary.

First, we pick N in N∗ and cover Ω̄ with
⋃

16i6NX
B(xi, δX/2

N ) as in Proposition 2.4.4.

Then for l > 0 we define

Ωl = {x ∈ Ω : d(x, ∂Ω) > l} , (2.5.1)

where d(x, ∂Ω) is the distance from x to the boundary of Ω.

For any R > 0 we define two sequences in R+ by induction, for all τ > 0 and l > 0,
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
r0 = δV

rn+1 =
3
√

2

4
rn

(2.5.2)

and 
a0(l, τ) = a0

an+1(l, τ) = CQ
rd+γ
n

4d/2−1

l

2n+3R
e−τCL〈R〉

γ+

a2
n

(
l

8
, τ

)
,

(2.5.3)

where CQ and CL were defined in Lemma 2.4.3.

We express the spreading of the lower bound in the following proposition.

Proposition 2.5.1 Let f be the mild solution of the Boltzmann equation described in

Theorem 2.2.3 and suppose that f satisfies Proposition 2.4.4 with τ0 = 0.

Consider 0 < τ 6 δT and N in N. Let (xi)i∈{1,...,NX} and (vi)i∈{1,...,NX} be given as in

Proposition 2.4.4 with τ0 = 0.

Then for all n in {0, . . . , N} we have that the following holds: for all 0 < l 6 δX , and

R > 0 such that l/R < τ , for all t in [l/(2nR), τ ], and for all x ∈ Ω̄ and v ∈ B(0, R), if

there exists t1 ∈ [0, t− l/(2nR)] such that Xt1,t(x, v) belongs to Ωl ∩B(xi, δX/2
n) then

f(t, x, v) > an(l, τ)1B(vi,rn)(Vt1,t(x, v)),

where (rn) and (an) are defined by (2.5.2)-(2.5.3).

Proof of Proposition 2.5.1 This Proposition will be proved by induction on n.

Step 1: Initialization. The initialisation is simply Proposition 2.4.4 and the first

term in the Duhamel formula (2.2.10) starting at τ .

Indeed, we use the definition of f being a mild solution to write f(t, x, v) under its

Duhamel form (2.2.10) starting at t1 where both parts are positive. The control we have

on the L operator, Lemma 2.4.1, allows us to bound from above the first term. Moreover,

this bound on L is independent on x and v (see proof of Lemma 2.4.3). This gives

f(t, x, v) > e−(t−t1)CL〈R〉γ
+

f (t1, Xt1,t(x, v), Vt1,t(x, v)) . (2.5.4)

Finally, Proposition 2.4.4 applied to f(t1, Xt1,t(x, v), Vt1,t(x, v)) gives us the property

for n = 0.
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Step 2: Proof of the induction. We consider the case where the proposition is true

for n.

Given l ∈ (0, δX ], t ∈ [l/(2n+1R), τ ], x ∈ Ω̄ and v ∈ B(0, R).

We suppose now that there exists t1 ∈ [0, t − l/(2n+1R)] such that Xt1,t(x, v) ∈ Ωl ∩
B(xi, δX/2

n+1).

Similar to what we did in the first step of the induction, but concentrating on the

second part of the Duhamel formula (2.2.10) we conclude that

f(t, x, v) > (2.5.5)

e−CLτ〈R〉
γ+

(∫ t1+ l
2n+2R

t1+ l
2n+3R

Q+ [f(s,Xs,t(x, v), ·), f(s,Xs,t(x, v), ·)] ds
)

(Vt1,t(x, v)) .

The goal is now to apply the induction to the triplet (s,Xs,t(x, v), v∗), where v∗ is the

integration parametre inside the Q+ operator, with ‖v∗‖ 6 R.

One easily shows that Xs,t(x, v) = Xt1,t(x, v)+(s−t1)Vt1,t(x, v), for s in [t1+ l
2n+3R

, t1+
l

2n+2R
], and therefore we have that

‖Xt1,t(x, v)−Xs,t(x, v)‖ 6 l

2n+2
, (2.5.6)

and so that Xs,t(x, v) belongs to Ωl−l/2n+2 .

Finally, we have to find a point on the characteristic trajectory of (s,Xs,t(x, v), v∗)

that is in Ωl′ for some l′. This is achieved at the time t1 (see Figure 2.4).

l

∂Ω

~v
x

Xt1,t(x, v)

~v∗

Xs,t(x, v)

l/8

Ωl

Figure 2.4: Study of (s,Xs,t(x, v), v∗) far from the boundary

Indeed, we have s in [t1 + l/(2n+3R), t1 + l/(2n+2R)] so, for ‖v∗‖ 6 R
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∀s′ ∈ [t1, s],
∥∥Xs,t(x, v)−

(
Xs,t(x, v)− (s− s′)v∗

)∥∥ 6
l

2n+2
. (2.5.7)

This gives us the characteristics trajectory backward starting from s, since Xs,t(x, v)−
(s− s′)v∗ remains in Ω, and therefore

∀s′ ∈ [t1, s],


Xs′,s (Xs,t(x, v), v∗) = Xs,t(x, v)− (s− s′)v∗
Vs′,s (Xs,t(x, v), v∗) = v∗.

To conclude we just need to gather the upper bounds we found about the trajectories

reaching (Xs,t(x, v), v∗) in a time s in [t1 + l/(2n+3R), t1 + l/(2n+2R)], equations (2.5.6)

and (2.5.7)

‖Xt1,t(x, v)−Xt1,s (Xs,t(x, v), v∗)‖ 6
l

2n+1
.

We have that Xt1,t(x, v) belongs to Ωl∩B(xi, δX/(2
n+1)) and therefore we have that for

all s in [t1 + l/(2n+3R), t1 + l/(2n+2R)], Xt1,s (Xs,t(x, v), v∗) belongs to Ωl/2∩B(xi, δX/2
n).

Finally, if s belongs to [t1+l/(2n+3R), t1+l/(2n+2R)] we have that (l/8)/(2nR) 6 s 6 τ

and t1 is in [0, s− (l/8)/(2nR)].

We can therefore apply the induction assumption for l′ = l/8 inside the Q+ operator

in (2.5.5), recalling that Vt1,s(Xs,t(x, v), v∗) = v∗.

f(t, x, v) > an

(
l

8
, τ

)2

e−CLτ〈R〉
γ+

(∫ t1+ l
2n+2R

t1+ l
2n+3R

Q+
[
1B(vi,rn),1B(vi,rn)

]
ds

)
(Vt1,t(x, v)) .

Applying the spreading property of Q+, Lemma 2.4.2, with ξ = 1/4 gives us the

expected result for the step n+ 1.

One easily notices that (rn)n∈N is a strictly increasing sequence. Moreover, for all N

in N we have that for all 1 6 i 6 NX , vi belongs to B(0, Rmin). Therefore, by taking N

large enough (greater than N1 say) we have that

∀i ∈ {1, . . . , NX}, B(0, 2Rmin) ⊂ B(vi, rN ).

This remark leads directly to the following corollary which stands for Proposition 2.2.4

in the case when a point on the trajectory is far from the boundary of Ω.

- 91 -



2 Instantaneous filling of the vacuum

Corollary 3 Let f be the mild solution of the Boltzmann equation described in Theorem

2.2.3 and suppose that f satisfies Proposition 2.4.4 with τ0 = 0.

Let ∆T be in (0, δT ] and take τ1 in (0,∆T ].

Then for all 0 < l 6 δX , there exists a(l, τ1,∆T ) > 0 and 0 < t̃(l, τ1,∆T ) < τ1 such that

for all t in [τ1,∆T ], and every (x, v) in Ω̄×Rd: if there exists t1 ∈ [0, t− t̃(l, τ1,∆T )] such

that Xt1,t(x, v) belongs to Ωl then

f(t, x, v) > a(l, τ1,∆T )1B(0,2Rmin)(v).

Proop of Corollary 3 This is a direct consequence of Proposition 2.5.1.

Indeed, take 0 < l 6 δX , 0 < τ1 6 ∆T and R = R(∆T ) > 0 such that R > 3Rmin and

l/R 6 ∆T . Then take N2 > N1 large enough such that l/(2N2R) < τ1. We emphasize here

that N2 depends on to τ1 so we write N2(τ1).

Now apply Proposition 2.5.1 with N = N2(τ1) and for t in [τ1,∆T ]. We obtain exactly

Corollary 3 (since B(0, 2Rmin) ⊂ B(vi, rN ) for all i and R > 3Rmin) with

a(l, τ1,∆T ) = aN2(τ1)(l,∆T ) and t̃(l, τ1,∆T ) =
l

2N2R(∆T )
,

and the fact that
⋃

16i6NX

B
(
xi, δx/2

N
)

covers Ω̄.

2.6 The cutoff case: geometry and grazing trajectories

We now turn to the case when the characteristic trajectory never escapes a small distance

from the boundary of our convex domain Ω.

Intuitively, by considering the case where Ω is a circle, one can see that such a behaviour

is possible only when the angles of collisions with the boundary remain small (which

corresponds in high dimension to the scalar product of the velocity with the outside normal

being close to zero), or the angle is important but the norm of the velocity or the time

of motion is small. Thus, by using the spreading property of the Q+ operator we may

be able to create larger balls in between two rebounds against the boundary because the

latters should not change the velocity too much.

The study of grazing collisions will follow this intuition. First of all Section 2.6.1

proves a geometric lemma dealing with the fact that if the velocities are bounded from

below and above, then for short times, the possibility for a trajectory to stay very close to

the boundary implies that the velocity do not change a lot over time. Then Section 2.6.2

spreads a lower bound, in the same spirit as the last subsection, up to the point when this

lower bound covers a centred ball in velocity. Notice that the geometric property forces us

to work with velocities whose norm is bounded from below and so we shall have to take

into account the speed of the spreading.
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2.6.1 Geometric study of grazing trajectories

The key point of the study of grazing collisions is the following geometric lemma. We

emphasize here that this is the only part of the chapter where we need the fact that Ω is

C2.

Proposition 2.6.1 Let Ω be an open convex bounded C2 domain in Rd and let 0 < vm <

vM .

Then, for all ε > 0 there exists tε(vM ) such that for all 0 < τ2 6 tε(vM ) there exists

lε(vm, τ2) > 0 such that for all x in Ω̄ and all v in Rd with vm 6 ‖v‖ 6 vM ,

(
∀s ∈ [0, τ2], Xs(x, v) /∈ Ωlε(vm,τ2)

)
=⇒ (∀s ∈ [0, tε(vM )], ‖Vs(x, v)− v‖ 6 ε) .

Furthermore, lε(vm, ·) is an increasing function.

The following is dedicated to the proof of Proposition 2.6.1.

We recall that for x in Ω̄ and v in Rd we define, see Section 2.3, tmin(x, v) to be the

time of the first proper rebound when we start from x with a velocity −v. This means

that tmin(x, v) does not take into account the case where a ball rolls on the boundary.

This implies that one cannot hope to get continuity of the function tmin because changing

the velocity slightly may lead to a proper rebound instead of a rolling movement.

This being said, we define a time of collision against the boundary which will not

take into account the possibility of rolling along the boundary of Ω. This will not be too

restrictive as we are considering a C2 convex domain and therefore a trajectory that stays

on the boundary will only reach a stopping point which happens only on a set of measure

zero in the phase space (see Section 2.3). Therefore we define for x in Ω̄ and v in Rd, the

first forward contact with the boundary, t(x, v). It exists by the same arguments as for

tmin. Notice that if x is on ∂Ω then for all v 6= 0 we have that t(x, v) = 0 if and only if

n(x) · v > 0, with n(x) being the outward normal to ∂Ω at the point x.

We have the following Lemma dealing with the continuity of the outward normal to

∂Ω at the first forward contact point which will be of great interest for proving the crucial

Proposition 2.6.1.

Lemma 2.6.2 Let Ω be an open convex bounded C1 domain in Rd.
Then t : (x, v) −→ t(x, v) is continuous from Ω̄×

(
Rd − {0}

)
to R+.
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Proof of Lemma 2.6.2 Let suppose that t is not continuous at (x0, v0) in Ω×
(
Rd − {0}

)
.

Then

∃ε > 0, ∀N > 1, ∃(xN , vN ),


‖x0 − xN‖ 6 1/N

‖v0 − vN‖ 6 1/N
and |t(x0, v0)− t(xN , vN )| > ε.

If we still denote by dΩ the diameter of Ω, we obviously have that for all N , 0 6

t(xN , vN ) 6 dΩ/ ‖vN‖. Thus, (t(xN , vN ))N∈N is a bounded sequence of R and we can

extract a converging subsequence
(
t(xφ(N), vφ(N))

)
such that T = lim

N→+∞
t(xφ(N), vφ(N)).

By construction (see Section 2.3) we have that for allN in N, xφ(N)+t(xφ(N), vφ(N))vφ(N)

belongs to ∂Ω which is closed. Moreover, this sequence converges to x0 +Tv0 which there-

fore is on ∂Ω.

Finally we have that |t(x0, v0)− T | > ε. Since Ω̄ is convex, the segment [x0, x0 +

max(t(x0, v0), T )v0] stays in Ω̄ and intersect the boundary at least at two distinct points.

By convexity of the domain, this implies that the extreme points of the latter segment

have to be on the boundary which means that x0 belongs to ∂Ω which is a contradiction.

Therefore, t is continuous in Ω ×
(
Rd − {0}

)
. By the definition of t(x, v) we have its

continuity at the boundary. Indeed, n(x) · v > 0 means we came from inside the domain

to reach that point and we have

∥∥t(x′, v)− t(x, v)
∥∥ 6

x− x′
‖v‖ .

We are now ready to prove the geometric Proposition 2.6.1.

Proof of Proposition 2.6.1 Consider ε > 0 and 0 < vm < vM .

Step 1: the case of segments. The first step is to understand that if a whole

trajectory stays close to the boundary, then the angle made by the velocity with respect

to the normal at the point of collision is close to π/2 for dimension d = 2. The same

behaviour in higher dimensions is described by the scalar product of the direction of the

trajectory and the normal being close to zero. One has to remember that controlling

‖Vs(x, v)− v‖ is the same as controlling the scalar products of the trajectory and the

normal on the boundary at each collision point (see definition of Vs(x, v) in Section 2.3).

Let x be on ∂Ω and p in N∗. We define

Γp(x) =
{
|n(x) · v| : v ∈ Sd−1 s.t. n(x) · v < 0 and ∀s ∈ [0, t(x, v)], x+ sv /∈ Ω1/p

}
,
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2.6 The cutoff case: geometry and grazing trajectories

with Ω1/p being defined by (2.5.1).

Γp(x) gives us the values of scalar products between a normal on the boundary and all

the directions that create a characteristic trajectory which stays at a distance less than

1/p from the boundary in between two distinct rebounds (see Figure 2.5). This is exactly

what we would like to control uniformly on the boundary.

We remark that Γp(x) is not empty because Ω and, thus, Ω1/p are convex and by

the geometric theorem of Hahn-Banach we can separate Ω1/p and a disjoint convex ball

containing x. It is also straightforward, a mere Cauchy-Schwartz inequality, that Γp(x) is

bounded from above by 1. Therefore we can define, for all p in N∗,

hp : ∂Ω −→ R+

x 7−→ sup Γp(x).

We are going to prove that (hp)p∈N∗ satisfies the following properties: it is a decreasing

sequence of functions, hp is continuous in x for each p > 1 and for all x in ∂Ω (hp(x))p∈N∗

converges to 0.

The fact that (hp) is decreasing is obvious.

In order to prove the continuity of hp we take an x on the boundary and v in Sd−1

such that |n(x) · v| is in Γp(x). We have that for all s in [0, t(x, v)]

d(x+ sv, ∂Ω) < 1/p.

The distance to the boundary is a continuous function and [0, t(x, v)] is compact so

there exists s(x, v) in the latter interval such that d(x+s(x, v)v, ∂Ω) is maximum. Because

Ω is convex we have that Ω1/p is convex and therefore

∀s ∈ [0, t(x, v)], B

(
x+ sv,

d(x+ s(x, v)v,Ω1/p)

2

)
∩ Ω1/p = ∅.

Then for all x′ on the boundary such that ‖x− x′‖ 6 d(x + s(x, v)v,Ω1/p)/2 we have

that for all s in [0, t(x′, v)], x′ + sv is not in Ω1/p. Lemma 2.6.2 gives us that if x′ is close

to x then t(x′, v) > 0 and thus v is not tangential at x′ either. Moreover Ω is C2 so the

outward normal to the boundary is continuous and therefore for x′ even closer to x we

have that v is such that |n(x′) · v| is also in Γp(x
′). To conclude, we notice that the scalar

product is continuous and therefore for all η > 0 we obtain

−η 6
∣∣∣ ∣∣n(x′) · v

∣∣− |n(x) · v|
∣∣∣ 6 η,

when x′ is close enough to x.
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The same arguments with the same constants (since our continuous functions act on

compact sets and therefore are uniformly continuous) if x′ is close to x then taking |n(x′) · v|
in Γ1/p(x

′) we have |n(x) · v| in Γ1/p(x) and the same inequality as above. This gives us

the continuity of hp at x. Indeed, we showed that for all x′ close to x and for all element

u in Γ1/p(x) we can find an element u′ in Γ1/p(x
′) that is close to u.

Finally, it remains to show that for x on the boundary we have that hp(x) tends to 0

as p tends to +∞.

One can notice that the vector −n(x) is the maximum possible in Γp(x) and is exactly the

direction of the diametre in Ω passing by x. Hence, simple convexity arguments lead to the

fact that if all the segments of the form [x, x−t(x,−n(x))n(x)] intersect Ω1/p then we have

that for all x on the boundary, there exists vp(x) in Sd−1 such that n(x) · vp(x) = −hp(x).

Moreover, the segment [x, x+ t(x, vp(x))vp(x)] is tangent to Ω1/p and we denote by xp its

first contact point (see Figure 2.5). The convexity of Ω and Ω1/p shows that, as p increases,

xp gets closer to x and to the boundary (Ω is convex). Therefore vp(x) tends to a tangent

vector of the boundary at x. This shows that

lim
p→+∞

hp(x) = 0

in the case where all the segments of the form [x, x− t(x,−n(x))n(x)] intersect Ω1/p.

We now come to the case where the segments of the form [x, x − t(x,−n(x))n(x)] do

not all intersect Ω1/p. If for all p, this segment does not intersect Ω1/p this implies by

convexity of Ω that [x, x− t(x,−n(x))n(x)] is included in ∂Ω. But then −n(x) is not only

a normal vector to the boundary at x but also a tangential one at x. Geometrically this

means that x is a corner of ∂Ω and n(x) is ill-defined. This is impossible for Ω being C2.

Hence, for all x on the boundary, it exists p(x) such that the segment at x intersect Ωp(x).

However, Ω is C2 and we also have Lemma 2.6.2. Those two facts implies that p(x) is

continuous on ∂Ω which is compact and therefore p(x) reaches a maximum. Let us call

this maximum P . For all p > P , all the segments of the form [x, x − t(x,−n(x))n(x)], x

in ∂Ω, intersect ΩP and we conclude thanks to the previous case.

Thanks to these three properties and the fact that ∂Ω is compact, we are able to use

Dini’s theorem. We therefore find that (hp)p∈N∗ converges uniformly to 0. By taking pε

large enough we have that for a segment of a characteristic trajectory joining two points

on the boundary to be outside Ωpε we must have Γpε 6 ε for any x on the boundary (see

Figure 2.5).

Step 2: more general trajectories. We take x in ∂Ω and v such that vm 6 ‖v‖ 6 vM

and we suppose that for a given t > 0

∀s ∈ [0, t], Xs(x, v) /∈ Ω1/p(ε/2Nmax)
,
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Nmax to be define later.

We are about to find a uniformly small time such that trajectories having at least

two collisions against the boundary do not undergo an important evolution of velocity.

This will be achieved thanks to the facts that ‖v‖ 6 vM and that the maximum of the

scalar product is attained at a critical vector and which is the only one that needs to be

controlled.

Thanks to Proposition 2.3.4, (Xs(x, v))s has countably many rebounds against the

boundary (almost surely a finite number in fact). We denote by (ti)(i∈N) the sequence

of times between consecutive collisions and by (li)i∈N the distance travelled during these

respective times. We have that

∀i ∈ N, li = |v| ti and vmt 6
∑
i∈N

li 6 vM t.

Therefore, for all η > 0, there exists Nη(x, v) in N such that∑
i>Nη(x,v)

ti 6 η. (2.6.1)

By continuity of t(x, v), see Lemma 2.6.2, and the fact that t(x, v) = 0 if and only if

n(x) · v > 0, we have that for η small enough (2.6.1) yields∑
i>Nη(x,v)

|n(xi) · vi| 6 ε/4, (2.6.2)

where vi is the velocity after the ith rebound and xi is the ith footprint.

t(x, v) is uniformly continuous on the compact ∂Ω × {|v| = vM} (see Lemma 2.6.2)

therefore the footprints of (Xs(x, v))s∈[0,t] are uniformly continuous and therefore there

exists α
(1)
X > 0 and Nmax in N such that

∀x, x′ ∈ ∂Ω s.t.
∥∥x− x′∥∥ 6 αX , ∀vm 6 |v| 6 vM , Nη(x, v) 6 Nmax − 1. (2.6.3)

We have now defined Nmax.

The first property to notice is that if (Xs(x, v))s∈[0,t] has at least two rebounds against

the boundary, then at each of them the scalar product between the incoming velocity and

the outward normal is less than ε/2Nmax.

Secondly, Ω is C2 and therefore n(x) is uniformly continuous on the boundary. Thus,

the specular reflection operator Rx is uniformly continuous on ∂Ω×B(0, vM ):

∃α(2)
X > 0, ∀x, x′ ∈ ∂Ω s.t.

∥∥x− x′∥∥ 6 αX , ‖Rx −Rx′‖ 6 ε/4Nmax. (2.6.4)
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We want to be sure that straight trajectories stay in our domain of uniformity so we

consider

t 6 tε(vM ) = max

(
αX
vM

,
1

pε/2NmaxvM

)
,

where αX = min(α
(1)
X , α

(2)
X ) defined in (2.6.3) and (2.6.4). To conclude, thanks to (2.6.3)

and (2.6.2), if (Xs(x, v))s∈[0,t] collides at least twice with the boundary then

∀s ∈ [0, t], ‖v − Vs(x, v)‖ 6 2
∑
i∈N
|n(xi) · vi| 6 2

∑
i6Nmax−1

ε

4Nmax
+ 2

ε

4
= ε.

Roughly speaking we do not allow the velocities near the critical direction to bounce

against the wall and for the grazing ones we run them for a short time, preventing them

from escaping a small neighbourhood where the collisions behave almost the same every-

where (see Figure 2.5).

To conclude our proof, it only remains to find l 6 1/pε/2Nmax that prevents trajectories

staying in Ωl but go through only one rebound with a scalar product greater than ε/2

from happening. This is easily achieved by taking l small enough such that not a single

trajectory with a scalar product greater than ε/2Nmax can stay inside Ωl during a time τ .

Indeed, one part of these trajectories will overcome a straight line of lenght at least vmτ/2

and making a scalar product greater than ε/2Nmax. The distance from the boundary of

the extremal point of these straight lines is therefore, by convexity, uniformly bounded

from below (e.g. in dimension 2 it is bounded by vmτε/4Nmax. Taking lε(vm, τ) being the

minimum between this lower bound and 1/pε/2Nmax gives us the required distance from

the boundary.

∂Ω

1/lε/2

lε(vm, τ )

Ω1/l
2−1ε

xlε

x

1
2vmτ

εε

Figure 2.5: Control on grazing trajectories
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Remark 2.6.3 In the case of Ω is a strictly convex C3 domain, the proof of Proposition

2.6.1 can be easily made constructive thanks to the tools developed by Guo [57].

In that case we have the existence of ξ : Rd −→ R to be C3 such that

Ω = {x ∈ Rd, ξ(x) < 0}

and such that ∇ξ 6= 0 on ∂Ω and there exists Cξ > 0 such that

∂ijξ(x)vivj > Cξ ‖v‖2

for all x in Ω̄ and all v in Rd. It allows us to define the following bounded functional along

a characteristic trajectories (Xs, Vs),

α(s) = ξ2(Xs) + [Vs · ∇ξ(Xs)]
2 − 2

[
Vs · ∇2ξ(Xs) · Vs

]
ξ(Xs) > 0.

The latter functional satisfies that if Xs0 is on ∂Ω then

α(s0) = [Vs0 · ∇ξ(Xs0)]2 = [Vs0 · n(Xs0)]2 |∇ξ(Xs0)|2 .

α thus encodes the evolution of the scalar product between the velocity of the trajectory

and the normal to Ω at the footprints of the characteristic. If the characteristic trajectory

starts with a velocity v such that vm 6 ‖v‖ 6 vM , as in Proposition 2.6.1, Lemma 1 and

Lemma 2 of [57] shows that in between two consecutive collision with the boundary at time

s1 and s2 we have the existence of Cξ > 0 such that

|s1 − s2| > Cξ

√
α(s1)

v2
M

, (2.6.5)

eCξ(vm+1)s1α(s1) 6 eCξ(vM+1)s2α(s2), (2.6.6)

e−Cξ(vM+1)s1α(s1) > e−Cξ(vm+1)s2α(s2). (2.6.7)

With (2.6.5) we can control the minimum time between two consecutive collisions with

the boundary and therefore the minimum lenght of a segment between two consecutive

collisions, uniformly in x and v (since ∇ξ is bounded from below on ∂Ω and non-vanishing).

We therefore obtain a uniform maximum number of collisions during the given time T .

Finally, (2.6.6) and (2.6.7) bounds uniformly the evolution of the scalar product between

two consecutive collision and therefore the maximum evolution of Vs(x, v) on the whole

trajectory for a given time T . Plugging those constructive constants into the study we just

made gives explicit constants in Proposition 2.6.1.

Now that we understand how grazing trajectories behave geometrically we can turn

our attention to their effects combined with the spreading property of the Boltzmann Q+
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operator.

2.6.2 Spreading effect along grazing trajectories

In order to use the geometrical behaviour of grazing characteristic trajectories, one needs

to consider velocities that are bounded from below. However, we would like to spread

a lower bound up to ball centred at 0 where a lower bound on the norm of velocities is

impossible. We shall overcome this problem using the flexibility of the spreading property

of the Q+ operator, Lemma 2.4.2, which allows us to extend the radius of the ball from 0

up to
√

2 times the initial radius.

The idea is to spread the initial lower bound by induction as long as the origin is strictly

outside, where we are allowed to use the geometrical property of grazing characteristics.

Finally, a last iteration of the spreading property, not requiring any a priori knowledge

on characteristics, will include 0 in the lower bound.

In Corollary 3 we can fix a special time τ1 of crossing the frontier of some Ωl allowing

us to derive a lower bound for our function in this special case. The second case of grazing

trajectories is dealt with Proposition 2.6.1 where we can find an l for Ωl to control the

evolution of the velocity. Our goal now will be to find all the constants that are still free

and to finally find a time of collision small enough that it will remain the same during all

the iteration scheme.

We now fix all the constants that remain to be fixed in Corollary 3 thanks to Proposition

2.6.1.

Let

∆T = min
(
δT , tδV /4(3Rmin)

)
. (2.6.8)

Next we define, for ξ in (0, 1),
r0(ξ) = δV

rn+1(ξ) =
√

2(1− ξ)rn(ξ)− δV
4
.

(2.6.9)

We have that
(
rn(1/2− 5/(8

√
2))
)
n∈N is a strictly increasing sequence. Therefore, it

exists Nmax such that

rNmax

(
1

2
− 5

8
√

2

)
> 2Rmin.

Now we fix N in N∗ greater than Nmax. With this N and Proposition 2.4.4 at τ0 = 0,

we construct v1, . . . , vNX .

For i in {1, . . . , N} we take ξ(i) in (0, 1/4− 5/(8
√

2)] and we define Nmax(i) to be such
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that 0 /∈ B
(
vi, rn(ξ(i))

)
for all n < Nmax(i) and 0 ∈ B

(
vi, rNmax(i)(ξ

(i))
)
. We can in fact

take ξ(i) such that 0 ∈ Int
(
B
(
vi, rNmax(i)(ξ

(i))
))

.

Therefore we have that for all i in {1, . . . , NX},

δi = ‖vi‖ − rNmax(i)−1(ξ(i)) > 0,

which is strictly positive if and only if Nmax(i) > 0. We consider

vm = min
i∈{1,...,NX}

{δi; δi > 0}. (2.6.10)

We can now define:

∀ 0 < τ 6 ∆T , R(τ) = max

(
3Rmin,

2δX
τ

+ 1

)
, (2.6.11)

τ1(τ) = τ − 2δX
R(τ)

> 0, (2.6.12)

t̃(τ) = t̃(l(τ), τ1(τ),∆T ). (2.6.13)

Finally, we define l(τ)

∀ 0 < τ 6 ∆T , τ2(τ) = min

(
∆T ,

δX
R(τ)

)
, (2.6.14)

l(τ) = min
(
δX , lδV /4 (vm, τ2(τ))

)
. (2.6.15)

We also build up the following sequence, where R, l and τ1 depend on τ ,


b
(i)
0 (τ,∆T ) = a0e

−(∆T−τ)CL〈R〉γ
+

b
(i)
n+1(τ,∆T ) = min

(
CQr

d+γ
n (ξ(i))d/2−1 δX

2n+2R
e−τCL〈R〉

γ+

b(i)n (τ,∆T )2; a(l, τ1,∆T )

)
(2.6.16)

ξ(i) was defined above and a(l, τ,∆T ) was defined in Corollary 3.

We are now ready to state the next Proposition which is the complement of Proposition

2.5.1 in the case when the trajectory stays close to the boundary. We remind the reader

that 0 < t̃(τ) < τ1(τ).

Proposition 2.6.4 Let f be the mild solution of the Boltzmann equation described in

Theorem 2.2.3 and suppose that f satisfies Proposition 2.4.4 with τ0 = 0.

- 101 -



2 Instantaneous filling of the vacuum

Consider 0 < τ 6 ∆T and take i in {1, . . . , NX} such that Nmax(i) > 1.

For all n in {0, . . . , Nmax(i)− 1} we have that for all t in [τ − δX/(2nR(τ)),∆T ], all x in

B(xi, δX/2
n) and all v in B(0, R(τ)), if

∀s ∈ [0, t− t̃(τ)], Xs,t(x, v) /∈ Ωl(τ)

then

f(t, x, v) > b(i)n (τ,∆T )1B(vi,rn(ξ(i)))(v),

all the constants being defined in (2.6.8), (2.6.9), (2.6.15), (2.6.11), (2.6.12), (2.6.13) and

(2.6.16).

Proof of Proposition 2.6.4 We are going to use the same kind of induction we used to

prove Proposition 2.5.1. So we start by fixing i such that Nmax(i) > 1.

Step 1: Initialization. The initialisation is simply Proposition 2.4.4 and the first

term in the Duhamel formula (2.2.10) starting at τ , with the control from above on L

thanks to Lemma 2.4.1.

Stef 2: Proof of the induction. We consider the case where the Proposition is true

at n 6 Nmax(i)− 2.

We take t in [τ − δX/(2n+1R(τ)),∆T ], x in B(xi, δX/2
n+1) and all v in B(0, R(τ)).

We suppose now that for all s ∈ [0, t − t̃(τ)] we have that Xs,t(x, v) does not belongs

to Ωl(τ).

To shorten notation we will skip the dependence in τ of the constant.

We use the definition of f being a mild solution to write f(t, x, v) under its Duhamel

form (2.2.10) where both parts are positive. As in the proof of Proposition 2.5.1, we

control, uniformly on t, x and v, the L operator from above. This yields

f(t, x, v) > e−CLτ〈R〉
γ+
∫ t− δX

2n+2R

t− δX
2n+1R

Q+ [f(s,Xs,t(x, v), ·), f(s,Xs,t(x, v), ·)] (Vs,t(x, v)) ds,

(2.6.17)

where we used ‖Vs,t(x, v)‖ = ‖v‖ 6 R. We also emphasize here that this inequality holds

true thanks to the definition of (2.6.11):

t− δX
2n+1R

> τ − δX
R

> 0.

The goal is now to apply the induction to the triplet (s,Xs,t(x, v), v∗), where v∗ is the

integration parameter inside the Q+ operator, with ‖v∗‖ 6 R.
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We notice first that for all s in [t− δX/(2n+1R), t− δX/(2n+2R)]

‖xi −Xs,t(x, v)‖ 6
δX

2n+1
+ ‖x−Xs,t(x, v)‖

6
δX

2n+1
+ (t− s)R 6

δX
2n
,

so that for all s in [t− δX/(2n+1R), t− δX/(2n+2R)], Xs,t(x, v) belongs to B(xi, δX/2
n).

We also note that [
t− δX

2n+1R
, t− δX

2n+2R

]
⊂
[
τ − δX

2nR
,∆T

]
.

We have two different cases to consider for (Xs′,s(Xs,t(x, v), v∗))s′∈[0,s−t̃].

Either for some s′ in [0, s− t̃], Xs′,s(Xs,t(x, v), v∗) belongs to Ωl and then we can apply

Corollary 3:

f(s,Xs,t(x, v), v∗) > a(l, τ1,∆T )1B(0,2Rmin)(v∗)

> b(i)n (τ,∆T )1B(vi,rn(ξ(i)))(v), (2.6.18)

since vi is in B(0, Rmin).

Or for all s′ in [0, s− t̃] ⊂ [0, τ2], Xs′,s(Xs,t(x, v), v∗) does not belong to Ωl and then we

can apply our induction property at rank n and we reach the same lower bound (2.6.18).

Plugging (2.6.18) into (2.6.17) implies, thanks to the spreading property of Q+, Lemma

2.4.2 with ξ = ξ(i),

f(t, x, v) > (2.6.19)

CQr
d+γ
n (ξ(i))d/2−1e−τCL〈R〉

γ+

(b(i)n )2

∫ t− δX
2n+2R

t− δX
2n+1R

1B(vi,
√

2(1−ξ(i))rn(ξ(i))) (Vs,t(x, v)) ds.

To conclude we use the fact that for all s in [0, t− t̃] we have that Xs,t(x, v) does not

belong to Ωl and that t − t̃ > τ2. Moreover, n + 1 6 Nmax(i) − 1 and so if v belongs to

B
(
vi, rn(ξ(i))

)
we have that vm 6 ‖v‖. We apply Proposition 2.6.1, raising

∀s ∈
[
t− δX

2n+1R
, t− δX

2n+2R

]
, ‖v − Vs,t(x, v)‖ 6 δV

4
.
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Therefore, if v belongs toB
(
vi, rn+1(ξ(i))

)
we have that Vs,t(x, v) belongs toB(vi,

√
2(1−

ξ(i))rn(ξ(i))) for all s in [t− δX/(2n+1R), t− δX/(2n+2R)].

Therefore if v belongs to B
(
vi, rn+1(ξ(i))

)
we can compute explicitly (2.6.19) and

obtain the expected induction.

Thanks to Proposition 2.6.4, we can build, for all x and all v, a lower bound that will

contain 0 in its interior after another use of the spreading property of the Q+ operator.

The next Corollary is the complement of Corollary 3.

Corollary 4 Let f be the mild solution of the Boltzmann equation described in Theorem

2.2.3 and suppose that f satisfies Proposition 2.4.4 with τ0 = 0.

Let ∆T be defined by (2.6.8).

There exists rV > 0 such that for all τ ∈ (0,∆T ] there exists b(τ) > 0 such that for all t

in [τ,∆T ]

If, for t̃(τ) and l(τ) being defined by (2.6.13)− (2.6.15),

∀s ∈ [0, t− t̃(τ)], Xs,t(x, v) /∈ Ωl(τ).

Then

f(t, x, v) > b(τ)1B(0,rV )(v).

Proof of Corollary (4) We are going to use the spreading property of Q+ one more

time. We recall that we chose N > Nmax > Nmax(i) for all i. By definition of Nmax(i),

∀i ∈ {1, . . . , NX}, 0 ∈ Int
(
B
(
vi, rNmax(i)(ξ

(i))
))

.

We define

rV = min
{
rNmax(i)(ξ

(i))− ‖vi‖ ; i ∈ {1, . . . , NX}
}
,

which only depends on δV and (vi)i∈{1,...,NX}. By construction we see that

∀i ∈ {1, . . . , NX}, B(0, rV ) ⊂ B
(
vi, rNmax(i)(ξ

(i))
)
. (2.6.20)

Now we take τ in (0,∆T ] and we take t in [τ,∆T ], x in B(xi, δX/2
N ) and v in B(0, R(τ))

such that

∀s ∈ [0, t− t̃(τ)], Xs,t(x, v) /∈ Ωl(τ),
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We have that t is in [τ − δX/(2
Nmax(i)−1R(τ)),∆T ] and x in B(xi, δX/2

Nmax(i)−1)

(N > Nmax(i)). By the same methods we reached (2.6.19), we obtain for n = Nmax(i)

f(t, x, v) > (2.6.21)

CQr
d+γ
n (ξ(i))d/2−1e−τCL〈R〉

γ+

(b(i)n )2

∫ t− δX
2n+2R

t− δX
2n+1R

1B(vi,
√

2(1−ξ(i))rn(ξ(i))) (Vs,t(x, v)) ds.

This time the conclusion is different because we cannot bound the velocity from below

since our lower bound contains 0. However, (2.6.20) allows us to bound from below the in-

tegrand in (2.6.21) by a function depending only on the norm. Moreover, ‖v‖ = ‖Vs,t(x, v)‖
along characteristic trajectories (see Proposition (2.3.8)). Thus we obtain the expected

result by taking

b(τ) = min
{
b
(i)
Nmax(i); i ∈ {1, . . . , NX}

}
.

2.7 Maxwellian lower bound in the cutoff case: proof of

Theorem 2.2.3

This section gathers all the results we proved above and proves the main Theorem in the

case of a cut-off collision kernel.

2.7.0.1 Proof of Proposition (2.2.4)

By combining Corollary 3 and Corollary 4 we can deal with any kind of characteristic

trajectory. This is expressed by the following lemma.

Lemma 2.7.1 Let f be the mild solution of the Boltzmann equation described in Theorem

2.2.3 and suppose that f satisfies Proposition 2.4.4 with τ0 = 0.

There exists ∆T > 0 and rV > 0 such that for all 0 < τ 6 ∆T there exists a(τ) and

∀t ∈ [τ,∆T ], a.e. (x, v) ∈ Ω̄× Rd, f(t, x, v) > a(τ)1B(0,rV )(v).

Proof of Lemma 2.7.1 In Corollary 4 we constructed ∆T and rV .

We now take τ in (0,∆T ] and consider t in [τ,∆T ], (x, v) in Ω̄× Rd where f is a mild

solution of the Boltzmann equation.
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We remind the reader that l(τ) and t̃(τ) have been introduced in (2.6.15) and (2.6.13).

Either (Xs,t(x, v))s∈[0,t−t̃(τ)] meets Ωl(τ) and then we use Corollary 3 to get

f(t, x, v) > a(l(τ), τ1(τ),∆T )1B(0,rV )(v).

Or (Xs,t(x, v))s∈[0,t−t̃(τ)] stays out of Ωl(τ) and then we use Corollary 4 to get

f(t, x, v) > b(τ)1B(0,rV )(v).

We obtain Lemma 2.7.1 with a(τ) = min (a(l(τ), τ1(τ),∆T ), b(τ)).

We now have all the tools to prove Proposition 2.2.4.

Proof of Proposition 2.2.4 Let τ be strictly positive and consider t in [τ/2, τ ].

First case. We suppose that f satisfies Proposition 2.4.4 with τ0 = 0.

We can compare t with ∆T constructed in Lemma 2.7.1.

If t 6 ∆T then we can apply the latter lemma and obtain for almost every (x, v) in

Ω̄× Rd

f(t, x, v) > a
(τ

2

)
1B(0,rV )(v). (2.7.1)

If t > ∆T then we can use Duhamel formula (2.2.10) and bound f(t, x, v) by its value

at time ∆T (as we did in the first step of the induction in the proof of Proposition 2.5.1)

and use Lemma 2.7.1 at ∆T . This gives, for ‖v‖ 6 rV ,

f(t, x, v) > f(∆T , X∆T ,t(x, v), V∆T ,t(x, v))e−(t−∆T )CL〈rV 〉γ
+

> a(∆T )e−(τ−∆T )CL〈rV 〉γ
+

1B(0,rV )(V∆T ,t(x, v))

= a(∆T )e−(τ−∆T )CL〈rV 〉γ
+

1B(0,rV )(v). (2.7.2)

We just have to take the minimum of the two lower bounds (2.7.1) and (2.7.2) to obtain

Proposition 2.2.4.

Second case. We do not assume anymore that f satisfies Proposition 2.4.4 with

τ0 = 0.

Thanks to Proposition 2.4.4 with τ0 = τ/4 we have that

∀t 6 0, ∀x ∈ Ω̄, v ∈ Rd, F (t, x, v) = f(t+ τ0, x, v)
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is a mild solution of the Boltzmann equation satisfying exactly the same bounds as f in

Theorem 2.2.3 and such that F has the property of Proposition 2.4.4 at 0 (note that all

the constants depend on τ0).

Hence, we can apply the first step for t′ in [τ/4, 3τ/4] and F (t′, x, v). This gives us the

expected result for f(t, x, v) for t = t′ + τ0 in [τ/2, τ ].

2.7.1 Proof of Theorem 2.2.3

As was mentioned in Section 2.1.2, the main difficulty in the proof is to create a lower

bound depending only on the norm of the velocity. This has been achieved thanks to

Proposition 2.2.4. If we consider this proposition as the start of an induction then it leads

to exactly the same process developed by Mouhot in [78], Section 3. Therefore we will

just explain how to go from Proposition 2.2.4 to Theorem 2.2.3, without writing too many

details.

First of all, by using the spreading property of the Q+ operator once again we can

grow the lower bound derived in Proposition 2.2.4.

Proposition 2.7.2 Let f be the mild solution of the Boltzmann equation described in

Theorem 2.2.3.

For all τ in (0, T ), there exists R0 > 0 such that

∀n ∈ N,∀t ∈
[
τ − τ

2n+1
, τ
]
, ∀(x, v) ∈ Ω̄× Rd, f(t, x, v) > an(τ)1B(0,rn)(v),

with the induction formulae

an+1(τ) = cst Ce
a2
n(τ)rd+γ

n ξ
d/2+1
n

2n+1
and rn+1 =

√
2(1− ξn)rn,

where (ξn)n∈N is any sequence in (0, 1) and r0 = rV , a0(τ) and Ce only depend on τ , Ef

(and L
pγ
f if Φ satisfies (2.1.4) with γ < 0).

Indeed, we take the result in Proposition 2.2.4 to be the first step of our induction and

then, for n in N and 0 < τ < T , the Duhamel form of f gives

f(t, x, v) >∫ τ− τ
2n+2

τ− τ
2n+1

e−CL(t−s)〈v〉γ+

Q+ (f(s,Xs,t(x, v), ·), f(s,Xs,t(x, v), ·)) (Vs,t(x, v))ds,
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for t in [τ − τ/2n+2, τ ].

Using the induction hypothesis together with the spreading property of Q+ (Lemma

2.4.2) leads us, as in the proofs of Propositions 2.5.1 and 2.6.4, to a bigger ball in velocity,

centred at 0. The only issue is to avoid the v-dependence in exp
[
−CL(t− s)〈v〉γ+

]
which

can easily be achieved as shown at the end of the proof of Proposition 3.2 in [78]. This is

exactly the same result as Proposition 3.2 in [78], but with the added uniformity in x.

As in Lemma 3.3 in [78], we can take an appropriate sequence (ξn)n∈N and look at the

asymptotic behaviour of (an(τ))n∈N. We obtain the following

∀τ > 0, ∃ρτ , θτ > 0, ∀(x, v) ∈ Ω̄× Rd, f(t, x, v) >
ρτ

(2πθτ )d/2
e−
|v|2
2θ .

Notice that, again, the result is uniform in space, since the previous one was, and that the

constants ρτ and θτ only depend on τ and the physical quantities associated to f .

To conclude, it remains to make the result uniform in time. As noticed in [78], Lemma

3.5, the results we obtained so far do not depend on an explicit form of f0 but just on

uniform bounds and continuity that are satisfied at all times, positions and velocities.

Therefore, we can do the same arguments starting at any time and not t = 0. So if we

take τ > 0 and consider τ 6 t < T we just have to make the proof start at t− τ to obtain

Theorem 2.2.3.

2.8 Exponential lower bound in the non cutoff case: proof

of Theorem 2.2.6

In this section we prove the immediate appearance of an exponential lower bound for

solutions to the Boltzmann equation (2.1.1) in the case of a collision kernel satisfying the

non cutoff property.

The definition of being a mild solution in the case of a non cutoff collision kernel,

Definition 2.2.5 and equation (2.2.12), shows that we are in fact dealing with an almost

cutoff kernel to which we add a non locally integrable remainder. The strategy will mainly

follow what we did in the case of a cutoff collision kernel with the addition of controlling

the loss due to the added term.

As in the last section, we shall first prove that solutions to the Boltzmann equation

can be uniformly bounded from below by a lower bound depending only on the norm of

the velocity and then use the proof given for the non cutoff case in [78]. We will do that by

proving the immediate appearance of localised “upheaval points” and spreading them up

to the point where we reach a uniform lower bound that includes a ball in velocity centred

at the origin. The spreading effect will be done both in the case where the trajectories
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reach a point far from the boundary and in the case of grazing trajectories. At this point

we will spread this lower bound on the norm of the velocity up to the exponential lower

bound we expect.

We gather here two lemmas, proved in [78], which we shall use in this section. They

control the L∞-norm of the linear operator Sε and of the bilinear operator Q1
ε. We first

give a property satisfied by the linear operator S, (2.2.12), which is Corollary 2.2 in [78],

where we define

mb =

∫
Sd−1

b (cos θ) (1− cos θ)dσ =
∣∣∣Sd−2

∣∣∣ ∫ π

0
b (cos θ) (1− cos θ)sind−2θ dθ. (2.8.1)

Lemma 2.8.1 Let g be a measurable function on Rd. Then

∀v ∈ Rd, |S[g](v)| 6 CSg 〈v〉γ
+
,

where CSg is defined by:

1. If Φ satisfies (2.1.4) with γ > 0 or if Φ satisfies (2.1.5), then

CSg = cstmbCΦeg.

2. If Φ satisfies (2.1.4) with γ ∈ (−d, 0), then

CSg = cstmbCΦ

[
eg + lpg

]
, p > d/(d+ γ).

We will compare the lower bound created by the cutoff part of our kernel to the

remaining part Q1
ε. To do so we need to control its L∞-norm. This is achieved thanks to

Lemma 2.5 in [78], which we recall here.

Lemma 2.8.2 Let B = Φb be a collision kernel satisfying (2.1.3), with Φ satisfying (2.1.4)

or (2.1.5) and b satisfying (2.1.6) with ν ∈ [0, 2). Let f, g be measurable functions on Rd.
Then

1. If Φ satisfies (2.1.4) with 2 + γ > 0 or if Φ satisfies (2.1.5), then

∀v ∈ Rd,
∣∣Q1

b(g, f)(v)
∣∣ 6 cstmbCΦ ‖g‖L1

γ̃
‖f‖W 2,∞ 〈v〉γ̃ .

2. If Φ satisfies (2.1.4) with 2 + γ < 0, then

∀v ∈ Rd,
∣∣Q1

b(g, f)(v)
∣∣ 6 cstmbCΦ

[
‖g‖L1

γ̃
+ ‖g‖Lp

]
‖f‖W 2,∞ 〈v〉γ̃
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with p > d/(d+ γ + 2).

2.8.1 A lower bound only depending on the norm of the velocity

In this section we prove the following proposition, which is exactly Proposition 2.2.4 in

the non-cutoff framework.

Proposition 2.8.3 Let f be the mild solution of the Boltzmann equation described in

Theorem 2.2.6.

For all 0 < τ < T there exists a0(τ) > 0 such that

∀t ∈ [τ/2, τ ], ∀(x, v) ∈ Ω̄× Rd, f(t, x, v) > a0(τ)1B(0,rV )(v),

rV and a0(τ) only depending on Ef , E′f , Wf (and L
pγ
f if Φ satisfies (2.1.4) with γ < 0).

Proof of Proposition 2.8.3 As before, we would like to create localised “upheaval points”

(as the ones created in Proposition 2.4.4) and then extend them. Both steps are done, as

in the cutoff case, by induction along the characteristics.

We have the following inequality

Q+
ε (f, f) +Q1

ε(f, f) > Q+
ε (f, f)−

∣∣Q1
ε(f, f)

∣∣ . (2.8.2)

From the definition of being a mild solution in the non-cutoff case (Definition 2.2.5), for

any 0 < ε < ε0,

(2.8.3)

f(t,Xt(x, v), Vt(x, v)) = f0(x, v)exp

[
−
∫ t

0
(Lε + Sε) [f(s,Xs(x, v), ·)](Vs(x, v)) ds

]
+

∫ t

0
exp

(
−
∫ t

s
(Lε + Sε) [f(s′, Xs′(x, v), ·)](Vs′(x, v)) ds′

)
(
Q+
ε +Q1

ε

)
[f(s,Xs(x, v), ·), f(s,Xs(x, v), ·)](Vs(x, v)) ds.

Due to Lemmas 2.4.1, 2.8.1 and 2.8.2 we find that

Lε[f ] 6 CfnbCOε 〈v〉
γ+
, Sε[f ] 6 CfmbNCOε

〈v〉γ+
(2.8.4)

and

∣∣Q1
ε(f, f)

∣∣ 6 CfmbNCOε
〈v〉(2+γ)+

(2.8.5)
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where Cf > 0 is a constant depending on Ef , E′f , Wf (and L
pγ
f if Φ satisfies (2.1.4) with

γ < 0).

The proof of Proposition 2.8.3 is divided into three different inductions that are dealt

with in the same way as in the proof of Proposition 2.2.4. Each induction represents a

step in the proof: one to create localised initial lower bounds (Lemma 2.4.3), another

one to deal with non-grazing trajectories (Proposition 2.5.1) and the final one for grazing

trajectories (Proposition 2.6.4). Therefore, we will just point out below the only changes

we need to make those inductions work in the non-cutoff case.

In all the inductions in the cutoff case, the key point of the induction was to control

at each step quantities of the form

f(t, x, v) >
∫ t

(2)
n

t
(1)
n

exp

(
−
∫ t

s
(Lε + Sε) [f(s′, Xs′(x, v), ·)](Vs′(x, v)) ds′

)
(
Q+
ε +Q1

ε

)
[f(s,Xs(x, v), ·), f(s,Xs(x, v), ·)](Vs(x, v)) ds,

where (t
(1)
n )n∈N, (t

(2)
n )n∈N are defined differently for grazing and non-grazing trajectories

(see proofs of Propositions 2.5.1 and 2.6.4).

Much like those previous induction, and using (2.8.2), (2.8.3) and (2.8.4) − (2.8.5), if

f(t, x, v) > an1B(v̄,rn) then

f(t, x, v) >
∫ t

(2)
n

t
(1)
n

e−C
ε
f (R)

(
a2
nQ

+
ε [1B(v̄,rn),1B(v̄,rn)]− CfmbNCOε

〈R〉(2+γ)+
)

(Vs(x, v)) ds,

which leads to

f(t, x, v) >
∫ t

(2)
n

t
(1)
n

e−C
ε
f (R) (2.8.6)(

a2
ncst lbCOε cΦr

d+γ
n ξ

d
2
−1

n 1B(v̄,rn
√

2(1−ξn)) − CfmbNCOε
〈R〉(2+γ)+

)
(Vs(x, v)) ds,

due to the spreading property of Q+
ε (see Lemma 2.4.2) and using the shorthand notation

Cεf (R) = Cf (nbCOε +mbNCOε
)〈R〉γ+

.

To conclude we notice that, thanks to the definitions (2.4.1), (2.2.9) and (2.8.1),

lbCOε > lb
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and

nbCOε ∼
ε→0

b0
ν
ε−ν , mbNCOε

∼
ε→0

b0
2− ν ε

2−ν (2.8.7)

if ν belongs to (0, 2) and

nbCOε ∼
ε→0

b0 |logε| , mbNCOε
∼
ε→0

b0
2− ν ε

2 (2.8.8)

for ν = 0.

Thus, at each step of the inductions we just have to redo the proofs done in the cutoff

case and choose ε = εn small enough such that

CfmbNCOεn
〈R〉(2+γ)+

6
1

2
a2
ncst lbcΦr

d+γ
n ξ

d
2
−1

n . (2.8.9)

Proposition 2.8.3 follows directly from these choices plugged into the study of the cutoff

case.

2.8.2 Proof of Theorem 2.2.6

Now that we proved the immediate appearance of a lower bound depending only on the

norm of the velocity we can spread it up to an exponential lower bound. As in Section

2.7.1, we thoroughly follow the proof of Theorem 2.1 of [78]. The proof in our case is

exactly the same induction, starting from Proposition 2.8.3. Therefore we only briefly

describe how to construct the expected exponential lower bound. For more details we

refer the reader to [78], Section 4.

We start by spreading the initial lower bound (Proposition 2.8.3) by induction where,

at each step, we use the spreading property of the Q+
εn operator and fix εn small enough

to obtain a strictly positive lower bound (see (2.8.9)).

There is, however, a subtlety in the non-cutoff case that we have to deal with. Indeed,

at each step of the induction we choose an εn of decreasing magnitude, but at the same

time in each step the action of the operator −(Q−ε +Q2
ε) behaves like (see (2.8.6))

exp
[
−Cf

(
mbNCOεn

+ nbCOεn

)
(t(1)
n − t(2)

n )〈v〉γ+
]
.

By (2.8.7) − (2.8.8), as εn tends to 0 we have that nbCOεn
goes to +∞ and so the action

of −(Q−ε + Q2
ε) seems to decrease the lower bound to 0 exponentially fast. The idea

to overcome this difficulty is to find a time interval t
(1)
n − t(2)

n = ∆n at each step to be

sufficiently small to counterbalance the effect of nbCOεn
.

More precisely, by starting from Proposition 2.8.3 as the first step of our induction,
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taking

t(1)
n =

(
n+1∑
k=0

∆k

)
τ, t(2)

n =

(
n∑
k=0

∆k

)
τ

in (2.8.6) and fixing εn by (2.8.9) we can prove the following induction property

Proposition 2.8.4 Let f be the mild solution of the Boltzmann equation described in

Theorem 2.2.6.

For all τ in (0, T ) and any sequence (∆n)n∈N such that
∑

n>0 ∆n = 1,

∀n ∈ N,∀t ∈
[(

n∑
k=0

∆k

)
τ, τ

]
, ∀(x, v) ∈ Ω̄× Rd, f(t, x, v) > an(τ)1B(0,rn)(v),

with the induction formulae

an+1 = cst ∆n+1exp

−[C̃fa
2
nr
d+γ−γ̃
n ξd/2−1

n ]−
ν

2−ν

 ∑
k>n+1

∆k

 rγ
+

n

 a2
nr
γ+d
n ξd/2+1

n

if ν is in (0, 2),

an+1 = cst ∆n+1exp

−cst log[C̃fa
2
nr
d+γ−γ̃
n ξd/2−1

n ]

 ∑
k>n+1

∆k

 rγ
+

n

 a2
nr
γ+d
n ξd/2+1

n

if ν = 0 and

rn+1 =
√

2rn(1− ξn),

where (ξn)n∈N is any sequence in (0, 1) and r0 = rV , a0(τ) and C̃f depend only on τ , Ef ,

E′f , Wf (and L
pγ
f if Φ satisfies (2.1.4) with γ < 0).

We emphasize here that the induction formulae are obtained thanks to the use of

equivalences (2.8.7) and (2.8.8) inside the exponential term

e
−Cf

(
m
bNCOεn

+n
bCOεn

)
(t

(1)
n −t

(2)
n )〈R〉γ+

> e
−Cf

(
m
bNCOεn

+n
bCOεn

)
(
∑
k>n+1 ∆k)〈R〉γ

+

(see step 2 of proof of Proposition 4.2, Section 4 in [78]).

As we obtain exactly the same induction formulae as in [78], the asymptotic behaviour

of the coefficients an is the same. Thus, by choosing an appropriate sequence (∆n)n∈N,

as done in [78], we can construct the expected exponential lower bound independently of

time.
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Chapter 3

From many-body problems to

physics of continua

Scientists work on establishing mathematical descriptions of physical phenomena in order

to understand and foresee Nature. Different points of view, different scales, can be con-

sidered to translate physical dynamics into equations. However, even though the resulting

theories look different in terms of equations and behaviour, they should model the same

phenomena but at different scales. In this chapter we explore some physical and mathe-

matical links between particles motion, gas dynamics and fluid mechanics in order to prove

the mathematical coherence of the various physical modellings of Nature.

This chapter is far from being an exhaustive overview since it restrains itself to the

framework of point particles in the framework of classical mechanics. It however motivates

and introduces the important concept of hydrodynamical limits of the Boltzmann equation.
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3.1 Particles, gases and fluids in physics

The study of the motion of large amounts of particles is of great importance in physics and

several laws and models had been derived. Whether one wants to describe the movement

of nanoscopic particles under the influence of an electromagnetic field or to foresee the

evolution of clouds of galaxies, it all comes down to finding a physical theory that agrees

with observation.

In this section we briefly present the historical evolutions of the description of natural

phenomena in order to understand their distinctive features as well as the links that

can be made in between them. The framework presented here is the whole space but

bounded domains can be considered with appropiate boundary conditions to be added to

the equations.

3.1.1 Newton, Hamiltonian systems and the motion of particles

In 1687, Isaac Newton published his Principia Mathematica [87] where he wrote the basis

of what we nowadays call the classical mechanics. He described his celebrated second law

of motion stating that the net force applied to a body produces an acceleration that is

proportional to its mass.

With this tool we are able to describe the motion of N particles of mass m and radius r,

evolving in Rd and subject to an external potential V and a two-body interaction potential

Φ. Each of the particle is represented by its position and velocity (xi, vi) and the latter

couple satisfies the following system of ordinary differential equations, where we put m in

the definition of V and Φ.

dxi
dt

= vi,

dvi
dt

= −∇xV (xi)−
N∑
j=1

j 6=i

∇Φ(xi − xj).

This system of nonlinear equations is known as the N body problem, which is very

complicated as soon as N is greater than or equal to 3. This difficulty is due to the lack of

a sufficient number of conserved quantities along the motion (which is called integrability

of the system and imposes constraints on the motion itself) and was already noticed by

Poincaré in [92]. However, in this specific case the force is the gradient of a potential and

this dynamical system is thus Hamiltonian because with Hamiltonian operator

H =
1

2

N∑
i=1

|vi|2 +

N∑
i=1

V (xi) +

N∑
j=1

j 6=i

Φ(xi − xj).

- 119 -
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If N is very large then one is only interested in an average behaviour of the group of

particles. We therefore turn to the N -particle distribution function FN in the phase space

DN =
{

(t, x1, v1, . . . , xN , vN ) ∈ R+ × R2dN , ∀i 6= j, |xi − xj | > r
}
.

In the case of Hamiltonian dynamical systems, the distribution FN had been shown to

satisfy the Liouville equation,

∂tFN + Liou (FN ) = 0, inDN , (3.1.1)

where the Liouville operator reads

Liou =

N∑
i=1

(
∂H

∂vi
.
∂

∂xi
− ∂H

∂xi
.
∂

∂vi

)
.

In 1884, Josiah Gibbs [45] emphasized the importance of the Liouville equation as the

fundamental equation of statistical mechanics.

3.1.2 Euler, continuous medium and fluid mechanics

The study of the motion of fluids awaited a bit longer and a precise mathematical models

appeared only with Leonhard Euler in his Principes généraux du mouvement des fluids,

[43] published in 1755. Considering a fluid like a continuous medium rather than a group

of individual molecules, Euler derived the first equations of fluid dynamics which bares his

name and concerns the mass, the momentum and the energy of the fluid. Euler equations

link the evolution of the density ρ, the mean velocity u, the inner pression p and the energy

E of the fluid. They read

∂tρ+∇x · (ρu) = 0,

ρ∂tu+ ρu · ∇xu+∇xp = 0,

∂tE +∇x · (u (E + p)) = 0.

(3.1.2)

The first remark we can make is that those equations imply the conservation of total

mass, momentum and energy of the fluid which is the minimum that classical mechanics

ask for. However, Euler modelled a fluid without friction and thus cannot explain the

viscosity phenomena we can observe.

The first step towards modelling of viscid fluids was made by Claude-Louis Navier in

1822 in his Mémoire sur les lois du mouvement des fluides [85], where he introduced a

shear stress tensor to describe the inner force created by the motion of the fluid. Unfortu-

nately, the way he tackled shear stress did not match real observations and the ultimate
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3.1 Particles, gases and fluids in physics

improvements to the theory of viscid fluids were achieved by Adhémar Barré de Saint-

Venant ([11], written in 1834 and published in 1843) and George Stokes ([103], 1845) by

considering a shear stress tensor that is proportional to the gradient of the velocity. This

lead to the so-called Navier-Stokes equations for newtonian fluids, where we denote the

mean temperature of the fluid by θ,

∂tρ+∇x · (ρu) = 0,

ρ∂tu+ ρu · ∇xu+∇xp = ν∆xu,

∂tE +∇x · (u (E + p)) = κ∆xθ,

(3.1.3)

where ν and κ are respectively the dynamic viscosity and the thermal conductivity of

the fluid. The interested reader can find a derivation of those equations from the laws of

physics as well as other types of fluids in [12].

Remark 3.1.1 We can think of the Euler equations as the limit of the Navier-Stokes

equations when the viscosity of the fluids goes to 0.

Finally, when the shear stress is very important, namely when ν tends to infinity, one

obtains the Stokes equations for viscid fluids.

∂tρ+∇x · (ρu) = 0,

ρ∂tu+∇xp = ν∆xu,

∂tE = κ∆xθ,

(3.1.4)

3.1.3 Maxwell, kinetic theory and gas dynamics

As previously emphasized, the many particles problem is really intricate and its complexity

makes it almost impossible to use when one realises that a mole of gas contains more than

6, 02× 1023 particles or that the Milky Way is constituted of approximately 1011 stars.

To overcome this issue, James Clerk Maxwell in 1867 [75] (in a weak formulation based

on the physical observables of a system) and Ludwig Boltzmann in 1872 [18][17] developed

the founding principles of kinetic theory. This theory proposes to take a statistical ap-

proach to model the dynamics of particles when they are so numerous that the individual

behaviours are of little interest. Basically, one should try to understand the evolution of

the distribution function f(t, x, v) of particles in the phase space as N tends to infinity;

the quantity f(t, x, v)dxdv stands for the probability of finding a particles in [x, x + dx]

with velocity in [v, v + dv] at time t.
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3 From many-body problems to physics of continua

These thoughts lead to several models in statistical physics, depending on which inter-

actions, which systems, are taken into account. In this part we will focus on the Boltzmann

equation, already described in Chapter 1, which reads

∂tf + v · ∇xf = Q(f, f). (3.1.5)

3.2 Hilbert’s sixth problem: the mathematical coherence of

models

The different theories briefly described above have been established rather independently

from each other and real observations validate them as being the relevant mathematical

description of physics. However, they model, at different scales, the same underlying

phenomenon that is the interaction between particles.

If we study a system of N particles then looking at their average dynamics when N

is large should bring us to the kinetic theory framework for rarefied gases. Moreover, a

strongly compressed gas becomes a fluid at very high pressure and therefore there should

exist a link between kinetic equations and fluid equations.

At the International Congress of Mathematicians held in Paris in 1900, Hilbert em-

phasized the importance of mathematically deriving the coherence of all those physical

models. More precisely, Hilbert’s sixth problem aims at building up a unified description

of mechanics, from microscopic atoms to macroscopic continuum. One would like to un-

derstand mathematically how macroscopic properties of fluids and gases, such as viscosity

or irreversibility, evolving at an observation timescale Tobs, can arise from reversible micro-

scopic dynamics, where the mean time between two consecutive collisions is of microscopic

timescale Tcoll (see Figure 3.1).

In this section, we formally study the possible convergences between the different phys-

ical models and give some of the existing results in the field that proved these convergences

rigorously. We will restrict ourselves to the case when particles moves in a boundary free

domain such as Rd or the torus Td.
We shall give a more thorough study of the hydrodynamical limits as these will be the

purpose of the next two chapters.

3.2.1 From micro to macro models: the law of large numbers

In this section we briefly present some strategies to go directly from Hamiltonian systems

to macroscopic dynamics. It deals with a problem that is completely transversal to our

work on Boltzmann equation and its hydrodynamical limits and we will thus not go into

details but we give a short description for the sake of completeness of our manuscript.
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Microscopic Scale

Macroscopic Scale Mesoscopic Scale

N particles Hamiltonian systems

Continuous media Gas dynamics

(Newton’s laws)

(Euler, Navier-Stokes,. . . ) (Boltzmann equation)

Large deviations

N >> 1

Tcoll << Tobs

Hydrodynamical limit

Tcoll << Tobs

Thermodynamical limit

N >> 1

Figure 3.1: Transitions between the different level of description (from [98])

For rigorous proofs and a deeper insight of the theory, we refer the reader to [91], in

the case of Euler limit, and to [42][97], for the Navier-Stokes limit. What follows can be

found in [98] Chapter 1.

We would like to understand how microscopic properties generate macroscopic dy-

namics. We start with N particles with positions and velocities (xi, vi) which satisfy the

Liouville equation (3.1.1). The physical observables of the system of N particles are the

mass and momentum densities

MN (t, x) =
1

N

N∑
i=1

δ(x− xi(t)),

PN (t, x) =
1

N

N∑
i=1

vi(t)δ(x− xi(t)),

where δ is the Dirac measure at the origin.

The microscopic dynamics happen much faster and more localized than the fluid me-

chanics and one thus has to work at different time and space scales. We denote by (x, t)

the microscopic variables and by (x̃, t̃) the macroscopic ones. We have a ratio ε between

space scale that we will make go to zero:

x̃ = εx.

The ratio between time scales will define the fluid dynamics towards which our Liouville

equation converges. Indeed, if we define the typical density ρ = N/L3, with L being a

typical macroscopic lenght, we have the three possible outcomes
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3 From many-body problems to physics of continua

1. ρ ∼ ε and t̃ = εt: the number of collision per particle is then finite and this is the

Grad limit,

2. ρ ∼ 1 and t̃ = εt: the number of collision per particle is of order ε−1 and this is the

Euler limit,

3. ρ ∼ 1 and t̃ = ε2t: the number of collision per particle is of order ε−2 and this is the

Diffusive limit.

In all the cases, the goal is to compute the equations satisfied, in a weak sense since we

are dealing with probability measures, by MN (t̃/ε, x̃/ε) and PN (t̃/ε, x̃/ε) and to compute

the limiting equations as ε goes to zero. We are looking at probability measures so the

convergence has to be understood as a convergence in the sense of the law of large numbers

as N tends to infinity, with respect to the density function FN .

Some results have been rigorously proven in some special settings where we have er-

godicity of the system. We refer to the references given at the begin of this section for

more details.

3.2.2 The thermodynamical limit: the chaos assumption

As the number N of particles in a system becomes very large the N -body problem is too

intricate to offer an interesting description of how the system behaves. Moreover, one

is more interested by the global evolution of the system than the actual motion of one

particular particle in the case where they are indistinguishable. A statistical approach is

preferable and the Liouville equation is easier to handle, see Section 3.1.1.

The derivation from microscopic dynamics to mesoscopic scales is rather hard even

for short range interaction potentials. Indeed, it depends exactly on the positions and

velocities of particles when we would like to only care about the probability distribution

of the latters. In other words, there is no global description of the interacting forces inside

the system. Therefore, some assumptions have to be made in order to ensure the statistical

stability of the mesoscopic dynamics in the limit N →∞.

We give here a brief and formal derivation of the Boltzmann equation from the laws

on Newton. Most of this section follows closely [30] and [44].

The Liouville equation (3.1.1) in the case of a sole two-body interaction potential ΦN

reads, when the diameter of each particle is denoted by r,

∂tFN +

N∑
i=1

vi · ∇xiFN −
N∑
i=1

N∑
j=1

j 6=i

∇xΦN (xi − xj) · ∇viFN = 0,
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in the phase space

DN =
{

(t, x1, v1, . . . , xN , vN ) ∈ R+ × R2dN , ∀i 6= j, |xi − xj | > r
}
.

We add on FN the assumption that particles are indistinguishable, which translates into

∀σ ∈ SN , f(t, x1, v1, . . . , xN , vN ) = f(t, xσ(1), vσ(1), . . . , xσ(N), vσ(N)),

where SN dentotes the group of permutations of the set {1, . . . , N}.

We want to extract the average behaviour of a particle, that is to say the first marginal

associated to FN , which we denote by f
(1)
N (t, x1, v1).

The thermodynamical limit is the resulting equation satisfied by f
(1)
N when we let N

go to infinity. Looking at the Liouville equation, the main difficulty will be to understand

the term ∇xΦN in the limit of infinitely many particles. However, as N goes to infinity,

the energy of the system has to remain bounded and we thus have to assume that the

energy of each interaction via ΦN is small. We therefore need to rescale the potential ΦN

and we present the two ways of doing it.

The mean-field limit:

In that case we consider that the range of the interaction stays macroscopic but that its

amplitude decreases like 1/N . This way we have that ΦN = Φ/N for a given macroscopic

potential Φ.

In that case, integrating the Liouville equation against (x2, v2, . . . , xN , vN ) to obtain

the equation of the first marginal and taking the limit as N goes to infinity yields

∂tf + v · ∇xf + F · ∇vf = 0,

where f = lim
N→∞

f
(1)
N and

F (t, x) = −∇x
(

Φ ∗
∫
Rd
f(t, x, v)dv

)
.

This strategy of the mean-field limit generates a lot of interestic mathematical studies.

As an example we mention the Vlasov-Poisson equation used to describe plasmas with

Coulomb interaction potential (even if the rigorous derivation remains an open problem)

Φ(x) =
q2

4πε0 |x|
,

where q is the electric charge of a particle and ε0 is the vacuum permittivity.

However, we will not deal with this type of rescaling for ΦN and we refer the interested

reader to a review by Golse [47].
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Collisional dynamics:

The rescaling of ΦN we are interested in is the one where interactions become localized

in the space variable, acting like collisions between particles. Basically, we suppose that

the strenght of the interaction ΦN stays O(1) but its range is very small. The Liouville

equation associated to this problem reads

∂tFN +
N∑
i=1

vi · ∇xiFN −
N∑
i=1

N∑
j=1

j 6=i

1

l
∇xΦ

(
xi − xj

l

)
· ∇viFN = 0, (3.2.1)

where l is the range of interaction of ΦN and is microscopic. Moreover, this equation has

to be satisfied in the following domain

DN =
{

(t, x1, v1, . . . , xN , vN ) ∈ R+ × R2dN , ∀i 6= j, |xi − xj | > l
}
.

If we integrate the Liouville equation against (x2, v2, . . . , xN , vN ) we clearly see that, com-

pared to the mean-field limit case where ΦN implies that each particle feels the aver-

age force generated by all the other particles, f
(1)
N will depend on f

(2)
N via the term

l−1∇xΦ(l−1(x1 − x2)). We thus need to compute the equation satisfied by the second

marginal which depends, by the same considerations, of f
(3)
N . By induction we construct a

hierarchy of N equations from the first marginal to the N th one (FN itself). This system

of equations is called the BBGKY hierarchy, from Bogoliubov [16], Born and Green [19],

Kirkwood [62][63] and Yvon [115] (see also [30][44][96]).

A requirement to derive the BBGKY hierarchy is to define boundary conditions on

∂DN , which is the set where at least two particles are in contact, in order to integrate by

parts in the integrated Liouville equation. We suppose that the collision between particles

(xi, vi) and (xj , vj) are elastic collisions, that is

1. they are localized in time and space so the positions of the particles remain unchanged

and the particles collide at a given time,

2. they are perfectly elastic which means that the momentum and the energy are pre-

served: if we denote v′i and v′j the outcoming velocities we have v′i + v′j = vi + vj∣∣v′i∣∣2 +
∣∣v′j∣∣2 = |vi|2 + |vj |2 .

Of course, for this elastic collisions to define boundary conditions and physical dynamics,

we have to put aside the problematic case when three or more particles collide at the same

time or when infinitely many collisions happen in a finite time. Fortunately, the set of
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initial data leading to such outcome is of Lebesgue measure zero (see Proposition 2.1.1 in

[44] for the hard sphere case).

We integrate the Liouville equation (3.2.1) against the last N − s coordinates and take

into account the boundary conditions. The complete computations can be found in [44]

Chapter 4 thanks to truncated marginals. To simplify here we just assume that it holds

true for marginals. The BBGKY hierarchy reads, at least in a weak sense,

∂tf
(s)
N +

N∑
i=1

vi · ∇xif
(s)
N −

1

l

N∑
i,j=1

j 6=i

∇xΦ

(
xi − xj

l

)
· ∇vif

(s)
N =

N−s∑
m=1

m

(
N − s
m

)
Ql(f

(s+m)
N ),

for all s ∈ {1 . . . N}. Here Ql is an operator encoding the boundary conditions. Namely,

it involves the integral over the N − s spherical particles potentially colliding with the

free s particles. Therefore, the particles having a diameter l, one can expects a uniform

convergence as N tends to infinity if our gas satisfies the Boltzmann-Grad scaling:

lim
N→+∞

Nld−1 = O(1).

The thermodynamical limit consists in understanding the BBGKY hierarchy when N

goes to infinity in the Boltzmann-Grad scaling setting.

As mentionned before, the marginals can only be understood thanks to higher order

marginals. To obtain the Boltzmann equation, one has to prove that the limit FN is of a

tensor product form

lim
N→+∞

FN =
⊗
n∈N

f,

where f is a density function that satisfies the Boltzmann equation. This tensor product

has to be understood in the sense of marginal

∀n ∈ N, lim
N→+∞

f
(s)
N = f ⊗ · · · ⊗ f︸ ︷︷ ︸

s times

.

Such a property is called the chaos assumption and it means that particles asymptotically

behave independently of each other, in a weak sense.

An important feature that does not happen in the mean-field case is the fact that the

collisional dynamics framework defines a past and a future for the system. Indeed, when

two particles bounce against each other, they are no longer independent of each other since

the laws of elasticity define their velocities after the collision. The chaos assumption thus

implies a choice for the arrow of time.

Deriving Boltzmann equation rigorously from the Liouville equation, and the BBGKY
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hierarchy, still requires a lot of studies. The first result was due to Lanford [65] where

he gave a proof about existence of solution to the BBGKY hierarchy, their convergence

and the propagation of the chaos assumption in time. Recently, [44] and [96] filled in the

missing details in Lanford’s proof in the case of hard spheres (billiard balls with Φ = 0)

and short range potentials (Φ with compact support and unbounded near the origin).

Unfortunately, up to now, the proofs hold for very short time, smaller than the mean

free time between two consecutive collisions.

Let us briefly mention that another approach has been proposed by Kac [60] to derive

the spatially homogeneous Boltzmann equation from a stochastic process underlying the

dynamics of particles instead of using Newton’s law. In that case, dynamics of velocities are

viewed as stochastic processes with jumps standing for collisions. This strategy has been

useful to obtain results about the Boltzmann equation, such as insights of Cercignani’s

conjecture on the entropy decay for entropy-entropy production methods for instance. A

recent state of the art about the subject can be found in [76].

3.2.3 The hydrodynamical limits: the Knudsen number

Fluids dynamics are determined by some properties of fluids such as their compressibility

and their viscosity. These parameters are expressed in terms of dimensionless coefficients

that encode the physical properties of the fluid. For instance, the Mach number Ma =

u0/c
∗, where u0 is the bulk velocity of the flow and c∗ is the speed of sound in the medium,

determines the compressibility of the fluids and the Reynolds number Re informs about

the viscosity of the fluids. The smaller these numbers are, the less compressible or viscous

the fluid is.

At the mesoscopic scale of the Boltzmann equation, only microscopic features are

governing the dynamics but one expects that the macroscopic properties arise from such

dynamics but at different time and space scales. What follows is a gathering of results,

thoughts and suggestions made essentially in [46][111][98].

We will not discuss the case of bounded domain as this is more intricate and notably

fewer results has been proven. We refer the interested reader to Section 4.4 of [98] or [9]

for the particular case of incompressible Euler limit. Note that some results presented here

cannot hold true with boundaries because of the existence of a boundary layer phenomenon,

as noticed in [73] for compressible Euler limit for which the Prandtl layer occurs.

3.2.3.1 A dimensionless reformulation of the Boltzmann equation

The macroscopic dynamics are visible at a much bigger scale than the microscopic inter-

actions between particles. We therefore consider a macroscopic length scale l0, which can

be the size of the domain where the flow evolves, and an observation time scale t0, which

can be seen as Tobs in Figure 3.1.
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By choosing a reference temperature θ0 we define a thermal speed c∗ associated to this

temperature (see Section 2.2 of [98]). c∗ would be the speed of sound in the case of a

monoatomic gas. We set new nondimensional variables

t′ =
t

t0
, x′ =

x

l0
, v′ =

v

c∗
,

as well as a nondimensional distribution function

f ′(t′, x′, v′) =
l30c

3
0

N0
f(t, x, v),

where N0 is the average number of particles in a volume l30; ρ0 = N0/l
3
0 is therefore the

mean macroscopic density of the gas.

As noticed in [46] or [98], the Boltzmann operatore Q is expressed in density per unit

of time and therefore defines a new microscopic time scale τ0 in the following sense∫
Rd×Rd×Sd−1

B(v, v∗, σ)M(ρ0,0,θ0)(v)M(ρ0,0,θ0)(v∗) dσdv∗dv =
ρ0

τ0
.

τ0 is the mean free time between two consecutive collisions of a particle at equilibrium

M(ρ0,0,θ0) and thus define the mean free path

λ0 = c∗τ0.

Finally we take a rescaled collisional kernel B′(v′, v′∗, σ) = ρ0τ0B(v, v∗, σ) and we obtain

a nondimensional form of the Boltzmann equation, where we dropped the prime notations:

Ma∂tf + v · ∇xf =
1

Kn
Q(f, f), (3.2.2)

where Ma is the Mach number of the flow and Kn is the Knudsen number, which is

the inverse of the average number of collisions for each particle per unit of time. One

can choose different length and time scales to study fluctuations around a reference flow

instead. In that case one obtains the Strouhal number instead of the Mach number and

this choice leads to different hydrodynamical models (see [98]).

Considering fluids as gases where particles are in contact suggests that the Knudsen

number governs the convergence from Boltzmann equation to fluid equations. The hy-

drodynamical limits study the evolution of solutions to the rescaled Boltzmann equation

(3.2.2) as Kn goes to zero. Moreover, fluid dynamics essentially amount to the laws of

conservation of mass, momentum and energy. We thus expect to derive them only using

the conservation laws and the entropy decrease fulfilled by the Boltzmann equation.
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3.2.3.2 The compressible Euler limit

For now on we denote the Knudsen number by ε. We look at the family of distributions

(fε)ε>0 that satisfy (3.2.2) for all ε in (0, 1], that is

εMa∂tfε + εv · ∇xfε = Q(fε, fε).

Therefore, at least formally, if fε tends to f as ε goes to zero we have that Q(f, f) = 0

which leads to (see Section 1.1.2.4)

f(t, x, v) = Mρ,u,θ(t, x, v) =
ρ(t, x)

(2πθ(t, x))d/2
exp

(
−|v − u(t, x)|2

2θ(t, x)

)
.

Thanks to Section 1.1.2.4 we have the conservation of mass, momemtum and energy

for all the fε and so this gives in the limit

Ma

∫
Rd
Mρ,u,θ dv +∇x ·

∫
Rd
vMρ,u,θ dv = 0

Ma

∫
Rd
vMρ,u,θ dv +∇x ·

∫
Rd
v ⊗ vMρ,u,θ dv = 0

Ma

∫
Rd

1

2
|v|2Mρ,u,θ dv +∇x ·

∫
Rd

1

2
|v|2 vMρ,u,θ dv = 0,

which is easily computed into

Ma∂tρ+∇x · (ρu) = 0,

Ma∂t (ρu) +∇x · (ρu⊗ u) +∇x (ρθ) = 0,

Ma∂t

(
ρ

(
1

2
|u|2 +

d

2
θ

))
+∇x ·

(
uρ

(
1

2
|u|2 +

d+ 2

2
θ

))
= 0.

These equations are the compressible Euler equations for a perfect monoatomic gas

where the pressure is p = ρθ, the thermal energy is θ/2 per degree of freedom and the

internal energy is thus dθ/2. We remark here that the H-theorem (see Section 1.1.2.4)

leads to

Ma∂t

(
ρ log

ρ

θd/2

)
+∇x ·

(
ρu log

ρ

θd/2

)
6 0,

which is the characterization of physically relevant solutions to the Euler system, known

as the Lax admissibility condition.

There are few rigorous results about the derivations above and we refer the reader to

Section 6.2 of [98] for a bibliography on the subject. Most of the existing results are valid
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as long as the compressible Euler theory gives smooth solutions, in other words the proofs

fail as soon as a singularity appears in Euler equations, which is a common property of

the latter equations (see [101]).

Let us mention here the article by Caflisch [25], extended by Lachowicz [64] to more

general initial data by dealing with the problem of initial layer. These articles construct

solutions to the Boltzmann equation close to a local Maxwellian M(ρ,u,θ) the parameters of

which satisfy the Euler equations. Their general strategy was to look for solutions to the

Boltzmann equation of the form fε = M(ρ,u,θ) + εgε which proved itself to be a powerful

method that we shall discuss deeper later.

3.2.3.3 The asymptotic compressible Navier-Stokes limit

Hydrodynamical limits study the asymptotic of the observable quantities of solutions fε

to (3.2.2) as ε goes to zero. As seen in the section above, if we expand fε in terms of

ε, the zeroth order term has to be an Eulerian maxwellian M(ρ,u,θ). Moreover, Remark

3.1.1 seems to consider Navier-Stokes system as a fluctuation around a global equilibrium of

Euler system so the natural question is wether an expansion of fε gives us the compressible

Navier-Stokes equation.

The Hilbert’s expansion - or its modified version the Chapman-Enskog’s expansion

where the variables of g are observables of fε and their derivatives - is a formal expansion

of fε around the Knudsen number

fε(t, x, v) =

+∞∑
i=0

εigi(t, x, v).

The goal is now to plug this expression inside the nondimensional form of the Boltz-

mann equation, to obtain a hierarchy of partial differential equations and to solve them

to obtain solutions fε of that specific form. The Hilbert’s expansion is formal but one

can look at a finite expansion with a remainder term that is hoped to be small enough.

Mathematical properties of these kind of expansions are detailed in the works of Grad

[48][49].

We saw before that g0 = M(ρ,u,θ) with (ρ, u, θ) satisfying the Euler equations. The

equation one gets at zeroth order is

Ma∂tg0 + v · ∇xg0 = Lg0(g1),

where Lg0 is the linearization of the Boltzmann operator around the local Maxwellian g0.

The properties of the linear operator are therefore required but we will not go into them,

we refer the reader to [8] for the ones needed in this derivation and to Chapter 4 for a

general study. The important point is that we get a form for g1 which is
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g1(t, x, v) = L−1
g0

(Ma∂tg0 + v · ∇xg0) + ϕ1(t, x, v), (3.2.3)

where ρ1, u1 and θ1 are functions of t and x and ϕ1 is in Ker (Lg0).

If we define

A(v) = v ⊗ v − 1

d
|v|2 Id and B(v) =

1

2
v
[
|v|2 − (d+ 2)

]
, (3.2.4)

then direct computations with g0 = M(ρ,u,θ) and the Euler equations give us

Ma∂tg0 + v · ∇xg0 = −
(

1

2
A(V ) : D(u) +B(V ) · ∇xθ√

θ

)
g0, (3.2.5)

where

V =
v − u√

θ
and D(u) =

1

2

(
∇xu+ (∇xu)T

)
− 1

d
(∇x · u)Id.

We notice that A(V )g0 and B(V )g0 are in Im (Lg0). Moreover, see [8][46], there exist

functions α, β : R+ −→ R+ such that

L−1
g0

(A(V )g0) = ρ−1θγ/2α (|V |)A(V )g0 and L−1
g0

(Bg0) = ρ−1θγ/2β (|V |)B(V )g0.

(3.2.6)

Combining the latter equalities with (3.2.3) and (3.2.5) yields a precise form for g1,

g1 = −ρ−1θγ/2
(

1

2
α (|V |)A(V ) : D(u) + β (, |V |)B(V ) · ∇xθ√

θ

)
g0 + ϕ1.

It remains to compute ϕ1 - i.e. its observable quantities (ρ1, u1, θ1) - so we look at the

expansion of the Boltzmann equation at first order in ε:

Ma∂tg1 + v · ∇xg1 = Lg0(g2) +Q(g1, g1),

for which we still have conservation of mass momentum and energy∫
Rd
ψ(v) [Ma∂tg1 + v · ∇xg1] dv = 0,

with ψ(v) = 1, v, |v|2.

This system of conservation laws together with the equations satisfied by (ρ, u, θ) gives

that

ρε = ρ+ ερ1, uε = u+ εu1, θε = θ + εθ1

satisfy
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Ma∂tρε +∇x · (ρεuε) = 0,

Ma∂t (ρεuε) +∇x · (ρεuε ⊗ uε) +∇x (ρεθε) = ε∇x [ν(ρε, θε)D(uε)] ,

Ma∂tEε +∇x · (uε(Eε + ρεθε)) =
ε

2
ν(ρε, θε)D(uε) : D(uε) + ε∇x · [κ(ρε, θε)∇xθε] ,

where the internal energy is the one of a monoatomic gas

Eε = ρε

(
1

2
|uε|2 +

d

2
θε

)
,

and the dynamic viscosity and the thermal conductivity are given by

ν(ρε, θε) = ρ−1
ε θγ/2ε

〈
α (|V |)A(V ), A(V )

〉
L2
v(g0)

, (3.2.7)

κ(ρε, θε) = ρ−1
ε θγ/2ε

〈
α (|V |)A(V ), A(V )

〉
L2
v(g0)

. (3.2.8)

The observables of the system (ρε, uε, θε) satisfy the Navier-Stokes equation with dis-

sipation terms of order ε. Of course, in order to make this rigorous, one has to close the

whole system with g2 and prove that this remainder term is of order ε2. This can be found

formally in [8] and a similar result that the one derived by Caflisch in the case of Euler

equation has been proven by De Masi, Esposito and Lebowitz [34], for a Navier-Stokes

maxwellian with constant mass and temperature. The interesting point is that the macro-

scopic viscosity and conductivity arose from microscopic phenomenon described by the

linear part of the Boltzmann equation.

To conclude with the Hilbert expansion, one can obtain next orders asymptotic hydro-

dynamical limits. However, the second order yields the Burnett equations which turned

out to be irrelevant physically. For further discussions on these schemes see [48] and [111].

3.2.3.4 The incompressible hydrodynamical limits

The compressible Navier-Stokes equation has been recovered from Boltzmann equation

only in an asymptotic regime where the dissipativity tends to 0. One can wonder if we can

actually obtain the compressible Navier-Stokes equations with dissipative term of order 1.

Unfortunately, this is impossible. The viscosity of a fluid is measured thanks to its

Reynolds number Re and one has the von Karman relation

Re =
Ma

Kn
.

Considering the Knudsen number to go to zero therefore implies that either the Reynolds

number explodes or that the Mach number goes to zero as well. Therefore, hydrodynam-

ical limits with finite viscosity must be incompressible, since the Mach number measures
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compressibility.

Fluids equations has been derived from the physics of continua, considering that in ar-

bitrarily small regions of space the fluid is at equilibrium. Euler or Navier-Stokes equations

should thus arise from gas dynamics as a perturbation around a global equilibrium, say

M0 = M(1,0,1) without loss of generality. We therefore look at solutions to the Boltzmann

equation (3.2.2) of the form

fε = M0 + δεhε,

where ε still stands for the Knudsen number. We expect that different orders of pertur-

bations δε lead to different hydrodynamical regimes. Indeed, properties of the Boltzmann

operator, see Chapter 1, yield

Ma∂thε + v · ∇xhε =
1

ε
LM0(hε) +

δε
ε
Q(hε, hε), (3.2.9)

and the term δε emphasized the role the linearity of the equation or, on the contrary, the

bilinear part depending on the order of magnitude of δε compared to ε.

In any case, since δε tends to zero as ε go to zero we have that if hε → h then formally

taking the limit as ε→ 0 in (3.2.9) gives

LM0(h) = 0

which means that h is a fluctuation of a maxwellian, i.e. of the following form:

h(t, x, v) =

[
ρ(t, x) + u(t, x) · v +

(
|v|2 − d

2

)
θ(t, x)

]
M0. (3.2.10)

The acoustic limit.

The Mach number has to be related to the Knudsen number if one hopes to obtain a

viscuous hydrodynamical limit. We briefly mention that in the case where Ma = 1 the

Reynolds number tends to infinity whereas the fluid stays compressible. Therefore, one

wants to recover the acoustic equations (propagation of waves in the medium) in the limit

ε to zero. This is indeed the case as long as δε = εβ with β > 1/2, see [6][7].

The fluid limits.

In the case Ma tends to zero as ε goes to zero, taking the limit in the local conservation

of mass and momemtum associated to (3.2.9) gives

∇x · 〈v, h〉L2
v

= 0 and ∇x · 〈v ⊗ v, h〉L2
v

= 0,
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which stands for the incompressibility criteria and the Boussinesq approximation

∇x · u = 0 and ∇x (ρ+ θ) = 0.

The Boussinesq relation is an approximation for fluids where density evolutions can be

neglected. As a result, in such fluids we can neglect the effects of inner inertia which makes

sound waves impossible to develop, which is in adequation with our previous paragraph.

In order to derive the hydrodynamical limit we come back to the conservation laws

satisfied by (3.2.9). As an example we consider the conservation of momentum and energy

(the conservation of mass being straightforward at least formally) which reads

∂t〈v, hε〉L2
v

+
1

Ma
∇x · 〈v ⊗ v, hε〉L2

v
= 0,

and can be written in terms of A (see (3.2.4)),

∂t〈v, hε〉L2
v

+
1

Ma
∇x · 〈A(v), hε〉L2

v
+∇x

(
1

Ma
〈1
d
|v|2 , hε〉L2

v

)
= 0.

The last term on the left-hand side seems to explode as ε and Ma tend to 0. However, it

is a gradient so if we integrate the equality against a divergence free test function this term

disappears. For now on, we consider the computations in a weak sense, integrated against

divergence free functions. This way, we can only recover solutions to incompressibles fluid

equations in the Leray weak sense [66].

The idea is to use the self-adjointness property of LM0 and express LM0 (hε) thanks to

(3.2.9). This gives

lim
ε→0

1

Ma
〈A(v), hε〉 = lim

ε→0

[
ε

Ma
〈v ⊗ L−1

M0
(A(v)) , hε〉 −

δε
Ma
〈L−1

M0
(A(v)) , Q(hε, hε)〉

]
.

The temperature equation is handled the same with the operator B instead of A and

to conclude we have to use their properties (3.2.6).

Here we see the importance of the order of magnitude of Ma and δε compared to the

Knudsen number ε. The results are the following:

� Ma = δε = εq with 0 < q < 1 leads to incompressible Euler equations since collisions

are faster than the dissipation,

� Ma = εq with 0 < q < 1 and δε = εp with p > 1 leads to incompressible Stokes

equation since this time the non-linearity vanishes in the limit,

� Ma = δε = ε leads to incompressible Navier-Stokes equations because dissipation

and collisions occur at the same scale.
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A formal proof of these statements is given in [8][46] and a survey of the existing rigorous

results can be found in [111]. As noticed before, the physical quantities associated to hε

converges to weak solutions to the fluid models (Leray sense for Navier-Stokes and dissipa-

tive sense for Euler). Rigorous proofs of those derivations require compactness arguments.

A strategy that proved itself to be useful is to use the framework of renormalized solutions

derived by DiPerna and Lions [38], like in [5].

3.3 A brief description of the following chapters

The problem of hydrodynamical limit is also closely related to the Cauchy problem asso-

ciated to the linearized Boltzmann equation (3.2.9). Indeed, one would like to have a local

or global existence in a perturbative setting with some kind of uniformity in the Knudsen

number. Such results exist and we refer to Chapter 4 for a state of the art of the matter.

Furthermore, the methods described above do not give explicit rate of convergence or

a constructive way of deriving the limit. Such concerns can be dealt with thanks to the

study of the explicit form of the linear semigroup in the Fourier space. This point of view

was initiated by Ellis and Pinsky [39] and further developed by Bardos and Ukai [10] to

obtain uniform convergence in time. The issue of the initial layer at time t = 0 arises from

these studies and we refer to Chapter 4 for a deeper understanding of the phenomenon.

The next two chapters deal with the incompressible Navier-Stokes hydrodynamical

limit on the torus.

In Chapter 4 we build a Cauchy theory in Sobolev spaces with a maxwellian weight

as well as exponential convergence to equilibrium. Then, extending the strategy of [10]

to the torus, we prove strong convergence of solutions to the Boltzmann equation towards

incompressible Navier-Stokes Leray solutions. Moreover, we give a constructive proof with

explicit rates of convergence.

Chapter 5 aims at getting rid of the maxwellian weight as well as derivatives to build a

Cauchy theory in Sobolev with polynomial weight. This uses a recent extension theorem

for semigroups result by Gualdani, Mischler and Mouhot [51]. Such uniform results should

allow to derive solutions to Navier-Stokes equations in large spaces, in particular L∞x .
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Chapter 4

From Boltzmann to incompressible

Navier-Stokes on the torus in

Sobolev spaces

We investigate the Boltzmann Equation, depending on the Knudsen number, in the Navier-

Stokes perturbative setting on the torus. Using hypocoercivity, we derive a new proof of

existence and exponential decay for the solutions of this perturbed equation, with explicit

regularity bounds and rates of convergence. These results are uniform in the Knudsen

number and thus allow us to obtain a strong derivation of the incompressible Navier-

Stokes equations as the Knudsen number tends to 0. Moreover, our method shows that the

smaller the Knudsen number, the less control on the v-derivatives of the initial perturbation

is needed to have existence and decay. It is also used to deal with other kinetic models.

Finally, we show that the study of this hydrodynamical limit is rather different on the torus

than the already proven convergences in the whole space as it requires averaging in time,

unless the initial layer conditions are satisfied.



4 From Boltzmann to incompressible Navier-Stokes on the torus

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.1.1 The problem and its motivations . . . . . . . . . . . . . . . . . . 143

4.1.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.1.3 Our strategy and results . . . . . . . . . . . . . . . . . . . . . . . 145

4.1.4 Comparison with existing results . . . . . . . . . . . . . . . . . . 147

4.1.5 Organization of the chapter . . . . . . . . . . . . . . . . . . . . . 148

4.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.2.1 Hypocoercivity assumptions . . . . . . . . . . . . . . . . . . . . . 149

4.2.1.1 Assumptions on the linear operator L . . . . . . . . . . 149

4.2.1.2 Assumptions on the second order term Γ . . . . . . . . 151

4.2.2 Statement of the Theorems . . . . . . . . . . . . . . . . . . . . . 151

4.2.2.1 Uniform result for the linear Boltzmann equation . . . 151

4.2.2.2 Uniform perturbative result for the Boltzmann equation 152

4.2.2.3 The boundednes of the v-derivatives . . . . . . . . . . . 154

4.2.2.4 The hydrodynamical limit on the torus for Maxwellian

particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.3 Toolbox: fluid projection and a priori energy estimates . . . . 157

4.3.1 Properties concerning the fluid projection πL . . . . . . . . . . . 157

4.3.2 A priori energy estimates . . . . . . . . . . . . . . . . . . . . . . 158

4.3.2.1 Time evolutions for quantities in H1
x,v . . . . . . . . . . 159

4.3.2.2 Time evolutions for quantities in Hs
x,v . . . . . . . . . . 159

4.3.2.3 Time evolutions for orthogonal quantities in Hs
x,v . . . 160

4.4 Linear case: proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . 162

4.4.1 The case s = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.4.2 The induction in higher order Sobolev spaces . . . . . . . . . . . 164

4.4.2.1 The time evolution of Ql,i . . . . . . . . . . . . . . . . . 164

4.4.2.2 The time evolution of Fs and conclusion . . . . . . . . . 165

4.5 Estimate for the full equation: proof of Proposition 4.2.2 . . . . 166

4.5.1 The case s = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.5.2 The induction in higher order Sobolev spaces . . . . . . . . . . . 168

4.5.2.1 The time evolution of Ql,i . . . . . . . . . . . . . . . . . 168

4.5.2.2 The time evolution of Fs and conclusion . . . . . . . . . 169

4.6 Existence and exponential decay: proof of Theorem 4.2.3 . . . 170

4.6.1 Proof of the existence of global solutions . . . . . . . . . . . . . . 170

4.6.1.1 Construction of solutions to a linearized problem . . . . 170

- 138 -



4.6.1.2 Boundedness of the sequence . . . . . . . . . . . . . . . 172

4.6.1.3 The global existence of solutions . . . . . . . . . . . . . 173

4.6.2 Proof of the exponential decay . . . . . . . . . . . . . . . . . . . 174

4.7 Exponential decay of v-derivatives: proof of Theorem 4.2.4 . . 175

4.7.1 An a priori estimate . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.7.1.1 The case s = 1 . . . . . . . . . . . . . . . . . . . . . . . 176

4.7.1.2 The induction in higher order Sobolev spaces . . . . . . 177

4.7.1.3 The time evolution of
∑
Ql,i . . . . . . . . . . . . . . . 178

4.7.1.4 The time evolution of Fs and conclusion . . . . . . . . . 179

4.7.2 The exponential decay: proof of Theorem 4.2.4 . . . . . . . . . . 180

4.8 Incompressible Navier-Stokes Limit: proof of Theorem 4.2.5 . . 181

4.8.1 A convergence in finite time . . . . . . . . . . . . . . . . . . . . . 182

4.8.1.1 Study of the linear part . . . . . . . . . . . . . . . . . . 184

4.8.1.2 Study of the bilinear part . . . . . . . . . . . . . . . . . 186

4.8.2 Proof of Theorem 4.2.5 . . . . . . . . . . . . . . . . . . . . . . . 189

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

4.A Validation of the assumptions . . . . . . . . . . . . . . . . . . . . 189

4.A.1 The semi-classical relaxation . . . . . . . . . . . . . . . . . . . . 190

4.A.2 Boltzmann operator with angular cutoff and hard potential . . . 191

4.A.2.1 Orthogonality to Ker(L): (H5) . . . . . . . . . . . . . . 191

4.A.2.2 Controlling derivatives: (H4) . . . . . . . . . . . . . . . 192

4.A.3 Landau operator with hard and moderately soft potential . . . . 193

4.A.3.1 Orthogonality to Ker(L): (H5) . . . . . . . . . . . . . . 194

4.A.3.2 Controlling derivatives: (H4) . . . . . . . . . . . . . . . 194

4.B Proofs of the results given in the toolbox . . . . . . . . . . . . . 194

4.B.1 Proof of Proposition 4.3.1: . . . . . . . . . . . . . . . . . . . . . . 194

4.B.2 A priori energy estimates . . . . . . . . . . . . . . . . . . . . . . 196

4.B.2.1 Time evolution of pure x-derivatives . . . . . . . . . . . 197

4.B.2.2 Time evolution of ‖∇vh‖2L2
x,v

. . . . . . . . . . . . . . . 197

4.B.2.3 Time evolution of 〈∇xh,∇vh〉L2
x,v

. . . . . . . . . . . . 199

4.B.2.4 Time evolution of
∥∥∥∂jl h∥∥∥2

L2
x,v

for |j| > 1 and |j|+ |l| = s 200

4.B.2.5 Time evolution of 〈∂δil−δih, ∂0l h〉L2
x,v

. . . . . . . . . . . . 201

4.B.2.6 Time evolution of
∥∥∇vh⊥∥∥2L2

x,v
. . . . . . . . . . . . . . 201

4.B.2.7 A new time evolution of 〈∇xh,∇vh〉L2
x,v

. . . . . . . . . 203

4.B.2.8 Time evolution of
∥∥∥∂jl h⊥∥∥∥2

L2
x,v

, j > 1 and |j|+ |l| = s . 204

- 139 -



4 From Boltzmann to incompressible Navier-Stokes on the torus

4.B.2.9 A new time evolution of 〈∂δil−δih, ∂0l h〉L2
x,v

. . . . . . . . 207

4.C Proof of the hydrodynamical limit lemmas . . . . . . . . . . . . 208

4.C.1 Study of the linear part . . . . . . . . . . . . . . . . . . . . . . . 208

4.C.1.1 Proof of Lemma 4.8.6 . . . . . . . . . . . . . . . . . . . 208

4.C.1.2 Proof of Lemma 4.8.7 . . . . . . . . . . . . . . . . . . . 209

4.C.1.3 Proof of Lemma 4.8.8 . . . . . . . . . . . . . . . . . . . 212

4.C.2 Study of the bilinear part . . . . . . . . . . . . . . . . . . . . . . 213

4.C.2.1 A simplification without loss of generality . . . . . . . . 213

4.C.2.2 Proof of Lemma 4.8.9 . . . . . . . . . . . . . . . . . . . 214

4.C.2.3 Proof of Lemma 4.8.11 . . . . . . . . . . . . . . . . . . 214

4.C.2.4 Proof of Lemma 4.8.12 . . . . . . . . . . . . . . . . . . 216

4.C.2.5 Proof of Lemma 4.8.14 . . . . . . . . . . . . . . . . . . 216

- 140 -



4.1 Introduction

4.1 Introduction

This chapter deals with the Boltzmann equation in a perturbative setting as the Knudsen

number tends to 0. We consider the latter equation to describe the behaviour of rarefied

gas particles moving on Td (flat torus of dimension d > 2) with velocities in Rd when the

only interactions taken into account are binary collisions. More precisely, the Boltzmann

equation describes the time evolution of the distribution of particles in position and veloc-

ity. A formal derivation of the Boltzmann equation from Newton’s laws under the rarefied

gas assumption can be found in [28], while [30] present Lanford’s Theorem (see [65] and

[44] for detailed proofs) which rigorously proves the derivation in short times.

Consider the following more general form of it, where we denote the Knudsen number

by ε .

∂tf + v · ∇xf =
1

ε
Q(f, f) , on Td × Rd

=

∫
Rd×Sd−1

Φ (|v − v∗|) b (cos θ)
[
f ′f ′∗ − ff∗

]
dv∗dσ, (4.1.1)

where f ′, f∗, f
′
∗ and f are the values taken by f at v′, v∗, v

′
∗ and v respectively. Define:

v′ =
v + v∗

2
+
|v − v∗|

2
σ

v′∗ =
v + v∗

2
− |v − v∗|

2
σ

, and cos θ =

〈
v − v∗
|v − v∗|

, σ

〉
.

One can find in [28], [30] or [46] that the global equilibria for the Boltzmann equation

are the Maxwellians µ(v), which are gaussian density functions. Without loss of generality

we consider only the case of normalized Maxwellians:

µ(v) =
1

(2π)
d
2

e−
|v|2

2 .

The bilinear operator Q(g, h) is given by

Q(g, h) =

∫
Rd×Sd−1

Φ (|v − v∗|) b (cosθ)
[
h′g′∗ − hg∗

]
dv∗dσ.

4.1.1 The problem and its motivations

The Knudsen number is the inverse of the average number of collisions for each particle

per unit of time. Therefore, as reviewed in [111], one can expect a convergence from the

Boltzmann model towards the acoustics and the fluid dynamics as the Knudsen number

tends to 0. This latter convergence will be specified. However, these different models

describe physical phenomenon that do not evolve at the same timescale. As suggested
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in previous studies (see [46][111][98]) we can rescale our original equation in time by a

factor ε, to get rid of these time scale differences. Moreover, they also suggested that a

perturbation of order ε around the global equilibrium µ(v) should approximate, as the

Knudsen number tends to 0, the incompressible Navier-Stokes equations.

Therefore we study the following equation

∂tfε +
1

ε
v · ∇xfε =

1

ε2
Q(fε, fε) , on Td × Rd, (4.1.2)

under the linearization fε(t, x, v) = µ(v)+εµ1/2(v)hε(t, x, v). This leads us to the linearized

Boltzmann equation

∂thε +
1

ε
v · ∇xhε =

1

ε2
L(hε) +

1

ε
Γ(hε, hε). (4.1.3)

that we will study thoroughly, and where
L(h) =

[
Q(µ, µ

1
2h) +Q(µ

1
2h, µ)

]
µ−

1
2

Γ(g, h) =
1

2

[
Q(µ

1
2 g, µ

1
2h) +Q(µ

1
2h, µ

1
2 g)
]
µ−

1
2 .

All along this chapter we consider the Boltzmann equation with hard potential or

Maxwellian potential (γ = 0), that is to say there is a constant CΦ > 0 such that

Φ(z) = CΦz
γ , γ ∈ [0, 1],

and a strong form of Grad’s angular cutoff (see [48]), expressed here by the fact that we

assume b to be C1 with the controls from above

∀z ∈ [−1, 1], b(z), b(z′) 6 Cb,

b and Φ being defined in equation (4.1.1).

The aim of the present chapter is to use a constructive method to obtain existence and

exponential decay for solutions to the linearized Boltzmann equation (4.1.3), uniformly in

the Knudsen number.

Such a uniform result is then used to derive explicit rates of convergence for (hε)ε>0

towards its limit as ε tends to 0. This allows us to prove, and quantify, the convergence

from Boltzmann equation to the incompressible Navier-Stokes equations (4.1.4).
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4.1.2 Notations

Throughout this chapter, we will use the following notations. For two multi-indexes j and

l in Nd we define:

� ∂jl = ∂vj∂xl ,

� for i in {1, . . . , d} we denote by ci(j) the ith coordinate of j,

� the length of j will be written |j| = ∑i ci(j),

� the multi-index δi0 by : ci(δi0) = 1 if i = i0 and 0 elsewhere.

We will write the spaces we are working on Lpx,v = Lp
(
Td × Rd

)
, Lpx = Lp

(
Td
)

and

Lpv = Lp
(
Rd
)
. The Sobolev spaces Hs

x,v, H
s
x and Hs

v are defined in the same way and we

denote the standard Sobolev norms by ‖·‖2Hs
x,v

=
∑

|j|+|l|6s

∥∥∥∂jl ·∥∥∥2

L2
x,v

.

4.1.3 Our strategy and results

The first step of this chpater is to investigate the equation (4.1.3) in order to obtain

existence and exponential decay of solutions in Sobolev spaces Hs
x,v, independently of the

Knudsen number ε. Moreover, we want all the required smallness assumptions and rates of

convergence to be explicit. Such a result has been proved in [56] by studying independently

the behaviour of both microscopic and fluid parts of solutions to (4.1.3), we proposed here

another method based on hypocoercivity estimates.

Our strategy is to build a norm on Sobolev spaces which is equivalent to the standard

norm and which satisfies a Gronwall type inequality.

First, we construct a functional onHs
x,v by considering a linear combination of

∥∥∥∂jl ·∥∥∥2

L2
x,v

,

for all |j|+ |l| 6 s, together with product terms of the form 〈∂δil−δi ·, ∂
0
l ·〉L2

x,v
. The distortion

of the standard norm by the addition of mixed terms is necessary to have a relaxation,

due to the hypocoercivity property of the linearized Boltzmann equation (4.1.3) (see [82]).

We then study the flow of this functional along time for solutions to the linearized

Boltzmann equation (4.1.3). This flow is controlled by energy estimates and, finally, a non-

trivial choice of coefficients in the functional yields an equivalence between the functional

and the standard Sobolev norm, as well as a Gronwall type inequality, both of them being

independent of ε.

We first apply this strategy to the linear case (i.e. without considering the bilinear

remainder term) and prove that it generates a strong semigroup with a spectral gap and,

therefore, an exponential relaxation (Theorem 4.2.1). We then extend our method to the

full nonlinear model and obtain an a priori estimate on our functional (Proposition 4.2.2).
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This estimate enables us to prove the existence of solutions to the Cauchy problem and

their exponential decay as long as the initial data is small enough with a smallness not

depending on ε (Theorem 4.2.3). We emphasize here that, thanks to the functional we

used, the smaller ε the less control is needed on the v-derivatives of the initial data.

However, these results seem to tell us that the v-derivatives of solutions to equation

(4.1.3) can blow-up as ε tends to 0. Thus, the last step is to create a new functional,

based on the microscopic part of solutions, satisfying the same properties but controlling

the v-derivatives as well. The fact that we ask for a control on the microscopic part of

solutions to equation (4.1.3) is due to the deep structure of the linear operator L. This

leads to the expected exponential decay independently of ε even for those v-derivatives

(Theorem 4.2.4).

Finally, the chief aim of the present chapter is to derive explicit rates of convergence

from solutions to the linearized Boltzmann equation to the incompressible Navier-Stokes

equations.

Theorem 4.2.3 tells us that for all ε we can build a solution hε to the linearized Boltz-

mann equation (4.1.3), as long as the initial perturbation is sufficiently small, indepen-

dently of ε. We can then consider the sequence (hε)0<ε61 and study its limit. It appears

that it converges weakly in L∞t H
s
xL

2
v, for s > s0 > d/2, towards a function h. Furthermore,

we have the following form for h (see [10])

h(t, x, v) =

[
ρ(t, x) + v.u(t, x) +

1

2
(|v|2 −N)θ(t, x)

]
µ(v)1/2,

of which physical observables are weak (in the Leray sense [66]) solutions of the linearized

incompressible Navier-Stokes equations (p being the pressure function, ν and κ being

constants determined by L, see Theorem 5 in [46])

∂tu− ν∆u+ u · ∇u+∇p = 0,

∇ · u = 0, (4.1.4)

∂tθ − κ∆θ + u · ∇θ = 0,

together with the Boussineq relation

∇(ρ+ θ) = 0. (4.1.5)

However, in order to know the initial data of these quantities, we study the Fourier

transform on the torus of our linear operator and use Duhamel formula. This gives us a

strong convergence result on the time average of hε with an explicit rate of convergence
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in finite time. An interpolation between this finite time convergence and the exponential

stability of the global equilibria in Boltzmann and Navier-Stokes equations concludes with

a strong convergence for all times (Theorem 4.2.5). The way we tackle this convergence

allows us to obtain an explicit form for the limit of (hε)ε>0.

4.1.4 Comparison with existing results

For physical purposes, one may assume that ε = 1 which is a mere normalization and that

is why many articles about the linearized Boltzmann equation only deal with this case.

The associated Cauchy problem has been worked on over the past fifty years, starting with

Grad [50], and it has been studied in different spaces, such as weighted L2
v(H

l
x) spaces [107]

or weighted Sobolev spaces [53][55][114]. Other results have also been proved in Rd instead

of the torus, see for instance [88][1][31], but it will not be the purpose of this chapter.

Our chapter explicitly deals with the general case for ε and we prove results that are

uniform in ε, allowing us to consider the hydrodynamical limit as the Knudsen number

tends to 0. To solve the Cauchy problem we used an iterative scheme, like in the papers

mentioned above, but our strategy yields a condition for the existence of solutions in Hs
x,v

(without any weight) which is uniform in ε (Theorem 4.6.3). In order to obtain such a

result, we had to consider more precise estimates on the bilinear operator Γ, depending

on the existence of v-derivatives or not. Bardos and Ukai [10] obtained a similar result in

Rd but in weighted Sobolev spaces and did not prove any decay.

The behaviour of such global in time solutions has also been studied. Guo worked

in weighted Sobolev spaces and proved the boundedness of solutions to equation (4.1.3)

in [55], as well as an exponential decay (uniform in ε) in [56]. The norm involved in

[55][56] is quite intricate and requires a lot of technical computations. To avoid specific

and technical calculations, the theory of hypocoercivity (see [81]) focuses on the properties

of the Boltzmann operator and which are quite similar to hypoellipticity. This theory has

been used in [82] to obtain exponential decay in standard Sobolev spaces in the case ε = 1.

We use the idea of Mouhot and Neumann developed in [82] consisting of considering

a functional on Hs
x,v involving mixed scalar products. In this chapter we thus construct

such a quadratic form, but with coefficient depending on ε. Working in the general case

for ε yields new calculations and requires the use of certain orthogonal properties of the

bilinear operator Γ to overcome these issues. Moreover, we must construct a new norm

out of this functional, which controls the v-derivatives by a factor ε.

The fact that the study yields a norm containing some ε factors prevents us from

having a uniform exponential decay for the v-derivatives. We use the idea of Guo, in [56],

of looking at the microscopic part of the solution hε everytime we look at a differentiation

in v. This idea catches the interesting structure of L on its orthogonal part. Combining

this idea with our previous strategy fills the gap for the v-derivatives.
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Finally, our uniform results enable us to derive a weak convergence in Hs
xL

2
v towards

solutions to the incompressible Navier-Stokes equations, together with the Boussineq re-

lation. We then find a way to obtain strong convergence using the ideas of the Fourier

study of the linear operator L− v.∇x, developed in [39] and [10], combined with Duhamel

formula. However, the study done in [10] relies strongly on an argument of stationary

phase developed in [109] which is no longer applicable in the torus. Indeed, the Fourier

space of Rd is continuous and so integration by parts can be used in that frequency space.

This tool is no longer available in the frequency space of the torus which is discrete.

Theorem 4.2.5 shows that the behaviour of the hydrodynamical limit is quite different

on the torus, where an averaging in time is necessary for general initial data. However,we

obtain the same relation between the limit at t = 0 and the initial perturbation hin

and also the existence of an initial layer. That is to say that we have a convergence in

L2
[0,T ] = L2([0, T ]) if and only if the initial perturbation satisfies some physical properties,

which appear to be the same as in Rd studied in [10].

This convergence gives a perturbative result for incompressible Navier-Stokes equations

in Sobolev spaces around the steady solution. The regularity of the weak solutions we

constructed implies that they are in fact strong solutions (see Serrin [99][100] and Lions

[67] Section 2.5). Moreover, our uniform exponential decay for solutions to the linearized

Boltzmann equation yields an exponential decay for the perturbative solutions of the

incompressible Navier-Stokes equations in higher Sobolev spaces. Such an exponential

convergence to equilibrium has been derived in H1
0 for d = 2 or d = 3 in [106], or can be

deduced from Proposition 3.7 in [72] in higher Sobolev spaces for small initial data. The

general convergence to equilibrium can be found in [74] (small initial data) and in [90] but

they focus on the general compressible case and no rate of decay is built.

Furthermore, results that do not involve hydrodynamical limits (existence and expo-

nential decay results) are applicable to a larger class of operators. In Appendix 4.A we

prove that those theorems also hold for other kinetic collisional models such as the lin-

ear relaxation, the semi-classical relaxation, the linear Fokker-Planck equation and the

Landau equation with hard and moderately soft potential.

4.1.5 Organization of the chapter

Section 4.2 is divided in two different subsections.

As mentionned above, we shall use the hypocoercivity of the Boltzmann equation

(4.1.1). This hypocoercivity can be described in terms of technical properties on L and Γ

and, in order to obtain more general results, we consider them as a basis of our chapter.

Thus, subsection 4.2.1 describes them in detail and a proof of the fact that L and Γ indeed

satisfy those properties is given in Appendix 4.A. Most of them have been proved in [82]

but we require more precise ones to deal with the general case.
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The second subsection 4.2.2 is dedicated to a mathematical formulation of the results

described in subsection 4.1.3.

As said when we described our strategy (subsection 4.1.3), we are going to study the

flow of a functional involving L2
x,v-norm of x and v derivatives and mixed scalar products.

To control this flow in time we compute energy estimates for each of these terms in a

toolbox (section 4.3) which will be used and referred to all along the rest of the chapter.

Proofs of those energy estimates are given in Appendix 4.B.

Finally, sections 4.4, 4.5, 4.6, 4.7 and 4.8 are the proofs respectively of Theorem 4.2.1

(about the strong semigroup property of the linear part of equation (4.1.3)), Proposition

4.2.2 (an a priori estimates on the constructed functional for the full model), Theorem

4.2.3 (existence and exponential decay of solutions to equation (4.1.3)), Theorem 4.2.4

(showing the uniform boundedness of the v-derivatives) and of Theorem 4.2.5 (dealing

with the hydrodynamical limit).

We notice here that section 4.6 is divided in two subsection. Subsection 4.6.1 deals

with the existence of solutions for all ε > 0 and subsection 4.6.2 proved the exponential

decay of those solutions.

4.2 Main results

This section is divided in two parts. The first one translate the hypocoercivity aspects

of the Boltzmann operator in terms of mathematical properties for L and Γ. Then, the

second one states our results in terms of those assumptions.

4.2.1 Hypocoercivity assumptions

This section is dedicated to the framework and assumptions of the hypocoercivity theory.

A state of the art of this theory can be found in [81].

4.2.1.1 Assumptions on the linear operator L

Assumptions in H1
x,v :

(H1): Coercivity and general controls

L : L2
v −→ L2

v is a closed and self-adjoint operator with L = K − Λ such that:

� Λ is coercive:

– there exists ‖.‖Λv norm on L2
v such that

∀h ∈ L2
v , ν

Λ
0 ‖h‖2L2

v
6 νΛ

1 ‖h‖2Λv 6 〈Λ(h), h〉L2
v
6 νΛ

2 ‖h‖2Λv ,
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– Λ has a defect of coercivity regarding its v derivatives:

∀h ∈ H1
v , 〈∇vΛ(h),∇vh〉L2

v
> νΛ

3 ‖∇vh‖2Λv − ν
Λ
4 ‖h‖2Λv .

� There exists CL > 0 such that

∀h ∈ L2
v , ∀g ∈ L2

v , 〈L(h), g〉L2
v
6 CL ‖h‖Λv ‖g‖Λv ,

where (νΛ
s )16s64 are strictly positive constants depending on the operator and the dimen-

sion of the velocities space d.

As in [82], we define a new norm on L2
x,v:

‖.‖Λ =
∥∥‖.‖Λv∥∥L2

x
.

(H2): Mixing property in velocity

∀δ > 0 , ∃C(δ) > 0 , ∀h ∈ H1
v , 〈∇vK(h),∇vh〉L2

v
6 C(δ) ‖h‖2L2

v
+ δ ‖∇vh‖2L2

v
.

(H3): Relaxation to equilibrium

We suppose that the kernel of L is generated by N functions which form an orthonormal

basis for Ker(L):

Ker(L) = Span{φ1(v), . . . , φN (v)}.

Moreover, we assume that the φi are of the form Pi(v)e−|v|
2/4, where Pi is a polynomial.

Furthermore, denoting by πL the orthogonal projector in L2
v on Ker(L) we assume that

we have the following local coercivity property:

∃λ > 0 , ∀h ∈ L2
v , 〈L(h), h〉L2

v
6 −λ

∥∥∥h⊥∥∥∥2

Λv
,

where h⊥ = h−πL(h) denotes the microscopic part of h (the orthogonal to Ker(L) in L2
v).

We are using the same hypothesis as in [82], except that we require the φi to be

of a specific form. This additional requirement allows us to derive properties on the v-

derivatives of πL that we will state in the toolbox section 4.3.

Then we have two more properties on L in order to deal with higher order Sobolev

spaces.

Assumptions in Hs
x,v, s > 1 :

(H1’): Defect of coercivity for higher derivatives

We assume that L satisfies (H1) along with the following property: for all s > 1, for all

|j|+ |l| = s such that |j| > 1,
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∀h ∈ Hs
x,v , 〈∂jl Λ(h), ∂jl h〉L2

x,v
> νΛ

5

∥∥∥∂jl h∥∥∥2

Λ
− νΛ

6 ‖h‖Hs−1
x,v

,

where νΛ
5 and νΛ

6 are strictly positive constants depending on L and d.

We also define a new norm on Hs
x,v:

‖.‖Hs
Λ

=

 ∑
|j|+|l|6s

∥∥∥∂jl .∥∥∥2

Λ

1/2

.

(H2’): Mixing properties

As above, Mouhot and Neumann extended the hypothesis (H2) to higher Sobolev’s spaces:

for all s > 1, for all |j|+ |l| = s such that |j| > 1,

∀δ > 0 , ∃C(δ) > 0 , ∀h ∈ Hs
x,v , 〈∂jlK(h), ∂jl h〉L2

x,v
6 C(δ) ‖h‖2

Hs−1
x,v

+ δ
∥∥∥∂jl h∥∥∥2

L2
x,v

.

4.2.1.2 Assumptions on the second order term Γ

To solve our problem uniformly in ε we had to precise the hypothesis made in [82] in

order to have a deeper understanding of the operator Γ. This lead us to two different

assumptions.

(H4): Control on the second order operator

Γ : L2
v × L2

v −→ L2
v is a bilinear symmetric operator such that for all multi-indexes j and

l such that |j|+ |l| 6 s, s > 0,

∣∣∣〈∂jl Γ(g, h), f〉L2
x,v

∣∣∣ 6
 G

s
x,v(g, h) ‖f‖Λ , if j 6= 0

Gsx(g, h) ‖f‖Λ , if j = 0
,

Gsx,v and Gsx being such that Gsx,v 6 Gs+1
x,v , Gsx 6 Gs+1

x and satisfying the following property:

∃s0 ∈ N , ∀s > s0 , ∃CΓ > 0 ,


Gsx,v(g, h) 6 CΓ

(
‖g‖Hs

x,v
‖h‖Hs

Λ
+ ‖h‖Hs

x,v
‖g‖Hs

Λ

)
Gsx(g, h) 6 CΓ

(
‖h‖Hs

xL
2
v
‖g‖Hs

Λ
+ ‖g‖Hs

xL
2
v
‖h‖Hs

Λ

)
.

(H5): Orthogonality to the Kernel of the linear operator

∀h, g ∈ Dom(Γ) ∩ L2
v , Γ(g, h) ∈ Ker(L)⊥.

4.2.2 Statement of the Theorems

4.2.2.1 Uniform result for the linear Boltzmann equation

For s in N∗ and some constants (b
(s)
j,l )j,l, (α

(s)
l )l and (a

(s)
i,l )i,l strictly positive and 0 < ε 6 1

we define the following functional on Hs
x,v, where we emphasize that there is a dependance
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on ε, which is the key point of our study:

‖·‖Hsε =

 ∑
|j|+|l|6s
|j|>1

b
(s)
j,l ε

2
∥∥∥∂jl ·∥∥∥2

L2
x,v

+
∑
|l|6s

α
(s)
l

∥∥∂0
l ·
∥∥2

L2
x,v

+
∑
|l|6s

i,ci(l)>0

a
(s)
i,l ε〈∂

δi
l−δi ·, ∂

0
l ·〉L2

x,v


1
2

.

We first study the linearized equation (4.1.3), without taking into account the bilinear

remainder operator. By letting πw be the projector in L2
x,v onto Ker(w) we obtained the

following semigroup property for L.

Theorem 4.2.1 If L is a linear operator satisfying the conditions (H1’), (H2’) and (H3)

then there exists 0 < εd 6 1 such that for all s in N∗,

1. for all 0 < ε 6 εd , Gε = ε−2L− ε−1v · ∇x generates a C0-semigroup on Hs
x,v.

2. there exist C
(s)
G , (b

(s)
j,l ), (α

(s)
l ), (a

(s)
i,l ) > 0 such that for all 0 < ε 6 εd:

‖·‖2Hsε ∼

‖·‖2L2
x,v

+
∑
|l|6s

∥∥∂0
l ·
∥∥2

L2
x,v

+ ε2
∑
|l|+|j|6s
|j|>1

∥∥∥∂jl ·∥∥∥2

L2
x,v

 ,

and for all h in Hs
x,v,

〈Gε(h), h〉Hsε 6 −C
(s)
G ‖h− πGε(h))‖2Hs

Λ
.

This theorem gives us an exponential decay for the semigroup generated by Gε.

4.2.2.2 Uniform perturbative result for the Boltzmann equation

The next result states that if we add the bilinear remainder operator then it is enough, if

ε is small enough, to slightly change our new norm to have a control on the solution.

Proposition 4.2.2 If L is a linear operator satisfying the conditions (H1’), (H2’) and

(H3) and Γ a bilinear operator satisfying (H4) and (H5) then there exists 0 < εd 6 1 such

that for all s in N∗,
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1. there exist K
(s)
0 , K

(s)
1 , K

(s)
2 (b

(s)
j,l ), (α

(s)
l ), (a

(s)
i,l ) > 0, independent of Γ and ε, such

that for all 0 < ε 6 εd:

‖·‖2Hsε ∼

‖·‖2L2
x,v

+
∑
|l|6s

∥∥∂0
l ·
∥∥2

L2
x,v

+ ε2
∑
|l|+|j|6s
|j|>1

∥∥∥∂jl ·∥∥∥2

L2
x,v

 ,

2. and for all hin in Hs
x,v ∩Ker(Gε)

⊥ and all g in Dom(Γ)∩Hs
x,v, if we have a solution

h in Hs
x,v to the following equation

∂th+
1

ε
v · ∇xh =

1

ε2
L(h) +

1

ε
Γ(g, h),

then

d

dt
‖h‖2Hsε 6 −K

(s)
0 ‖h‖2Hs

Λ
+K

(s)
1 (Gsx(g, h))2 + ε2K

(s)
2

(
Gsx,v(g, h)

)2
.

One can remark that the norm constructed above leaves free the x-derivatives while it

controls the v ones by a factor ε.

We want to emphasize here that this result shows that the derivative of the norm is

control by the x-derivatives of Γ and the Sobolev norm of Γ, but weakened by a factor

ε2. This is important as our norm ‖.‖2Hsε controls the L2
v(H

s
x)-norm by a factor of order 1

whereas it controls the whole Hs
x,v-norm by a multiplicative factor of order 1/ε.

Theorem 4.2.3 Let Q be a bilinear operator such that:

� the equation (4.1.2) admits an equilibrium 0 6 µ ∈ L1(Td × Rd),

� the linearized operator L = L(h) around µ with the scaling f = µ + εµ1/2h satisfies

(H1’), (H2’) and (H3),

� the bilinear remaining term Γ = Γ(h, h) in the linearization satisfies (H4) and (H5).

Then there exists 0 < εd 6 1 such that for any s > s0 (defined in (H4) ),

1. there exist (b
(s)
j,l ), (α

(s)
l ), (a

(s)
i,l ) > 0, independent of Γ and ε, such that for all 0 < ε 6

εd:

‖·‖2Hsε ∼

‖·‖2L2
x,v

+
∑
|l|6s

∥∥∂0
l ·
∥∥2

L2
x,v

+ ε2
∑
|l|+|j|6s
|j|>1

∥∥∥∂jl ·∥∥∥2

L2
x,v

 ,

2. there exist δs > 0, Cs > 0 and τs > 0 such that for all 0 < ε 6 εd:

- 151 -



4 From Boltzmann to incompressible Navier-Stokes on the torus

For any distribution 0 6 fin ∈ L1(Td ×Rd) with fin = µ+ εµ1/2hin > 0, hin in Ker(Gε)
⊥

and

‖hin‖Hsε 6 δs,

there exists a unique global smooth (in Hs
x,v, continuous in time) solution fε = fε(t, x, v)

to (4.1.2) which, moreover, satisfies fε = µ+ εµ1/2hε > 0 with:

‖hε‖Hsε 6 ‖hin‖Hsε e
−τst.

The fact that we are asking hin to be in Ker(Gε)
⊥ just states that we want fin to have

the same physical quantities as the global equilibrium µ. This is a compulsory requirement

as one can easily check that the physical quantities∫
Td×Rd

fε(x, v)dxdv,

∫
Td×Rd

vfε(x, v)dxdv,

∫
Td×Rd

|v|2 fε(x, v)dxdv

are preserved with time (see [30] for instance).

Notice that the Hsε-norm is this theorem is the same than the one we constructed in

Proposition 4.2.2.

4.2.2.3 The boundednes of the v-derivatives

As a corollary we have that the Hs
x(L2

v)-norm decays exponentially independently of ε but

that the only control we have on the Hs
x,v is

‖hε‖Hs
x,v

6
δs
ε
e−τst.

This seems to tell us that the v-derivatives can blow-up at a rate 1/ε. However, Guo, in

[56], showed that one can prove that there is no explosion if one controls independently the

fluid part and the microscopic part of the solution. This idea, combined with our original

one, leads to the construction of a new norm which will only control the microscopic part

of the solution whenever we face a derivative in the v variable.

We define the following positive quadratic form

‖·‖2Hsε⊥ =
∑
|j|+|l|6s
|j|>1

b
(s)
j,l

∥∥∥∂jl (Id− πL)
∥∥∥2

L2
x,v

+
∑
|l|6s

α
(s)
l

∥∥∂0
l ·
∥∥2

L2
x,v

+
∑
|l|6s

i,ci(l)>0

a
(s)
i,l ε〈∂

δi
l−δi ·, ∂

0
l ·〉L2

x,v
.

Theorem 4.2.4 Under the same conditions as in Theorem 4.2.3, for all s > s0, there

exist (b
(s)
j,l ), (α

(s)
l ), (a

(s)
i,l ) > 0 and 0 < εd 6 1 such that for all 0 < ε 6 εd:

1. ‖·‖Hsε⊥ ∼ ‖·‖Hs
x,v

, independently of ε,
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2. if hε is a solution of 4.1.3 in Hs
x,v with ‖hin‖Hsε⊥ 6 δ′s then

‖hε‖Hsε⊥ 6 δ′se
−τ ′st,

where δ′s and τ ′s are strictly positive constants independent of ε.

This theorem builds up a functional that is equivalent to the standard Sobolev norm,

independently of ε. Thus, it gives us the exponential decay of the v-derivatives as well as

the decay of the x-derivatives. However, the distorted norm used in Theorem 4.2.3 asked

less control on the v-derivatives for the initial data, suggesting that, in the limit as ε goes

to zero, almost only the x-variable has to be controlled to obtain existence and exponential

decay.

4.2.2.4 The hydrodynamical limit on the torus for Maxwellian particles

Our theorem states that one can really expect a convergence of solutions of collisional

kinetic models near equilibrium towards a solution of fluid dynamics equations. Indeed,

the smallness assumption on the initial perturbation does not depend on the parameter ε

as long as ε is small enough.

We then define the following macroscopic quantities

� the particles density ρε(t, x) = 〈µ(v)1/2, hε(t, x, v)〉L2
v
,

� the mean velocity uε(t, x) = 〈vµ(v)1/2, hε(t, x, v)〉L2
v
,

� the temperature θε(t, x) =
1

d
〈(|v|2 − d)µ(v)1/2, hε(t, x, v)〉L2

v
.

The theorem 4.2.3 tells us that, for s > s0, the sequence (hε)ε>0 converges (up to an

extraction) weakly-* in L∞t (Hs
l L

2
v) towards a function h. Such a weak convergence enables

us to use the theorem 1.1 of [10], which is a slight modification of the result in [8] to get

that

1. h is in Ker(L), so of the form

h(t, x, v) =

[
ρ(t, x) + v.u(t, x) +

1

2
(|v|2 − d)θ(t, x)

]
µ(v)1/2,

2. (ρε, uε, θε) converges weakly* in L∞t (Hs
x) towards (ρ, u, θ),

3. (ρ, u, θ) satisfies the incompressible Navier-Stokes equations (4.1.4) as well as the

Boussineq equation (4.1.5).
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If such a result confirms the fact that one can derive the incompressible Navier-Stokes

equations from the Boltzmann equation, it does unfortunately neither give us the conti-

nuity of h nor the initial condition verified by (ρ, u, θ), depending on (ρin, uin, θin), macro-

scopic quantities associated to hin. Our next, and final step, is therefore to link the last

two triplets and so to understand the convergence hε → h more deeply. This is the purpose

of the next, and last, theorem.

Theorem 4.2.5 Consider s > s0 and hin in Hs
x,v such that ‖hin‖Hsε 6 δs.

Then, (hε)ε>0 exists for all 0 < ε 6 εd and converges weakly* in L∞t (Hs
xL

2
v) towards h

such that h ∈ Ker(L), with ∇x · u = 0 and ρ+ θ = 0.

Furthermore,
∫ T

0 hdt belongs to Hs
xL

2
v and there exists C > 0 such that,∥∥∥∥∫ +∞

0
hdt−

∫ +∞

0
hεdt

∥∥∥∥
Hs
xL

2
v

6 C
√
ε |ln(ε)|.

One can have a strong convergence in L2
[0,T ]H

s
xL

2
v only if hin is in Ker(L) with ∇x·uin =

0 and ρin + θin = 0 (initial layer conditions).

Moreover, in that case we have

‖h− hε‖L2
[0,+∞)

Hs
xL

2
v
6 C

√
ε |ln(ε)|,

and for all δ in [0, 1], if hin belongs to Hs+δ
x L2

v,

sup
t∈[0,+∞)

‖h− hε‖Hs
xL

2
v

(t) 6 Cεmin(δ,1/2).

This theorem gives us strong convergences for (ρε, uε, θε) towards (ρ, u, θ) but above

all it gives us that (ρ, u, θ) is the solution to the incompressible Navier-Stokes equations

together with the Boussineq equation satisfying the initial conditions:

� u(0, x) = Puin(x), where Puin(x) is the divergence-free part of uin(x),

� ρ(0, x) = −θ(0, x) = 1
2(ρin(x)− θin(x)).

Finally, we emphasize that in the case of initial data satisfying the initial layer condi-

tions, the strong convergence in time requires a little bit more regularity from the initial

data. This fact was already noticed in Rd (see [10] Lemma 6.1) but overcome by considering

weighted norms in velocity.
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4.3 Toolbox: fluid projection and a priori energy estimates

In this section we are going to give some inequalities we are going to use and to refer to

throughout the sequel. First we start with some properties concerning the projection in

L2
v onto Ker(L): πL. Then, because we want to estimate all the terms appearing in the

Hs
x,v-norm to estimate the functionals Hsε and Hsε⊥, we will give upper bound on their

time derivatives. The proofs are only technical and the interested reader will find them in

Appendix 4.B.

We are assuming there that L is having properties (H1’), (H2’) and (H3), that Γ

satisfies (H4) and (H5) and that 0 < ε 6 1.

4.3.1 Properties concerning the fluid projection πL

We already know that L is acting on L2
v, with Ker(L) = Span(φ1, . . . , φN ), with (φi)16i6N

an orthonormal family, we obtain directly a useful formula for the orthogonal projection

on Ker(L) in L2
v, πL:

∀h ∈ L2
v, πL(h) =

N∑
i=1

(∫
Rd
hφidv

)
φi. (4.3.1)

Plus, (H3) states that φi = Pi(v)e−|v|
2/4, where Pi is a polynomial. Therefore, direct

computations and Cauchy-Schwarz inequality give that πL is continuous on Hs
x,v with

∀s ∈ N,∃Cπs > 0, ∀h ∈ Hs
x,v, ‖πL(h)‖2Hs

x,v
6 Cπs ‖h‖2Hs

x,v
. (4.3.2)

More precisely one can find that for all s in N

∀|j|+ |l| = s, ∀h ∈ Hs
x,v,

∥∥∥∂jl πL(h)
∥∥∥2

L2
x,v

6 Cπs
∥∥∂0

l πL(h)
∥∥2

L2
x,v
. (4.3.3)

Finally, building the Λ-norm one can find that in all the collisional kinetic equations

concerned here we have that

∃Cπ > 0, ∀h ∈ L2
x,v, ‖πL(h)‖2Λ 6 Cπ ‖h‖2L2

x,v
. (4.3.4)

Then we can also use the properties of the torus to obtain Poincare type inequalities.

This can be very useful thanks to the next proposition, which is proved in Appendix 4.B.

Proposition 4.3.1 Let a and b be in R∗ and consider the operator G = aL−bv.∇x acting

on H1
x,v.
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If L satisfies (H1) and (H3) then

Ker(G) = Ker(L).

Remark 4.3.2 In this proposition, Ker(G) has to be understood as linear combinations

with constant coefficients of the functions Φi. This subtlety has to be emphasized since in

L2
x,v, Ker(L) includes all linear combinations of Φi but with coefficients being functions of

x.

Therefore, if we define, for 0 < ε 6 1:

Gε =
1

ε2
L− 1

ε
v.∇x,

then we have a nice desciption of πGε :

∀h ∈ L2
x,v, πGε(h) =

N∑
i=1

(∫
Td

∫
Rd
hφi dxdv

)
φi.

That means that πGε(h) is, up to a multiplicative constant, the mean of πL(h) over the

torus. We deduce that if h belongs to Ker(Gε)
⊥, πL(h) has zero mean on the torus and is

an operator not depending on the x variable. Thus we can apply Poincaré inequality on

the torus:

∀h ∈ Ker(Gε)
⊥, ‖πL(h)‖2L2

x,v
6 Cp ‖∇xπL(h)‖2L2

x,v
6 Cp ‖∇xh‖2L2

x,v
. (4.3.5)

4.3.2 A priori energy estimates

Our work in this chapter is to study the evolution of the norms involved in the definition

of the operators Hsε and Hsε⊥ and to combine them to obtain the results stated above. The

Appendix 4.B contains the proofs, which are technical computations together with some

choices of decomposition, of the following a priori estimates. Note that all the constants

K1, Kdx and Ks−1 used in the inequalities below are independent of ε, Γ and g, and only

depend constructively on the constants defined in the hypocoercivity assumptions or in

the subsection above. The number e can be any positive real number and will be chosen

later.

We would like to study both linear and non-linear models but they appeared to be

very similar. In order to avoid long and similar inequalities we will write in parenthesis

terms we need to add for the full model.
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Let g be a function in Hs
x,v. We now consider a function h in Ker(Gε)

⊥ ∩ Hs
x,v, for

some s in N∗, which is solution of the linear (linearized) Boltzmann equation:

∂th+
1

ε
v.∇xh =

1

ε2
L(h)

(
+

1

ε
Γ(g, h)

)
.

We remind the reader that the following notation is used: h⊥ = h− πL(h).

4.3.2.1 Time evolutions for quantities in H1
x,v

We write the L2
x,v-norm estimate

d

dt
‖h‖2L2

x,v
6 − λ

ε2

∥∥∥h⊥∥∥∥2

Λ

(
+

1

λ

(
G0
x(g, h)

)2)
. (4.3.6)

Then the time evolution of the x-derivatives

d

dt
‖∇xh‖2L2

x,v
6 − λ

ε2

∥∥∥∇xh⊥∥∥∥2

Λ

(
+

1

λ

(
G1
x(g, h)

)2)
, (4.3.7)

and of the v-derivatives

d

dt
‖∇vh‖2L2

x,v
6

K1

ε2

∥∥∥h⊥∥∥∥2

Λ
+
Kdx

ε2
‖∇xh‖2L2

x,v
− νΛ

3

ε2
‖∇vh‖2Λ (4.3.8)(

+
3

νΛ
3

(
G1
x,v(g, h)

)2)
.

Finally, we will need a control on the scalar product as well, as explained in the strategy

subsection 4.1.3. Notice that we have some freedom as e can be any positive number.

d

dt
〈∇xh,∇vh〉L2

x,v
6

CLe

ε3

∥∥∥∇xh⊥∥∥∥2

Λ
− 1

ε
‖∇xh‖2L2

x,v
+

2CL

eε
‖∇vh‖2Λ(

+
e

CLε

(
G1
x(g, h)

)2)
. (4.3.9)

4.3.2.2 Time evolutions for quantities in Hs
x,v

We consider multi-indexes j and l such that |j|+ |l| = s.

As in the previous case, we have a control on the time evolution of the pure x-derivatives,

d

dt

∥∥∂0
l h
∥∥2

L2
x,v

6 − λ
ε2

∥∥∥∂0
l h
⊥
∥∥∥2

Λ

(
+

1

λ
(Gsx(g, h))2

)
. (4.3.10)

In the case where |j| > 1, that is to say when we have at least one derivative in v, we

obtained the following upper bound
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d

dt

∥∥∥∂jl h∥∥∥2

L2
x,v

6 −ν
Λ
5

ε2

∥∥∥∂jl h∥∥∥2

Λ
+

3(νΛ
1 )2d

νΛ
5 (νΛ

0 )2

∑
i,ci(j)>0

∥∥∥∂j−δil+δi
h
∥∥∥2

Λ
+
Ks−1

ε2
‖h‖2

Hs−1
x,v(

+
3

νΛ
5

(
Gsx,v(g, h)

)2)
. (4.3.11)

We may find useful to consider the particular case where |j| = 1,

d

dt

∥∥∥∂δil−δih∥∥∥2

L2
x,v

6 −ν
Λ
5

ε2

∥∥∥∂δil−δih∥∥∥2

Λ
+

3νΛ
1

νΛ
5 ν

Λ
0

∥∥∂0
l h
∥∥2

L2
x,v

+
Ks−1

ε2
‖h‖2

Hs−1
x,v(

+
3

νΛ
5

(
Gsx,v(g, h)

)2)
. (4.3.12)

Finally we will need the time evolution of the following scalar product:

d

dt
〈∂δil−δih, ∂

0
l h〉L2

x,v
6

CLe

ε3

∥∥∥∂0
l h
⊥
∥∥∥2

Λ
− 1

ε

∥∥∂0
l h
∥∥2

L2
x,v

+
2CL

eε

∥∥∥∂δil−δih∥∥∥2

Λ(
+

e

CLε
(Gsx(g, h))2

)
, (4.3.13)

where we still have some freedom as e is any positive number.

We just emphasize here that one can see that we were careful about which derivatives

are involved in the terms that contain Γ. This is because our operator ‖.‖Hsε controls the

Hs
x(L2

v)-norm by a mere constant whereas it controls the entire Hs
x,v-norm by a factor 1/ε.

4.3.2.3 Time evolutions for orthogonal quantities in Hs
x,v

For the theorem 4.2.4 we are going to need four others inequalities which are a little bit

more intricate as they need to know the shape of πL as described in the subsection above.

The proofs are written in Appendix 4.B and we are just looking at the whole equation in

the setting g = h.

We want the time evolution of the v-derivatives of the orthogonal (microscopic) part

of h, as suggested in [56] this allows us to really take advantage of the structure of the

linear operator L on its orthogonal:

d

dt

∥∥∥∇vh⊥∥∥∥2

L2
x,v

6
K⊥1
ε2

∥∥∥h⊥∥∥∥2

Λ
+K⊥dx ‖∇xh‖2L2

x,v
− νΛ

3

2ε2

∥∥∥∇vh⊥∥∥∥2

Λ

+
3

νΛ
3

(
G1
x,v(h, h)

)2
. (4.3.14)
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Then we can have a new bound for the scalar product used before

d

dt
〈∇xh,∇vh〉L2

x,v
6

K⊥e

ε3

∥∥∥∇xh⊥∥∥∥2

Λ
+

1

4Cπ1CπCpeε

∥∥∥∇vh⊥∥∥∥2

Λ

− 1

2ε
‖∇xh‖2L2

x,v
+

4Cπ
ε

(
G1
x,v(h, h)

)2
, (4.3.15)

where e is any number greater than 1.

As usual, we may need the same kind of bounds in higher degree Sobolev spaces. The

reader may notice that the bounds we are about to write are more intricate than the ones

in the previous section because they involve more terms with less derivatives. We consider

multi-indexes j and l such that |j| + |l| = s. This time we really have to divide in two

different cases.

Firstly when |j| > 2,

d

dt

∥∥∥∂jl h⊥∥∥∥2

L2
x,v

6− νΛ
5

ε2

∥∥∥∂jl h⊥∥∥∥2

Λ
+

9(νΛ
1 )2d

2(νΛ
0 )2νΛ

5

∑
i,ci(j)>0

∥∥∥∂j−δil+δi
h⊥
∥∥∥2

Λ

+K⊥dl
∑
|l′|6s−1

∥∥∂0
l′h
∥∥2

L2
x,v

+
K⊥s−1

ε2

∥∥∥h⊥∥∥∥2

Hs−1
x,v

+
3

νΛ
5

(
Gsx,v(h, h)

)2
.

(4.3.16)

Then the case when |j| = 1

d

dt

∥∥∥∂δil−δih⊥∥∥∥2

L2
x,v

6 −ν
Λ
5

ε2

∥∥∥∂δil−δih⊥∥∥∥2

Λ
+K⊥dl

∑
|l′|=s

∥∥∂0
l′h
∥∥2

L2
x,v

+
K⊥s−1

ε2

∥∥∥h⊥∥∥∥2

Hs−1
x,v

+
3

νΛ
5

(
Gsx,v(h, h)

)2
. (4.3.17)

Finally we give a new version of the control over the scalar product in higher Sobolev’s

spaces.

d

dt
〈∂δil−δih, ∂

0
l h〉L2

x,v
6

K̃⊥

ε3
e
∥∥∥∂0

l h
⊥
∥∥∥2

Λ
+

1

4CπsCπdeε

∥∥∥∂δil−δih⊥∥∥∥2

Λ
− 1

2ε

∥∥∂0
l h
∥∥2

L2
x,v

+
1

4dε

∑
|l′|6s−1

∥∥∂0
l′h
∥∥2

L2
x,v

+
2Cπ
ε

(
Gsx,v(h, h)

)2
, (4.3.18)

for any e > 1.
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4.4 Linear case: proof of Theorem 4.2.1

In this section we are looking at the linear equation

∂th = Gε(h), on Td × Rd.

Theorem 4.2.1 will be proved by induction on s. We remind here the operator we will

work with on Hs
x,v

� in the case s = 1:

‖h‖2H1
ε

= A ‖h‖2L2
x,v

+ α ‖∇xh‖2L2
x,v

+ bε2 ‖∇vh‖2L2
x,v

+ aε〈∇xh,∇vh〉L2
x,v
,

� in the case s > 1:

‖h‖2Hsε =
∑
|j|+|l|6s
|j|>1

b
(s)
j,l ε

2
∥∥∥∂jl h∥∥∥2

L2
x,v

+
∑
|l|6s

α
(s)
l

∥∥∂0
l h
∥∥2

L2
x,v

+
∑
|l|6s

i,ci(l)>0

a
(s)
i,l ε〈∂

δi
l−δih, ∂

0
l h〉L2

x,v
.

The Theorem 4.2.1 only requires us to choose suitable coefficients that gives us the expected

inequality and equivalence.

Consider hin in Hs
x,v ∩Dom(Gε). Let h be a solution of ∂th = Gε(h) on Td × Rd such

that h(0, ·, ·) = hin(·, ·).
Notice that if hin is in Hs

x,v ∩ Dom(Gε) ∩ Ker(Gε) then we have that the associated

solution remains the same in time: ∂th = 0. Therefore the fluid part of a solution does not

evolve in time and so the semigroup is identity on Ker(Gε). Besides, we can see directly

from the definition and the adjointness property of L that h ∈ Ker(Gε)
⊥ for all t if hin

belongs in Ker(Gε)
⊥.

Therefore, to prove the theorem it is enough to consider hin in Hs
x,v ∩ Dom(Gε) ∩

Ker(Gε)
⊥.

4.4.1 The case s = 1

For now on we assume that our operator L satisfies the conditions (H1), (H2) and (H3)

and that 0 < ε 6 1.

If (H3) holds for L then we have that ε−2L is a non-positive self-adjoint operator on

L2
x,v. Moreover, ε−1v · ∇x is skew-symmetric on L2

x,v. Therefore the L2
x,v-norm decreases

along the flow and it can be deduced that Gε yields a C0-semigroup on L2
x,v for all positive

ε (see [61] for general theory and [107] for its use in our case).

Using the toolbox, which is possible since h is in Ker(Gε)
⊥ for all t, we just have to

consider the linear combination A(4.3.6) + α(4.3.7) + bε2(4.3.8) + aε(4.3.9) to obtain
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d

dt
‖h‖2H1

ε
6

1

ε2
[bK1 − λA]

∥∥∥h⊥∥∥∥2

Λ
+

1

ε2

[
CLea− λα

] ∥∥∥∇xh⊥∥∥∥2

Λ

+

[
2CLa

e
− bνΛ

3

]
‖∇vh‖2Λ + [bKdx − a] ‖∇xh‖2L2

x,v
. (4.4.1)

Then we make the following choices:

1. We fix b such that −νΛ
3 b < −1.

2. We fix A big enough such that [bK1 − λA] 6 −1.

3. We fix a big enough such that [bKdx − a] 6 −1.

4. We fix e big enough such that
[

2CLa
e − bνΛ

3

]
6 −1.

5. We fix α big enough such that
[
CLea− λα

]
6 −1 and such that

{
a2 6 αb

b 6 α
.

This leads to, because 0 < ε 6 1:

d

dt
‖h‖2H1

ε
6 −

(∥∥∥h⊥∥∥∥2

Λ
+
∥∥∥∇xh⊥∥∥∥2

Λ
+ ‖∇vh‖2Λ + ‖∇xh‖2L2

x,v

)
.

Finally we can apply the Poincaré inequality (4.3.5) together with the equivalence of

the L2
x,v-norm and the Λ-norm on the fluid part πL, equation (4.3.4), to get

∃C,C ′ > 0,

 ‖h‖
2
Λ 6 C

(∥∥h⊥∥∥2

Λ
+ 1

2 ‖∇xh‖
2
L2
x,v

)
,

‖∇xh‖2Λ 6 C ′
(∥∥∇xh⊥∥∥2

Λ
+ 1

2 ‖∇xh‖
2
L2
x,v

)
.

Therefore we proved the following result:

∃K > 0, ∀ 0 < ε 6 1 ,
d

dt
‖h‖2H1

ε
6 −C(1)

G

(
‖h‖2Λ + ‖∇x,vh‖2Λ

)
.

With these constants, ‖.‖H1
ε

is equivalent to

(
‖h‖2L2

x,v
+ ‖∇xh‖2L2

x,v
+ ε2 ‖∇vh‖2L2

x,v

)1/2

since a2 6 αb and b 6 α and hence:

A ‖h‖2L2
x,v

+
b

2

(
‖∇xh‖2L2

x,v
+ ε2 ‖∇vh‖2L2

x,v

)
6 ‖h‖2H1

ε

and

‖h‖2H1
ε
6 A ‖h‖2L2

x,v
+

3α

2

(
‖∇xh‖2L2

x,v
+ ε2 ‖∇vh‖2L2

x,v

)
.
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The results above gives us the expected theorem for s = 1.

4.4.2 The induction in higher order Sobolev spaces

Then we assume that the theorem is true up to the integer s− 1, s > 1. Then we suppose

that L satisfies (H1’), (H2’) and (H3) and we consider ε in (0, 1].

Let hin be in Hs
x,v ∩ Dom(Gε) ∩Ker(Gε)

⊥ and h be the solution of ∂th = Gε(h) such

that h(0, ·, ·) = hin(·, ·).
As before, h belongs to Ker(Gε)

⊥ for all t and thus we can use the results given by the

toolbox.

Thanks to the proof in the case s = 1 we know that we are able to handle the case

where there is only a difference of one derivative between the number of derivatives in x

and in v. Therefore, instead of working with the entire norm of Hs
x,v, we will look at an

equivalent of the Sobolev semi-norm. We define:

Fs(t) =
∑
|j|+|l|=s
|j|>2

ε2B
∥∥∥∂jl h∥∥∥2

L2
x,v

+B′
∑
|l|=s

i,ci(l)>0

Ql,i(t),

Ql,i(t) = α
∥∥∂0

l h
∥∥2

L2
x,v

+ bε2
∥∥∥∂δil−δih∥∥∥2

L2
x,v

+ aε〈∂δil−δih, ∂
0
l h〉L2

x,v
,

where the constants, strictly positive, will be chosen later.

Like in the section above, we shall study the time evolution of every term involved in

Fs in order to bound above dFs/dt(t) with negative coefficients.

4.4.2.1 The time evolution of Ql,i

We will first study the time evolution of Ql,i for given |j| + |l| = s. The toolbox already

gave us all the bounds we need and we just have to gather them in the following way:

α(4.3.10) + bε2(4.3.12) + aε(4.3.13). This leads to, because 0 < ε 6 1,

d

dt
Ql,i(t) 6

1

ε2

[
CLea− λα

] ∥∥∥∂0
l h
⊥
∥∥∥2

Λ
+

[
2CLa

e
− νΛ

5 b

] ∥∥∥∂δil−δih∥∥∥2

Λ

+

[
3νΛ

1

νΛ
5 ν

Λ
0

b− a
] ∥∥∂0

l h
∥∥2

L2
x,v

+Ks−1b ‖h‖Hs−1
x,v

.

One can notice that, except for the last term, we have exactly the same kind of bound as

in (4.4.1), in the proof of the case s = 1. Therefore we can choose α, b, a, e, independently

of ε such that it exists sQ > 0 and Cs−1 > 0 such that for all 0 < ε 6 1:

� Ql,i(t) ∼
∥∥∂0

l h
∥∥2

L2
x,v

+ ε2
∥∥∥∂δil−δih∥∥∥2

L2
x,v

,
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�
d
dtQl,i(t) 6 −KQ

(∥∥∂0
l h
∥∥2

Λ
+
∥∥∥∂δil−δih∥∥∥2

Λ

)
+ Cs−1 ‖h‖Hs−1

x,v
,

where we used (4.3.4) (equivalence of norms L2
x,v and Λ on the fluid part) to get

∥∥∂0
l h
∥∥2

Λ
6 C ′

(∥∥∥∂0
l h
⊥
∥∥∥2

Λ
+
∥∥∂0

l h
∥∥2

L2
x,v

)
.

4.4.2.2 The time evolution of Fs and conclusion

The last result about Ql,i gives us that

Fs(t) ∼
∑
|l|=s

∥∥∂0
l h
∥∥2

L2
x,v

+ ε2
∑
|l|+|j|=s
|j|>1

∥∥∥∂jl h∥∥∥2

L2
x,v

.

To study the time evolution of Fs we just need to combine the evolution of Ql,i and the

one of
∥∥∥∂jl h∥∥∥2

L2
x,v

which is given in the toolbox by (4.3.11).

d

dt
Fs(t) 6

∑
|j|+|l|=s
|j|>2

−νΛ
5 B

∥∥∥∂jl h∥∥∥2

Λ
+

∑
|j|+|l|=s
|j|>2

3(νΛ
1 )2d

νΛ
5 (νΛ

0 )2
Bε2

∑
i,ci(j)>0

∥∥∥∂j−δil+δi
h
∥∥∥2

Λ

−KQB
′
∑
|l|=s

i,ci(l)>0

(∥∥∂0
l h
∥∥2

Λ
+
∥∥∥∂δil−δih∥∥∥2

Λ

)
(4.4.2)

+

 ∑
|j|+|l|=s
|j|>2

Ks−1B +
∑
|l|=s

i,ci(l)>0

B′Cs−1

 ‖h‖2Hs−1
x,v

.

Then we choose the following coefficients B = 2/νΛ
5 and we can rearrange the sums to

obtain

d

dt
Fs(t) 6

∑
|j|+|l|=s
|j|>2

(
6d(νΛ

1 )2

(νΛ
5 ν

Λ
0 )2

ε2 − 2

)∥∥∥∂jl h∥∥∥2

Λ
+

∑
|j|+|l|=s
|j|=1

(
6d(νΛ

1 )2

(νΛ
5 ν

Λ
0 )2

ε2 −KQB
′
)∥∥∥∂jl h∥∥∥2

Λ

+
∑
|j|+|l|=s
|j|=0

(−KQB
′)
∥∥∥∂jl h∥∥∥2

Λ
+ C

(s−1)
+ (B′) ‖h‖Hs−1

x,v
.

Therefore we can choose the remaining coefficients:

1. εd = min

{
1,

√
(νΛ

5 ν
Λ
0 )2

6d(νΛ
1 )2

}
,
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2. we fix B′ big enough such that sQB
′ > 1 and

(
6d(νΛ

1 )2

(νΛ
5 ν

Λ
0 )2 ε

2
d −KQB

′
)
6 −1.

Everything is now fixed in C
(s−1)
+ (B′) and therefore it is just a constant C

(s−1)
+ that

does not depend on ε. Therefore we then have the final result.

∀ 0 < ε 6 εd ,
d

dt
Fs(t) 6 C

(s−1)
+ ‖h‖2

Hs−1
x,v
−

 ∑
|j|+|l|=s

∥∥∥∂jl h∥∥∥2

Λ

 .

Then, we know that ‖.‖Λ controls the L2-norm. And therefore:

∀ 0 < ε 6 εd ,
d

dt
Fs(t) 6 C

(s)
+

 ∑
|j|+|l|6s−1

∥∥∥∂jl h∥∥∥2

Λ

−
 ∑
|j|+|l|=s

∥∥∥∂jl h∥∥∥2

Λ

 .

This inequality is true for all s and therefore we can take a linear combination of the Fs

to obtain the following, where Cs is a constant that does not depend on ε since C
(s)
+ does

not depend on it.

∀ 0 < ε 6 εd ,
d

dt

 n∑
p=1

CpFp(t)

 6 −C(s)
G

 ∑
|j|+|l||6s

∥∥∥∂jl h∥∥∥2

Λ

 .

We can use the induction assumption from rank 1 up to rank s − 1 to find that this

linear combination is equivalent to

‖.‖2L2
x,v

+
∑
|l|6s

∥∥∂0
l .
∥∥2

L2
x,v

+ ε2
∑
|l|+|j|6s
|j|>1

∥∥∥∂jl .∥∥∥2

L2
x,v

and so fits the expected requirements.

4.5 Estimate for the full equation: proof of Proposition 4.2.2

We will prove that proposition by induction on s. For now on we assume that L satisfies

hypothesis (H1’), (H2’) and (H3), that Γ satisfies properties (H4) and (H5) and we take g

in Hs
x,v.

So we take hin in Hs
x,v ∩ Ker(Gε)

⊥ and we consider the associated solution, denoted

by h, of

∂th+
1

ε
v · ∇xh =

1

ε2
L(h) +

1

ε
Γ(g, h).
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One can notice that thanks to (H5) and the self-adjointness of L, h remains in Ker(Gε)
⊥

for all times.

Besides, while considering the time evolution we find a term due to Gε and another

due to Γ. Therefore, we will use the results found in the toobox but including the terms

in parenthesis.

4.5.1 The case s = 1

We want to study the following operator on Hs
x,v

‖h‖2H1
ε

= A ‖h‖2L2
x,v

+ α ‖∇xh‖2L2
x,v

+ bε2 ‖∇vh‖2L2
x,v

+ aε〈∇xh,∇vh〉L2
x,v
.

Therefore, using the toolbox we just have to consider the linear combination A(4.3.6)+

α(4.3.7) + bε2(4.3.8) + aε(4.3.9) to yield

d

dt
‖h‖2H1

ε
6

1

ε2
[bK1 − λA]

∥∥∥h⊥∥∥∥2

Λ
+

1

ε2

[
CLea− λα

] ∥∥∥∇xh⊥∥∥∥2

Λ

+

[
2CLa

e
− bνΛ

3

]
‖∇vh‖2Λ + [bKdx − a] ‖∇xh‖2L2

x,v
(4.5.1)

+
AνΛ

1

νΛ
0 λ

(
G0
x(g, h)

)2
+

[
ανΛ

1

νΛ
0 λ

+
νΛ

1 ea

CLνΛ
0

] (
G1
x(g, h)

)2
+

3νΛ
1 b

νΛ
0 ν

Λ
3

ε2
(
G1
x,v(g, h)

)2
.

One can see that we obtained exactly the same upper bound as in the proof of the

previous theorem, equation (4.4.1), adding the terms involving Γ (remember that Gsx is

increasing in s). Therefore we can make the same choices for A, α, b, a and e, independently

of Γ and g, to get that

‖h‖2H1
ε
∼ ‖h‖2L2

x,v
+ ‖∇xh‖2L2

x,v
+ ε2 ‖∇vh‖2L2

x,v
,

and that, once those parameters are fixed, there exist K
(1)
0 , K

(1)
1 , K

(1)
2 > 0 such that for

all 0 < ε 6 1,

d

dt
‖h‖2H1

ε
6 −K(1)

0

(
‖h‖2Λ + ‖∇x,vh‖2Λ

)
+K

(1)
1

(
G1
x(g, h)

)2
+ ε2K

(1)
2

(
G1
x,v(g, h)

)2
,

which is the expected result in the case s = 1.
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4.5.2 The induction in higher order Sobolev spaces

Then we assume that the theorem is true up to the integer s− 1, s > 1. Then we suppose

that L satisfies (H1’), (H2’) and (H3) and we consider ε in (0, 1].

Since hin is in Ker(Gε)
⊥, h belongs to Ker(Gε)

⊥ for all t and so we can use the results

given in the toolbox.

As in the proof in the linear case we define:

Fs(t) =
∑
|j|+|l|=s
|j|>2

ε2B
∥∥∥∂jl h∥∥∥2

L2
x,v

+B′
∑
|l|=s

i,ci(l)>0

Ql,i(t),

Ql,i(t) = α
∥∥∂0

l h
∥∥2

L2
x,v

+ bε2
∥∥∥∂δil−δih∥∥∥2

L2
x,v

+ aε〈∂δil−δih, ∂
0
l h〉L2

x,v
,

where the constants, strictly positive, will be chosen later.

Like in the section above, we shall study the time evolution of every term involved in

Fs in order to bound above dFs/dt(t) with expected coefficients.

4.5.2.1 The time evolution of Ql,i

We will first study the time evolution of Ql,i for given |j| + |l| = s. The toolbox already

gave us all the bounds we need and we just have to gather them in the following way:

α(4.3.10) + bε2(4.3.12) + aε(4.3.13). This leads to, because 0 < ε 6 1,

d

dt
Ql,i(t) 6

1

ε2

[
CLea− λα

] ∥∥∥∂0
l h
⊥
∥∥∥2

Λ
+

[
2CLa

e
− νΛ

5 b

] ∥∥∥∂δil−δih∥∥∥2

Λ

+

[
3νΛ

1

νΛ
5 ν

Λ
0

b− a
] ∥∥∂0

l h
∥∥2

L2
x,v

+Ks−1b ‖h‖Hs−1
x,v

+

[
ανΛ

1

νΛ
0 λ

+
νΛ

1 ea

CLνΛ
0

]
(Gsx(g, h))2 +

3νΛ
1 b

νΛ
0 ν

Λ
5

ε2
(
Gsx,v(g, h)

)2
.

One can notice that, except for the term in ‖h‖Hs−1
x,v

, we have exactly the same kind

of bound as in the case s = 1, given by (4.5.1). Therefore we can choose α, b, a, e,

independently of ε, Γ and g such that it exists KQ, KΓ1, KΓ2 > 0 and Cs−1 > 0 such that

for all 0 < ε 6 1:

� Ql,i(t) ∼
∥∥∂0

l h
∥∥2

L2
x,v

+ ε2
∥∥∥∂δil−δih∥∥∥2

L2
x,v

,
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�

d

dt
Ql,i(t) 6 −KQ

(∥∥∂0
l h
∥∥2

Λ
+
∥∥∥∂δil−δih∥∥∥2

Λ

)
+KΓ1 (Gsx(g, h))2

+ε2KΓ2

(
Gsx,v(g, h)

)2
+ Cs−1 ‖h‖Hs−1

x,v
,

where we used (4.3.4) (equivalence of norms L2
x,v and Λ on the fluid part) to get

∥∥∂0
l h
∥∥2

Λ
6 C ′

(∥∥∥∂0
l h
⊥
∥∥∥2

Λ
+
∥∥∂0

l h
∥∥2

L2
x,v

)
.

4.5.2.2 The time evolution of Fs and conclusion

The last result about Ql,i gives us that

Fs(t) ∼
∑
|l|=s

∥∥∂0
l h
∥∥2

L2
x,v

+ ε2
∑
|l|+|j|=s
|j|>1

∥∥∥∂jl h∥∥∥2

L2
x,v

,

so it remains to show that Fs satisfies the property describe by the theorem for some B

and B′.

To study the time evolution of Fs we just need to combine the evolution of Ql,i and

the one of
∥∥∥∂jl h∥∥∥2

L2
x,v

which is given in the toolbox by (4.3.11).

d

dt
Fs(t) 6

∑
|j|+|l|=s
|j|>2

−νΛ
5 B

∥∥∥∂jl h∥∥∥2

Λ
+

∑
|j|+|l|=s
|j|>2

3(νΛ
1 )2d

νΛ
5 (νΛ

0 )2
Bε2

∑
i,ci(j)>0

∥∥∥∂j−δil+δi
h
∥∥∥2

Λ

−KQB
′
∑
|l|=s

i,ci(l)>0

(∥∥∂0
l h
∥∥2

Λ
+
∥∥∥∂δil−δih∥∥∥2

Λ

)

+

 ∑
|j|+|l|=s
|j|>2

Ks−1B +
∑
|l|=s

i,ci(l)>0

B′Cs−1

 ‖h‖2Hs−1
x,v

(4.5.2)

+
∑
|l|=s

i,ci(l)>0

B′KΓ1 (Gsx(g, h))2

+ε2

 ∑
|l|=s

i,ci(l)>0

B′KΓ2 +
∑
|j|+|l|=s
|j|>2

3νΛ
1

νΛ
0 ν

Λ
5

B

(Gsx,v(g, h)
)2
.

One can easily see that, apart from the terms including Γ, we have exactly the same
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bound as in the proof in the linear case, equation (4.4.2). Therefore we can choose B, B′

and εd like we did, thus independent of Γ and g, to have for all 0 < ε 6 εd

d

dt
Fs(t) 6 C

(s−1)
+ ‖h‖2

Hs−1
x,v
−

 ∑
|j|+|l|=s

∥∥∥∂jl h∥∥∥2

Λ


+K̃Γ1 (Gsx(g, h))2 + ε2K̃Γ2

(
Gsx,v(g, h)

)2
,

with C
(s−1)
+ , K̃Γ1 and K̃Γ2 positive constants independent of ε, Γ and g.

To conclude we just have to, as in the linear case, take a linear combination of the

(Fp)p6s and use the induction hypothesis (remember that both Gpx,v and Gpx are increasing

functions of p) to obtain the expected result: ∀ 0 < ε 6 εd ,

d

dt

 n∑
p=1

CpFp(t)

 6 − K
(s)
0

 ∑
|j|+|l||6s

∥∥∥∂jl h∥∥∥2

Λ

+K
(s)
1 (Gsx(g, h))2

+ ε2K
(s)
1

(
Gsx,v(g, h)

)2
,

with this linear combination being equivalent to

‖·‖2L2
x,v

+
∑
|l|6s

∥∥∂0
l ·
∥∥2

L2
x,v

+ ε2
∑
|l|+|j|6s
|j|>1

∥∥∥∂jl ·∥∥∥2

L2
x,v

and so fits the expected requirements.

4.6 Existence and exponential decay: proof of Theorem 4.2.3

One can clearly see that solving the kinetic equation (4.1.2) in the setting f = µ+ εµ1/2h

is equivalent to solving the linearized kinetic equation (4.1.3) directly. Therefore we are

going to focus only on this linearized equation.

The proof relies on the a priori estimate derived in the previous section. We shall

use this inequality as a bootstrap to obtain first the existence of solutions thanks to an

iteration scheme and then the exponential decay of those solutions, as long as the initial

data is small enough.

4.6.1 Proof of the existence of global solutions

4.6.1.1 Construction of solutions to a linearized problem

Here we will follow the classical method that is approximating our solution by a sequence

of solutions of a linearization of our initial problem. Then we have to construct a functional
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on Sobolev spaces for which this sequence can be uniformly bounded in order to be able

to extract a convergent subsequence.

Starting from h0 in Hs
x,v ∩Ker(Gε)

⊥, to be define later, we define the function hn+1 in

Hs
x,v by induction on n > 0 :

∂thn+1 +
1

ε
v.∇xhn+1 =

1

ε2
L(hn+1) +

1

ε
Γ(hn, hn+1)

hn+1(0, x, v) = hin(x, v),
(4.6.1)

First we need to check that our sequence is well-defined.

Lemma 4.6.1 Let L be satisfying assumptions (H1’), (H2’) and (H3), and let Γ be satis-

fying assumptions (H4) and (H5).

Then, there exists 0 < εd 6 1 such that for all s > s0 (defined in (H4)), there exists

δs > 0 such that for all 0 < ε 6 εd, if ‖hin‖Hsε 6 δs then the sequence (hn)n∈N is well-

defined, continuous in time, in Hs
x,v and belongs to Ker(Gε)

⊥.

Proof of Lemma 4.6.1 By induction, let us suppose that for a fixed n > 0 we have

constructed hn in Hs
x,v, which is true for hin.

Using the previous notation one can see that we are in fact trying to solve the linear

equation on the torus:

∂thn+1 = Gε(hn+1) +
1

ε
Γ(hn, hn+1)

with hin as an initial data.

The existence of a solution hn+1 has already been shown for each equation covered by

the hypocoercivity theory in the case ε = 1 (see papers described in the introduction). It

was proved by fixed point arguments applied to the Duhamel’s formula. In order not to

write several times the same estimates one may use our next lemma 4.6.2 together with

the Duhamel’s formula (instead of considering directly the time derivative of hn+1) to get

a fixed point argument as long as hin is small enough, the smallness not depending on ε.

As shown in the study of the linear part of the linearized model, under assumptions

(H1’), (H2’) and (H3) Gε generates a C0-semigroup on Hs
x,v, for all 0 < ε 6 εd. Moreover,

hypothesis (H4) shows us that Γ(hn, ·) is a bounded linear operator from (Hs
x,v, E(·)) to

(Hs
x,v, ‖·‖Hs

x,v
). Thus hn+1 is in Hs

x,v.

The belonging to Ker(Gε)
⊥ is direct since Γ(hn, ·) is in Ker(Gε)

⊥ (hypothesis (H5)).
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Then we have to strongly bound the sequence, at least in short time, to have a chance

to obtain a convergent subsequence, up to an extraction.

4.6.1.2 Boundedness of the sequence

We are about to prove the global existence in time of solutions in C(R+, ‖.‖Hsε).That will

give us existence of solutions in standard Sobolev’s spaces as long as the initial data is

small enough in the sense of the Hsε-norm,which is smaller than the standard Hs
x,v-norm.

To achieve that we define a new functional on Hs
x,v

E(h) = sup
t∈R+

(
‖h(t)‖2Hsε +

∫ t

0
‖h(s)‖2Hs

Λ
ds

)
. (4.6.2)

Lemma 4.6.2 Let L be satisfying assumptions (H1’), (H2’) and (H3), and let Γ be satis-

fying assumptions (H4) and (H5).

Then there exists 0 < εd 6 1 such that for all s > s0 (defined in (H4)) there exists

δs > 0 independent of ε, such that for all 0 < ε 6 εd, if ‖hin‖Hsε 6 δs then

(E(hn) 6 δs)⇒ (E(hn+1) 6 δs) .

Proof of Lemma 4.6.2 We let t > 0.

We know that hin belongs to Hs
x,v∩Ker(Gε)

⊥. Moreover we have, thanks to Lemma 4.6.1,

that (hn) is well-defined, in Ker(Gε)
⊥ and in Hs

x,v, since s > s0. Moreover, Γ satisfies (H5).

Therefore we can use the Proposition 4.2.2 to write, for ε 6 εd (εd being the minimum

between the one in Lemma 4.6.1 and the one in Proposition 4.2.2),

d

dt
‖hn+1‖2Hsε 6 −K(s)

0 ‖hn+1‖2Hs
Λ

+K
(s)
1 (Gsx(hn, hn+1))2 + ε2K

(s)
2

(
Gsx,v(hn, hn+1)

)2
.

We can use the hypothesis (H4) and the fact that

Cm

‖.‖2L2
x,v

+
∑
|l|6s

∥∥∂0
l .
∥∥2

L2
x,v

+ ε2
∑
|l|+|j|6s
|j|>1

∥∥∥∂jl .∥∥∥2

L2
x,v

 6 ‖.‖2Hsε 6 CM ‖.‖Hs
x,v
, (4.6.3)

to get the following upper bounds:
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(Gsx(hn, hn+1))2 6
C2

Γ

Cm

(
‖hn‖2Hsε ‖hn+1‖2Hs

Λ
+ ‖hn+1‖2Hsε ‖hn‖

2
Hs

Λ

)
(
Gsx,v(hn, hn+1)

)2
6

C2
Γ

Cmε2

(
‖hn‖2Hsε ‖hn+1‖2Hs

Λ
+ ‖hn+1‖2Hsε ‖hn‖

2
Hs

Λ

)
.

Therefore we have the following upper bound, where K1 and K2 are constants inde-

pendent of ε:

d

dt
‖hn+1‖2Hsε 6 −K(s)

0 ‖hn+1‖2Hs
Λ

+K1 ‖hn‖2Hsε ‖hn+1‖2Hs
Λ

+K2 ‖hn+1‖2Hsε ‖hn‖
2
Hs

Λ

6
[
K1E(hn)−K(s)

0

]
‖hn+1‖2Hs

Λ
+K2E(hn+1) ‖hn‖2Hs

Λ
.

We consider now that E(hn) 6 K
(s)
0 /2K1.

We can integrate the equation above between 0 and t and one obtains

‖hn+1‖2Hsε +
K

(s)
0

2

∫ t

0
‖hn+1‖2Hs

Λ
ds 6 ‖h0‖2Hsε +KE(hn+1)E(hn).

This is true for all t > 0, then we define C = min{1,K(s)
0 /2}, if E(hn) 6 C/2K we

have

E(hn+1) 6
2

C
‖h0‖2Hsε .

Therefore choosing M (s) = min{C/2K,K(s)
0 /2K1} and δs 6 min{M (s)C/2,M (s)} gives

us the expected result.

4.6.1.3 The global existence of solutions

Now we are able to prove the global existence result:

Theorem 4.6.3 Let L be satisfying assumptions (H1’), (H2’) and (H3), and let Γ be sat-

isfying assumptions (H4) and (H5).

Then there exists 0 < εd 6 1 such that for all s > s0 (defined in (H4)), there exists δs > 0

and for all 0 < ε 6 εd:

If ‖hin‖Hsε 6 δs then there exist a solution of (4.1.3) in C(R+, E(·)) and it satisfies,

for some constant C > 0,

E(h) 6 C ‖hin‖2Hsε .
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Proof of Theorem 4.6.3 Regarding Lemma 4.6.2, by induction we can strongly bound

the sequence (hn)n∈N, as long as E(h0) 6 δs, the constant being defined in Lemma 4.6.2 .

Therefore, defining h0 to be hin at t = 0 and 0 elsewhere gives us E(h0) = ‖hin‖Hsε 6 δs.

Thus, we have the boundedness of the sequence (hn)n∈N in L∞t H
s
x,v ∩ L1

tH
s
Λ. By compact

embeddings into smaller Sobolev’s spaces (Rellich theorem) we can take the limit in (4.6.1)

as n tends to +∞, since Gε and Γ are continuous. We obtain h a solution, in C(R+, E(·)),
to 

∂th+
1

ε
v.∇xh =

1

ε2
L(h) +

1

ε
Γ(h, h)

h(0, x, v) = hin(x, v).

4.6.2 Proof of the exponential decay

The function constructed above, h, is in Ker(Gε)
⊥ for all 0 < ε 6 1. Moreover, this

function is clearly a solution of the following equation:

∂th = Gε(h) +
1

ε
Γ(h, h),

with Γ satisfying (H5). Therefore, we can use the a priori estimate on solutions of the full

perturbative model concerning the time evolution of the Hsε-norm (where we will omit to

write the dependence on s for clearness purpose), Proposition 4.2.2.

d

dt
‖h‖2Hsε 6 −K0 ‖h‖2Hs

Λ
+K1 (Gsx(h, h))2 + ε2K2

(
Gsx,v(h, h)

)2
.

Moreover, using (4.6.3) and hypothesis (H4) to find:

(Gsx(h, h))2 6
2C2

Γ

Cm
‖h‖2Hsε ‖h‖

2
Hs

Λ(
Gsx,v(h, h)

)2
6

2C2
Γ

Cmε2
‖h‖2Hsε ‖h‖

2
Hs

Λ
.

Hence, K being a constant independent of ε:

d

dt
‖h‖2Hsε 6

(
K ‖h‖2Hsε −K0

)
‖h‖2Hs

Λ
.

Therefore, one can notice that if ‖hin‖2Hsε 6 K0/2K then we have that ‖h‖2Hsε is decreasing

in time. Hence, because the Λ-norm controls the L2-norm which controls the H-norm:
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d

dt
‖h‖2Hsε 6 −K0

2
‖h‖2Hs

Λ

6 −K0

2

νΛ
0

νΛ
1 CM

‖h‖2Hsε .

Then we have directly, by Gronwall’s lemma and setting τs = K0ν
Λ
0 /4ν

Λ
1 CM ,

‖h‖2Hsε 6 ‖hin‖
2
Hsε e

−2τst

as long as ‖hin‖2Hsε 6 K0/2K, which is the expected result with δs 6
√
K0/2K.

4.7 Exponential decay of v-derivatives: proof of Theorem

4.2.4

In order to prove this theorem we are going to state a proposition giving an a priori

estimate on a solution to the equation (4.1.3)

∂th+
1

ε
v.∇xh =

1

ε2
L(h) +

1

ε
Γ(h, h).

We remind the reader that we work in Hs
x,v with the following positive functional

‖·‖2Hsε⊥ =
∑
|j|+|l|6s
|j|>1

b
(s)
j,l

∥∥∥∂jl (Id− πL)·
∥∥∥2

L2
x,v

+
∑
|l|6s

α
(s)
l

∥∥∂0
l ·
∥∥2

L2
x,v

+
∑
|l|6s

i,ci(l)>0

a
(s)
i,l ε〈∂

δi
l−δi ·, ∂

0
l ·〉L2

x,v
.

One can notice that if we choose coefficients (b
(s)
j,l ), (α

(s)
l ), (a

(s)
i,l ) > 0 such that ‖·‖2Hs1⊥

is equivalent to ∑
|j|+|l|6s
|j|>1

∥∥∥∂jl (Id− πL)·
∥∥∥2

L2
x,v

+
∑
|l|6s

∥∥∂0
l ·
∥∥2

L2
x,v

then for all ε less than some ε0, ‖·‖2Hsε⊥ is also equivalent to the latter norm with equivalence

coefficients not depending on ε.

Moreover, using equation (4.3.3), we have that∥∥∥∂jl h∥∥∥2

L2
x,v

6 Cπs
∥∥∂0

l h
∥∥2

L2
x,v

+
∥∥∥∂jl h⊥∥∥∥2

L2
x,v

6 2Cπs
∥∥∂0

l h
∥∥2

L2
x,v

+
∥∥∥∂jl h∥∥∥2

L2
x,v

,

and therefore ∑
|j|+|l|6s
|j|>1

∥∥∥∂jl (Id− πL)
∥∥∥2

L2
x,v

+
∑
|l|6s

∥∥∂0
l .
∥∥2

L2
x,v
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is equivalent to the standard Sobolev norm. Thus, we will just construct coefficients (b
(s)
j,l ),

(α
(s)
l ) and (a

(s)
i,l ) so that ‖.‖2Hs1⊥ is equivalent to the latter norm and then for ε small enough

we will have the equivalence, not depending on ε, between ‖·‖2Hsε⊥ and the Hs
x,v-norm.

4.7.1 An a priori estimate

In this subsection we will prove the following proposition:

Proposition 4.7.1 If L is a linear operator satisfying the conditions (H1’), (H2’) and

(H3) and Γ a bilinear operator satisfying (H5) then there exists 0 < εd 6 1 such that for

all s in N∗,

1. for hin in Ker(Gε)
⊥ if we have h an associated solution of

∂th+
1

ε
v · ∇xh =

1

ε2
L(h) +

1

ε
Γ(h, h),

2. there exist K
(s)
0 , K

(s)
1 , (b

(s)
j,l ), (α

(s)
l ), (a

(s)
i,l ) > 0 such that for all 0 < ε 6 εd:

� ‖·‖Hsε⊥ ∼ ‖·‖Hs
x,v

,

� ∀hin ∈ Hs
x,v ∩Ker(Gε)

⊥ ,

d

dt
‖h‖2Hsε⊥ 6 −K(s)

0

 1

ε2

∥∥∥h⊥∥∥∥2

Hs
Λ

+
∑

16|l|6s

∥∥∂0
l h
∥∥2

L2
x,v

+K
(s)
1

(
Gsx,v(h, h)

)2
.

Remark 4.7.2 We notice here that in front of the microscopic part of h is a negative

constant order −1/ε2 which is the same order than the control derived by Guo in [56] for

his dissipation rate.

We will prove that proposition by induction on s.

So we take hin in Hs
x,v ∩ Ker(Gε)

⊥ and we consider the associated solution of (4.1.3),

denoted by h. One can notice that thanks to (H5), h remains in Ker(Gε)
⊥ for all times

and thus we are allowed to use the inequalities given in the toolbox

4.7.1.1 The case s = 1

In that case we have

‖h‖2H1
ε⊥

= A ‖h‖2L2
x,v

+ α ‖∇xh‖2L2
x,v

+ b
∥∥∥∇vh⊥∥∥∥2

L2
x,v

+ aε〈∇xh,∇vh〉L2
x,v
,
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with A, α, b and a strictly positive.

Therefore we can study the time evolution of that operator acting on h by gathering

results given in the toolbox. We simply take A(4.3.6) + α(4.3.7) + b(4.3.14) + aε(4.3.15)

d

dt
‖h‖2H1

ε⊥
6

1

ε2

[
K⊥1 b− λA

] ∥∥∥h⊥∥∥∥2

Λ
+

1

ε2

[
K⊥ea− λα

] ∥∥∥∇xh⊥∥∥∥2

Λ

+
1

ε2

[
1

4Cπ1CπCp

a

e
− bν

Λ
3

2

] ∥∥∥∇vh⊥∥∥∥2

Λ
+
[
K⊥dxb−

a

2

]
‖∇xh‖2L2

x,v

+K(A,α, b, a)
(
G1
x,v(h, h)

)2
, (4.7.1)

with s a fonction only depending on the coefficients appearing in hypocoercivity hypothesis

and independent of ε.

We directly see that we have exactly the same kind of bound as the one we obtain while

working on the a priori estimates for the operator ‖h‖H1
ε
, equation (4.5.1). Therefore we

can choose of coefficients A, α, b, e and a in the same way (in the right order) and use the

same inequalities to finally obtain the expected result: ∃s0, K1 > 0, ∀ 0 < ε 6 1,

d

dt
‖h‖2H1

ε⊥
6 −s(1)

0

(
1

ε2

∥∥∥h⊥∥∥∥2

Λ
+

1

ε2

∥∥∥∇xh⊥∥∥∥2

Λ
+

1

ε2

∥∥∥∇vh⊥∥∥∥2

Λ
+ ‖∇xh‖2L2

x,v

)
+K

(1)
1

(
G1
x,v(h, h)

)2
,

with the constants s
(1)
0 and K

(1)
1 independent of ε, and ‖h‖2H1

1⊥
equivalent to ‖h‖2L2

x,v
+

‖∇xh‖2L2
x,v

+
∥∥∇vh⊥∥∥2

L2
x,v

. Therefore, for all ε small enough we have the expected result in

the case s = 1.

4.7.1.2 The induction in higher order Sobolev spaces

Then we assume that the theorem is true up to the integer s− 1, s > 1. Then we suppose

that L satisfies (H1’), (H2’) and (H3) and we consider ε in (0, 1].

Since hin is in Ker(Gε)
⊥, h belongs to Ker(Gε)

⊥ for all t and so we can use the results

given in the toolbox.

As in the proofs of previous sections, we define on Hs
x,v:

Fs(t) =
∑
|j|+|l|=s
|j|>2

B
∥∥∥∂jl h⊥∥∥∥2

L2
x,v

+B′
∑
|l|=s

i,ci(l)>0

Ql,i(t),

Ql,i(t) = α
∥∥∂0

l h
∥∥2

L2
x,v

+ b
∥∥∥∂δil−δih⊥∥∥∥2

L2
x,v

+ aε〈∂δil−δih, ∂
0
l h〉L2

x,v
,
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where the constants, strictly positive, will be chosen later.

Like in the section above, we shall study the time evolution of every term involved in

Fs in order to bound above dFs
dt (t) with expected coefficients. However, in this subsection

we will need to control all the Ql,i’s in the same time rather than treating them separately

as we did in the proof of Proposition (4.2.2), because the toolbox tells us that each Ql,i is

controlled by quantities appearing in the others.

4.7.1.3 The time evolution of
∑
Ql,i

Gathering the toolbox inequalities in the following way: α(4.3.10) + b(4.3.17) +aε(4.3.18).

This yields, because 0 < ε 6 1 and Card{i, ci(l) > 0} 6 d,

d

dt

 ∑
|l|=s

i,ci(l)>0

Ql,i(t)

 6
1

ε2

[
K̃⊥ea− λα

]∑
|l|=s

∥∥∥∂0
l h
⊥
∥∥∥2

Λ

+
1

ε2

[
1

4CπsCπd

a

e
− νΛ

5 b

] ∑
|l|=s

i,ci(l)>0

∥∥∥∂δil−δih⊥∥∥∥2

Λ

+
[
K⊥dldb−

a

2

]∑
|l|=s

∥∥∂0
l h
∥∥2

L2
x,v

+
a

4

∑
|l|6s−1

∥∥∂0
l h
∥∥2

L2
x,v

+
bK⊥s−1

ε2

 ∑
|l|+|j|=s
i,ci(l)>0

1

∥∥∥h⊥∥∥∥2

Hs−1
x,v

+K(α, b, a, e)
(
Gsx,v(h, h)

)2
,

with s a fonction only depending on the coefficients appearing in hypocoercivity hypothesis

and independent of ε.

One can notice that except for the terms in ‖h‖Hs−1
x,v

and
∑
|l|6s−1

∥∥∂0
l h
∥∥2

L2
x,v

, we have exactly

the same bound as in the case s = 1, equation (4.7.1). Therefore we can choose α, b, a, e,

independently of ε and Γ such that there exist K ′0 > 0, K ′1 > 0 and C0, C1 > 0 such that

for all 0 < ε 6 1:

�

∑
|l|=s

i,ci(l)>0

Ql,i(t) ∼
∑
|l|=s

i,ci(l)>0

(∥∥∂0
l h
∥∥2

L2
x,v

+
∥∥∥∂δil−δih⊥∥∥∥2

L2
x,v

)
,
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�

d

dt

∑
|l|=s

i,ci(l)>0

Ql,i(t) 6 − K ′0

 1

ε2

∑
|l|=s

∥∥∥∂0
l h
⊥
∥∥∥2

Λ
+

1

ε2

∑
|l|=s

i,ci(l)>0

∥∥∥∂δil−δih⊥∥∥∥2

Λ

+
∑
|l|=s

∥∥∂0
l h
∥∥2

L2
x,v


+

C0

ε2

∥∥∥h⊥∥∥∥2

Hs−1
x,v

+ C1

∑
|l|6s−1

∥∥∂0
l h
∥∥2

L2
x,v

+K ′1
(
Gsx,v(h, h)

)2
.

4.7.1.4 The time evolution of Fs and conclusion

We can finally obtain the time evolution of Fs, using d
dt

∥∥∥∂jl h⊥∥∥∥2

L2
x,v

, equation (4.3.16), so

that there is no more ε in front of the Γ term:

d

dt
Fs(t) 6 −Bν

λ
5

ε2

∑
|j|+|l|=s
|j|>2

∥∥∥∂jl h⊥∥∥∥2

Λ
+B

9(νΛ
1 )2d

2(νΛ
0 )2νΛ

5

∑
|j|+|l|=s
|j|>2

∑
i,ci(j)>0

∥∥∥∂j−δil+δi
h⊥
∥∥∥2

Λ

−K ′0B′

 1

ε2

∑
|l|=s

∥∥∥∂0
l h
⊥
∥∥∥2

Λ
+

1

ε2

∑
|l|=s

i,ci(l)>0

∥∥∥∂δil−δih⊥∥∥∥2

Λ
+
∑
|l|=s

∥∥∂0
l h
∥∥2

L2
x,v



+

 ∑
|j|+|l|=s
|j|>2

BK⊥dl +B′C1

 ∑
|l|6s−1

∥∥∂0
l h
∥∥2

L2
x,v

+
1

ε2

 ∑
|j|+|l|=s
|j|>2

BK⊥s−1 +B′C0

∥∥∥h⊥∥∥∥2

Hs−1
x,v

+

 ∑
|j|+|l|=s
|j|>2

3BνΛ
1

νΛ
0 ν

Λ
5

+B′K ′1

(Gsx,v(h, h)
)2
,

Therefore we obtain the same bound (except
∑
|l|6s−1

∥∥∂0
l h
∥∥2

L2
x,v

) as in the proof of Propo-

sition 4.2.2, equation (4.5.2), and so by choosing coefficients in the same way we have that

there exist C
(s)
+ > 0, 0 < εd 6 1 and K

(s∗)
1 > 0, none of them depending on ε, such that

for all 0 < ε 6 εd:
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d

dt
Fs(t) 6 C

(s)
+

 1

ε2

∑
|j|+|l|6s−1

∥∥∥∂jl h⊥∥∥∥2

Λ
+
∑
|l|6s−1

∥∥∂0
l h
∥∥2

L2
x,v


−

 1

ε2

∑
|j|+|l|=s

∥∥∥∂jl h⊥∥∥∥2

Λ
+
∑
|l|=s

∥∥∂0
l h
∥∥2

L2
x,v


+K

(s∗)
1

(
Gsx,v(h, h)

)2
.

This inequality is true for all s and therefore we can take a linear combination of the

Fs to obtain the required result. Using the induction hypothesis on F1 up to Fs−1 we also

have the equivalence of norms.

4.7.2 The exponential decay: proof of Theorem 4.2.4

Thanks to Theorem 4.2.3, we know that we have a solution to the equation (4.1.3) for any

given hin small enough in the standard Sobolev norm. Call h the associated solution of

hin ∈ Hs
x,v to (4.1.3). Since the existence has been proved we can use the a priori estimate

above and the Proposition 4.7.1.

Thus we have

d

dt
‖h‖2Hsε⊥ 6 −K(s)

0

 1

ε2

∥∥∥h⊥∥∥∥2

Hs
Λ

+
∑

16|l|6s

∥∥∂0
l h
∥∥2

L2
x,v

+K
(s)
1

(
Gsx,v(h, h)

)2
.

As before we can use (4.3.4) (equivalence of norms L2
x,v and Λ on the fluid part) to

get, for |l| > 1, ∥∥∂0
l h
∥∥2

Λ
6 C ′

(∥∥∥∂0
l h
⊥
∥∥∥2

Λ
+
∥∥∂0

l h
∥∥2

L2
x,v

)
,

and for the case |l| 6 1 we can apply the Poincare inequality (4.3.5) together with the

equivalence of the L2
x,v-norm and the Λ-norm on the fluid part πL, (4.3.4) to get

∃C,C ′ > 0,

 ‖h‖
2
Λ 6 C

(∥∥h⊥∥∥2

Λ
+ 1

2 ‖∇xh‖
2
L2
x,v

)
,

‖∇xh‖2Λ 6 C ′
(∥∥∇xh⊥∥∥2

Λ
+ 1

2 ‖∇xh‖
2
L2
x,v

)
.
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Then we get that

d

dt
‖h‖2Hsε⊥ 6 −K(s)

0

 ∑
|j|+|l|6s
|j|>1

∥∥∥∂jl h⊥∥∥∥2

Λ
+
∑
|l|6s

∥∥∂0
l h
∥∥2

Λ

+K
(s)
1

(
Gsx,v(h, h)

)2
6 −K(s∗)

0 ‖h‖2Hs
Λ

+K
(s)
1

(
Gsx,v(h, h)

)2
.

Then for s > s0, defined in (H4), and because Γ satisfies (H4) we can write

d

dt
‖h‖2Hsε⊥ 6

(
K

(s)
1 C2

Γ ‖h‖2Hs
x,v
−K(s∗)

0

)
‖h‖2Hs

Λ
.

Because ‖h‖Hsε⊥ and ‖h‖2Hs
x,v

are equivalent, independently of ε, we finally have

d

dt
‖h‖2Hsε⊥ 6

(
K

(s)
1 C2

ΓC ‖h‖2Hsε⊥ −K
(s∗)
0

)
‖h‖2Hs

Λ
.

Therefore if

‖hin‖2Hsε⊥ 6
K

(s∗)
0

2K
(s)
1 C2

ΓC

we have that ‖h‖2Hsε⊥ is always decreasing on R+ and so for all t > 0

d

dt
‖h‖2Hsε⊥ 6 − K

(s∗)
0

2K
(s)
1 C2

ΓC
‖h‖2Hs

Λ
.

And the Hs
Λ-norm controls the Hs

x,v-norm which is equivalent to the Hsε⊥-norm. Thus

applying Gronwall’s lemma gives us the expected exponential decay.

4.8 Incompressible Navier-Stokes Limit: proof of Theorem

4.2.5

In this section we consider s > s0, 0 < ε 6 εd and we take hin in Hs
x,v such that ‖hin‖Hsε 6

δs.

Therefore we know, thanks to theorem 4.2.3, that we have a solution hε to the linearized

Boltzmann equation

∂thε +
1

ε
v.∇xhε =

1

ε2
L(hε) +

1

ε
Γ(hε, hε),

with hε(0, x, v) = hin(x, v). Moreover, we also know that (hε) tends weakly-* to h in

L∞t (Hs
xL

2
v).
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The first step towards the proof of Theorem 4.2.5 is to derived a convergence rate in

finite time. Then, as described in Section 4.1.3, we shall interpolate this result with the

exponential decay behaviour of our solutions in order to obtain a global in time conver-

gence.

4.8.1 A convergence in finite time

In Remark 4.8.13, we define VT (ε) and prove the following result

∀T > 0, VT (ε) = sup
t∈[0,T ]

‖hε − h‖L∞x L2
v
→ 0, as ε→ 0.

Thanks to this remark we can give an explicit convergence in finite time.

Theorem 4.8.1 Consider s > s0 and hin in Hs
x,v such that ‖hin‖Hsε 6 δs.

Then, (hε)ε>0 exists for all 0 < ε 6 εd and converges weakly* in L∞t (Hs
xL

2
v) towards h

such that h ∈ Ker(L), with ∇x · u = 0 and ρ+ θ = 0.

Furthermore,
∫ T

0 hdt belongs to Hs
xL

2
v and it exists C > 0 such that for all T > 0,∥∥∥∥∫ T

0
hdt−

∫ T

0
hεdt

∥∥∥∥
Hs
xL

2
v

6 C max{√ε,
√
Tε, TVT (ε)}.

One can have a strong convergence in L2
[0,T ]H

s
xL

2
v only if hin is in Ker(L) with ∇x ·uin = 0

and ρin + θin = 0 (initial layer conditions). Moreover, in that case we have, for all T > 0,

‖h− hε‖L2
[0,T ]

Hs
xL

2
v
6 C max{√ε,

√
TVT (ε)},

and for all δ in [0, 1], if hin belongs to Hs+δ
x L2

v,

sup
t∈[0,T ]

‖h− hε‖Hs
xL

2
v

(t) 6 C max{εmin(δ,1/2), VT (ε)}.

Remark 4.8.2 We mention here that the obligation of an integration in time for non

special initial condition is only due to the linear part ε−2L − ε−1v · ∇x, whereas the case

T = +∞ is prevented by the second order term Γ.

We proved in the linear case, theorem 4.2.1, that the linear operator Gε = ε−2L −
ε−1v · ∇x generates a semigroup etGε on Hs

x,v. Therefore we can use Duhamel’s principle

to rewrite our equation under the following form, defining uε = Γ(hε, hε),
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hε = etGεhin +

∫ t

0

1

ε
e(t−s)Gεuε(s)ds

:= U εhin + Ψε(uε). (4.8.1)

The article by Ellis and Pinsky [39] gives us a Fourier theory in x of the semigroup

etGε and therefore we are going to use it to study the strong limit of U εhin and Ψε(uε)

as ε tends to 0. We will denote by Fx the Fourier transform in x on the torus (which is

discrete) and n the discrete variable associated in Zd.
From [39], we are using Theorem 3.1, rewriten thanks with the Proposition 2.6 and the

Appendix II with δ = λ/4 in Proposition 2.3, to get the following theorem

Theorem 4.8.3 There exists n0 ∈ R∗+, there exists functions

� λj : [−n0, n0] −→ C, −1 6 j 6 2, C∞

� ej : [−n0, n0]× Sd−1 −→ L2
v

(ζ, ω) 7−→ ej(ζ, ω)

, −1 6 j 6 d, C∞ in ζ and C0 in ω,

such that

1. for all −1 6 j 6 2, λj(ζ) = iαjζ − βjζ2 + γj(ζ), where αj ∈ R, with α0 = α2 = 0,

βj < 0 and |γj(ζ)| 6 Cγ |ζ|3 with |γj(ζ)| 6 βj
2 |ζ|

2 ,

2. for all −1 6 j 6 d

� ej(ζ, ω) = e0j(ω) + ζe1j(ω) + ζ2e2j(ζ, ω),

� e0−1(ω)(v) = e01(−ω)(v) = A
(

1− ω.v + |v|2−d
2

)
µ(v)1/2,

3. we have etGε = F−1
x Û(t/ε2, εn, v)Fx where

Û(t, n, v) =

2∑
j=−1

Ûj(t, n, v) + ÛR(t, n, v)

with the following properties

� for −1 6 j 6 2, Ûj(t, n, v) = χ|n|6n0
etλj(|n|)Pj

(
|n| , n|n|

)
(v),

� for −1 6 j 6 1, Pj

(
|n| , n|n|

)
= ej

(
|n| , n|n|

)
⊗ ej

(
|n| , −n|n|

)
,

� P2

(
|n| , n|n|

)
=

d∑
j=2

ej

(
|n| , n|n|

)
⊗ ej

(
|n| , −n|n|

)
,

� for −1 6 j 6 2, Pj

(
|n| , n|n|

)
= P0j

(
n
|n|

)
+ |n|P1j

(
n
|n|

)
+ |n|2 P2j

(
|n| , n|n|

)
,
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�

2∑
j=−1

P0j = πL,

� it exists CR, σ > 0 such that for all t ∈ R+ and all n ∈ Zd,

|||ÛR(t, n, v)|||L2
v
6 CRe

−σt.

Remark 4.8.4 This decomposition of the spectrum of the linear operator is based on a low

and high frequencies decomposition. It shows that the spectrum of the whole operator can

be viewed as a perturbation of the spectrum of the homogeneous linear operator. It can be

divided into large eigenvalues, which are negative and therefore create a strong semigroup

property for the remainder term, and small eigenvalues around the origin that are smooth

perturbations of the homogeneous ones.

This theorem gives us all the tools we need to study the convergence as ε tends to 0

since we have an explicit form for the Fourier transform of the semigroup. We also know

that this semigroup commutes with the pure x-derivatives. Therefore, studying the con-

vergence in the L2
xL

2
v-norm will be enough to obtain the desired result in the Hs

xL
2
v-norm.

We are going to prove the following convergences in the different settings stated by The-

orem 4.2.5

1. U εhin tends to V (t, x, v)hin with V (0, x, v)hin = V (0)(hin)(x, v) where V (0) the

projection on the subset of Ker(L) consisting in functions g such that ∇x · ug = 0

and ρg + θg = 0,

2. Ψε(uε) converges to Ψ(h, h) with Ψ(h, h)(t = 0) = 0.

4.8.1.1 Study of the linear part

We remind here that we have

U εhin = F−1
x Û ε(t, n, v)ĥin(n, v)

with

Û ε(t, n, v) =
2∑

j=−1

Û εj (t, n, v) + Û εR(t, n, v),

Û εj (t, n, v) = χ|εn|6n0
e
iαjt|n|

ε
−βjt|n|2+ t

ε2
γj(|εn|)

[
P0j

(
n

|n|

)
+ ε |n| P̃1j

(
|εn| , n|n|

)]
.

We can decompose Û εj into four different terms
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Û εj (t, n, v) = e
iαjt|n|

ε
−βjt|n|2P0j

(
n

|n|

)
+χ|εn|6n0

e
iαjt|n|

ε
−βjt|n|2

(
e
t
ε2
γj(|εn|) − 1

)
P0j

(
n

|n|

)
(4.8.2)

+χ|εn|6n0
e
iαjt|n|

ε
−βjt|n|2+ t

ε2
γj(|εn|)ε |n| P̃1j

(
|εn| , n|n|

)
+
(
χ|εn|6n0

− 1
)
e
iαjt|n|

ε
−βjt|n|2P0j

(
n

|n|

)
.

= U ε0j + U ε1j + U ε2j + U ε3j .

Remark 4.8.5 One can notice that U ε00 and U ε02 do not depend on ε, since α0 = α2 = 0.

We are going to study each of these four terms in two different lemmas and then add

a last lemma to deal with the remainder term URhin. The lemmas will be proven in

Appendix 4.C.

Lemma 4.8.6 For αj 6= 0 (j = ±1) we have that it exists C0 > 0 such that for all

T ∈ [0,+∞] ∥∥∥∥∫ T

0
U ε0jhindt

∥∥∥∥2

L2
xL

2
v

6 C0ε
2 ‖hin‖2L2

xL
2
v
.

Moreover we have a strong convergence in the L2
[0,+∞)L

2
xL

2
v-norm if and only if hin satisfies

∇x · uin = 0 and ρin + θin = 0. In that case we have U ε0jhin = 0.

Lemma 4.8.7 For −1 6 j 6 2 and for 1 6 l 6 3 we have that the three following

inequalities hold for U εlj

� ∃Cl > 0, ∀T > 0,

∥∥∥∥∫ T

0
U εljhindt

∥∥∥∥2

L2
xL

2
v

6 Clε
2 ‖hin‖2L2

xL
2
v
,

� ∃C ′l > 0,
∥∥∥U εljhin∥∥∥2

L2
[0,+∞)

L2
xL

2
v

6 C ′lε
2 ‖hin‖2L2

xL
2
v
,

� ∀δ ∈ [0, 1],∃C(l)
δ > 0,∀t > 0,

∥∥∥U εljhin(t)
∥∥∥2

L2
xL

2
v

6 C
(l)
δ ε2δ ‖hin‖2Hδ

xL
2
v
.

Lemma 4.8.8 For the remainder term we have the two following inequalities
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� ∃C4 > 0,∀T > 0,

∥∥∥∥∫ T

0
U εRhindt

∥∥∥∥2

L2
xL

2
v

6 C4Tε
2 ‖hin‖2L2

xL
2
v
,

� ∃C ′4 > 0, ‖U εRhin‖2L2
[0,+∞)

L2
xL

2
v
6 C ′4ε

2 ‖hin‖2L2
xL

2
v
,

� ∀t0 > 0, ∃Cr > 0,∀t > t0, ‖URhin(t)‖2L2
xL

2
v
6

Cr√
t0
ε ‖hin‖2L2

xL
2
v
.

Moreover, the strong convergence up to t0 = 0 is possible if and only if hin is in Ker(L).

In that case we have

∀δ ∈ [0, 1], ∃C(R)
δ > 0, ∀t > 0, ‖U εRhin‖2L2

xL
2
v
6 C

(R)
δ ε2δ ‖hin‖2Hδ

xL
2
v
.

Therefore, gathering lemmas 4.8.6, 4.8.7 and 4.8.8 and reminding Remark 4.8.5, we

proved that, as ε tends to 0,
(
etGεhin

)
converges to

V (t, x, v)hin(x, v) = F−1
x

[
e−β0t|n|2P00

(
n

|n|

)
+ e−β2t|n|2P02

(
n

|n|

)]
Fxhin. (4.8.3)

The convergence is strong when we consider the average in time and is strong in

L2
tH

s
xL

2
v ( and in C([0,+∞), Hs

xL
2
v) if hin is in Hs+0

x L2
v ) if an only if both conditions

found in Lemma 4.8.6 and Lemma 4.8.8 are satisfied. That is to say hin belongs to Ker(L)

with ∇x · uin = 0 and ρin + θin = 0.

Moreover this also allows us to see that V (0, x, v)hin = V (0)(hin)(x, v) where V (0) is

the projection on the subset of Ker(L) consisting in functions g such that ∇x · ug = 0 and

ρg + θg = 0.

4.8.1.2 Study of the bilinear part

We recall here that uε = Γ(hε, hε). Therefore, by hypothesis (H5), uε belongs to Ker(L)⊥.

Then we know that for all −1 6 j 6 2, P0j

(
n
|n|

)
is a projection onto a subspace of Ker(L).

Therefore we have that, in the Fourier space,

Pj

(
|εn| , n|n|

)
ûε = |εn|P1j

(
n

|n|

)
ûε + |εn|2 P2j

(
|εn| , n|n|

)
ûε.

Thus, recalling that

Ψε(uε) =

∫ t

0

1

ε
e(t−s)Gεuε(s)ds,

we can decompose it

Ψε(uε) =

2∑
j=−1

ψεj (uε) + ψεR(uε),
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with

ψεj (uε) = F−1
x χ|εn|6n0

∫ t

0
e
iαj(t−s)|n|

ε
−βj(t−s)|n|2+ t−s

ε2
γj(|εn|) |n| (P1j + ε |n|P2j) ûε(s)ds.

:= ψε0j(uε) + ψε1j(uε) + ψε2j(uε) + ψε3j(uε),

where we have used the same decomposition as in the linear case, equation (4.8.2), sub-

stituting t by t− s, P0j by |n|P1j and P̃1j by |n|P2j . And

ψεR(uε) =

∫ t

0

1

ε
U εR(t− s)uε(s)ds.

Like the linear case, Remark 4.8.5, ψε00 and ψε02 do not depend on ε and we are going

to prove the convergence towards Ψ(u) = F−1
x [ψε00(u) + ψε02(u)]Fx, where u = Γ(h, h). To

establish such a result we are going to study each term in three different lemmas and then

a fourth one will deal with the remainder term. The lemmas will be proven in Appendix

4.C.

Lemma 4.8.9 For αj 6= 0 (j = ±1) we have the following inequality for ψε0j:

∃C̃0 > 0, ∀T > 0,

∥∥∥∥∫ T

0
ψε0j(uε)dt

∥∥∥∥2

L2
xL

2
v

6 C̃0T
2ε2E(hε)

2.

Remark 4.8.10 We know that (hε)ε>0 is bounded in L∞t H
s
xL

2
v (see theorems 4.2.3 and

4.2.4).

This remark gives us the strong convergence to 0 of the average in time and the strong

convergence to 0 without averaging in time as long as hin belongs to Ker(L) in Lemma

4.8.9.

Lemma 4.8.11 For −1 6 j 6 2 and for 1 6 l 6 3 we have that the three following

inequalities hold for ψεlj

� ∃C̃l > 0,∀T > 0,
∥∥∥∫ T0 ψεlj(uε)dt

∥∥∥2

L2
xL

2
v

6 C̃lTε
2E(hε)

2,

� ∃C̃ ′l > 0,∀T > 0,
∥∥∥ψεlj(uε)∥∥∥2

L2
[0,T ]

L2
xL

2
v

6 C̃ ′lε
2E(hε)

2,

� ∀ |δ| ∈ [0, 1], ∃C(l)
δ > 0, ∀T > 0,

∥∥∥ψεlj(uε)(T )
∥∥∥2

L2
xL

2
v

6 C
(l)
δ ε2δE(∂0

δhε)
2.
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Lemma 4.8.12 For the remainder term we have the three following inequalities

� ∃C̃4 > 0,∀T > 0,
∥∥∥∫ T0 ψεR(uε)dt

∥∥∥2

L2
xL

2
v

6 C̃4TεE(hε)
2,

� ∃C̃ ′4 > 0,∀T > 0, ‖ψεR(uε)‖2L2
[0,T ]

L2
xL

2
v
6 C̃ ′4εE(hε)

2,

� ∃C̃ ′′4 > 0,∀T > 0, ‖ψεR(uε)(T )‖2L2
xL

2
v
6 C̃ ′′4 εE(hε)

2.

Gathering all Lemmas 4.8.9, 4.8.11 and 4.8.12 gives us the strong convergence of

Ψε(uε) − Ψ(uε) towards 0, thanks to Remark 4.8.10. It remains to prove that we have

indeed the expected convergences of Ψ(uε) towards Ψ(u) as ε tends to 0.

We start this last step by a quick remark relying on Sobolev embeddings and giving

us a strong convergence of hε towards h in L∞[0,T ]L
∞
x L

2
v, for T > 0.

Remark 4.8.13 We know that hε → h weakly-* in L∞t H
s
xL

2
v, for s > s0 > d/2. But

we also proved that for all t > 0 that (hε)ε is bounded in Hs
xL

2
v. Therefore the sequence

(‖hε‖L2
v
, ε > 0) is bounded in Hs

x and therefore converges strongly in Hs′
x for all s′ < s.

But, by triangular inequality it comes that∣∣∣‖hε‖Hs′
x L

2
v
− ‖h‖Hs′

x L
2
v

∣∣∣ 6 ∥∥∥‖hε‖L2
v
− ‖h‖L2

v

∥∥∥
Hs′
x

.

This means that we also have that lim
ε→0
‖hε‖Hs′

x L
2
v

= ‖h‖Hs′
x L

2
v
. The space Hs′

x L
2
v is a

Hilbert space and hε tends weakly to h in it, therefore the last result gives us that in fact

hε tends strongly to h in Hs′
x L

2
v.

This result is for all t > 0 and all s′ 6 s. Furthermore, s > d/2 and so we can choose

s′ > d/2. By Sobolev’s embedding we obtain that hε tends strongly to h in L∞x L
2
v, for all

t > 0. Reminding that hε → h weakly-* in L∞t H
s
xL

2
v and we obtain that we have

∀T > 0, VT (ε) = sup
t∈[0,T ]

‖hε − h‖L∞x L2
v
→ 0, as ε→ 0.

Lemma 4.8.14 We have the following rate of convergence:

� ∃C̃5 > 0,∀T > 0,
∥∥∥∫ T0 Ψ(uε)dt−

∫ T
0 Ψ(u)dt

∥∥∥2

L2
xL

2
v

6 C̃5T
2VT (ε)2,

� ∃C̃ ′5 > 0,∀T > 0, ‖Ψ(uε)−Ψ(uε)‖2L2
[0,T ]

L2
xL

2
v
6 C̃ ′5TVT (ε)2,

� ∃C̃ ′′5 > 0,∀T > 0, ‖Ψ(uε)−Ψ(uε)‖2L2
xL

2
v

(T ) 6 C̃ ′′5VT (ε)2.
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Thus, those Lemmas, combined with the study of the linear case (Lemmas 4.8.6, 4.8.7

and 4.8.8) prove the Theorem 4.2.5 with the rate of convergence being the maximum of

each rate of convergence. Moreover we have proved

h(t, x, v) = V (t, x, v)hin(x, v) + Ψ(t, x, v)(Γ(h, h)).

4.8.2 Proof of Theorem 4.2.5

Thanks to Theorem 4.8.1 we can control the convergence of hε towards h for any finite

time T . Then, thanks to the uniqueness property of Theorem 2.1 and the control on the

remainder of Theorem 2.3 in [56], in the case of a hard potential collision kernel, one has

∀T > 0, VT (ε) 6 CV ε.

Finally, thanks to Theorem 4.2.3, we have the exponential decay for both hε and h, leading

to

‖hε − h‖Hs
xL

2
v
6 2 ‖hin‖Hsε e

−τsT .

We define

TM = − 1

τs
ln

(
ε

2 ‖hin‖Hsε

)
to get that

∀T > TM , ‖hε − h‖Hs
xL

2
v
6 ε.

This conclude the proof Theorem 4.2.5, by applying Theorem 4.8.1 to TM .

Appendices

4.A Validation of the assumptions

As said in the introduction, all the hypocoercivity theory assumptions hold for several

different kinetic models. One can find the proof of the assumptions (H1), (H2), (H3),

(H1’) and (H2’) in [82] directly for the linear relaxation (see also [24]), the semi-classical

relaxation (see also [86]), the linear Fokker-Planck equation, the Boltzmann equation with

hard potential and angular cutoff and the Landau equation with hard and moderately soft

potential (both studied in a constructive way in [4] and [79], for the spectral gaps, see also

[53] and [54] for the Cauchy problems):

� The Linear Relaxation

∂tf + v.∇xf =
1

ε

[(∫ d

R
f(t, x, v∗)dv∗

)
µ(v)− f

]
,
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� The Semi-classical Relaxation

∂tf + v.∇xf =
1

ε

∫
Rd

[µ(1− δf)f∗ − µ∗(1− δf∗)f ] dv∗,

� The Linear Fokker-Planck Equation

∂tf + v.∇xf =
1

ε
∇v. (∇vf + fv) ,

� The Boltzmann Equation with hard potential and angular cutoff

∂tf + v.∇xf =
1

ε

∫
Rd×Sd−1

b(cosθ)|v − v∗|γ
[
f ′f ′∗ − ff∗

]
dv∗dσ,

� The Landau Equation with hard and moderately soft potential

∂tf + v.∇xf =
1

ε
∇v.

(∫
Rd

Φ(v − v∗)|v − v∗|γ+2 [f∗(∇f)− f(∇f)∗]

)
.

Assumption (H4) is clearly satisfied by the first three as in that case we have either

‖.‖Λv = ‖.‖L2
v

or Γ = 0 (see [82]). Moreover, (H5) is obvious in the case of a linear

equation. It thus remains to prove properties (H5) for the semi-classical relaxation and

(H4) and (H5) for the Boltzmann equation and the Landau equation (since our property

(H4) is slightly different from (H4) in [82]).

4.A.1 The semi-classical relaxation

In the case of the semi-classical relaxation, the linearization is slightly different. Indeed,

the unique global equilibrium associated to an initial data f0 is (assuming some initial

bounds, see [82])

f∞ =
κ∞µ

1 + δκ∞µ
,

where κ∞ depends on f0.

Thus, we are no longer in the case of a global equilibrium being a Maxwellian. However,

a good way of linearizing this equation is (see [82]) considering

f = f∞ + ε

√
κ∞µ

1 + δκ∞µ
h.

Using such a linearization instead of the one used all along this chapter yields the same

general equation (4.1.3) with L and Γ satisfying all the requirements (see [82]). Indeed,

one may find that Ker(L) = Span
(
f∞/
√
µ
)

and then notice that this is not of the form
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needed in assumption (H3). However, this is bounded by e−|v|
2/4 and therefore we are still

able to use the toolbox (section 4.3, thus all the theorems.

Let us look at the bilinear operator to show that it fulfils hypothesis (H5). A straight-

forward computation gives us the definition of Γ,

Γ(g, h) =
δ
√
κ∞
2

∫
Rd

√
µ∗

µ∗ − µ
1 + εκ∞µ∗

[hg∗ + h∗g]dv∗.

Then, multiplying by a function f , integrating over Rd and looking at the change of

variable (v, v∗)→ (v∗, v) yields

〈Γ(g, h), f〉L2
v

=
δ
√
κ∞
4

∫
Rd×Rd

(µ∗ − µ)(gh∗ + g∗h)

[
f

√
µ∗

1 + δκ∞µ∗
− f∗

√
µ

1 + δκ∞µ

]
dvdv∗.

Therefore, taking f in Ker(L) gives us the expected property.

4.A.2 Boltzmann operator with angular cutoff and hard potential

Notice that, compared to [82], we defined Γ in a way that it is symmetric which gives us,

using the fact that µ∗µ = µ′∗µ
′,

Γ(g, h) =
1

2

∫
Rd×(S)d−1

B(µ1/2)∗[g
′
∗h
′ + g′h′∗ − g∗h− gh∗]dv∗dσ,

4.A.2.1 Orthogonality to Ker(L): (H5)

A well-known property (see [46] for instance) tells us that for all φ in L2
v decreasing fast

enough at infinity and for all ψ in L2
v one has∫

Rd
Γ(g, h)(v)ψ(v)dv =

1

8

∫
(Rd)2×Sd−1

B[g′∗h
′ + g′h′∗ − g∗h− gh∗]

((µ1/2)∗ψ + (µ1/2)ψ∗ − (µ1/2)′∗ψ
′ − (µ1/2)′ψ′∗)dvdv∗dσ.

As shown in [30] or [82] we have that Ker(L) = Span(1, v1, . . . , vd, |v|2)µ1/2 and there-

fore taking ψ to be each of these kernel functions gives us (H5).
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4.A.2.2 Controlling derivatives: (H4)

To prove (H4) we can define

Γ+(g, h) =

∫
Rd×(S)d−1

B(µ1/2)∗g
′
∗h
′ dv∗dσ,

Γ−(g, h) = −
∫
Rd×(S)d−1

B(µ1/2)∗g∗h dv∗dσ.

By using the change of variable u = v− v∗ we end up with θ being a function of u and

σ and v′ = v + f1(u, σ) and v′∗ = v + f2(u, σ), f1 and f2 being functions. Therefore we

can make this change of variable, take j and l such that |j|+ |l| 6 s and differentiate our

operator Γ−.

∂jl Γ
−(g, h) = −1

2

∑
j0+j1+j2=j

l1+l2=l

∫
Rd×Sd−1

b(cosθ)|u|γ∂j00

(
µ(v − u)1/2

)
∂j1l1 g∗ ∂

j2
l2
h dudσ.

Then we can easily compute that, C being a generic constant,

∣∣∣∂j00

(
µ(v − u)1/2

)∣∣∣ 6 Cµ(v − u)1/4.

Moreover, we are in the case where γ > 0 and therefore we have

|u|γµ(v − u)1/4 6 C(1 + |v|)γµ(v − u)1/8.

Combining this and the fact that |b| 6 Cb (angular cutoff considered here), multiplying

by a function f and integrating over Td × Rd yields, using Cauchy-Schwarz two times,

∣∣∣〈∂jl Γ−(g, h), f〉L2
x,v

∣∣∣ 6 C
∑

j0+j1+j2=j

l1+l2=l

∫
Td×Rd

(1 + |v|)γ
∣∣∣∂j2l2 h∣∣∣ |f |(∫Rd µ1/8

∗

∣∣∣∂j1l1 g∗∣∣∣ dv∗) dvdx
6 Gs(g, h) ‖f‖Λ ,

with

Gs(g, h) = C
∑

|j1|+|l1|+|j2|+|l2|6s

[∫
Td

∥∥∥∂j2l2 h∥∥∥2

Λv

∥∥∥∂j1l1 g∥∥∥2

L2
v

dx

]1/2

.

At that point we can use Sobolev embeddings (see [22], corollary IX.13) stating that

if E (s0/2) > d/2 then we have H
s/2
x ↪→ L∞x .

So, if |j1|+ |l1| 6 s/2 we have
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∥∥∥∂j1l1 g∥∥∥2

L2
v

6 sup
x∈Td

∥∥∥∂j1l1 g∥∥∥2

L2
v

6 Cs

∥∥∥∥∥∥∥∂j1l1 g∥∥∥2

L2
v

∥∥∥∥
H
s/2
x

6 Cs
∑
|p|6s/2

∑
p1+p2=p

∫
Td×Rd

∂j1l1+p1
g ∂j1l1+p2

g dvdx (4.A.1)

6 Cs ‖g‖2Hs
x,v
,

by a mere Cauchy-Schwarz inequality.

In the other case, |j2|+ |l2| 6 s/2 and by same calculations we show

∥∥∥∂j2l2 h∥∥∥2

Λv
6 Cs ‖h‖2Hs

Λ
.

Therefore, by just dividing the sum into this two subcases we obtain the result (H4)

for Γ−, noticing that in the case j = 0 equation (4.A.1) has no v derivatives and the

Cauchy-Schwarz inequality does not create such derivatives so the control is only made by

x-derivatives.

The second term Γ+ is dealt exactly the same way with, at the end (the study of

Gs), another change of variable (v, v∗)→ (v′, v′∗) which gives the result since (1 + |v′|)γ 6

(1 + |v|)γ + (1 + |v∗|)γ if γ > 0.

4.A.3 Landau operator with hard and moderately soft potential

The Landau operator is used to describe plasmas and for instance in the case of particles

interacting via a Coulomb interaction (see [112] for more details). The particular case of

Coulomb interaction alone (γ = −3) will not be studied here as the Landau linear operator

has a spectral gap if and only if γ > −2 (see [53], for not constructive arguments, [83]

for general constructive case and [4] for explicit construction in the case of hard potential

γ > 0) and so only the case γ > −2 may be applicable in this study.

We can compute straightforwardly the bilinear symmetric operator associated with the

Landau equation:

Γ(g, h) =
1

2
√
µ
∇v ·

∫
Rd

√
µµ∗Φ(v − v∗) [g∗∇vh+ h∗∇vg − g(∇vh)∗ − h(∇vg)∗] dv∗,

where Φ : Rd −→ Rd is such that Φ(z) is the orthogonal projection onto Span(z)⊥ so

Φ(z)ij = δij −
zizj
|z|2 ,

and γ belongs to [−2, 1].
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4.A.3.1 Orthogonality to Ker(L): (H5)

Let consider a function ψ in C∞x,v. A mere integration by part gives us

〈Γ(g, h), ψ〉L2
v

= −1

2

∫
Rd×Rd

∇v
(
ψ√
µ

)
· (√µµ∗Φ(v − v∗)[G]) dv∗dv,

where

G = g∗∇vh+ h∗∇vg − g(∇vh)∗ − h(∇vg)∗.

Then the change of variable (v, v∗)→ (v∗, v) only changes ∇v(ψ/√µ) to
[
∇v(ψ/√µ)

]
∗

and G becomes −G. Therefore we finally obtain

〈Γ(g, h), ψ〉L2
v

=
1

4

∫
Rd×Rd

√
µµ∗Φ(v − v∗)[G] ·

[(
∇v
(
ψ√
µ

))
∗
−∇v

(
ψ√
µ

)]
dv∗dv.

As shown in [30] or [82] we have that Ker(L) = Span(1, v1, . . . , vd, |v|2)µ1/2. Computing

the term inside brackets for each of these functions gives us 0 or, in the case |v|2√µ,

2(v∗ − v).

However, by definition, Φ(v− v∗)[G] belongs to Span(v− v∗)⊥ and therefore Φ(v− v∗)[G] ·
(v∗ − v) = 0. So Γ indeed satisfies (H5).

4.A.3.2 Controlling derivatives: (H4)

The article [53] gives us directly the expected result in its Theorem 3, equation (35) with

θ = 0. The case where there are only x-derivatives is also included if one takes β = 0.

4.B Proofs of the results given in the toolbox

We used the estimates given by the toolbox throughout this chapter. This appendix is to

prove all of them. It is divided in two parts. The first one is dedicated to the proof of

the equality between null spaces whereas the second part deals with the time derivatives

inequalities.

4.B.1 Proof of Proposition 4.3.1:

We are about to prove the following proposition.

Proposition 4.B.1 Let a and b be in R∗ and consider the operator G = aL − bv · ∇x
acting on H1

x,v.
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If L satisfies (H1) and (H3) then

Ker(G) = Ker(L).

To prove this result we will need a lemma.

Lemma 4.B.2 Let f : Td × Rd −→ R be continuous on Td × Rd and differentiable in x.

If v · ∇xf(x, v) = 0 for all (x, v) in Td × Rd then f does not depend on x.

Proof of Lemma 4.B.2 Fix x in Td and v Q-free in Rd.
For y in Rd we will denote by ȳ its equivalent class in Td.

Define g : R −→ R
t 7−→ f( ¯x+ tv, v)

.

We find easily that g is differentiable on R and that g′(t) = v.∇xf(x, v) = 0 on R.

Therefore:

∀t ∈ R, f( ¯x+ tv, v) = f(x, v).

However, a well-known property about the torus is that the set {x+ nv, n ∈ Z} is dense in

Td for all x in Td and v Q-free in Rd. This combined with the last result and the continuity

of f leads to:

∀y ∈ Td, f(y, v) = f(x, v).

To conclude it is enough to see that the set of Q-free vector in Rd is dense in Rd and then,

by continuity of f in v:

∀y ∈ Td, ∀v ∈ Rd , f(y, v) = f(x, v).

Now we have all the tools to prove the proposition about the kernel of operators.

Proof of Proposition 4.B.1 Since L satisfies (H1) we know that L acts on L2
v and that

its Kernel functions φi only depend on v. Thus, we have directly the first inclusion

Ker(L) ⊂ Ker(G).

Then, let us consider h in H1
x,v such that G(h) = 0.

Because the transport operator v · ∇x is skew-symmetric in L2
x,v we have

0 = 〈G(h), h〉L2
x,v

= a

∫
Td
〈L(h), h〉L2

v
dx.
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However, because L satisfies (H3) we obtain:

0 > λ

∫
Td
‖h(x, .)− πL(h(x, .))‖2Λv dx.

But λ is strictly positive and thus:

∀x ∈ Td , h(x, ·) = πL(h(x, ·)) =

d∑
i=1

ci(x)φi.

Finally we have, by assumption, G(h) = 0 and because h(x, ·) belongs to Ker(L) for

all x in Td we end up with

∀(x, v) ∈ Td × Rd , v · ∇xh(x, v) = 0.

By applying the lemma above we then obtain that h does not depend on x. But (φi)16i6d

is an orthonormal family, basis of Ker(L), and therefore we find that for all i, ci does not

depend on x.

So,we have proved that:

∀(x, v) ∈ Td × Rd , h(x, v) =

d∑
i=1

ciφi(v).

Therefore, h belongs to Ker(L) and only depends on x.

4.B.2 A priori energy estimates

In this subsection we derive all the inequalities we used. Therefore, we assume that L

satisfies (H1’), (H2’) and (H3) while Γ has the properties (H4) and (H5), and we pick g in

Hs
x,v. We consider h in Hs

x,v ∩Ker(Gε)
⊥ and we assume that h is a solution to (4.1.3):

∂th+
1

ε
v.∇xh =

1

ε2
L(h) +

1

ε
Γ(g, h).

In the toolbox, we wrote inequalities on function which were solutions of the linear equa-

tion. As the reader may notice, we will deal with the second order operator just by

applying the first part of (H4) and Young’s inequality. Such an inequality only provides

two positive terms, and thus by just setting Γ equal to 0 in the next inequalities we get

the expected bounds in the linear case (not the sharpest ones though). Therefore we will

just describe the more general case and the linear one is included in it.
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4.B.2.1 Time evolution of pure x-derivatives

The operators L and Γ only act on the v variable. Thus, for 0 6 |l| 6 s, ∂0
l commutes

with L and v · ∇x. Remind that v · ∇x is skew-symmetric in L2
x,v(Td × Rd) and therefore

we can compute

d

dt

∥∥∂0
l h
∥∥2

L2
x,v

=
2

ε2
〈L(∂0

l h), ∂0
l h〉L2

x,v
+

2

ε
〈∂0
l Γ(g, h), ∂0

l h〉L2
x,v
.

We can then use hypothesis (H3) to obtain

2

ε2
〈L(∂0

l h), ∂0
l h〉L2

x,v
6 −2λ

ε2

∥∥∥(∂0
l h)⊥

∥∥∥2

Λ
.

We also use (H3) to get (∂0
l h)⊥ = ∂0

l h
⊥.

To deal with the second scalar product, we will use hypothesis (H4) and (H5), which

is still valid for ∂0
l Γ since πL only acts on the v variable, followed by a Young inequality

with some D1 > 0. This yields

2

ε
〈∂0
l Γ(g, h), ∂0

l h〉L2
x,v

=
2

ε
〈∂0
l Γ(g, h), ∂0

l h
⊥〉L2

x,v

6
2

ε
Gsx(g, h)

∥∥∥∂0
l h
⊥
∥∥∥

Λ

6
D1

ε
(Gsx(g, h))2 +

1

D1ε

∥∥∥∂0
l h
⊥
∥∥∥2

Λ
.

Gathering the last two upper bounds we obtain

d

dt

∥∥∂0
l h
∥∥2

L2
x,v

6

[
1

D1ε
− 2λ

ε2

] ∥∥∥∂0
l h
⊥
∥∥∥2

Λ
+
D1

ε
(Gsx(g, h))2 .

Finally, taking D1 = ε/λ gives us inequalities (4.3.6), (4.3.7) and (4.3.10).

4.B.2.2 Time evolution of ‖∇vh‖2L2
x,v

For that term we get, by applying the equation satisfied by h, the following:

d

dt
‖∇vh‖2L2

x,v
=

2

ε2
〈∇vL(h),∇vh〉L2

x,v
− 2

ε
〈∇v(v · ∇xh),∇vh〉L2

x,v
+

2

ε
〈∇vΓ(g, h),∇vh〉L2

x,v
.

And by writing the second term on the right-hand side of the equality and integrating by

part in x, we have

〈∇v(v · ∇xh),∇vh〉L2
x,v

= 〈∇xh,∇vh〉L2
x,v
.
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Therefore the following holds:

d

dt
‖∇vh‖2L2

x,v
=

2

ε2
〈∇vL(h),∇vh〉L2

x,v
− 2

ε
〈∇xh,∇vh〉L2

x,v
+

2

ε
〈∇vΓ(g, h),∇vh〉L2

x,v
.

Then we have by (H1) that L = K − Λ and we can estimate each component thanks to

(H1) and (H2):

−〈∇vΛ(h),∇vh〉L2
x,v

6 νΛ
4 ‖h‖2L2

x,v
− νΛ

3 ‖∇vh‖2Λ ,
〈∇vK(h),∇vh〉L2

x,v
6 C(δ) ‖h‖2L2

x,v
+ δ ‖∇vh‖2L2

x,v
,

where δ is a strictly positive real that we will choose later.

Finally, for a D > 0 that we will choose later, we have the following upper bound, by

Cauchy-Schwarz inequality:

−2

ε
〈∇xh,∇vh〉L2

x,v
6
D

ε
‖∇xh‖2L2

x,v
+

νΛ
1

DνΛ
0 ε
‖∇vh‖2Λ ,

using the fact that ‖.‖2L2
x,v

6 νΛ
1

νΛ
0
‖.‖2Λ. Finally, another Young inequality gives us a control

on the last scalar product, for a D2 > 0 to be chosen later

2

ε
〈∇vΓ(g, h),∇vh〉L2

x,v
6
D2

ε

(
G1
x,v(g, h)

)2
+

1

D2ε
‖∇vh‖2Λ .

We gather here the last three inequalities to obtain our global upper bound:

d

dt
‖∇vh‖2L2

x,v
6

1

ε2

(
2νΛ

4 + 2C(δ)
)
‖h‖2L2

x,v
+
D

ε
‖∇xh‖2L2

x,v

+

(
2νΛ

1 δ

νΛ
0 ε

2
− 2νΛ

3

ε2
+

νΛ
1

DενΛ
0

+
1

D2ε

)
‖∇vh‖2Λ +

D2

ε

(
G1
x,v(g, h)

)2
.

We can go even further since we have ‖h‖2L2
x,v

=
∥∥h⊥∥∥2

L2
x,v

+ ‖πL(h)‖2L2
x,v

.

But because h is in Ker(Gε)
⊥ we can use the toolbox and the equation (4.3.5) about the

Poincaré inequality:

‖πL(h)‖2L2
x,v

6 Cp ‖∇xh‖2L2
x,v
.

This last inequality yields:
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d

dt
‖∇vh‖2L2

x,v
6

νΛ
1

νΛ
0 ε

2

(
2νΛ

4 + 2C(δ)
) ∥∥∥h⊥∥∥∥2

Λ
+

[
Cp
ε2

(
2νΛ

4 + 2C(δ)
)

+
D

ε

]
‖∇xh‖2L2

x,v

+

[
2νΛ

1 δ

νΛ
0 ε

2
− 2νΛ

3

ε2
+

νΛ
1

DενΛ
0

+
1

D2ε

]
‖∇vh‖2Λ +

D2

ε

(
G1
x,v(g, h)

)2
.

Therefore, we can choose δ = νΛ
0 ν

Λ
3 /6ν

Λ
1 , D = 3νΛ

1 ε/ν
Λ
0 ν

Λ
3 and D2 = 3ε/νΛ

3 to get the

equation (4.3.8).

4.B.2.3 Time evolution of 〈∇xh,∇vh〉L2
x,v

In the same way, and integrating by part in x then in v we obtain the following equality:

d

dt
〈∇xh,∇vh〉L2

x,v

=
2

ε2
〈L(∇xh),∇vh〉L2

x,v
− 2

ε
〈∇v(v · ∇xh),∇xh〉L2

x,v
+

2

ε
〈∇xΓ(g, h),∇vh〉L2

x,v
.

By writing explicitly 〈∇v(v · ∇xh),∇xh〉L2
x,v

and by integrating by part one can show

that the following holds:

〈∇v(v.∇xh),∇xh〉L2
x,v

=
1

2
‖∇xh‖2L2

x,v
.

Therefore we have an explicit formula for that term and we can find the time derivative

of the scalar product being:

d

dt
〈∇xh,∇vh〉L2

x,v
=

2

ε2
〈L(∇xh),∇vh〉L2

x,v
− 1

ε
‖∇xh‖2L2

x,v
+

2

ε
〈∇xΓ(g, h),∇vh〉L2

x,v
.

We can bound above the first term in the right-hand side of the equality thanks to

(H1) and then Cauchy-Schwarz in x, with a constant η > 0 to be define later.

2

ε2
〈L(∇xh),∇vh〉L2

x,v
=

2

ε2
〈L(∇xh⊥),∇vh〉L2

x,v

6
CL

ε2

∫
Td

2
∥∥∥∇xh⊥∥∥∥

Λv
‖∇vh‖Λv dx

6
CLη

ε2

∥∥∥∇xh⊥∥∥∥2

Λ
+
CL

ηε2
‖∇vh‖2Λ .

Then applying hypothesis (H4) and Young’s inequality one more time with a constant

D3 > 0 one may find

2

ε
〈∇xΓ(g, h),∇vh〉L2

x,v
6
D3

ε

(
G1
x(g, h)

)2
+

1

D3ε
‖∇vh‖2Λ .

- 197 -



4 From Boltzmann to incompressible Navier-Stokes on the torus

Hence we end up with the following inequality:

d

dt
〈∇xh,∇vh〉L2

x,v
6

CLη

ε2

∥∥∥∇xh⊥∥∥∥2

Λ
+

(
CL

ηε2
+

1

D3

)
‖∇vh‖2Λ −

1

ε
‖∇xh‖2L2

x,v

+
D3

ε

(
G1
x(g, h)

)2
.

Now define η = e/ε, e > 0, and D3 = e/CL to obtain equation (4.3.9).

4.B.2.4 Time evolution of
∥∥∥∂jl h∥∥∥2

L2
x,v

for |j| > 1 and |j|+ |l| = s

This term is the only term far from what we already did since we are mixing more than

one derivative in x and one derivative in v in general. By simply differentiating in time

and integrating by part we find the following equality.

d

dt

∥∥∥∂jl h∥∥∥2

L2
x,v

=
2

ε2
〈∂jl L(h), ∂jl h〉L2

x,v
− 2

ε
〈∂jl (v.∇xh), ∂jl h〉L2

x,v

+
2

ε
〈∂jl Γ(g, h), ∂jl h〉L2

x,v

=
2

ε2
〈∂jl L(h), ∂jl h〉L2

x,v
− 2

ε

∑
i,ci(j)>0

〈∂jl h, ∂
j−δi
l+δi

h〉L2
x,v

+
2

ε
〈∂jl Γ(g, h), ∂jl h〉L2

x,v
.

We can then apply Cauchy-Schwarz for the terms inside the sum symbol. For each we

can use a Di,l,s > 0 but because they play an equivalent role we will take the same D > 0,

that we will choose later:

−2

ε
〈∂jl h, ∂

j−δi
l+δi

h〉L2
x,v

6
νΛ

1

DνΛ
0 ε

∥∥∥∂jl h∥∥∥2

Λ
+
D

ε

∥∥∥∂j−δil+δi
h
∥∥∥2

L2
x,v

.

Then we can use (H1’) and (H2’), with a δ > 0 we will choose later, to obtain

2

ε2
〈∂jl L(h), ∂jl h〉L2

x,v
6

2

ε2
(C(δ) + νΛ

6 ) ‖h‖2
Hs−1
x,v

+
2

ε2

(
δνΛ

1

νΛ
0

− νΛ
5

)∥∥∥∂jl h∥∥∥2

Λ
.

Finally, applying (H4) and Young’s inequality with a constant D2 > 0 we obtain

2

ε
〈∂jl Γ(g, h), ∂jl h〉L2

x,v
6
D2

ε

(
Gsx,v(g, h)

)2
+

1

D2ε

∥∥∥∂jl h∥∥∥2

Λ
.

Combining these three inequality we find an upper bound for the time evolution. Here

we also use the fact that the number of i such that ci(j) > 0 is less or equal to d.
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d

dt

∥∥∥∂jl h∥∥∥2

L2
x,v

6

[
νΛ

1 d

DενΛ
0

+
2

ε2

(
δνΛ

1

νΛ
0

− νΛ
5

)
+

1

D2ε

] ∥∥∥∂jl h∥∥∥2

Λ

+
D

ε

∑
i,ci(j)>0

∥∥∥∂j−δil+δi
h
∥∥∥2

L2
x,v

+
2

ε2
(C(δ) + νΛ

6 ) ‖h‖2
Hs−1
x,v

+
D2

ε

(
Gsx,v(g, h)

)2
.

Hence, we obtain equations (4.3.11) and (4.3.12) by taking D = 3νΛ
1 ε/ν

Λ
0 ν

Λ
5 , D2 = 3ε/νΛ

5

and δ = νΛ
0 ν

Λ
5 /6ν

Λ
1 . Also note that in (4.3.11) we used

∥∥∥∂j−δil+δi
h
∥∥∥2

L2
x,v

6 νΛ
1

νΛ
0

∥∥∥∂j−δil+δi
h
∥∥∥2

Λ
.

4.B.2.5 Time evolution of 〈∂δil−δih, ∂
0
l h〉L2

x,v

With no more calculations, we can bound this term in the same way we did for 〈∇xh,∇vh〉.
Here we get

d

dt
〈∂δil−δih, ∂

0
l h〉L2

x,v
6

CLη

ε2

∥∥∥∂0
l h
⊥
∥∥∥2

Λ
+

[
CL

ηε2
+

1

εD3

] ∥∥∥∂δil−δih∥∥∥2

Λ
− 1

ε

∥∥∂0
l h
∥∥2

L2
x,v

+
D3

ε
(Gsx(g, h))2 .

Now define η = e/ε, e > 0, and D3 = e/CL to obtain equation (4.3.13).

In the next paragraphs, we are setting g = h.

4.B.2.6 Time evolution of
∥∥∇vh⊥∥∥2

L2
x,v

By simply differentiating norm and using (H5) to get Γ(h, h)⊥ = Γ(h, h), we compute

d

dt

∥∥∥∇vh⊥∥∥∥2

L2
x,v

= 2〈∇v(Gε(h))⊥,∇vh⊥〉L2
x,v

+
2

ε
〈∇vΓ(h, h),∇vh⊥〉L2

x,v
.

By applying (H4) and Young’s inequality to the second term on the right-hand side,

with a constant D2 > 0, and controlling the L2
x,v-norm by the Λ-norm we obtain:

2

ε
〈∇vΓ(h, h),∇vh⊥〉L2

x,v
6
D2

ε

(
G1
x,v(h, h)

)2
+

1

εD2

∥∥∥∇vh⊥∥∥∥2

Λ
.

Then we have to control the first term. Just by writing it and decomposing terms in

projection onto Ker(L) and onto its orthogonal we yield:
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2〈∇v(Gε(h))⊥,∇vh⊥〉L2
x,v

=
2

ε2
〈∇vL(h),∇vh⊥〉L2

x,v
− 2

ε
〈∇v(v · ∇xh)⊥,∇vh⊥〉L2

x,v

=
2

ε2
〈∇vL(h⊥),∇vh⊥〉L2

x,v
− 2

ε
〈∇xh,∇vh⊥〉L2

x,v

−2

ε
〈v · ∇v∇xπL(h),∇vh⊥〉L2

x,v

+
2

ε
〈∇vπL(v · ∇xh),∇vh⊥〉L2

x,v
.

Then we can control the first term on the right-hand side thanks to (H1) and (H2),

δ > 0 to be chosen later:

2

ε2
〈∇vL(h⊥),∇vh⊥〉L2

x,v
6

2(C(δ) + νΛ
4 )ν1

Λ

νΛ
0 ε

2

∥∥∥h⊥∥∥∥2

Λ
+

2

ε2

(
νΛ

1 δ

νΛ
0

− νΛ
3

)∥∥∥∇vh⊥∥∥∥2

Λ
.

We apply Cauchy-Schwarz inequality to the next term, with D to be chosen later:

−2

ε
〈∇xh,∇vh⊥〉L2

x,v
6
D

ε
‖∇xh‖2L2

x,v
+

νΛ
1

νΛ
0 Dε

∥∥∥∇vh⊥∥∥∥2

Λ
.

For the third term we are going to apply Cauchy-Schwarz inequality and then use the

property (H3). The latter property tells us that the functions in Ker(L) are of the form a

polynomial in v times e−|v|
2/4. This fact combined with the shape of πL, equation (4.3.1),

shows us that we can control, by a mere Cauchy-Schwarz inequality, the third term. Then

the property (4.3.3) yields the following upper bound:

−2

ε
〈v · ∇v∇xπL(h),∇vh⊥〉L2

x,v
6

D̃

ε
‖v · ∇vπL(∇xh)‖2L2

x,v
+

1

D̃ε

∥∥∥∇vh⊥∥∥∥2

L2
x,v

6
D̃Cπ1

ε
‖∇xh‖2L2

x,v
+

νΛ
1

νΛ
0 D̃ε

∥∥∥∇vh⊥∥∥∥2

Λ
.

Finally, we first use equation (4.3.3) controling the v-derivatives of πL and then see

that the norm of πL(v.f) is easily controled by the norm of f (just use (H3) and the

definition of πL (4.3.1) and apply Cauchy-Schwarz inequality) by a factor Cπ1 (increase

this constant if necessary in (4.3.3)):
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2

ε
〈∇vπL(v.∇xh),∇vh⊥〉L2

x,v
6

D′

ε
‖∇vπL(v.∇xh)‖2L2

x,v
+

1

εD′

∥∥∥∇vh⊥∥∥∥2

L2
x,v

6
D′Cπ1

ε
‖πL(v.∇xh)‖2L2

x,v
+

1

εD′

∥∥∥∇vh⊥∥∥∥2

L2
x,v

6
D′C2

π1

ε
‖∇xh‖2L2

x,v
+

νΛ
1

νΛ
0 εD

′

∥∥∥∇vh⊥∥∥∥2

L2
x,v

.

We then gather all those bounds to get the last upper bound for the time derivative of

the v-derivative.

d

dt

∥∥∥∇vh⊥∥∥∥2

L2
x,v

6
νΛ

1

νΛ
0 ε

2

(
2νΛ

4 + 2C(δ)
) ∥∥∥h⊥∥∥∥2

Λ
+

[
D

ε
+
D′C2

π1

ε
+
D̃Cπ1

ε

]
‖∇xh‖2L2

x,v

+

[
2νΛ

1 δ

νΛ
0 ε

2
− 2νΛ

3

ε2
+

νΛ
1

ενΛ
0

(
1

D
+

1

D′
+

1

D̃

)
+

1

εD2

] ∥∥∥∇vh⊥∥∥∥2

Λ

+
D2

ε

(
G1
x,v(h, h)

)2
.

Therefore we obtain (4.3.14) by taking D = D′ = D̃ = 9νΛ
1 ε/ν

Λ
0 ν

Λ
3 , δ = νΛ

0 ν
Λ
3 /6ν

Λ
1 and

D2 = 3ε/νΛ
3 .

4.B.2.7 A new time evolution of 〈∇xh,∇vh〉L2
x,v

By integrating by part in x then in v we obtain the following equality on the evolution of

the scalar product:

d

dt
〈∇xh,∇vh〉L2

x,v
= 2〈∇xGε(h),∇vh〉L2

x,v
+

2

ε
〈∇vΓ(h, h),∇xh〉L2

x,v
.

We will bound above the first term as in the previous case and for the second term

involving Γ we use (H4) and Young’s inequality with a constant D3 > 0:

2〈∇vΓ(h, h),∇xh〉L2
x,v

6 D3

(
G1
x,v(h, h)

)2
+

1

D3
‖∇xh‖2Λ .

We decompose ∇xh thanks to πL and we use (4.3.4) to control the fluid part of it,

2〈∇vΓ(h, h),∇xh〉L2
x,v

6 D3

(
G1
x,v(h, h)

)2
+

1

D3

∥∥∥∇xh⊥∥∥∥2

Λ
+
Cπ
D3
‖∇xh‖2L2

x,v
.

Finally we obtain an upper bound for the time-derivative:
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d

dt
〈∇xh,∇vh〉L2

x,v
6

[
CLη

ε2
+

1

εD3

] ∥∥∥∇xh⊥∥∥∥2

Λ
+
CL

ηε2
‖∇vh‖2Λ +

[
Cπ
εD3

− 1

ε

]
‖∇xh‖2L2

x,v

+
D3

ε

(
G1
x,v(h, h)

)2
.

But now, we can use the properties (4.3.3) and (4.3.4) of the projection πL to go

further.

‖∇vh‖2Λ 6 2
∥∥∥∇vh⊥∥∥∥2

Λ
+ 2 ‖∇vπL(h)‖2Λ

6 2
∥∥∥∇vh⊥∥∥∥2

Λ
+ 2Cπ1Cπ ‖πL(h)‖2L2

x,v

6 2
∥∥∥∇vh⊥∥∥∥2

Λ
+ 2Cπ1CπCp ‖∇xh‖2L2

x,v
,

where we used Poincare inequality (4.3.5) because h is in Ker(Gε)
⊥.

Hence we have a final upper bound for the time derivative:

d

dt
〈∇xh,∇vh〉L2

x,v
6

[
CLη

ε2
+

1

εD3

] ∥∥∥∇xh⊥∥∥∥2

Λ

+
2CL

ηε2

∥∥∥∇vh⊥∥∥∥2

Λ
+

[
2CLCπ1CπCp

ε2η
+

Cπ
εD3

− 1

ε

]
‖∇xh‖2L2

x,v

+
D3

ε

(
G1
x,v(h, h)

)2
.

Thus, setting η = 8eCLCπ1CπCp/ε with e > 1 and D3 = 4Cπ we obtain equation

(4.3.15).

4.B.2.8 Time evolution of
∥∥∥∂jl h⊥∥∥∥2

L2
x,v

, j > 1 and |j|+ |l| = s

We have the following time evolution:

d

dt

∥∥∥∂jl h⊥∥∥∥2

L2
x,v

= 2〈∂jl (Gε(h))⊥, ∂jl h
⊥〉L2

x,v
+

2

ε
〈∂jl Γ(h, h), ∂jl h

⊥〉L2
x,v
.

As above, we apply (H4) for the last term on the right hand side, with a constant

D2 > 0,

2〈∂jl Γ(h, h), ∂jl h
⊥〉L2

x,v
6 D2

(
Gsx,v(h, h)

)2
+

1

D2

∥∥∥∂jl h⊥∥∥∥2

Λ
.

Then we evaluate the first term on the right-hand side.
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2〈∂jl (Gε(h))⊥, ∂jl h
⊥〉L2

x,v
=

2

ε2
〈∂jl L(h), ∂jl h

⊥〉L2
x,v
− 2

ε
〈∂jl (v.∇xh)⊥, ∂jl h

⊥〉L2
x,v

=
2

ε2
〈∂jl L(h⊥), ∂jl h

⊥〉L2
x,v
− 2

ε
〈v · ∂jl πL(∇xh), ∂jl h

⊥〉L2
x,v

−2

ε

∑
i,ci(j)>0

〈∂j−δil+δi
h, ∂jl h

⊥〉L2
x,v

+
2

ε
〈∂jl πL(v · ∇xh), ∂jl h

⊥〉L2
x,v
.

Then we shall bound each of these four terms on the right-hand side.

We can first use the properties (H1’) and (H2’) of L to get, for some δ to be chosen later,

2

ε2
〈∂jl L(h⊥), ∂jl h

⊥〉L2
x,v

6
2

ε2

(
C(δ) + νΛ

6

) ∥∥∥h⊥∥∥∥2

Hs−1
x,v

+
2

ε2

(
νΛ

1 δ

νΛ
0

− νΛ
5

)∥∥∥∂jl h⊥∥∥∥2

Λ
.

For the three remaining terms we will apply Cauchy-Schwarz inequality and use the

properties of πL concerning v-derivatives and multiplications by a polynomial in v.

First

−2

ε
〈v · ∂jl πL(∇xh), ∂jl h

⊥〉L2
x,v

6
D

ε

∥∥∥v · ∂jl πL(∇xh)
∥∥∥2

L2
x,v

+
1

Dε

∥∥∥∂jl h⊥∥∥∥2

L2
x,v

6
DCπs
ε

∥∥∂0
l (∇xh)

∥∥2

L2
x,v

+
νΛ

1

νΛ
0 Dε

∥∥∥∂jl h⊥∥∥∥2

Λ

6



DCπs
ε

∑
|l′|=s

∥∥∂0
l′h
∥∥2

L2
x,v

+
νΛ

1

νΛ
0 Dε

∥∥∥∂jl h⊥∥∥∥2

Λ
, |j| = 1

DCπs
ε

∑
|l′|6s−1

∥∥∂0
l′h
∥∥2

L2
x,v

+
νΛ

1

νΛ
0 Dε

∥∥∥∂jl h⊥∥∥∥2

Λ
, |j| > 1,

where we used that |l| = |s| − |j|. Then

−2

ε
〈∂j−δil+δi

h, ∂jl h
⊥〉L2

x,v
6
D′

ε

∥∥∥∂j−δil+δi
h
∥∥∥2

L2
x,v

+
νΛ

1

νΛ
0 D
′ε

∥∥∥∂jl h⊥∥∥∥2

Λ

In the case where |j| > 1 we can also use that
∥∥∥∂j−δil+δi

h
∥∥∥2

L2
x,v

can be decomposed thanks

to πL and its orthogonal projector. Then the fluid part is controlled by the x-derivatives

only.

And finally
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2

ε
〈∂jl πL(v · ∇xh), ∂jl h

⊥〉L2
x,v

6
D̃

ε

∥∥∥∂jl πL(v · ∇xh)
∥∥∥2

L2
x,v

+
1

D̃ε

∥∥∥∂jl h⊥∥∥∥2

L2
x,v

6
D̃Cπs
ε

∥∥∂0
l ∇xh

∥∥2

L2
x,v

+
νΛ

1

D̃νΛ
0 ε

∥∥∥∂jl h⊥∥∥∥2

Λ

6



D̃Cπs
ε

∑
|l′|=s

∥∥∂0
l′h
∥∥2

L2
x,v

+
νΛ

1

νΛ
0 D̃ε

∥∥∥∂jl h⊥∥∥∥2

Λ
, if |j| = 1

D̃Cπs
ε

∑
|l′|6s−1

∥∥∂0
l′h
∥∥2

L2
x,v

+
νΛ

1

νΛ
0 D̃ε

∥∥∥∂jl h⊥∥∥∥2

Λ
, if |j| > 1,

We are now able to combine all those estimates to get an upper bound of the time-

derivative we are looking at. We can also give to different bounds, depending on the size

|j|. We also used that the number of i such that ci(j) > 0 is less than d.

In the case |j| > 1,

d

dt

∥∥∥∂jl h⊥∥∥∥2

L2
x,v

6

[
2

ε2

(
νΛ

1 δ

νΛ
0

− νΛ
5

)
+

νΛ
1

νΛ
0 ε

(
1

D
+

d

D′
+

1

D̃

)
+

1

D2

] ∥∥∥∂jl h⊥∥∥∥2

Λ

+
D′νΛ

1

2νΛ
0 ε

∑
i,ci(j)>0

∥∥∥∂j−δil+δi
h⊥
∥∥∥2

Λ

+

[
DCπs

2ε
+
D′Cπs
ε

+
D̃Cπs
ε

] ∑
|l′|6s−1

∥∥∂0
l′h
∥∥2

L2
x,v

+
2(C(δ) + νΛ

6 )

ε2

∥∥∥h⊥∥∥∥2

Hs−1
x,v

+
D2

ε

(
Gsx,v(h, h)

)2
.

And in the case |j| = 1,

d

dt

∥∥∥∂δil−δih⊥∥∥∥2

L2
x,v

6

[
2

ε2

(
νΛ

1 δ

νΛ
0

− νΛ
5

)
+

νΛ
1

νΛ
0 ε

(
1

D
+

1

D′
+

1

D̃

)
+

1

D2

] ∥∥∥∂δil−δih⊥∥∥∥2

Λ

+

[
DCπs
ε

+
D′

ε
+
D̃Cπs
ε

] ∑
|l′|=s

∥∥∂0
l′h
∥∥2

L2
x,v

+
2(C(δ) + νΛ

6 )

ε2

∥∥∥h⊥∥∥∥2

Hs−1
x,v

+
D2

ε

(
Gsx,v(h, h)

)2
.

By taking D = D̃ = 9νΛ
1 ε/ν

Λ
0 ν

Λ
5 , D2 = 3ε/νΛ

5 , δ = νΛ
0 ν

Λ
5 /6ν

Λ
1 and D′ = 9νΛ

1 ε/ν
Λ
0 ν

Λ
5 , if
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|j| = 1, or D′ = 9νΛ
1 dε/ν

Λ
0 ν

Λ
5 , if |j| > 1, we obtain (4.3.16) and (4.3.17).

4.B.2.9 A new time evolution of 〈∂δil−δih, ∂
0
l h〉L2

x,v

By integrating by part in x then in v we obtain the following equality on the evolution of

the scalar product.

d

dt
〈∂δil−δih, ∂

0
l h〉L2

x,v
= 2〈∂δil−δiGε(h), ∂0

l h〉L2
x,v

+
2

ε
〈∂δil−δiΓ(h, h), ∂0

l h〉L2
x,v
.

We will bound above the first term as in the previous case and for the second term

involving Γ we use (H4) and Young’s inequality with a constant D3 > 0. Moreover, we

decompose ∂0
l h into its fluid part and its microscopic part and we apply (4.3.4) on the

fluid part. This yields

2〈∂δil−δiΓ(h, h), ∂0
l h〉L2

x,v
6 D3

(
Gsx,v(h, h)

)2
+

1

D3

∥∥∥∂0
l h
⊥
∥∥∥2

Λ
+
Cπ
D3

∥∥∂0
l h
∥∥2

L2
x,v
.

Finally we obtain an upper bound for the time-derivative:

d

dt
〈∂δil−δih, ∂

0
l h〉L2

x,v
6

[
CLη

ε2
+

1

D3

] ∥∥∥∂0
l h
⊥
∥∥∥2

Λ
+
CL

ηε2

∥∥∥∂δil−δih∥∥∥2

Λ
+

(
Cπ
εD3

− 1

ε

)∥∥∂0
l h
∥∥2

L2
x,v

+
D3

ε

(
Gsx,v(h, h)

)2
.

Now we can use the properties of πL concerning the v-derivatives, equation (4.3.3), the

equivalence of norm under the projection πL, equation (4.3.4), and Poincare inequality get

the following upper bound:

∥∥∥∂δil−δih∥∥∥2

Λ
6 2

∥∥∥∂δil−δih⊥∥∥∥2

Λ
+ 2

∥∥∥∂δil−δiπL(h)
∥∥∥2

Λ

6 2
∥∥∥∂δil−δih⊥∥∥∥2

Λ
+ 2CπsCπ

∥∥∂0
l−δi(h)

∥∥2

L2
x,v

6 2
∥∥∥∂δil−δih⊥∥∥∥2

Λ
+ 2CπsCπ

∑
|l′|6s−1

∥∥∂0
l′h
∥∥2

L2
x,v
.

Therefore,
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d

dt
〈∂δil−δih, ∂

0
l h〉L2

x,v
6

[
CLη

ε2
+

1

D3

] ∥∥∥∂0
l h
⊥
∥∥∥2

Λ
+

2CL

ηε2

∥∥∥∂δil−δih⊥∥∥∥2

Λ

+

(
Cπ
εD3

− 1

ε

)∥∥∂0
l h
∥∥2

L2
x,v

+
2CLCπsCπ

ηε2

∑
|l′|6s−1

∥∥∂0
l′h
∥∥2

L2
x,v

+
D3

ε

(
Gsx,v(h, h)

)2
.

We finally define η = 8eCLCπsCπd/ε, with e > 1, and D3 = 2Cπ to yield equation

(4.3.18).

4.C Proof of the hydrodynamical limit lemmas

In this section we are going to prove all the different lemmas used in section 9.

All along the demonstration we will use this inequality:

∀t > 0, k ∈ N∗, q > 0, p > 0, tqk2pe−atk
2
6 Cp(a)tq−p. (4.C.1)

4.C.1 Study of the linear part

4.C.1.1 Proof of Lemma 4.8.6

Fix T in [0,+∞]. By integrating we compute

∫ T

0
U ε0jhindt =

∑
n∈Zd−{0}

ein.x
[∫ T

0
e
iαjt|n|

ε
−βjt|n|2dt

]
P0j

(
n

|n|

)
ĥin(n, v)

=
∑

n∈Zd−{0}

ein.x
ε

iαj |n| − εβj |n|2
[
e
iαjT |n|

ε
−βjT |n|2 − 1

]
P0j ĥin(n, v).

The Fourier transform is an isometry in L2
x and therefore∥∥∥∥∫ T

0
U ε0jhindt

∥∥∥∥2

L2
xL

2
v

6 ε2
∑

n∈Zd−{0}

2

α2
j |n|2 + ε2β2

j |n|4
∥∥∥∥P0j

(
n

|n|

)
ĥin(n, ·)

∥∥∥∥2

L2
v

.

Finally, we know that, like e0j , P0j is continuous on the compact Sd−1 and so is

bounded. But the latter is a linear operator acting on L2
v and therefore it is bounded by
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M0j in the operator norm on L2
v. Thus

∥∥∥∥∫ T

0
U ε0jhindt

∥∥∥∥2

L2
xL

2
v

6 ε2
M2

0j

α2
j

∑
n∈Zd−{0}

∥∥∥ĥin(n, ·)
∥∥∥2

L2
v

6 ε2
M2

0j

α2
j

‖hin(·, ·)‖2L2
xL

2
v
,

which is the expected result.

Now, let us look at the L2
x-norm of this operator, to see how the torus case is different

from the case Rd studied in [39] and [10].

Consider a direction n1 in the Fourier transform space of the torus and define φn1 =

F−1
x

(
ein1

)
. We have the following equality

〈U ε0jhin, φn1〉L2
x

= 〈Û ε0j ĥin, φ̂n1〉L2
n

= e
iαjt|n1|

ε
−βjt|n1|2P0j

(
n1

|n1|

)
ĥin(n1, v).

If we do not integrate in time, one can easily see that this expression cannot have a limit

as ε tends to 0 if P0j

(
n1
|n1|

)
ĥin(n1, v) 6= 0, and so we cannot even have a weak convergence.

The difference with the whole space case is this possibility to single out one mode in the

frequency space in the case of the torus. This leads to the possible existence of periodic

function at a given frequency, the norm of which will never decrease. This is impossible

in the case of a continuous Fourier space, as in Rd, and well described by the Riemann-

Lebesgue lemma.

Therefore we have a convergence without averaging in time if and only if

P0j

(
n1

|n1|

)
ĥin(n1, v) = 0,

for all j = ±1 and all direction n1. This means that for all j = ±1 and all n1,

〈e0j

(
n1
|n1|

)
, ĥin〉L2

v
= 0. By the expression known (see theorem 4.8.3) of e0±1, this is

true if and only if ∇x · uin = 0 and ρin + θin = 0.

4.C.1.2 Proof of Lemma 4.8.7

This lemma deals with three different terms and we study them one by one because they

behaviour are quite different.

The term U ε1j: We remind that we have

Û ε1j ĥin = χ|εn|6n0
e
iαjt|n|

ε
−βjt|n|2

(
e
t
ε2
γj(|εn|) − 1

)
P0j

(
n

|n|

)
ĥin(n, v).
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If we take T > 0, by Parseval identity we get∥∥∥∥∫ T

0
U ε1jhindt

∥∥∥∥2

L2
xL

2
v

=
∑

n∈Zd−{0}

χ|εn6n0|

∣∣∣∣∫ T

0
e
iαjt|n|

ε
−βjt|n|2

(
e
t
ε2
γj(|εn|) − 1

)
dt

∣∣∣∣2 ∥∥∥P0j ĥin

∥∥∥2

L2
v

.

But then we can use the fact that |ea − 1| 6 |a| e|a|, the inequalites satisfied by γj and

the computational inequality (4.C.1) to obtain

∣∣∣∣∫ T

0
e
iαjt|n|

ε
−βjt|n|2

(
e
t
ε2
γj(|εn|) − 1

)
dt

∣∣∣∣ 6 Cγε

∫ T

0
t |n|3 e−

tβj
2
|n|2dt

6 CγεC3/2

(
βj
4

)∫ T

0

1√
t
e−

tβj
4
|n|2dt

6 CγεC3/2

(
βj
4

)∫ +∞

0

1√
t
e−

tβj
4 dt,

which is independent of n and is written Iε. Therefore we have the expected inequality,

by using the continuity of P0j ,∥∥∥∥∫ T

0
U ε1jhindt

∥∥∥∥2

L2
xL

2
v

6 ε2I2M2
0j ‖hin‖2L2

xL
2
v
.

The last two inequalities we want to show comes from Parseval’s identity, the properties

of γj and the computational inequality (4.C.1):

∥∥U ε1jhin∥∥2

L2
xL

2
v

=
∑

n∈Zd−{0}

χ|εn|6n0
e−2βjt|n|2

∣∣∣e t
ε2
γj |εn| − 1

∣∣∣2 ∥∥∥∥P0j

(
n

|n|

)
ĥin

∥∥∥∥2

L2
v

6 M2
0jC

2
γε

2
∑

n∈Zd−{0}

χ|εn|6n0
t2 |n|6 e−βjt|n|2

∥∥∥ĥin∥∥∥2

L2
v

6 M2
0jC

2
γε

2C2

(
βj
2

) ∑
n∈Zd−{0}

χ|εn|6n0
|n|2 e−

βjt

2
|n|2
∥∥∥ĥin∥∥∥2

L2
v

. (4.C.2)

Finally, if we integrate in t between 0 and +∞ we obtain the expected second inequality

of the lemma. If we merely bound e−
βjt

2
|n|2 by one and use the fact that χ|εn|6n0

6 1 and

χ|εn|6n0
ε2 |n|2 6 n2

0 we obtain the third inequality of the lemma for δ = 1 and δ = 0. Then

by interpolation we obtain the general case for 0 6 δ 6 1.

The term U ε2j: Fix T > 0. By Parseval’s identity we have
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∥∥∥∥∫ T

0
U ε2jhindt

∥∥∥∥2

L2
xL

2
v

=
∑
n∈Zd

χ|εn|6n0

∣∣∣∣∫ T

0
e
iαjt|n|

ε
−βjt|n|2+ t

ε2
γj(|εn|)dt

∣∣∣∣2 |εn|2 ∥∥∥P̃1j ĥin

∥∥∥2

L2
v

6
∑

n∈Zd−{0}

4

β2
j |n|4

|εn|2
∥∥∥∥P̃1j

(
|εn| , n|n|

)
ĥin

∥∥∥∥2

L2
v

,

where we used the inequalities satisfied by γ and integration in time.

Then, P̃1j is continuous on the compact [−n0, n0]×Sd−1 and so is bounded, as an operator

acting on L2
v, by M1j > 0. Hence, Parseval’s identity offers us the first inequality of the

lemma.

The last two inequalities are just using Parseval’s identity and the continuity of P̃1j .

Indeed,

∥∥U ε2jhin∥∥2

L2
xL

2
v

=
∑

n∈Zd−{0}

χ|εn|6n0

∣∣∣∣e iαjt|n|ε
−βjt|n|2+ t

ε2
γj(|εn|)

∣∣∣∣2 |εn|2 ∥∥∥P̃1j(n)ĥin

∥∥∥2

L2
v

6 M2
1jε

2
∑

n∈Zd−{0}

χ|εn|6n0
|n|2 e−tβj |n|2

∥∥∥ĥin∥∥∥2

L2
v

.

We recognize here the same form of inequality (4.C.2). Thus, we obtain the last two

inequalities of the statement in the same way.

The term U ε3j: We remind the reader that

Û ε3j =
(
χ|εn|6n0

− 1
)
e
iαjt|n|

ε
−βjt|n|2P0j

(
n

|n|

)
.

We have the following inequality

∣∣χ|εn|6n0
− 1
∣∣ 6 εn

n0
.

Therefore, replacing P̃1j by 1
n0
P0j and βj by 2βj (since t

ε2
γj(|εn|) 6 tβj

2 |n|
2) in the proof

made for U ε2j we obtain the expected three inequalities for U ε3jhin, the last one only with

δ = 1.

To have the last inequality in δ, it is enough to bound
∣∣χ|εn|6n0

− 1
∣∣ by 1 and then using

the continuity of P0j to have the result for δ = 0. Finally, we interpolate to get the general

result for all 0 6 δ 6 1.
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4.C.1.3 Proof of Lemma 4.8.8

Thanks to Theorem 4.8.3 we have that

‖U εRhin‖2L2
xL

2
v

=
∥∥∥ÛR(t/ε2, εn, v)ĥin

∥∥∥2

L2
nL

2
v

6 C2
Re
−2 σt

ε2 ‖hin‖2L2
xL

2
v
.

But then we have, thanks to the technical lemma 4.C.1, that e−2 σt
ε2 6 C1/2(2σ) ε√

t
, which

gives us the last two inequalities we wanted. For the first inequality, a mere Cauchy-

Schwartz inequality yields∥∥∥∥∫ T

0
U εRhindt

∥∥∥∥2

L2
xL

2
v

6 T

∫ T

0
‖U εRhin‖2L2

xL
2
v
dt,

which gives us the first inequality by integrating in t.

Now, let us suppose that we have the strong convergence down to t = 0. At t = 0 we

can write that etGε = Id and therefore that:

Id = χ|εn|6n0

2∑
j=−1

Pj

(
|εn| , n|n|

)
+ ÛR(0, εn, v).

We have the strong convergence down to 0 as ε tends to 0. Therefore, taking the latter

equality at ε = 0 we have, because
2∑

j=−1
P0j = πL,

ÛR(0, 0, v) = Id− πL.

Then ÛRĥin tends to 0 as ε tends to 0 in C([0,+∞), L2
xL

2
v) if and only if hin belongs to

Ker(L).

In that case, we can use the proof of Lemma 6.2 of [10] in which they noticed that

U εR(t, x, v) = etGεU εR(0, x, v) = etGε

F−1
x

Id− χ|εn|6n0

2∑
j=−1

Pj(εn)

Fx
 .

Thanks to that new form we have that, if hin = πL(hin),

U εR(t, x, v)hin = etGε

F−1
x

(1− χ|εn|6n0
)− |εn|χ|εn|6n0

2∑
j=−1

P̃1j(εn)

 ĥin

 ,
because πL =

2∑
j=−1

P0j .

Therefore we can redo the same estimates we worked out in the previous lemmas and use
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the same interpolation method to get the result stated in Lemma 4.8.8.

4.C.2 Study of the bilinear part

4.C.2.1 A simplification without loss of generality

All the terms we are about to study, apart from the remainder term, are of the following

form

ψεij(uε) =

∫ t

0

∑
n∈Zd−{0}

g(t, s, k, x)P (n)ûε(s, k, v)ds,

with P (n) being a projector in L2
v, bounded uniformely in n.

Looking at the dual definition of the norm of a function in L2
x,v, we can consider f

in C∞c
(
Td × Rd

)
such that ‖f‖L2

x,v
= 1 and take the scalar product with ψεij(uε). This

yields, since P is a projector and thus symmetric,

〈ψεij(uε), f〉L2
x,v

=

∫
Td

∫ t

0

∑
n∈Zd−{0}

g(t, s, k, x)〈P (n)ûε, f〉L2
v
ds

=

∫
Td

∫ t

0

∑
n∈Zd−{0}

g(t, s, k, x)〈ûε, P (n)f〉L2
v
ds. (4.C.3)

We are working in L2
xL

2
v in order to simplify computations as they are exactly the same

in higher Sobolev spaces. Therefore, we can assume that hypothesis (H4) is still valid in

L2
v without loss of generality. This means

〈ûε, P (n)f〉L2
v
6 ‖h‖L2

xL
2
v
‖h‖Λv ‖P (n)f‖Λv . (4.C.4)

Finally, in terms of Fourier coefficients in x, P (n) is a projector in L2
v and uniformely

bounded in n as an operator in L2
v.

Thus, combining (4.C.4) and the definition of the functional E, (4.6.2), we see that∫ T

0

∥∥∥f̂ε∥∥∥2

L2
xL

2
v

dt

is a continuous operator from C(R+, L2
xL

2
v, E(·)) to C(R+, L2

xL
2
v, ‖·‖L2

xL
2
v
). Looking at

(4.C.3), we can consider without loss of generality that the following holds (even for the

remainder term) for all T > 0:

ψεij(uε) =

∫ t

0

∑
n∈Zd−{0}

g(t, s, k, x)f̂ε(s, k, v)ds,
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with ∫ T

0

∥∥∥f̂ε∥∥∥2

L2
xL

2
v

dt 6MijE(hε)
2.

4.C.2.2 Proof of Lemma 4.8.9

For the first inequality, fix T > 0 and integrate by part in t to obtain

∫ T

0
ψε0j(uε)dt =

∑
n∈Zd−{0}

ein.x
∫ T

0

(∫ t

0
ei
αj(t−s)

ε
|n|−(t−s)βj |n|2 |n| f̂ε(s)ds

)
dt

=
∑

n∈Zd−{0}

ein.x
ε

iαj |n| − εβj |n|

[∫ T

0

(
ei
αj(T−s)

ε
|n|−(T−s)βj |n|2 − 1

)
f̂ε(s)ds

]
.

Finally we can use Parseval’s identity

∥∥∥∥∫ T

0
ψε0j(uε)dt

∥∥∥∥2

L2
xL

2
v

6
∑

n∈Zd−{0}

ε2

ε2β2
j |n|2 + α2

j

T

∫ T

0
2
∥∥∥f̂ε(s, n, v)

∥∥∥2

L2
v

ds

6
2M2

1j

α2
j

Tε2E(hε)
2,

where we used the subsection above and Parseval’s identity again. This is exactly the

expected result.

4.C.2.3 Proof of Lemma 4.8.11

We divide this proof in three paragraphes, each of them studying a different term.

The term ψε1j: We will just prove the last two inequalities and then merely applying

Cauchy-Schwarz inequality will lead to the first one.

Fix t > 0. By a change of variable we can write

ψε1j(uε) =
∑

n∈Zd−{0}

eik.xχ|εn|6n0

∫ t

0
e
iαjs

ε
|n|−βjs|n|2

(
e
s
ε2
γj(|εn|) − 1

)
|n| f̂ε(t− s)ds.

By the study made in the proof of Lemma 4.8.7 we have that

∣∣∣∣∫ t

0
e
iαjs

ε
|n|−βjs|n|2

(
e
s
ε2
γj(|εn|) − 1

)
|n| f̂ε(t− s)ds

∣∣∣∣
6 Cγ |n|4 ε

∫ t

0
se−

βjs

2
|n|2
∣∣∣f̂ε(t− s)∣∣∣ ds.
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Then we use the computational inequality (4.C.1) and a Cauchy-Schwarz to obtain

∣∣∣∣∫ t

0
e
iαjs

ε
|n|−βjs|n|2

(
e
s
ε2
γj(|εn|) − 1

)
|n| ûεds

∣∣∣∣
6 εCγC1

(
βj
4

)
|n|2

∫ t

0
e−

βjs

4
|n|2
∣∣∣f̂ε∣∣∣ ds

6 εCγC1

(
βj
4

)
|n|2

√
4

βj |n|2
[∫ t

0
e−

βj(t−s)
4
|n|2
∣∣∣f̂ε∣∣∣2 ds]1/2

. (4.C.5)

We can obtain the result by using Parseval’s identity, denoting C a constant indepen-

dent of ε and T , the continuity of P1j and the computational inequality (4.C.1).

∥∥ψε1j(uε)(t)∥∥2

L2
xL

2
v
6 C

∑
n∈Zd−{0}

χ|εn|6n0
ε2 |n|2

∫ t

0
e−

βj(t−s)s
4

|n|2
∥∥∥f̂ε(s)∥∥∥2

L2
v

ds.

If we merely bound e−
βj(t−s)

2
|n|2 by one and use the fact that χ|εn|6n0

6 1 and χ|εn|6n0
ε2 |n|2 6

n2
0 we obtain the third inequality of the lemma for δ = 1 and δ = 0. Then by interpolation

we obtain the general case for 0 6 δ 6 1.

If we integrate in t between 0 and a fixed T > 0, a mere integration by part yields the

expected control on the L2
t,x,v-norm. Finally, from the latter control and a Cauchy-Schwarz

inequality we deduce the first inequality.

The term ψε2j: As in the case ψε1j , we are going to prove the third inequality only.

Fix T > 0, a change of variable gives us

ψε2j(uε) =
∑

n∈Zd−{0}

eik.xχ|εn|6n0

∫ T

0
e
iαjs

ε
|n|−βjs|n|2+ s

ε2
γj(|εn|)ε |n|2 f̂ε(T − s)ds.

We can see that∣∣∣∣∫ T

0
e
iαjs

ε
|n|−βjs|n|2+ s

ε2
γj(|εn|)ε |n|2 f̂ε(T − s)ds

∣∣∣∣ 6 ε |n|2
∫ T

0
e−

βjs

2
|n|2
∣∣∣f̂ε(T − s)∣∣∣ ds.

This bound is of the same form as equation (4.C.5). Therefore we have the same result.
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The term ψε3j: As above, we will show the third inequality only.

Fix T > 0, we can write

ψε3j(uε) =
∑

n∈Zd−{0}

eik.x(χ|εn|6n0
− 1)

∫ T

0
e
iαjs

ε
|n|−βjs|n|2 |n| f̂ε(T − s, n, v)ds.

Looking at the fact that
∣∣χ|εn|6n0

− 1
∣∣ 6 ε|n|

n0
, we find the same kind of inequality as

equation (4.C.5). Thus, we reach the same result.

4.C.2.4 Proof of Lemma 4.8.12

We remind the reader that

Ψε
R(uε) =

∫ t

0

1

ε
U εR(t− s)fε(s)ds,

and that, by Theorem 4.8.3,

‖U εRfε‖2L2
xL

2
v
6 C2

Re
−2 σt

ε2 ‖fε‖2L2
xL

2
v
.

Hence, a Cauchy-Schwarz inequality gives us the third inequality for ‖ψεR(uε)(T )‖2L2
xL

2
v
,

and then the two others inequality stated above.

4.C.2.5 Proof of Lemma 4.8.14

We remind the reader that

Ψ(u) = F−1
x [ψε00(u) + ψε02(u)]Fx.

As above, and because in that case αj = 0, we can write ψε0j(uε − u)(T ), for some T > 0,

and apply a Cauchy-Schwarz inequality:

∥∥ψε0j(uε − u)
∥∥2

L2
xL

2
v

(T ) =
∑

n∈Zd−{0}

|n|2
∫
Rd

∣∣∣∣∫ T

0
e−sβj |n|

2

P1jΓ̂(hε − h, hε + h)ds

∣∣∣∣2 dv
6

M2
1j

β2
j

Sup
t∈[0,T ]

‖Γ(hε − h, hε + h)‖2L2
xL

2
v
.

But because Td is bounded in Rd and thanks to (H4) and the boundedness of (hε)ε

and h (both bounded by M) in Hs
xL

2
v (Theorem 4.2.3), we can have the following control:

‖Γ(hε − h, hε + h)‖2L2
xL

2
v
6 4M2C2

ΓVolume(Td) ‖hε − h‖L∞x L2
v
.
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Therefore we obtain the last inequality and the first two just come from Cauchy-

Schwarz inequality.
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Chapter 5

The Incompressible Navier-Stokes

limit in polynomial weighted

spaces

We study the Boltzmann equation on the d-dimensional torus in a perturbative setting

around a global equilibrium under the Navier-Stokes linearisation. We use a recent func-

tional analysis breakthrough to prove that the linear part of the equation generates a C0-

semigroup with exponential decay in Sobolev spaces with polynomial weight, independently

on the Knudsen number. Finally we show a Cauchy theory and an exponential decay for

the perturbed Boltzmann equation, uniformly in the Knudsen number, in Sobolev spaces

with polynomial weight. The polynomial weight is almost optimal and furthermore, this

result only requires derivatives in the space variable and allows to connect to solutions to

the incompressible Navier-Stokes equations in these spaces.

This is a joint work with Sara Merino-Aceituno and Clément Mouhot, both from the

University of Cambridge.
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5.1 Introduction

5.1 Introduction

This chapter deals with the Boltzmann equation in a perturbative setting as the Knudsen

number tends to zero. This equation rules the dynamics of rarefied gas particles moving

on the flat torus in dimension d, Td, when the only interactions taken into account are

binary collisions. More precisely, the Boltzmann equation describes the time evolution of

the distribution f = f(t, x, v) of particles in position x and velocity v. A formal derivation

of the Boltzmann equation from Newton’s laws under the rarefied gas assumption can be

found in [28], while [30] presents Lanford’s Theorem (see [65] and [44] for detailed proofs)

which rigorously proves the derivation in short times.

We denote the Knudsen number by ε and the Boltzmann equation reads

∂tf + v · ∇xf =
1

ε
Q(f, f) , on Td × Rd,

where Q is the Boltzmann collision operator given by

Q(f, f) =

∫
Rd×Sd−1

B (|v − v∗|, cos θ)
[
f ′f ′∗ − ff∗

]
dv∗dσ.

The Boltzmann kernel operator B encodes the physics of the collision process and f ′, f∗,

f ′∗ and f are the values taken by f at v′, v∗, v
′
∗ and v respectively, where

v′ =
v + v∗

2
+
|v − v∗|

2
σ

v′∗ =
v + v∗

2
− |v − v∗|

2
σ

, and cos θ =

〈
v − v∗
|v − v∗|

, σ

〉
.

.

The Boltzmann collision operator comes from a symmetric bilinear operator Q(g, h)

defined by

Q(g, h) =
1

2

∫
Rd×Sd−1

B (|v − v∗|, cos θ)
[
h′g′∗ + h′∗g

′ − hg∗ − h∗g
]
dv∗dσ.

It is well-known (see [28], [30] or [46] for example) that the global equilibria for the

Boltzmann equation are the Maxwellians, which are gaussian density functions depending

only on the v variable. Without loss of generality we consider only the case of normalized

Maxwellians:

µ(v) =
1

(2π)
d
2

e−
|v|2

2 .

In this chapter we will assume that the Boltzmann collision kernel is of the following
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form

B (|v − v∗|, cos θ) = Φ (|v − v∗|) b (cos θ) , (5.1.1)

with Φ and b positive functions. This hypothesis is satisfied for all physical model and is

more convenient to work with but do not impede the generality of our results.

We also restrict ourselves to the case of hard potential or Maxwellian potential (γ = 0),

that is to say there is a constant CΦ > 0 such that

Φ(z) = CΦz
γ , γ ∈ [0, 1], (5.1.2)

with a strong form of Grad’s angular cutoff (see [48]), expressed here by the fact that we

assume b to be C1 with the controls from above

∀z ∈ [−1, 1], b(z), b(z′) 6 Cb. (5.1.3)

5.1.1 The problem and its motivations

The Knudsen number is the inverse of the average number of collisions for each particle per

unit of time. Therefore, as reviewed in [111], one can expect a convergence, in some sense,

from the Boltzmann model towards the acoustics and the fluids dynamics as the Knudsen

number tends to 0. However, these different models describe physical phenomena that do

not evolve at the same timescale and the right rescaling to approximate the incompressible

Navier-Stokes equation (see [8][46][111][98]) is the following equation

∂tfε +
1

ε
v · ∇xfε =

1

ε2
Q(fε, fε) , on Td × Rd, (5.1.4)

under the linearization fε(t, x, v) = µ(v) + εhε(t, x, v). This leads to the perturbed Boltz-

mann equation

∂thε +
1

ε
v · ∇xhε =

1

ε2
L(hε) +

1

ε
Q(hε, hε), (5.1.5)

where we defined

L(h) = 2Q(µ, h).

The hydrodynamical limit of the perturbed equation is the system of equations satisfied

by the limit, as ε tends to 0, of the hydrodynamical fluctuations that are the following

physical observables of hε:

ρε(t, x) =

∫
Rd
hε(t, x, v) dv,

uε(t, x) =

∫
Rd
vhε(t, x, v) dv,

θε(t, x) =
1

d

∫
Rd

(|v|2 − d)hε(t, x, v) dv.
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Note that (ρε, uε, θε) are the linearised fluctuations of the mass, momemtum and the

thermal energy around the global equilibrium µ.

In our perturbative framework, previous studies [8][10][23] (and also Chapter 4) show

that the hydrodynamical limits ρ, u and θ are the weak (in the Leray sense [66]) solutions

of the linearized incompressible Navier-Stokes equations:

∂tu− ν∆u+ u · ∇u+∇p = 0,

∇ · u = 0, (5.1.6)

∂tθ − κ∆θ + u · ∇θ = 0,

where p is the pressure function and ν and κ are constants determined by L (see [8] or

[46] Theorem 5). They also satisfy the Boussineq relation

∇(ρ+ θ) = 0. (5.1.7)

The aim of the present chapter is to use a constructive method to obtain existence and

exponential decay for solutions to the perturbed Boltzmann equation (5.1.4), uniformly in

the Knudsen number. One will thus be allowed to extract a converging (at least weakly)

subsequence of hε converging to the incompressible Navier-Stokes equations [10][8][23] (see

also Chapter 4). Such uniform results have been obtained on the torus in Sobolev spaces

with exponential weight Hs
x,v

(
µ−1/2

)
in [56][23] and the present work improves this strong

weight to a polynomial weight without the need of derivatives in the velocity variable (see

also Chapter 4).

5.1.2 Existing results

The first part of our work is to prove that the linear part of the Boltzmann equation

Gε =
1

ε2
L − 1

ε
v · ∇x

generates a strongly continuous semigroup with an exponential decay in Lebesgue and

Sobolev spaces with polynomial weight, namely 1 + |v|k for some k large enough.

It has been known for long that the linear Boltzmann operator L is a self-adjoint non

positive linear operator in the space L2
v

(
µ−1/2

)
. Moreover it has a spectral gap λ0. This

has been proved in [27][48][49] with non constructive methods for hard potential with

cutoff and in [14][15] in the Maxwellian case. These results were made constructive in

[4][79] for more general collision operators. One can easily extend this spectral gap to

Sobolev spaces Hs
v

(
µ−1/2

)
(see for instance [51] Section 4.1).

The next step is to see if the latter properties about L in the velocity space can be
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transposed when one adds the skew-symmetric transport operator −v·∇x. The first results

were obtained in [107] where G1 was proven to generate a strong continuous semigroup

in L2
vH

s
x

(
µ−1/2

)
and in L∞v H

s
x

(
µ−1/2(1 + |v|)k

)
, for s and k large enough. Then [82]

obtained constructively this result in Hs
x,v

(
µ−1/2

)
using hypocoercivity properties of the

Boltzmann linear operator. Finally, a recent breakthrough proving abstract extension of

semigroups [51] showed that G1 generates a C0-semigroup in all the Sobolev spaces of the

form Wα,q
v W β,p

x (m), for m being an exponential weight (including maxwellian density if

q = p = 2) or a polynomial weight (1 + |v|)k, as long as α 6 β and k is large enough

depending on q (with k > 2 in the case q = 1).

The full Boltzmann equation perturbed around a global equilibrium µ(v) (5.1.5) has

also been studied in the case ε = 1. The associated Cauchy problem has been worked

on over the past fifty years, starting with Grad [50], and it has been studied in differ-

ent spaces, such as L2
vH

s
x

(
µ−1/2

)
spaces [107] or Hs

x,v

(
µ−1/2(1 + |v|)k

)
[55][114]. The

Cauchy theory was then extended to Hs
x,v

(
µ−1/2

)
where an exponential trend to equilib-

rium has also been obtained. This was obtained using hypocoercivity properties of the

linear operator [82] or nonlinear estimates on fluid and microscopic parts of the equa-

tion [56]. Recently, [51] proved existence and uniqueness for (5.1.5) in more the general

spaces
(
Wα,1
v ∩Wα,q

v

)
W β,p
x

(
1 + |v|)k

)
for α 6 β and β and k large enough with explicit

thresholds. This result therefore gets rid of the exponential weight needed in the previous

studies.

All the results presented above hold in the case of the torus. We refer the reader

interested in the Cauchy problem, both for the torus and the whole space, to the review

[110].

For physical purposes, these studies for ε = 1 are relevant since mere rescalings or

changes of physical units changes (5.1.4) to the case where the Knudsen number equals

1. However, if one wants to study the hydrodynamical limits of the Boltzmann equation,

one needs to obtain explicit dependencies on the Knudsen number. Using hypocoercivity

methods [23] (see also Chapter 4) gave a constructive uniform approach on the semigroup

generated by Gε in Hs
x,v

(
µ−1/2

)
and its exponential decay. The study of the full perturbed

Boltzmann equation (5.1.5) taking into account the dependencies on the Knudsen number

has been obtained [56][23] in the same spaces Hs
x,v

(
µ−1/2

)
, for s large enough (see also

Chapter 4). More precisely, for initial data sufficiently close to µ there exists a unique

non-negative solution to (5.1.4) and it decays exponentially fast towards its equilibrium.

The smallness assumption was proven to be independent of the Knudsen number as well

as the rate of decay and the methods used in [23] (see also Chapter 4) are constructive.
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5.1.3 Our contributions and strategy

The present work brings two major improvements.

In the spirit of [51], we first prove that Gε generates a strong continuous semigroup in

Sobolev spaces Wα,1
v W β,p

x

(
1 + |v|)k

)
for α 6 β and β and k large enough with explicit

thresholds. It is done by starting from existing results in Hs
x,v

(
µ−1/2

)
and then decom-

posing the linear operator Gε into a dissipative part and a regularising part that is then

treated in more and more regular spaces up to the space where the semigroup properties

have been derived in previous articles. We thus improve the existing result [23], also given

in Chapter 4. Our main contribution is an adapted version of the abstract extension the-

orem developed in [51] that takes into account the dependencies on the Knudsen number

as well as a careful study of the dissipative and the regularising parts of the operator Gε.

The second contribution of this chapter is the solution to the Cauchy problem with

exponential trend to equilibrium, independently on ε, in spaces

Wα,1
v W β,1

x

(
1 + |v|2+0

)
and Wα,1

v Hβ
x

(
1 + |v|2+0

)
,

for β large enough and all α 6 β. First, this result makes the recent study [51] uniform

in the Knudsen number. Second, it improves the Cauchy theory developed uniformly in ε

in [56][23] by dropping the exponential weight and the v-derivatives. Moreover, one can

notice that the polynomial weight is almost the optimal one for the Boltzmann equation

(conservation of mass and energy).

The main issue to obtain uniform results is that the bilinear operator ε−1Q cannot be

treated as a mere perturbation that evolves under the flow of SGε , the semigroup generated

by Gε, since the latter has an exponential decay of order O(1) that is negligeable compared

to O(ε−1) as ε tends to zero. We develop an analytic point of view about the extension

theorem in [51] and include the bilinear term. More precisely, we decompose the perturbed

equation (5.1.5) into a hierarchy of equations taking place in spaces that have more and

more regularity up to Hs
x,v

(
µ−1/2

)
where estimates had been derived in [23] (see also

Chapter 4). At each step we use the dissipative part of the linear operator to control

the remainder term ε−1Q whereas the regularising part is controlled in spaces with higher

regularity.

5.1.4 Organization of the chapter

Section 5.2 first introduces the different notations and definitions we will use throughout

the chapter and then states the precise theorems we prove in this work. Section 5.2.2 deals

with the semigroup generated by the full linear operator ε−2L− ε−1v ·∇x whereas Section

5.2.3 is dedicated to the full Boltzmann equation.
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The full linear part of the Boltzmann operator is proven to generate a strongly con-

tinuous semigroup in Lebesgue and Sobolev spaces with polynomial weight in Section

5.3.

We start with Section 5.3.1, a thorough description of our strategy and a version of

the extension theorem of [51] that takes into account the dependencies in ε.

We show in this section that ε−2L − ε−1v · ∇x can be decompose into a regularising

operator in the velocity variable (Section 5.3.2) and a dissipative one (Section 5.3.3).

We then combine the last two properties to gain regularity both in space and veloc-

ity (Section 5.3.4) to finally prove the existence and exponential decay of the associated

semigroup (Section 5.3.5).

The last section, Section 5.4, proves existence, uniqueness and exponential decay of

solutions to the perturbed Boltzmann equation (5.1.5).

Section 5.4.1 gives a new point of view on the extension we used to generate the

semigroup associated to ε−2L−ε−1v ·∇x and how it can be used with the bilinear operator.

This strategy is developed through Sections 5.4.2 and 5.4.3 and it leads to the proof of the

exponential decay towards equilibrium in Section 5.4.4.

5.2 Main results

5.2.1 Notations

We gather here the notations we will use throughout this chapter.

Function spaces. We first define the following shorthand notation,

〈·〉 =

√
1 + |·|2.

The convention we choose is to index the space by the name of the concerned variable

so we have, for p in [1,+∞],

Lp[0,T ] = Lp ([0, T ]) , Lpx = Lp
(
Td
)
, Lpv = Lp

(
Rd
)
.

Let p and q be in [1,+∞), α and β in N and m : Rd −→ R+ a strictly positive

measurable function. For any multi-indexes j = (j1, . . . , jd) and l = (l1, . . . , ld) in Nd we

denote the (j, l)th partial derivative by

∂jl = ∂lx∂
j
v.
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We define the space Wα,q
v W β,p

x (m) by the norm

‖f‖
Wα,q
v Wβ,p

x (m)
=

∑
|j|6α,|l|6β

|l|+|j|6max(α,β)

∥∥∥(∂jl f)m∥∥∥
LqvL

p
x

,

where we used the Lebesgue norm

‖g‖LqvLpx =

[∫
Rd

(∫
Td
|f(x, v)|p dx

)q/p
dv

]1/q

.

Linear Boltzmann operator. First we use a writing convention. This chapter aims

at extending results known in a small space E, namely Hs
x,v

(
µ−1/2

)
with s sufficiently

large, into a larger space E , namely Lebesgue and Sobolev spaces with polynomial weight.

We will use curly letters for operators in E and their non-curly equivalent to denote their

restriction to E. For instance, we will denote

L|E = L.

The linear Boltzmann operator L has several properties we will use throughout this

chapter (see [28][30][112][51] for instance).

L is a closed self-adjoint operator in L2
v

(
µ−1/2

)
with kernel

Ker (L) = Span {φ0(v), . . . , φd+1(v)}µ,

where φ0(v) = 1, for i = 1, . . . , d we defined φi(v) = vi and φd+1 =
(
|v|2 − d

)
/
√

2d. The

family (φi)06i6d+1 is an orthonormal basis of Ker (L) in L2
v

(
µ−1/2

)
and we denote πL the

orthogonal projection onto Ker (L) in L2
v

(
µ−1/2

)
:

πL(h) =

d+1∑
i=0

(∫
Rd
h(u)φi(u) du

)
φi(v)µ(v), (5.2.1)

and we define π⊥L = Id− πL. We will also denote the full linear Boltzmann operator by

Gε =
1

ε2
L− 1

ε
v · ∇x.

For s in N we will use the convention

(Gε)|Hs
x,v(µ−1/2) = Gε.

It has been proven ([23] Proposition 3.1 or see Proposition 4.3.1 in Chapter 4) that the

kernel of Gε does not depend on ε and that its generators in L2
x,v

(
µ−1/2

)
are the same
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than the ones of Ker (L). We therefore have that the orthogonal projection onto Ker (Gε)

in L2
x,v

(
µ−1/2

)
is given by

ΠG(h) = ΠGε(h) =

d+1∑
i=0

(∫
Td×Rd

h(x, u)φi(u) dxdu

)
φi(v)µ(v), (5.2.2)

and we define Π⊥G = Id−ΠG.

Note that for a function h in L2
x,v

(
µ−1/2

)
we have that

∀(x, v) ∈ Td × Rd, ΠG(h)(x, v) =

∫
Td
πL(h(x∗, ·))(v) dx∗.

5.2.2 Results about the full linear part

We first deal with Gε, the linear part of the perturbed Boltzmann operator. We prove that

it generates a strongly continuous semigroup with an exponential decay in Lebesgue and

Sobolev spaces with a weight 〈v〉k as long as k is large enough. The precise statement is

the following.

Theorem 5.2.1 Let B be a Boltzmann collision kernel satisfying (5.1.1)-(5.1.2)-(5.1.3).

There exists 0 < εd 6 1 such that for all p, q in [1,+∞], all α, β in N with α 6 β and all

k > k∗q , where

k∗q =
3 +

√
49− 48/q

2
+ γ

(
1− 1

q

)
, (5.2.3)

with γ defined in (5.1.2),

1. for all 0 < ε 6 εd , Gε = ε−2L − ε−1v · ∇x generates a C0-semigroup, SGε(t), on

Wα,q
v W β,p

x

(
〈v〉k

)
,

2. for all τ > 0, there exist CG(τ), λ0 > 0, such that for all 0 < ε 6 εd and for all hin

in Wα,q
v W β,p

x

(
〈v〉k

)
, for all t > τ

‖SGε(t)(hin)−ΠG(hin)‖
Wα,q
v Wβ,p

x (〈v〉k) 6 CG(τ)e−λ0t ‖hin −ΠG(hin)‖
Wα,q
v Wβ,p

x (〈v〉k) ,

where ΠG is the spectral projector onto Ker (Gε) which is given, for all ε, by

ΠG(g) =
d+1∑
i=0

(∫
Td×Rd

gφi dxdv

)
φiµ. (5.2.4)
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The constants εd, CG(τ) and λ0 are constructive and only depends on d, p, q, k, α, β and

the kernel of the Boltzmann operator.

We refer to [61] and [51] Section 2 for definitions and properties of spectral projectors.

Remark 5.2.2 We can make a couple of remarks about this theorem.

1. It has been proven in [23] Section 3 (or Chapter 4 Section 4.3), that in H1
x,v(µ

−1/2),

Ker (Gε) does not depend on ε if ε is positive and we therefore can define ΠG = ΠGε.

During the proof of Theorem 5.2.1 we will show that (ΠGε)|Hs
x,v(µ−1/2) = ΠGε and

thus ΠG is well-defined and is independent of ε and given by (5.2.2).

2. As noticed in [51], the rate of decay λ0 can be taken equal to the spectral gap of

L|Hs
x,v(µ−1/2) (see [23] or Chapter 4), for s as large as wanted, when k is big enough

(and we obtained a constructive threshold).

3. Finally, we emphasize that in the case q = 1, the result holds for all k > 2. This

is almost the minimal regularity L2
v

(
1 + |v|2

)
for the Boltzmann equation, that is

solutions with bounded mass and energy.

5.2.3 Existence, uniqueness and trend to equilibrium

A physically relevant requirement for solutions to the Boltzmann equation are that their

mass, momentum and energy are preserved with time. This is also an a priori property

of the Boltzmann equation on the torus (see [112] Chapter 1 Section 2 for instance) which

reads

∀t > 0,

∫
Td×Rd

 1

v

|v|2

 fε(t, x, v) dxdv =

∫
Td×Rd

 1

v

|v|2

 fε(0, x, v) dxdv.

If one expects trend to the equilibrium µ(v) for the solutions fε = µ + εhε of the

Boltzmann equation (5.1.4) then it must be that

∀t > 0,

∫
Td×Rd

 1

v

|v|2

hε(t, x, v) dxdv = 0,

that is ΠGε(hε(t, ·, ·)) = 0 for all t, which is a property that is indeed preserved along

time for solution to the perturbed Boltzmann equation (5.1.5), see [23] or Chapter 4 for

instance.
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We hence state the following theorem answering the Cauchy problem and the expo-

nential convergence towards the equilibrium µ.

Theorem 5.2.3 Let B be a Boltzmann collision kernel satisfying (5.1.1)-(5.1.2)-(5.1.3)

and let p = 1 or p = 2.

There exists 0 < εd 6 1 and β0 in N such that

� for all α, β in N such that β > β0 and α 6 β and for all k > 2 define

Ep = Wα,1
v W β,p

x

(
〈v〉k

)
,

� for any λ′0 in (0, λ0) (λ0 defined in Theorem 5.2.1) there exist Cα,β, ηα,β > 0 such

that for any 0 < ε 6 εd, for any distribution 0 6 fin = µ+ εhin:

If

(i) hin is in Ker(Gε)⊥ in Ep,

(ii) ‖hin‖Ep 6 ηα,β,

then there exists a unique global solution fε = fε(t, x, v) to (5.1.4) in Ep which, moreover,

satisfies fε = M + εhε > 0 with:

� hε belongs to Ker(Gε)⊥ for all times,

�

‖hε‖Ep 6 Cα,β ‖hin‖Ep e−λ
′
0t.

The constants Cα,β and ηα,β are constructive and depends only on α, β, k, d, λ′0 and the

kernel of the Boltzmann operator.

5.3 The linear part: a C0-semigroup in spaces with polyno-

mial weight, proof of Theorem 5.2.1

In this section we focus on the linear part of the perturbed Boltzmann equation in

Wα,q
v W β,p

x

(
〈v〉k

)
. We thus consider the following equation:

∂th = Gε(h). (5.3.1)
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5.3.1 Strategy of the proof

If we denote E = Wα,q
v W β,p

x

(
〈v〉k

)
and E = Hs

x,v

(
µ−1/2

)
we have that E ⊂ E , dense with

continuous embedding for s large enough. [23] Theorem 2.1 (with the norm of Theorem 2.4)

states that Gε = (Gε)|E generates a strongly continuous semigroup in E with exponential

decay (these results are given in Chapter 4 Section 4.2). Theorem 5.2.1 can therefore be

understood as the possibility to extend properties of Gε in a small space E to Gε in a

larger space E .

This issue of extending spectral gap properties as well as semigroup properties has

been first tackled by Mouhot to obtain constructive rates of convergence to equilibrium

for the homogeneous Boltzmann equation [80]. Recently, Gualdani, Mischler and Mouhot

[51] proposed a more abstract approach that allows to deal with the full linear operator.

In their work, they proved that if some conditions on Gε and Gε are satisfied then we

can pass on some semigroup properties from E to E . The main argument of the proof of

Theorem 5.2.1 is to show that we can use their result in our setting, independently of ε.

To be more precise, we give below a modified version of their main functional anal-

ysis theorem which is combination of Theorem 2.13 and Lemma 2.17 where we added

dependencies on ε.

We refer to [51] Section 2 for the definition of hypodissipativity (roughly speaking it

is a dissipative property in a different norm on a Banach space) and the definition of the

convolution of two semigroups of operators (denoted by the symbol (∗)). In the sequel

we will use C (E) for the set of closed operators on E and B(E) for the set of bounded

operators on E. For any operator G in C (E) we denote R(G) its range and Σ(G) its

spectrum.

Theorem 5.3.1 (Modified extension theorem from [51]) Let ε be a parameter such

that 0 < ε 6 1.

Let E, E be two Banach spaces with E ⊂ E dense with continuous embedding, and consider

Gε in C (E), Gε in C (E) with (Gε)|E = Gε and a > 0.

We assume the following

(A1) Gε generates a semigroup SGε on E, Gε+a is hypodissipative on R (Id−ΠGε,a) and

Σ (Gε) ∩ {z ∈ C, Re(z) > −a} = {0} is a discrete eigenvalue.

(A2) There exists Aε,Bε in C (E) such that Gε = Aε +Bε (with corresponding restrictions

Aε, Bε on E) and there exist some “intermediate spaces” (not necessarily ordered)

E = EJ , EJ−1, . . . , E2, E1 = E

such that, still denoting Bε := (Bε)|Ej and Aε := (Aε)|Ej
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(i)
(
Bε + a/ε2

)
is hypodissipative on Ej;

(ii) Aε ∈ B (Ej) with ‖Aε‖B(Ej) 6 CA/ε
2;

(iii) there are some constants l0, l1 ∈ N∗, C > 1, K ∈ R, α ∈ [0, 1) such that

∀t > 0, ‖Tl0(t)‖B(Ej ,Ej+1) 6 C
eKt/ε

2

εl1tα
,

for 1 6 j 6 J − 1, with the notation Tl := (AεSBε)(∗l).

Then Gε is hypodissipative in E and for all a′ < a there exists n = n(a′) > 1 and some

positive constants Ca′ and C ′a′ such that

‖Tn(t)‖B(E) 6
Ca′

εnl1/l0
e−a

′t/ε2 ; (5.3.2)

SGε(t) = SGε(t)ΠG+
n−1∑
l=0

(−1)l (Id−ΠG)SBε ∗Tl(t)+(−1)n [(Id−ΠG)SGε ]∗Tn(t); (5.3.3)

∣∣∣∣∣∣SGε(t)− SGε(t)ΠG − (−1)n [(Id−ΠG)SGε ] ∗ Tn(t)
∣∣∣∣∣∣

B(E)
6 C ′a′

tn

εn(2+l1/l0)
e−a

′t/ε2 , (5.3.4)

where ΠG has been defined in (5.2.4).

We will use Theorem 5.3.1 to directly prove Theorem 5.2.1. Indeed, [23] Theorem

2.1 states that Gε generates a strongly continuous semigroup with exponential decay in

E = Hs
x,v

(
µ−1/2

)
, which is the required assumption (A1) (properties about the spectral

gap of the spectrum can be found in [4]). Therefore if Gε fulfils hypothesis (A2) then it

generates a strongly continuous semigroup, with an exponential decay of order a′ for all

a′ < a, since for all α, β, η > 0, all t > t0 > 0 and all 0 < 2η′ < η,

tα

ε2β
e−η

t
ε2 6 Cβ,η′t

α−βe−(η−η′) t
2ε2 6 Cβ,η′t

α−βe−(η−η′)t 6 Ct0,α,β,η′e
−(η−2η′)t, (5.3.5)

for 0 < ε 6 1.

5.3.2 Decomposition of the operator and assumption (A2)(ii)

In this section we find a decomposition Gε = Aε + Bε that will fit the requirements

(A1) − (A2) of Theorem 5.3.1. This decomposition has been found in [51] in the case

ε = 1. We will use exactly the same operators but including the dependencies in ε. All

the results presented in the rest of this section are true for ε = 1 (see [51] Section 4) so we

will try to relate as much as possible our computations with the ones for ε = 1.

For δ in (0, 1), to be chosen later, we consider Θδ = Θδ(v, v∗, σ) in C∞ that is bounded
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by one on the set

{
|v| 6 δ−1 and 2δ 6 |v − v∗| 6 δ−1 and |cos θ| 6 1− 2δ

}
and whose support is included in

{
|v| 6 2δ−1 and δ 6 |v − v∗| 6 2δ−1 and |cos θ| 6 1− δ

}
.

We define the splitting

Gε = A(δ)
ε + B(δ)

ε ,

with

A(δ)
ε h(v) =

1

ε2

∫
Rd×Sd−1

Θδ

[
µ′∗h

′ + µ′h′∗ − µh∗
]
b (cos θ) |v − v∗|γ dσdv∗

and

B(δ)
ε h(v) = B(δ)

2,εh(v)− 1

ε2
ν(v)h(v)− 1

ε
v · ∇xh(v),

where

B(δ)
2,εh(v) =

1

ε2

∫
Rd×Sd−1

(1−Θδ)
[
µ′∗h

′ + µ′h′∗ − µh∗
]
b (cos θ) |v − v∗|γ dσdv∗

and ν(v) is the standard collision frequency

ν(v) =

∫
Rd×Sd−1

b (cos θ) |v − v∗|γ µ∗ dσdv∗.

Note that there exists ν0, ν1 > 0 such that

∀v ∈ Rd, ν0(1 + |v|γ) 6 ν(v) 6 ν1(1 + |v|γ). (5.3.6)

We have that

A(δ)
ε =

1

ε2
A(δ)

1 and B(δ)
2,ε =

1

ε2
B(δ)

2,1.

We therefore obtain the following controls on A(δ)
ε .

Proposition 5.3.2 For all 0 < ε < εd, for any q in [1,+∞] and α > 0, the operator A(δ)
ε

maps Lqv into Wα,q
v with compact support.

There exists Cδ,α,q, Rδ > 0 independent of ε such that

∀h ∈ Lqv, supp
(
A(δ)
ε h

)
⊂ B(0, Rδ),

∥∥∥A(δ)
ε h

∥∥∥
Wα,q
v

6
Cδ,α,q
ε2
‖h‖Lqv .
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Moreover, for any p in [1,+∞] and for all h in LqvL
p
x,∥∥∥A(δ)

ε h
∥∥∥
LqvL

p
x

6
∥∥∥A(δ)

ε

(
‖h‖Lpx

)∥∥∥
Lqv

Remark 5.3.3 We notice here that this Proposition gives the point (A2)(ii) of Theorem

5.3.1 if the Ej are Sobolev spaces.

Proof of Proposition 5.3.2 The kernel of the operator A(δ)
ε is of compact support so its

Carleman representation (see [27]) gives the existence of k(δ) in C∞c
(
Rd × Rd

)
such that

A(δ)
ε h(v) =

1

ε2

∫
Rd
k(δ)(v, v∗)h(v∗) dv∗, (5.3.7)

and therefore the control on
∥∥∥A(δ)

ε h
∥∥∥
Wα,q
v

is straightforward.

The control of
∥∥∥A(δ)

ε h
∥∥∥
LqvL

p
x

comes directly from Minkowski’s integral inequality which

states[∫
Td

(∫
Rd
k(δ)(v, v∗)h(x, v∗)dv∗

)p
dx

]1/p

6
∫
Rd

(∫
Td
k(δ)(v, v∗)

ph(x, v∗)
pdx

)1/p

dv∗.

5.3.3 Dissipativity estimates for B(δ)
ε , assumption (A2)(i)

One can find in [51] proof of Lemma 4.14 case (W2) and (W3) the following estimate on

the operator B(δ)
ε in the case ε = 1.

Lemma 5.3.4 For all p, q in [1,+∞], for all k > 2 and for any δ in (0, 1) and all h in

LqvL
p
x

(
〈v〉k

)
,

∫
Rd
〈v〉kq ‖h‖q−p

Lpx

(∫
Td

sgn(h) |h|p−1 B(δ)
1 h dx

)
dv 6

[
Λk−γ/q′,q(δ)− 1

]
‖h‖q

LqvL
p
x(〈v〉kν1/q)

,

where q′ is the conjugate exponent of 1/q and Λk,q(δ) is a constructive constant such that

lim
δ→0

Λk,q(δ) = φq(k) =

(
4

k + 2

)1/q ( 4

k − 1

)1−1/q

.
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Remark 5.3.5 As noticed in [51] Remark 4.3, the quantity φq(k) is strictly less than one

for k bigger than a constant k∗∗q . The constant k∗q we are considering is not optimal and

is such that φq(k − γ/q′) < 1, where q′ is the conjugate exponent of q. This appearance of

k − γ/q′ is due to a loss of weight of order ν−1/q′ in the estimate of the spectral gap, see

proof of Proposition 5.3.6.

In the case of the Boltzmann operator with hard potential and angular cutoff, point

(A2)(i) is fulfilled by B(δ)
ε for δ small enough. This is the purpose of the following lemma.

We recall here that ν0 = inf
v∈Rd

(ν(v)) > 0 and that we define

‖·‖
Wα,q
v Wβ,p

x (〈v〉k) =
∑

|l|+|j|6max(α,β)

|j|6α,|l|6β

∥∥∥∂jl ·∥∥∥
LqvL

p
x(〈v〉k)

.

Proposition 5.3.6 Consider p, q in [1,+∞], k > k∗q , defined by (5.2.3), and α, β in N
such that α 6 β.

Then there exists δk,q in (0, 1) such that for all 0 < δ 6 δk,q there exists λ0 = λ0(k, q, δ) in

(0, ν0) such that for all 0 < ε 6 1,

� λ0(k, q, δ) tends to λ∗0(k, q) as δ goes to 0,

� λ∗0(k, q) tends to ν0 when k goes to +∞,

�

(
B(δ)
ε + λ0/ε

2
)

is dissipative in Wα,q
v W β,p

x

(
〈v〉k

)
.

Proof of Proposition 5.3.6 Let h0 be in Wα,q
v W β,p

x

(
〈v〉k

)
and considert h to be a

solution to the linear equation

∂th = B(δ)
ε h = B(δ)

2,εh−
1

ε2
νh− 1

ε
v · ∇xh, (5.3.8)

with initial value h0.

Since the x-derivative commutes with the equation we can consider only the case when

β = α. The proof is split into two parts. First we prove Proposition 5.3.6 in the case

α = 0 and then we study the case with v-derivatives.

Step 1: the case α = 0. Take p, q in [1,+∞).

We recall that

‖h‖LqvLpx(〈v〉k) =

[∫
Rd

(
1 + |v|k

)q (∫
Td
|h|p dx

)q/p
dv

]1/q

.
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Therefore we can compute

d

dt
‖h‖LqvLpx(〈v〉k) = ‖h‖1−q

LqvL
p
x(〈v〉k)

×
∫
Rd

(
1 + |v|k

)q
‖h‖q−p

Lpx

(∫
Td

sgn(h) |h|p−1 B(δ)
ε h dx

)
dv.

(5.3.9)

Observing that∫
Td

sgn(h) |h|p−1 v · ∇xh dx =
1

p
v ·
∫
Td
∇x (|h|p) dx = 0,

we deduce

d

dt
‖h‖LqvLpx(〈v〉k) = ‖h‖1−q

LqvL
p
x(〈v〉k)

× 1

ε2

∫
Rd

(
1 + |v|k

)q
‖h‖q−p

Lpx

(∫
Td

sgn(h) |h|p−1 B(δ)
1 h dx

)
dv.

We can therefore use Lemma 5.3.4 which leads to

d

dt
‖h‖LqvLpx(〈v〉k) 6 − 1

ε2

[
1− Λk−γ/q′,q(δ)

]
‖h‖q

LqvL
p
x(〈v〉kν1/q)

‖h‖1−q
LqvL

p
x(〈v〉k)

, (5.3.10)

We already noticed that Λk−1/q′,q(δ) is strictly less than 1 for δ smaller than some δk,q (see

Remark 5.3.5). Therefore, because ν(v) > ν0 for all v we have that for all δ smaller than

δk,q the following holds,

d

dt
‖h‖LqvLpx(〈v〉k) 6 −ν0

ε2

[
1− Λk−γ/q′,q(δ)

]
‖h‖LqvLpx(〈v〉k) ,

This concludes the proof of Proposition 5.3.6 for α = 0 and 1 6 p, q < +∞. The cases

p = ∞ and q = ∞ are respectively dealt with by taking the limit p → ∞ and q → ∞
which is possible since δk,q is independent of p and can be chosen to converge to a strictly

positive constant when q goes to ∞, thanks to the definition of Λk,q(δ).

Step 2: the case with v-derivatives. Take p, q in [1,+∞] and α = β = 1.

Since the x-derivative commutes with (5.3.8) the equation satisfied by h, we have that

(5.3.10) holds for x-derivatives. Notice that 1− q 6 0 gives

d

dt

(
‖h‖LqvLpx(〈v〉k) + ‖∇xh‖LqvLpx(〈v〉k)

)
6 −ν

1−1/q
0

ε2

[
1− Λk−γ/q′,q(δ)

] (
‖h‖LqvLpx(〈v〉kν1/q) + ‖∇xh‖LqvLpx(〈v〉kν1/q)

)
.

(5.3.11)
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Applying a v-derivatives to (5.3.8) yields

∂t∇vh = B(δ)
ε (∇vh) +

(
∇vB(δ)

ε

)
(h)

= B(δ)
ε (∇vh)− 1

ε
∇xh+R(δ)

ε (h),

where R(δ)
ε (h) =

(
∇vB(δ)

2,ε

)
(h)− 1

ε2
∇v(ν)h = 1

ε2
R(δ)

1 (h).

From (5.3.11), our computations in Step 1 with δ 6 δk,q and the following norm

‖h‖
W 1,q
v W 1,p

x (〈v〉k)
η

= ‖h‖LqvLpx(〈v〉k) + ‖∇xh‖LqvLpx(〈v〉k) + η ‖∇vh‖LqvLpx(〈v〉k) ,

with η > 0 to be fixed later, we obtain

d

dt
‖h‖

W 1,q
v W 1,p

x (〈v〉k)
η

6 −ν
1−1/q
0

ε2

[
1− Λk−γ/q′,q(δ)

] (
‖h‖LqvLpx(〈v〉kν1/q) + ‖∇xh‖LqvLpx(〈v〉kν1/q)

)
− ην

1−1/q
0

ε2

[
1− Λk−γ/q′,q(δ)

]
‖∇vh‖LqvLpx(〈v〉kν1/q)

− η

ε
‖∇vh‖1−qLqvL

p
x(〈v〉k)

∫
Rd

(
〈v〉k

)q
‖∇vh‖q−pLpx

(∫
Td

sgn(h) |∇vh|p−1∇xh dx
)
dv

+
η

ε2
‖∇vh‖1−qLqvL

p
x(〈v〉k)

∫
Rd

(
〈v〉k

)q
‖∇vh‖q−pLpx

(∫
Td

sgn(h) |∇vh|p−1R(δ)
1 (h) dx

)
dv.

We take the absolute value and use Hölder inequality twice on the last two terms which

makes the terms in ∇vh disappear, and this gives

d

dt
‖h‖

W 1,q
v W 1,p

x (〈v〉k)
η

6 −ν
1−1/q
0

ε2

[
1− Λk−γ/q′,q(δ)

] (
‖h‖LqvLpx(〈v〉kν1/q) + η ‖∇vh‖LqvLpx(〈v〉kν1/q)

)
+

1

ε2

(
εην

−1/q
0 − ν1−1/q

0

[
1− Λk−γ/q′,q(δ)

])
‖∇xh‖LqvLpx(〈v〉kν1/q)

+
η

ε2

∥∥∥R(δ)
1 (h)

∥∥∥
LqvL

p
x(〈v〉k)

.

One can find in [51] proof of Lemma 4.14 case (W2) and (W3) the following estimate∥∥∥R(δ)
1 (h)

∥∥∥
LqvL

p
x(〈v〉k)

6 Cδ ‖h‖LqvLpx(〈v〉kν1/q) ,

where Cδ > 0 is a constant only depending on δ.
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Because ε 6 1, this latter estimates yields

d

dt
‖h‖

W 1,q
v W 1,p

x (〈v〉k)
η

6
1

ε2

(
Cδη − ν1−1/q

0

[
1− Λk−γ/q′,q(δ)

])
‖h‖LqvLpx(〈v〉kν1/q)

+
1

ε2

(
ην
−1/q
0 − ν1−1/q

0

[
1− Λk−γ/q′,q(δ)

])
‖∇xh‖LqvLpx(〈v〉kν1/q)

− ην
1−1/q
0

ε2

[
1− Λk−γ/q′,q(δ)

]
‖∇vh‖LqvLpx(〈v〉kν1/q) ,

(5.3.12)

which concludes the proof if we take η small enough in terms of δ, for δ 6 δk,q.

The case where 1 < α = β is dealt with in the same way with the norm

‖h‖Wα,q
v Wα,p

x (〈v〉k)
η

=
∑

06|j|+|l|6α

η|j|
∥∥∥∂jl h∥∥∥

LqvL
p
x(〈v〉k)

,

with η small enough in terms of δ.

5.3.4 Estimates on the iterated convolution product, assumption (A2)(iii)

In order to use Theorem 5.3.1, it remains to show that our equation (5.3.1) satisfies

hypothesis (A2)(iii), that is we need to control the iterated quantities Tl :=
(
A(δ)
ε SB(δ)

ε

)(∗l)

for some l in N. The following proposition describes such controls when p = 1.

Proposition 5.3.7 Consider k > k∗q , defined by (5.2.3), and s in N .

For any δ in (0, δk,q] and any λ′0 in (0, λ0) (δk,q and λ0 defined in Proposition 5.3.6), there

exists C1 = C1(λ′0, δ) > 0 and R = R(δ) > 0 such that for any t > 0,

∀n ∈ N, supp Tn(t)h ⊂ K := B(0, R)

and

∀s > 1, ‖T1(t)h‖
W s+1,1
x,v (K)

6 C1
e−

λ′0
ε2
t

ε2t
‖h‖

W s+1,1
v W s

x (〈v〉k)
, (5.3.13)

∀s > 0, ‖T2(t)h‖
W
s+1/2,1
x,v (K)

6 C1
e−

λ′0
ε2
t

ε4
‖h‖

W s,1
x,v(〈v〉k)

. (5.3.14)

Proof of Proposition 5.3.7

Most of the proof is an adaptation of [51] proof of Lemma 4.19 to keep track of the

dependencies on ε. We will refer to it when we are using some of its computations.

Control of T1(t)h: The x-derivatives commutes with T1(t) and therefore it is enough

to consider h in W s,1
v W 1,1

x (〈v〉k), with s > 1, and to control ‖T1(t)h‖
W s+1,1
v W 1,1

x (K)
. This
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gives

‖T1(t)h‖
W s+1,1
v W 1,1

x (K)
6 ‖T1(t)h‖

W s+1,1
v L1

x(K)
+ ‖∇xT1(t)h‖

W s+1,1
v L1

x(K)
. (5.3.15)

The first term is easily dealt with thanks to the estimate on A(δ)
ε , Proposition 5.3.2,

and the dissipativity property of B(δ)
ε , Proposition 5.3.6,

‖T1(t)h‖
W s+1,1
v L1

x(K)
=
∥∥∥A(δ)

ε SB(δ)
ε
h
∥∥∥
W s+1,1
v L1

x(K)
6
C

ε2
e−

λ0
ε2
t ‖h‖L1

vL
1
x(〈v〉k) . (5.3.16)

For the second term, define f(t) = SB(δ)
ε
h and

Dt = ε−1t∇x +∇v. (5.3.17)

By direct computations we have that

ε−1t∇xT1(t)h = A(δ)
ε (Dtf)−

(
∇vA(δ)

ε

)
f,

which leads to, by Proposition 5.3.2,

ε−1t ‖∇xT1(t)h‖
W s+1,1
v L1

x(K)
6
C

ε2

[
‖Dtf‖L1

x,v(〈v〉k)
+ ‖f‖L1

x,v(〈v〉k)

]
. (5.3.18)

The dissipativity property of B(δ)
ε , in particular (5.3.10) with q = 1, yields

d

dt
‖f‖L1

x,v(〈v〉k)
6 −λ0

ε2
‖f‖L1

x,v(〈v〉kν)
. (5.3.19)

Direct computations yields

∂t (Dtf) = B(δ)
ε (Dtf) +

1

ε2
J (δ)f,

where

J (δ) = ∇v
(
B(δ)

1 (·)
)
− B(δ)

1 (∇v(·)) (5.3.20)

is independent of ε and satisfies (see [51] proof of Lemma 4.19) for all g in L1
v

(
〈v〉kν

)
∥∥∥J (δ)g

∥∥∥
L1
v(〈v〉k)

6 Cδ ‖g‖L1
v(〈v〉kν)

.

In the same way as proof of Proposition 5.3.6 we obtain
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d

dt
‖Dtf‖L1

x,v(〈v〉k)
6 −λ0

ε2
‖Dtf‖L1

x,v(〈v〉kν)
+
Cδ
ε2
‖f‖L1

v(〈v〉kν)
. (5.3.21)

We then consider λ′0 in (0, λ0) and define η = (λ0 − λ′0)/Cδ. We compute, with (5.3.19),

d

dt

[
e
λ′0
ε2
t
(
η ‖Dtf‖L1

x,v(〈v〉k)
+ ‖f‖L1

x,v(〈v〉k)

)]
6 0,

and thus

‖Dtf‖L1
x,v(〈v〉k)

+ ‖f‖L1
x,v(〈v〉k)

6 η−1e−
λ′0
ε2
t ‖h‖

W 1,1
v L1

x(〈v〉k)
. (5.3.22)

To conclude we plug (5.3.22) into (5.3.18) and we combine it with (5.3.16) into (5.3.15).

This yields, because s > 1,

‖T1(t)h‖
W s+1,1
v W 1,1

x (K)
6 C

e−
λ′0
ε2
t

ε2t
‖h‖

W s,1
v L1

x(〈v〉k)
,

which implies the expected result (5.3.13) because T1(t) commutes with x-derivatives.

Control of T2(t)h: For s > 0 we can interpolate (for interpolation theory in Sobolev

spaces see [13] Chapters 6) between (5.3.16) and (5.3.13) to get

‖T1(t)h‖
W
s+1/2,1
x,v (K)

6 C
e−

λ′0
ε2
t

ε2
√
t
‖h‖

W s,1
v L1

x(〈v〉k)
.

Then, we firstly use the inequality above and secondly (5.3.16) to obtain

‖T2(t)h‖
W
s+1/2,1
x,v (K)

6
∫ t

0
‖T1(t− s)T1(s)h‖

W
s+1/2,1
x,v (K)

ds

6
C

ε4
e−

λ′0t
ε2

∫ t

0

e−
λ0−λ

′
0

ε2
s

√
t− s ds

 ‖h‖
W s,1
v L1

x(〈v〉k)
,

which is the expected result (5.3.14).

The aim is to link our space LqvL
p
x

(
〈v〉k

)
to the space Hs

x,v

(
µ−1/2

)
. We thus state the

following control on the iterated convolution in the case p = 2.

Proposition 5.3.8 Consider k > k∗q , defined by (5.2.3), and s in N .

For any δ in (0, δk,q] there exists C2 = C2(δ) > 0 and R = R(δ) > 0 such that for any

t > 0,

∀n ∈ N, supp Tn(t)h ⊂ K := B(0, R)
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and

∀s > 0, ‖T2(t)h‖
H
s+1/2
x,v (K)

6
CT
ε5/2
‖h‖Hs

x,v(〈v〉k) . (5.3.23)

Proof of Proposition 5.3.8 Consider h in W s,2
x,v (〈v〉k), s in N.

This Proposition is easier than when p = 1 because there exists velocity averaging

lemmas in this framework, as discussed in [51] Remark 4.21. The x-derivative commutes

with T1 and therefore we suppose there is no derivative in space.

Define f(t) = SB(δ)
ε

(t)(h) so that f is solution to the kinetic equation

∂tf +
1

ε
v · ∇xf = sε(t, x, v),

with sε(t, x, v) = −ε−2νf + ε−2B(δ)
2,εf .

Let j be a multi-index such that |j| 6 s. We apply ∂j0 to the latter equation, which

gives

∂t

(
∂j0f

)
+

1

ε
v · ∇x

(
∂j0f

)
= ∂j0sε(t, x, v) +

1

ε

∑
|i|+|l|=|j|

ai,l∂
i
lf, (5.3.24)

where ai,j are non-negative numbers.

A classical averaging lemma (see [20] Lemma 1 and [21] in which we emphasize the

dependencies in ε) reads, for (5.3.24) with ∂j0f(0, x, v) = ∂j0h(x, v), for all ψ in D
(
Rd
)

∥∥∥∥∫
Rd
∂j0f(t, x, v)ψ(v) dv

∥∥∥∥
L2
t

(
H

1/2
x

)

6
C√
ε

∥∥∥∂j0h(x, v)
∥∥∥
L2
x,v

+
∥∥∥∂j0sε∥∥∥

L2
t,x,v

+
1

ε

∥∥∥∥∥∥
∑

|i|+|l|=|j|

ai,l∂
i
lf

∥∥∥∥∥∥
L2
t,x,v

 .

(5.3.25)

We use [51], Lemmas 4.4 and 4.7, in order to bound the terms involving B(δ)
2,ε = ε−2B(δ)

2,1

we have that

‖sε‖Hs
x,v(〈v〉k)

6
1

ε2
‖s1‖Hs

x,v(〈v〉k)
6
C

ε2
‖f‖Hs

x,v(〈v〉kν)
6
C

ε2
e−

λ0
ε2
t ‖h‖Hs

x,v(〈v〉kν)
,

where the last inequality comes from the hypodissipativity properties of SBε(t), see Propo-

sition 5.3.6.

Using the dissipativity properties of SBε(t) one more time we deduce that

‖T1(t)h‖
L2
t

(
H
s+1/2
x,v (〈v〉k)

) 6
C

ε5/2
‖h‖Hs

x,v(〈v〉kν)
. (5.3.26)
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To conclude we notice that
∫ t

0 T1(t − s)T1(s) ds is a continuous linear operator on the

Hilbert space H
s+1/2
x,v (K) and thus we can see it as an element of H

s+1/2
x,v (K) by Riesz’s

representation theorem. Hence, thanks to Cauchy-Schwartz,

‖T2(t)h‖
H
s+1/2
x,v (K)

=

∥∥∥∥(∫ t

0
T1(t− s)T1(s) ds

)
(h)

∥∥∥∥
H
s+1/2
x,v (K)

6 ‖h‖Hs
x,v(〈v〉kν)

∫ t

0
‖T1(t− s)T1(s)‖

B
(
Hs
x,v(〈v〉kν),H

s+1/2
x,v (K)

) ds
6 ‖h‖Hs

x,v(〈v〉kν)

(∫ t

0
‖T1(t− s)‖2

B
(
Hs
x,v(K),H

s+1/2
x,v (K)

) ds
)1/2

×
(∫ t

0
‖T1(s)‖2

B(Hs
x,v(〈v〉kν),Hs

x,v(K)) ds

)1/2

6 ‖h‖Hs
x,v(〈v〉kν)

C

ε5/2

(∫ t

0

CA
ε2
e−

λ′0
ε2
s ds

)1/2

6
C

ε5/2
‖h‖Hs

x,v(〈v〉kν)
,

where we used Proposition 5.3.2 and the fact that SB(δ)
ε

is a contraction semigroup on Hs
x,v

with spectral gap λ′0/ε
2.

5.3.5 Proof of Theorem 5.2.1

As we explained it in Section 5.3.1, the proof of Theorem 5.2.1 is direct from the application

of Theorem 5.3.1. This theorem is clearly applicable in our case and we emphasize it

through the extreme case of no derivative in space or velocity variables.

Indeed, we consider s in N to be chosen big enough later. We define E = LqvL
p
x

(
〈v〉k

)
and E = Hs

x,v

(
µ−1/2

)
and we have E ⊂ E for s big enough (dense with continuous

embedding). Indeed, in the case q > 2 and p > 2, standard Sobolev embeddings (see [22]

Section IX.3.) imply E ⊂ LqvLpx
(
µ−1/2

)
. In the case p < 2 we have, on the torus, L2

x ⊂ Lpx
and Hs

x ⊂ L2
x by the same Sobolev embeddings. Finally, in the case q < 2 we have that

L2
v

(
µ−1/2

)
⊂ Lqv

(
〈v〉k

)
(it can be done by a mere Cauchy-Schwarz inequality) and the

same Sobolev embeddings give Hs
v

(
µ−1/2

)
⊂ L2

v

(
µ−1/2

)
.

On the torus we have the following embedding: Lpx ⊂ L1
x. Thanks to Proposition 5.3.2

and Proposition 5.3.6 we obtain (same arguments as (5.3.16))

‖T1(t)h‖E 6 C
∥∥∥A(δ)

ε SB(δ)
ε
h
∥∥∥
LqvL1

x(K)
6
C

ε2
e−

λ0
ε2
t ‖h‖L1

vL
1
x(〈v〉k) . (5.3.27)

We therefore define E2 = L1
vL

1
x(〈v〉k).
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Then we define by Ej = W
(j−2)/2,1
x,v (〈v〉k) for j from 2 to m with m big enough such that

W
(m−1)/2,1
x,v (〈v〉k) ⊂ L2

x,v(〈v〉k). Then we denote Ej = H
(j−m−1)/2
x,v (〈v〉k) up J − 1 where

H
(J−m−2)/2
x,v (〈v〉k) ⊂ E.

Point (A1) of Theorem 5.3.1 is satisfied thanks to [4] and [23] Theorem 2.1 (with the

norm of Theorem 2.4), point (A2)(i) by Proposition 5.3.6 and point (A2)(ii) by Proposition

5.3.2. Finally, point (A2)(iii) is given by (5.3.27) for E and E1, then by Proposition 5.3.7

(5.3.14) up to Em and by Proposition 5.3.8 from Em to EJ and E.

5.4 An a priori estimate for the full perturbed equation:

proof of Theorem 5.2.3

In this section we work in Wα,1
v Hβ

x

(
〈v〉k

)
or in Wα,1

v W β,1
x

(
〈v〉k

)
, with α 6 β on the full

perturbed Boltzmann equation

∂th = Gε(h) +
1

ε
Q(h, h).

5.4.1 Description of the problem and notations

When ε = 1, the linear part Gε has the same order of magnitude than the bilinear term

Q in the linearized Boltzmann equation (5.1.5). In this case, Theorem 5.2.1 suffices to

obtain existence and exponential decay since the contraction property of the semigroup

SG1 controls the bilinear part for small initial data (see [51]).

In the general case, SGε only generates a semigroup with a spectral gap of order 1,

insufficient to control ε−1Q. However, [56][23] (and Chapter 4) show that a careful study

of ε−1Q compared to Gε yields existence and exponential decay of solutions to (5.1.5) in

Hs
x,v

(
µ−1/2

)
for s large enough (see Theorem 5.4.7 for an adapted version of this result).

Our strategy is to use the same kind of ideas as when we extended the semigroup properties

from Hβ
x,v

(
µ−1/2

)
to Wα,1

v Hβ
x

(
〈v〉k

)
and Wα,1

v W β,1
x

(
〈v〉k

)
but including the bilinear term.

Namely, we shall decompose the partial differential equation (5.1.5) into a system of partial

differential equations from Wα,1
v Hβ

x

(
〈v〉k

)
or Wα,1

v W β,1
x

(
〈v〉k

)
to Hβ

(
µ−1/2

)
and use the

perturbative estimates of [23] (that are given in Chapter 4).

As noticed in Remark 2.16 of [51], Theorem 5.3.1 extending the semigroup generated

by Gε in Hs
(
µ−1/2

)
to L1

vL
∞
x

(
〈v〉k

)
can be interpreted as a decomposition of

∂tf = Gεf,

into a system of partial differential equations, involving operators Gε = Aε + Bε (defined

in Section 5.3.2), with f = f1 + · · ·+ fJ satisfying

- 241 -



5 The Incompressible Navier-Stokes limit in polynomial weighted spaces

� f1 is in L1
vL
∞
x

(
〈v〉k

)
and f1

in = fin in Ker(Gε)⊥,

� for all 2 6 j 6 J − 1, f j is in Ej and f jin = 0,

� fJ is in Hs
(
µ−1/2

)
, fJin = 0 and in that space we can use the contraction property

of SGε .

We will decompose the linearized Boltzmann equation in a similar way than the one

explained above. We shall define a sequence of spaces (Ej)16j6J . In each space Ej , 1 6

j 6 J − 1, a piece of the bilinear term, of order ε−1, will be added and controlled by the

dissipativity property of B(δ)
ε , of order ε−2. Contrary to the study in the linear case, the

bilinear operator generates terms involving functions in all the spaces Ej which have to be

compared and controlled. This imposes to construct (Ej)16j6J as a nested sequence.

The difficult part of the linear operator, namely A(δ)
ε , enjoys a regularising effect and

could therefore be treated in more regular spaces. Of course, our decomposition will be

much easier since we solely want to go from an exponential weight into a polynomial weight

Sobolev spaces, without losing any derivatives in x or v.

In order to shorten notations we define, for p = 1, 2 and k to be defined later,

Ep = Wα,1
v W β,p

x

(
〈v〉k

)
and E = Hβ

x,v

(
µ−1/2

)
. (5.4.1)

We take hin in Ep and we decompose the partial differential equation,

∂th = Gε(h) +
1

ε
Q(h, h) = A(δ)

ε (h) + B(δ)
ε (h) +

1

ε
Q(h, h)

into an equivalent system of partial differential equations for the following decomposition

h(t, x, v) = h0(t, x, v) + h1(t, x, v), (5.4.2)

with

1. In Ep, h0
t=0 = hin and

∂th
0 = B(δ)

ε (h0) +
1

ε
Q(h0, h0) +

2

ε
Q
(
h0, h1

)
, (5.4.3)

2. In E, h1
t=0 = 0 and

∂th
1 = Gε(h1) +

1

ε
Q(h1, h1) +A(δ)

ε (h0). (5.4.4)

The aim of this Section is to establish the following estimate of solutions to the system

(5.4.3)− (5.4.4).
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Theorem 5.4.1 Let p = 1 or p = 2. There exist β0 in N and εd in (0, 1] depending on d

and the kernel of the Boltzmann operator such that:

For all β > β0, for any δ in (0, δk,1] and any λ′0 in (0, λ0) (δk,1 and λ0 defined in Proposition

5.3.6) there exist Cβ, ηβ > 0 such that for any 0 < ε 6 εd and hin in Ep,
if

(i) ‖hin‖Ep 6 ηβ,

(ii) (h0, h1) is solution to the system (5.4.3)− (5.4.4),

then ∥∥h0 + h1
∥∥
Ep 6 Cβ ‖hin‖Ep e−λ

′
0t.

The constants Cβ and ηβ are constructive and depends only on β, d, δ, λ′0 and the kernel

of the Boltzmann operator.

Remark 5.4.2 (Link with Theorem 5.2.3) The existence and uniqueness for the per-

turbed Boltzmann equation (5.1.5) in Ep has been proved for ε = 1, that is equivalent of ε

fixed with constant depending on it, in [51] Theorems 5.3 and 5.5 respectively. The con-

stants, as well as the smallness assumption on the initial data, in the theorem above are

independent of ε and therefore this a priori result combined with existence and uniqueness

developed in [51] and in [23] (for existence and uniqueness in E, see statements in Chapter

4) implies the existence and uniqueness independently of ε which is Theorem 5.2.3.

The next subsections deal with the estimates one can get for solutions to the system

(5.4.3)− (5.4.4). We study each of them independently and the a priori exponential decay

will be a straightforward application of these results together with a maximum principle

argument.

Section 5.4.2 focuses on the a priori study of the equation in Ep. Section 5.4.3 deals

with (5.4.4) in E. Finally, Section 5.4.4 gathers the previous results to prove Theorem

5.4.1.

5.4.2 Study of equation (5.4.3) in E

In this section we prove the following general proposition about the equation taking place

in Ep = Wα,1
v W β,p

x

(
〈v〉k

)
, for p = 1 or p = 2. We define the shorthand notation

Epν = Wα,1
v W β,p

x

(
〈v〉kν

)
.
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Proposition 5.4.3 Let p = 1 or p = 2 and 0 < ε 6 1. Let k > k∗1 = 2, β > 2d/p.

Let hin be in Ep and h1 in Epν .

For any δ in (0, δk,1] and any λ′0 in (0, λ0) (δk,1 and λ0 defined in Proposition 5.3.6) there

exist η0 > 0 such that

if

(i) ‖hin‖Ep 6 η0 ,
∥∥h1
∥∥
Epν

6 η0,

(ii) h0 satisfies h0
t=0 = hin and is solution to

∂th
0 = B(δ)

ε (h0) +
1

ε
Q(h0, h0) +

2

ε
Q
(
h0, h1

)
,

then ∥∥h0
∥∥
Ep 6 e−

λ′0
ε2
t ‖hin‖Ep .

The constant η0 is constructive and depends only on δ, λ′0 and the kernel of the Boltzmann

operator.

We need to control the bilinear term Q, which is given by the following lemma.

Lemma 5.4.4 For all p = 1, 2 and α, β in N such that β > 2d/p, there exists Cβ,p > 0

such that all f and g

‖Q(f, g)‖Ep 6 Cβ,p
(
‖g‖Epν ‖f‖Ep + ‖g‖Ep ‖f‖Epν

)
.

This lemma has been proved in Lemma 5.16 in [51], which is adapted from interpolation

results in [3] or duality arguments as in [84] Theorem 2.1.

Proof of Proposition 5.4.3

Consider δ in (0, δk,1] and λ′0 in (0, λ0). Take p = 1 or p = 2 and β > 2d/p.

We have that

∂th
0 = B(δ)

ε (h0) +
1

ε
Q(h0, h0) +

2

ε
Q
(
h0, h1

)
.

Thanks to the dissipativity of property of B(δ)
ε , more precisely the proof of Lemma 5.3.6,

we have

d

dt

∥∥h0
∥∥
Ep 6 −

λ0

ε2ν0

∥∥h0
∥∥
Epν

+
1

ε

∣∣〈Q(h0, h0) + 2Q(h0, h1), h0〉Ep
∣∣

6 − λ0

ε2ν0

∥∥h0
∥∥
Epν

+
1

ε

∥∥Q(h0, h0) + 2Q(h0, h1)
∥∥
Ep ,
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where we used the scalar product notation to refer to the product operator appearing in

Wα,1
v W β,p

x when one differentiates ‖h‖
Wα,1
v Wβ,p

x (〈v〉k) (of the same form as (5.3.9)). For the

second inequality we used Hölder inequality between Lpx and L
p/(p−1)
x inside the product

operator: ∫
Td

sgn(h0)
∣∣h0
∣∣p−1

F (h0) dx 6
∥∥h0
∥∥p−1

Lpx

∥∥F (h0)
∥∥
Lpx
.

Then estimating Q using Lemma 5.4.4 yields

d

dt

∥∥h0
∥∥
Ep 6 −

1

ε2

[
λ0

ν0
− 2εCβ,p

(∥∥h0
∥∥
Ep +

2

ν0

∥∥h1
∥∥
Epν

)]∥∥h0
∥∥
Epν
, (5.4.5)

we recall ν0 = inf
v∈Rd

(ν(v)) > 0.

Therefore, if

∥∥h1
∥∥
Epν

6 ε−1 (λ0 − λ′0)

8Cβ,p
and ‖ht=0‖Ep 6 ε−1 (λ0 − λ′0)

4ν0Cβ,p
,

then
∥∥h0
∥∥
Ep is always decreasing in time with

d

dt

∥∥h0
∥∥
Ep 6 −

λ′0
ε2ν0

∥∥h0
∥∥
Epν
,

which hence yields the expected exponential decay by Grönwall Lemma.

5.4.3 Study of equations (5.4.4) in E

In the space E = Hβ
x,v

(
µ−1/2

)
, solutions to the perturbed Boltzmann equation enjoy an

exponential decay. More precisely, [23] derived a precise Grönwall that we will now use to

obtain estimates on the solution h1. We will use the following shorthand notation

Eν = Hβ
x,v

(
µ−1/2ν1/2

)
In this section we use the previous theorem to obtain exponential decay of h1 in E. This

result is stated in the following proposition, where C0
t denotes the space of time-continuous

functions.

Proposition 5.4.5 Let p = 1 or p = 2, 0 < ε 6 εd 6 1, β > s0 and α 6 β (εd and s0

being constructive constants that will be defined in Theorem 5.4.7).

Let hin be in Ep and h0 in C0
t Ep.

For any δ in (0, δk,1] and any λ′0 in (0, λ0) (δk,1 and λ0 defined in Proposition 5.3.6) there
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exist η1, C1 > 0 such that

if

(i) ‖hin‖Ep 6 η1,

(ii) there exists C0 > 0 such that
∥∥h0
∥∥
Ep 6 C0e

−λ0+λ′0
2ε2

t ‖hin‖Ep ,

(iii) h1 satisfies h1
t=0 = 0 and is solution to

∂th
1 = Gε(h1) +

1

ε
Q(h1, h1) +A(δ)

ε (h0)

then ∥∥h1
∥∥
E
6 C1e

−λ′0t ‖hin‖Ep

The constants C1 and η1 are constructive and depends only on δ, λ′0 and the kernel of the

Boltzmann operator.

In order to prove Proposition 5.4.5 we need a new control on the bilinear term.

For any operator F : E×E −→ E, we will say that F satisfies the property (H) if the

following holds.

Property (H):

1. for all g1, g2 in E we have πL
(
F (g1, g2)

)
= 0, where πL is the orthogonal projection

on Ker (L) in L2
v

(
µ−1/2

)
(see (5.2.1)),

2. for all s′ > 0 there exists Fs′F : E ×E −→ R+ such that for all multi-indexes j and l

such that |j|+ |l| 6 s′,∣∣∣〈∂jl F (g1, g2), g3〉L2
x,v(µ−1/2)

∣∣∣ 6 Fs′F (g1, g2)
∥∥g3
∥∥
L2
x,v(µ−1/2ν1/2) ,

with Fs′F 6 Fs′+1
F .

Lemma 5.4.6 The Boltzmann linear operator Q satisfies the property (H) with

∀s > d, ∃Cs > 0, FsQ(g, h) 6 Cs
[
‖f‖E ‖g‖Eν + ‖f‖Eν ‖g‖E

]
.

The latter control on the bilinear part is from [23] Appendix A.2 (see Chapter 4 Ap-

pendix 4.A).
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Proof of Proposition 5.4.5 We state below the estimate derived in [23] (note that this

is a version of [23] Theorem 2.4 extended by estimates proved in [23] Propositions 2.2 and

7.1).

Theorem 5.4.7 There exist 0 < εd 6 1 and s0 in N such that for any s > s0 and any λ′′0
in (0, λ0) there exists δs, Cs > 0 such that,

� for any hin in Hs
x,v

(
µ−1/2

)
with

‖hin‖Hs
x,v(µ−1/2) 6 δs,

� for any operator F : Hs
x,v

(
µ−1/2

)
× Hs

x,v

(
µ−1/2

)
−→ Hs

x,v

(
µ−1/2

)
satisfying the

property (H);

Then for all 0 < ε 6 εd and for all g1, g2 in Hs
x,v

(
µ−1/2

)
, if h is a solution to


∂th = Gε(h) +

1

ε
F (g1, g2)

ht=0 = hin,

and h is in Ker (Gε) for all time, then

∀t ∈ R+,
d

dt
‖h‖2

Hs
x,v(µ−1/2) 6 −2λ′′0

ν2
0

‖h‖2
Hs
x,v(µ−1/2ν) + Cs

(
FsF (g1, g2)

)2
.

Now, let λ′′ be in (0, λ0), s > s0 and 0 < ε 6 εd.

The proof of Proposition 5.4.5 will be done in two steps. First we study the projection of

h1 onto Ker (Gε) and then its orthogonal part.

Estimate on the projection part. We have that, see the decomposition (5.4.2),

that h1 = h−h0 with h solution to the perturbed Boltzmann equation and thus satisfying

ΠG(h) = 0. We therefore have that

ΠG(h1) = −ΠG(h0).

Moreover, Theorem 5.2.1 tells us that ΠG and ΠG coincide on E and thus

ΠG(h1) = −ΠG(h0),

and assumption (ii) together with the shape of ΠG (see (5.2.4)), there exists a constant

CΠ > 0, depending only on the dimension d and s and the constant C0, such that

∥∥ΠG(h1)
∥∥
Eν

6 CΠe
−λ0+λ′0

2ε2
t ‖hin‖Ep . (5.4.6)
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Estimate on the orthogonal part. Applying Π⊥G = Id − ΠG, the orthogonal pro-

jection onto (Ker (Gε))
⊥ in L2

x,v

(
µ−1/2

)
, to the differential equation satisfied by h1 yields

∂t

(
Π⊥G(h1)

)
= Gε(h

1) + Π⊥G

(
1

ε
Q(h1, h1) +A(δ)

ε (h0)

)
= Gε

(
Π⊥G(h1)

)
+ Π⊥G

(
1

ε
Q(h1, h1) +A(δ)

ε (h0)

)
. (5.4.7)

Moreover, we have by definition of ΠG and πL (see (5.2.4) and (5.2.1)) that

(πL(h) = 0) =⇒ (ΠG(h) = 0)

and therefore

Π⊥G
(
Q(h1, h1)

)
= Q(h1, h1),

since Q satisfies property (H).1. by Lemma 5.4.6. Plugging the latter equality into (5.4.7)

gives

∂t

(
Π⊥G(h1)

)
= Gε

(
Π⊥G(h1)

)
+

1

ε
Q(h1, h1) + Π⊥G

(
A(δ)
ε (h0)

)
.

By definition, Π⊥G(h1) is in (Ker (Gε))
⊥ for all time and thanks to the control on

the Boltzmann operator Q in E (Lemma 5.4.6), we are able to use Theorem 5.4.7 with

λ0 > λ′0 to which we have to add the source term Π⊥G

(
A(δ)
ε (h0)

)
. This yields the following

differential inequality, where we denote by C any positive constant independent of ε,

d

dt

∥∥∥Π⊥G(h1)
∥∥∥2

E
(5.4.8)

6 −2λ′′0
ν2

0

∥∥∥Π⊥G(h1)
∥∥∥2

Eν
+ C

(
FsQ(h1, h1)

)2
+
∣∣∣〈Π⊥G (A(δ)

ε (h0)
)
,Π⊥G(h1)〉E

∣∣∣
6 −2λ′′0

ν2
0

∥∥∥Π⊥G(h1)
∥∥∥2

Eν
+ C

∥∥h1
∥∥2

E

∥∥h1
∥∥2

Eν
+
∥∥∥Π⊥G

(
A(δ)
ε (h0)

)∥∥∥
E

∥∥∥Π⊥G(h1)
∥∥∥
E
,

where we used a Cauchy-Schwarz inequality on the last term on the right-hand side.

Then we can decompose h1 = ΠG(h1) + Π⊥G(h1) to get first

∥∥h1
∥∥2

E

∥∥h1
∥∥2

Eν
64
∥∥∥Π⊥G(h1)

∥∥∥2

E

∥∥∥Π⊥G(h1)
∥∥∥2

Eν
+

8

ν2
0

∥∥ΠG(h1)
∥∥2

Eν

∥∥∥Π⊥G(h1)
∥∥∥2

Eν

+
4

ν2
0

∥∥ΠG(h1)
∥∥4

Eν
,

into which we can plug the control on
∥∥ΠG(h1)

∥∥2

Eν
we derived in (5.4.6) to obtain, with
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‖hin‖ 6 η1,

∥∥h1
∥∥2

E

∥∥h1
∥∥2

Eν
6 4

∥∥∥Π⊥G(h1)
∥∥∥2

E

∥∥∥Π⊥G(h1)
∥∥∥2

Eν
+ Cη2

1

∥∥∥Π⊥G(h1)
∥∥∥2

Eν
+ Ce−

2(λ0+λ′0)

ε2
t ‖hin‖4Ep .

(5.4.9)

And finally, this inequality together with assumption (ii) gives the existence of a con-

stant CA > 0 such that∥∥∥Π⊥G

(
A(δ)
ε (h0)

)∥∥∥
E

∥∥∥Π⊥G(h1)
∥∥∥
E
6
CA
ε2
‖hin‖Ep e

−λ0+λ′0
2ε2

t
∥∥∥Π⊥G(h1)

∥∥∥
E
. (5.4.10)

We plug (5.4.9) and (5.4.10) into (5.4.8) and obtain, with C and C ′ being positive

constants independent of ε,

d

dt

∥∥∥Π⊥G(h1)
∥∥∥2

E
6−

[
2λ′′0
ν2

0

−
(

4
∥∥∥Π⊥G(h1)

∥∥∥2

E
+ Cη2

1

)]∥∥∥Π⊥G(h1)
∥∥∥2

Eν

+ C ′
(
‖hin‖4Ep +

1

ε2
‖hin‖Ep

∥∥∥Π⊥G(h1)
∥∥∥
E

)
e−

λ0+λ′0
2ε2

t.

We now choose η1 sufficiently small so that

Cη2
1 6

λ′′0 − λ′0
ν2

0

,

which in turns implies

d

dt

∥∥∥Π⊥G(h1)
∥∥∥2

E
6−

[
λ′′0 + λ′0
ν2

0

− 4
∥∥∥Π⊥G(h1)

∥∥∥2

E

] ∥∥∥Π⊥G(h1)
∥∥∥2

Eν

+ C ′
(
‖hin‖4Ep +

1

ε2
‖hin‖Ep

∥∥∥Π⊥G(h1)
∥∥∥
E

)
e−

λ0+λ′0
2ε2

t.

(5.4.11)

We define

η∗ =
λ′′0 − λ′0

4ν2
0

.

We have that h1
t=0 = 0 so we can define

t0 = sup{t > 0,
∥∥∥Π⊥G(h1)

∥∥∥2

E
< η∗}.

Suppose that t0 < +∞, we therefore have for all t in [0, t0]

d

dt

∥∥∥Π⊥G(h1)
∥∥∥2

E
6 −2λ′0

ν2
0

∥∥∥Π⊥G(h1)
∥∥∥2

Eν
+ C ′

(
‖hin‖4Ep +

√
η∗

ε2
‖hin‖Ep

)
e−

λ0+λ′0
2ε2

t,
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which gives

∀t ∈ [0, t0],
d

dt

∥∥∥Π⊥G(h1)
∥∥∥2

E
6 −2λ′0

∥∥∥Π⊥G(h1)
∥∥∥2

E
+ C ′

(
‖hin‖4Ep +

√
η∗

ε2
‖hin‖Ep

)
e−

λ0+λ′0
2ε2

t,

and by Gronwall lemma with Π⊥G(h1)(t=0) = 0,

∀t ∈ [0, t0],
∥∥∥Π⊥G(h1)

∥∥∥2

E
6 C ′

(
‖hin‖4Ep +

√
η∗

ε2
‖hin‖Ep

)(∫ t

0
e−

λ0+λ′0
2ε2

s e2λ′0s ds

)
e−2λ′0t

6 C ′
(
ε2 ‖hin‖4Ep +

√
η∗ ‖hin‖Ep

)(∫ +∞

0
e−

λ0−λ
′
0

2
u du

)
e−2λ′0t,

where we used the change of variable u = ε−2s and we considered ε 6 1/4 (which only

amounts to decreasing εd).

Hence, there exists K > 0 independent of ε such that

∀t ∈ [0, t0],
∥∥∥Π⊥G(h1)

∥∥∥2

E
6 K(η4

1 + η1
√
η∗).

If we thus chose η1 sufficiently small such that (η4
1 + η1

√
η∗)K < η∗/2 we reach a

contradiction when t goes to t0 since
∥∥Π⊥G(h1)

∥∥2

E
(t0) > η∗. Therefore, choosing η1 small

enough independently on ε implies first that t0 = +∞ and second that

∀t ∈ [0,+∞),
∥∥∥Π⊥G(h1)

∥∥∥2

E
6 C ‖hin‖2Ep e−2λ′0t. (5.4.12)

End of the proof. By just decomposing h1 into its projection and orthogonal part and

using the estimates (5.4.6) and (5.4.12) gives the expected exponential decay for h1 in E.

5.4.4 Proof of Theorem 5.4.1

Let p = 1 or p = 2, λ′′ be in (0, λ0), β > β0 = s0 and 0 < ε 6 εd. All the constants used in

this section are the ones constructed in Proposition 5.4.3 with (λ0 +λ′0)/2 and Proposition

5.4.5 with λ′0.

E is continuously embedded in Epν because L2
v

(
µ−1/2

)
⊂ L2

v

(
〈v〉k

)
(mere Cauchy-

Schwarz inequality) and L2
x ⊂ L1

x because Td is bounded. Hence, there exists CE,E > 0

such that
1

ν0
‖·‖Ep 6 ‖·‖Epν 6 CE,E ‖·‖E . (5.4.13)

We define

η = min

(
η0, η1,

η0

2CE,EC1

)
,
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and we assume ‖hin‖Ep 6 η. Since h1
t=0 = 0 we also define

t0 = sup{t > 0,
∥∥h1
∥∥
Epν
< η0}.

Suppose that t0 < +∞. Then, thanks to Proposition 5.4.3 we have that

∀t ∈ [0, t0],
∥∥h0
∥∥
Ep 6 ‖hin‖Ep e

−λ0+λ′0
2ε2

t.

We can thus apply Proposition 5.4.5 and get

∀t ∈ [0, t0],
∥∥h1
∥∥
E
6 C1 ‖hin‖Ep e−λ

′
0t 6 C1η 6

η0

2CE,E
,

which is in contradiction with the definition of t0 thanks to (5.4.13). Therefore t0 = +∞
and we have the expected exponential decay stated in Theorem 5.4.1 for all time.
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Part III

A QUANTIC VERSION OF

BOLTZMANN EQUATION FOR

GASES OF BOSONS AND

FERMIONS





Chapter 6

The homogeneous

Boltzmann-Nordheim equation for

bosons: local existence and

uniqueness

The Boltzmann-Nordheim equation is a modification, based on physical considerations, of

the Boltzmann equation that describes the dynamics of the distribution of particles in a

quantum gas composed by bosons or fermions. We investigate the homogeneous Boltzmann-

Nordheim equation for the particular case of bosons. We solve existence and uniqueness

locally in time for any initial data that are bounded and with finite mass and energy, without

any assumption of isotropy. We also show that moments of all order appear immediately

for such solutions. Finally, we discuss the phenomenon of Bose-Einstein condensate in a

gas of bosons at low temperature and the recent results associated to it.
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6.1 Introduction

6.1 Introduction

This chapter deals with the dynamics of the distribution of particles in time and velocity,

f(t, v) > 0 in R+×Rd (d > 2), for a dilute homogeneous quantum gas of bosons. In greater

generality, the dynamics of particles undergoing binary collisions in quantum statistics is

given by the Boltzmann-Nordheim equation

∂tf = Q(f) , on R+ × Rd

=

∫
Rd×Sd−1

B (v, v∗, θ)
[
f ′(1 + αf)f ′∗(1 + αf∗)− f(1 + αf ′)f∗(1 + αf ′∗)

]
dv∗dσ,

where f ′, f∗, f
′
∗ and f are the values taken by f at v′, v∗, v

′
∗ and v respectively and B is

the collision kernel which encodes the physical properties of the collision process. Define:
v′ =

v + v∗
2

+
|v − v∗|

2
σ

v′∗ =
v + v∗

2
− |v − v∗|

2
σ

, and cos θ =

〈
v − v∗
|v − v∗|

, σ

〉
.

This equation has been derived by Nordheim (see [89]) using quantum statistics con-

siderations. Basically, when α = 0 one recovers exactly the Boltzmann equation which

rules the dynamics of particles in a dilute gas when only elastic binary collisions are taken

into account. The main difference with the Boltzmann-Nordheim equation is that in quan-

tum statistics the probability of two particles colliding not only depends on the number of

particles undergoing the collision but also the number of particles already in the final state

the latter collision yields. In the case of fermions (α = −1), this probability decreases and

in the case of bosons it increases (α = 1).

The collision kernel B > 0 contains all the information about the interaction between

two particles with velocities v and v∗, and is determined by physics. We can mention here

that one can derive this type of equations from Newton mechanics (coupled with quantum

effects in the case of the Boltzmann-Nordheim equation) at least formally, see [28] or

[30] for the classical mechanics case and [89] or [32] in the quantum case. However, if

mathematically rigorous derivations are known for small times for the classical Boltzmann

equation (Landford’s theorem, see [65] or more recently [44][96]), we do not have, at the

moment, the same kind of proof for the Boltzmann-Nordheim equation.

6.1.1 The problem and its motivations

All along this chapter we will assume that the collision kernel B can be decomposed as

B(v, v∗, θ) = Φ (|v − v∗|) b (cos θ) ,
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6 The homogeneous Boltzmann-Nordheim equation for bosons

which is a common assumption as it is more convenient and also covers a wide range of

physical applications.

Moreover, we will consider only kernels with hard potentials or Maxwellian potentials

(γ = 0 hereinbelow), that is to say there is a constant CΦ > 0 such that

Φ(z) = CΦz
γ , γ ∈ [0, 1], (6.1.1)

and satisfying Grad’s angular cutoff (see [48]), expressed here by the fact that we assume

b ◦ cos to be continuous on (0, π) and to be integrable on the sphere:

lb =

∫
Sd−1

b (cos θ) dσ =
∣∣∣Sd−2

∣∣∣ ∫ π

0
b (cos θ) sind−2θ dθ <∞. (6.1.2)

All those assumptions allow us to rewrite the Boltzmann-Nordheim equation with

α = 1, into the equation we are going to study

∂tf = CΦ

∫
Rd×Sd−1

|v − v∗|γb (cos θ)
[
f ′f ′∗(1 + f + f∗)− ff∗(1 + f ′ + f ′∗)

]
dv∗dσ. (6.1.3)

with the following decomposition

∂tf = Q+(f)− fQ−(f)

where we defined

Q+(f) = CΦ

∫
Rd×Sd−1

|v − v∗|γb (cos θ) f ′f ′∗(1 + f + f∗)dv∗dσ, (6.1.4)

Q−(f) = CΦ

∫
Rd×Sd−1

|v − v∗|γb (cos θ) f∗(1 + f ′ + f ′∗)dv∗dσ. (6.1.5)

In this chapter, we are first interested in the existence and uniqueness properties of

(6.1.3). Then, we shall understand and quantify the possible appearance, in finite time,

of a Bose-Einstein condensate in a gas of bosons. This condensate is a concentration of

mass in velocity at the mean velocity. In mathematical terms, this can be seen as the

appearance of a dirac function in the solution of the equation (6.1.3), noticeable by a

blow-up in finite time.

Such a concentration is physically expected, based on various experiments and numer-

ical simulations (see [40] for an overview of these results), as long as the temperature T

of the gas is below a critical temperature Tc(M0) which depends on the mass M0 of the

bosonic gas.
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6.1.2 A priori expectations for the creation of a Bose-Einstein conden-

sate

In this section, we use some properties of the Boltzmann-Nordheim equation for bosons

to understand why a concentration phenomenon is expected. We emphasize here that

everything is done a priori and should not be considered as a rigorous proof.

The first thing to notice is the symmetry property of the Boltzmann-Nordheim oper-

ator.

Lemma 6.1.1 Let f be such that Q(f) is well-defined. Then for all Ψ(v) we have∫
Rd
Q(f)Ψ dv =

CΦ

2

∫
Rd×Rd×Sd−1

q(f)(v, v∗)
[
Ψ′∗ + Ψ′ −Ψ∗ −Ψ

]
dσdvdv∗,

with

q(f)(v, v∗) = |v − v∗|γb (cos θ) ff∗
(
1 + f ′ + f ′∗

)
.

This result is well-known for the Boltzmann equation and is simply a play with the

changes of variables (v, v∗)→ (v∗, v) and (v, v∗)→ (v′, v′∗) and the symmetries of the oper-

ator q(f). A straightforward consequence is the a priori conservation of mass, momentum

and energy for a solution of (6.1.3), f , associated to an initial data f0, that is

∫
Rd

 1

v

|v|2

 f(v) dv =

∫
Rd

 1

v

|v|2

 f0(v) dv (6.1.6)

The entropy associated to (6.1.3) is the following operator

S(f) =

∫
Rd

[(1 + f)log(1 + f)− f log(f)] dv

which is, a priori, always increasing in time. It has been proven (see [58]) that for given

mass M0, momentum v0 and energy E0, there exists a unique maximizer of S of mass M0,

momentum v0 and energy E0 and this maximizer is of the form

FBE(v) = m0δ(v − v0) +
1

e
β
2 (|v−v0|2−µ) − 1

, (6.1.7)

with m0 > 0, β in (0,+∞] is the inverse of the equilibrium temperature and −∞ < µ 6 0

is the chemical potential. Moreover, the following equality is satisfied: µ.m0 = 0.

Besides, functions of the form FBE fulfilling the same constraints are the only maximizers of
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the entropy. Therefore, for a given initial data f0, the associated solution of the Boltzmann-

Nordheim equation (6.1.3) should converge, in some sense, to the function FBE associated

to the physical quantities of f0. Hence the appearance of a dirac function at v0 if m0 6= 0.

One can find in [69] or [41] that for a given (M0, v0, E0) we have that m0 = 0 if and

only if

M0 6
ζ(3/2)

(ζ(5/2))3/5

(
4π

3

)3/5

E
3/5
0 . (6.1.8)

According to [32], Chap. 2, the kinetic temperature of a bosonic gas is given by

T =
m

3kB

E0

M0

which implies that, by plugging it into (6.1.8), m0 = 0 if and only if T > Tc(M0) where

we compute

Tc(M0) =
mζ(5/2)

2πkBζ(3/2)

(
M0

ζ(3/2)

)2/3

.

In the equations above, kB is the constant of Boltzmann.

Initial data satisfying (6.1.8) are called subcritical (or critical in case of equality).

Therefore, for low temperature T < Tc(M0) we expect our solution to split into a

regular part and a dirac mass at v0 as it converges towards its equilibrium FBE with

m0 6= 0. Spohn, in [102], used this idea of a splitting into a regular and a singular part to

derive a physical quantitative study of the Bose-Einstein condensate and its interactions

with the normal fluid, in the case of radially symmetric (isotropic) solutions.

6.1.3 Comparison with previous results

The first theorem of the present chapter deals with local-in-time existence and uniqueness

of solutions to the bosonic Boltzmann-Nordheim equation for bounded initial datum f0

with bounded mass and energy (second moment).

The issue of existence and uniqueness for the homogeneous bosonic Boltzmann-Nordheim

equation has been studied recently, especially by X. Lu [69][70][71] and M. Escobedo and

J. J. L. Velázquez [40][41]. However, all those studies focused on the case of radially

symmetric solutions f(t, v) = f(t, |v|2) and in the case of hard potential with angular

cut-off.

In his papers [69] and [70], X. Lu developped a global-in-time Cauchy theory for

isotropic initial data with bounded mass and energy and extended the concept of so-

lutions for isotropic distributions. In these cases he proved existence and uniqueness of

radially symmetric solutions that preserve mass and energy. Moreover, he showed the

boundedness of moments of order s > 2 as long as the initial data has a moment of order
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s.

Very recently, M. Escobedo and J. J. L. Velázquez in [40] used an idea developped by

Carleman for the Boltzmann equation ([26]) in order to obtain a result of uniqueness and

existence locally in time for radially symmetric solutions in the spaces L∞(1 + |v|6+0). We

discussed above that the creation of the Bose-Einstein condensate leads to a blow-up in

finite time. Therefore one cannot expect more than local-in-time results in L∞-spaces.

The a priori conservation of mass, momentum and energy seems to imply that the

most natural space to tackle the Cauchy problem is L1
2, the space of positive functions

with bounded mass and energy. This was indeed the case for the homogeneous Boltzmann

equation (see [68] and [77]). However, our quick look at the Bose-Einstein condensate

told us that one may physically expect that a solution to (6.1.3) is bounded up to the

appearance of a blow-up. Moreover, the L∞-norm is of great importance in the study

of the Boltzmann-Nordheim operator in order to be able to deal with the trilinear part

of the operator Q. Therefore it seems that the natural framework of the homogeneous

Boltzmann-Nordheim equation for bosons is L1
2 ∩ L∞.

The present work shows a local-in-time existence and uniqueness result for initial data

in L1
2∩L∞ without any isotropic requirement. Along the way, it also proves the immediate

appearance of moments of all orders for these solutions.

The issue of the creation of a condensate of Bose-Einstein has been extensively stud-

ied experimentally and numerically in physics (see [40] for references on these results).

Mathematically, a formal derivation of some properties of this condensate as well as its

interactions with the regular part of the bosonic part has been studied in [102] in an

isotropic framework.

In the series of papers [69][70][71], X. Lu proved, with not entirely constructive meth-

ods, a condensate phenomenon in the limit t goes to infinity. Indeed, he proved that the

isotropic solutions he constructed tend to the regular part of their associated equilibrium

FBE (see (6.1.7)). But for low temperatures, the regular part of FBE does not have the

same mass than the initial solutions. This loss of mass proves the creation of a singular

part in the limit. As mentionned in [71], this argument does not require the solution to

be isotropic and the condensate Lu catches is to be understood as a concentration phe-

nomenon in the limit t goes to infinity. This limiting behaviour neither prove nor prevent

the creation of a Bose-Einstein condensate in finite time.

The appearance of Bose-Einstein in finite time has been mathematically shown in a

recent breakthrough [40][41]. In the article [40] the authors showed that if the initial data

is isotropic in L∞(1 + |v|6+0) and satisfies some properties about its distribution of mass

near |v|2 = 0 then the associated isotropic solution is only define in finite time and its L∞-

norm blows up. They achieve this work thanks to a thorough study of the concentration

phenomenon occuring in a bosonic gas. The article [41] proves that supercritical initial
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data indeed satisfy the blow-up assumptions in the case of radially symmetric solutions.

6.1.4 Our strategy

We tackle the issue of the existence of solutions with an approximative scheme (see Section

6.7). More precisely, we truncate the Boltzmann-Nordheim operator Q and solve the

associated differential equation using a Euler scheme. The sequence of functions we obtain

is then proved to be weakly compact and goes to a solution of (6.1.3). The key ingredients

are a new control on the operator Q+ for high and small relative velocities v − v∗ as well

as an extended version of Povzner inequality (see Section 6.3).

The proof of the uniqueness follows very closely the proof of uniqueness developped

by S. Mischler and B. Wennberg in [77] for the homogeneous Boltzmann equation. Our

extended version of Povzner inequality matches the main features of their proof. The

main issue is the control of terms of the form |v − v∗|2+γ that appear when one studies the

evolution of the energy of solutions. This is achieve by the fact that bounded solutions of

(6.1.3) happen to have more regularity (see Proposition 6.4.1) and thanks to an explicit

control on the explosion at t = 0 of the moment of order 2 + γ of solutions to (6.1.3)

(see Proposition 6.5.5). The speed of the blow-up is exactly the one required to use a

Nagumo’s type uniqueness criterion in small times. The uniqueness for later time uses

a Gronwall-type lemma which is available thanks to the boundedness of the moment of

order 2 + γ whenever t > 0 (see Section 6.5).

6.1.5 Organisation of the chapter

Section 6.2 is dedicated to the statement and the description of the main results proved

in this chapter.

The first problem we shall deal with is the uniqueness result. As said when we described

our strategy (Section 6.1.4), this part requires the control of a little bit more than the L∞-

norm as well as the control of moments of order greater than 2.

A very important tool is an extended version of the Povzner inequality (first derived

in [94] ) and we shall use it throughout this chapter. The statement of this lemma and its

proof are given in Section 6.3.

Section 6.4 focuses on an a priori boundedness property of solutions to the bosonic

Boltzmann-Nordheim equation. Proposition 6.4.1 will allow us to control terms of the

form |v|γ f(t, v) in L∞.

The next section, Section 6.5, deals with the moments of solutions to (6.1.3). It is

divided in two subsections. The first one is dedicated to the immediate appearance of

bounded moments of all order, see Proposition 6.5.1. Then, Section 6.5.2 quantifies the

explosion near t = 0 of the moment of order 2 + γ.
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Finally, Section 6.6 proves the uniqueness of bounded solutions preserving mass and

energy.

Then we turn to the proof of existence of such bounded, mass and energy preserving

solutions in Section 6.7. We construct our sequence of approximations in Section 6.7.2 and

derive some of their properties. Section 6.7.3 shows that this sequence converges toward

a mass-preserving solution of (6.1.3) and finally Section 6.7.4 proves that this limit is also

energy-preserving.

6.2 Main results

We begin with the notations we shall use all along the chapter.

We are going to use spaces in the v and the t variables. Therefore, to shorten notations,

we will index by v or t the spaces we are working on. The subscript v will always refer as

Rd, for instance L1
v = L1(Rd), L∞[0,T ],v = L∞([0, T ]× Rd). Moreover, we define

L1
2,v =

{
f ∈ L1

v,
∥∥∥(1 + |v|2)f

∥∥∥
L1
v

< +∞
}
.

Finally, we denote, for all s and t in R+,

Ms(t) =

∫
Rd
|v|s f(t, v) dv. (6.2.1)

The first main theorem is the Cauchy problem for the Boltzmann-Nordheim equation

for bosons.

Theorem 6.2.1 Let f0(v) be in L1
2,v ∩ L∞v .

Then there exists T0 > 0, depending only on CΦ, lb, γ, ‖f0‖L1
2,v

and ‖f0‖L∞v , such that

there exists a unique f in L∞loc
(
[0, T0), L1

2,v ∩ L∞v
)

solution on (6.1.3) on [0, T0)× Rd that

preserves mass and energy.

Moreover, this solution satisfies

� T0 = +∞ or lim
T→T−0

‖f‖L∞
[0,T ]×Rd

= +∞,

� f preserves the momentum of f0,

� for all s > 0 and for all 0 < T < T0,

Ms(t) ∈ L∞loc ([T, T0)) .
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� for all T < T0,

sup
[0,T ]×Rd

(
f(t, v) +

∫ t

0
(1 + |v|γ) f(s, v) ds

)
<∞.

Remark 6.2.2 We empasize here that moments appear as soon as t is strictly positive.

However, we only get that Ms(t) is in L∞loc ([T, T0)). This is slightly weaker than the result

derived in [77] for the Boltzmann equation but it is explained by the fact that at T0 we

can obtain a blow-up of the L∞-norm. The latter norm is not required for the control

of the bilinear Boltzmann operator but is of great importance for the trilinear part of the

Boltzmann-Nordheim operator.

Let us mention here that Theorem 6.2.1 implies a Bose-Einstein concentration phe-

nomenon as time goes to infinity for subcritical initial data if they are globally defined.

Indeed, Lu ([71] Theorem 2) proved in the case T < Tc(M0) that distributional solutions

(not necessarily isotropic) with finite mass and energy present a concentration phenomenon

in the limit t goes to infinity.

The latter argument is however non explicit and does not prove any blow-up in finite

time whereas [40] gives the appearance of a Bose-Einstein condensate in finite time in the

isotropic setting. A work in progress is the proof of the creation of a condensate in finite

time in our more general framework.

6.3 An extended version of a Povzner-type inequality

This section is dedicated to proving a refinement of a result in [77], which extends a

Povzner-type inequality (see [94]) which captures the geometry of the collisions inside the

Boltzmann kernel. The statement of the lemma is very close to Lemma 2.2 in [77].

Lemma 6.3.1 Assume that b(θ) is a locally bounded function and consider F > 1 a

function in L∞(Rd × Rd × Sd−1).

For a given function ψ let

Kψ(v, v∗) =

∫
Sd−1

F (v, v∗, σ)b(θ)
(
ψ(
∣∣v′∗∣∣2) + ψ(

∣∣v′∣∣2)− ψ(|v∗|2)− ψ(|v|2)
)
dσ.

Then one can write Kψ(v, v∗) = Gψ(v, v∗) − Hψ(v, v∗), where Gψ and Hψ satisfies the

following inequalities (where we omit the subscript ψ).

Let χ(v, v∗) = 1− 1{|v|<|v∗|<2|v|} then
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i) If ψ(x) = x1+α with α > 0 then

|G(v, v∗)| 6 CGα (|v| |v∗|)1+α

and

H(v, v∗) > CHα
(
|v|2+2α + |v∗|2+2α

)
χ(v, v∗).

ii) If ψ(x) = x1+α with −1 < α < 0 then

|G(v, v∗)| 6 CG |α| (|v| |v∗|)1+α

and

−H(v, v∗) > CH |α|
(
|v|2+2α + |v∗|2+2α

)
χ(v, v∗).

iii) If ψ is a positive convex function that can be written ψ(x) = xφ(x), where φ is

concave, increasing to infinity, and such that for any ε > 0 and any α in (0, 1), it

satisfies (φ(x)− φ(αx))xε →∞ as x→∞. Then, for all ε > 0,

|G(v, v∗)| 6 CG |v|φ
(
|v|2
)
|v∗|φ

(
|v∗|2

)
and

H(v, v∗) > CH

(
|v|2−ε + |v∗|2−ε

)
χ(v, v∗).

In addition, there is a constant C > 0 such that φ′(x) 6 C/(1+x) implies G(v, v∗) 6

CG |v| |v∗|.

The constants in the Lemma depends on α, ψ, ε, b and ‖F‖L∞v,v∗,σ .

Remark 6.3.2 As noticed in [77], the operator Hψ can be taken monotonous in ψ in

the following sense. If ψ1 − ψ2 > 0 is convex then Hψ1 − Hψ2 > 0. This property will

prove itself really useful to apply Lemma 6.3.1 to truncated sequences converging to convex

functions.

Proof of Lemma 6.3.1 The proof of this result has been done in Lemma 2.2 of [77] in

the case where F = 1. Therefore, our goal will be to compare our new operators H and

G with H1 and G1 (obtained when F = 1) in each of the three cases.
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We start with the term H which is quite straightforward. We define H to be the

following operator, which coincides with H1 in [77] when F = 1,

H(v, v∗) = 4

∫ π/2

0

[
b̄(θ)F̄ (v, v∗, θ) + b̄(π/2− θ)F̄ (v, v∗, π/2− θ)

]
×
[
cos2θ ψ

(
|v|2
)

+ sin2θ ψ
(
|v∗|2

)
− ψ

(
|v|2 cos2θ + |v∗|2 sin2θ

)]
dθ,

(6.3.1)

where b̄(θ) = b(θ) |dσ| (θ) and F̄ (v, v∗, θ) =
∫ π
−π F (v, v∗, σ) dω where (θ, ω) are spherical

coordinates parametrising Sd−1 (ω is then a (d− 2)-uple of angles).

The core of the proof is the fact that the term

cos2θ ψ
(
|v|2
)

+ sin2θ ψ
(
|v∗|2

)
− ψ

(
|v|2 cos2θ + |v∗|2 sin2θ

)
keeps the same sign if ψ is convex (positive sign) and if ψ is concave (negative sign). We

have that

1 6 F (v, v∗, θ) 6 ‖F‖L∞v,v∗,σ
and therefore when ψ is convex we have

H(v, v∗) > H1(v, v∗)

and if ψ is concave

H(v, v∗) 6 ‖F‖L∞v,v∗,σ H1(v, v∗).

This yields the expected inequalities i), ii) and iii) for the operator H since they hold

true for H1.

The proof for the operator G is more intricate and we shall write it in dimension d = 3

for sake of simplicity.

We follow the proof in [77] and we parametrise the sphere S2 by

S2 = {(θ, ω), −π 6 ω 6 π, 0 6 θ 6 π/2}

with the measure

dσ = 4sin θcos θ dθdω.

To shorten notation we define, for a given v and a given v∗

Y (θ) = |v|2 cos2 θ + |v∗|2 sin2 θ,

Z(θ) = 2 |v| |v∗| sin θcos θ.
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In these coordinates, with the notations above, we have geometrically that
∣∣v′∣∣2 = Y (θ) + τZ(θ)cos ω∣∣v′∗∣∣2 = Y (π/2− θ)− τZ(θ)cos ω,

where τ denotes the sine of the angle between the vector v and v∗.

With these notations we obtain

K(v, v∗) = G(v, v∗)−H(v, v∗)

where H is given by (6.3.1) (after the change of variable θ → π/2− θ) and

G(v, v∗) = 4

∫ π/2

0
b̄(θ)

∫ π

−π
F (v, v∗, σ) [ψ (Y (θ) + τZ(θ)cos ω)− ψ (Y (θ))] dωdθ

+ 4

∫ π/2

0
b̄(θ)

∫ π

−π
F (v, v∗, σ) [ψ (Y (π/2− θ)− τZ(θ)cos ω)− ψ (Y (π/2− θ))] dωdθ.

The two terms on the right-hand side will be treated the same way and therefore we focus

only on

I = 4

∫ π/2

0
b̄(θ)

∫ π

−π
F (v, v∗, σ) [ψ (Y (θ) + τZ(θ)cos ω)− ψ (Y (θ))] dωdθ.

Since ψ is increasing in all the cases we have that ψ (Y (θ) + τZ(θ)cos ω) − ψ (Y (θ)) is

positive when −π/2 6 ω 6 π/2 and negative elsewhere on [−π, π]. Thus,

|I| 6 4 ‖F‖L∞v,v∗,σ
∫ π/2

0
b̄(θ)

∫ π

−π

∣∣∣ψ (Y (θ) + τZ(θ)cos ω)− ψ (Y (θ))
∣∣∣ dωdθ

= 8 ‖F‖L∞v,v∗,σ
∫ π/2

0
b̄(θ)

∫ π

0

∣∣∣ψ (Y (θ) + τZ(θ)cos ω)− ψ (Y (θ))
∣∣∣ dωdθ

= 8 ‖F‖L∞v,v∗,σ
∫ π/2

0
b̄(θ) (6.3.2)

×
∫ π/2

0
[ψ (Y (θ) + τZ(θ)cos ω)− ψ (Y (θ)− τZ(θ)cos ω)] dωdθ,

where we just made the change of variable ω → π − ω on [π/2, π].

Upper bound in cases i) and ii). In these cases, we have that ψ is twice differen-

tiable and therefore we can integrate by part twice in the integral with respect to ω. The
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first time we consider 1 to be the derivative of ω to get

|I| 6 8 ‖F‖L∞v,v∗,σ
∫ π/2

0
b̄(θ)τZ

×
∫ π/2

0

(
ωsin ω

[
ψ′(Y + τZcos ω) + ψ′(Y − τZcos ω)

])
dωdθ,

and in the second integration by part considers ωsin ω as a derivative to get

|I| 68 ‖F‖L∞v,v∗,σ
∫ π/2

0
b̄(θ)τ2Z2

∫ π/2

0
(sin ω − ωcos ω)

×
[
ψ′′(Y + τZcos ω)− ψ′′(Y − τZcos ω)

]
dωdθ

+ 16 ‖F‖L∞v,v∗,σ
∫ π/2

0
b̄(θ)τZ(θ)ψ′(Y (θ)) dθ.

(6.3.3)

On [0, π/2], sin ω − ωcos ω is positive and thus

(sin ω − ωcos ω)
[
ψ′′(Y + τZcos ω)− ψ′′(Y − τZcos ω)

]
6 (sin ω − ωcos ω)

[∣∣ψ′′(Y + τZcos ω)
∣∣+
∣∣ψ′′(Y − τZcos ω)

∣∣] ,
which is the integrand dealt with in the case F = 1 in Lemma 2.2 in [77]. Hence, (6.3.3)

becomes

|I| 6 ‖F‖L∞v,v∗,σ |I1|+ 16(1 + α) ‖F‖L∞v,v∗,σ
∫ π/2

0
b̄(θ)τZ(θ)Y (θ)α dθ. (6.3.4)

It only remains to control the last integral which can be achieve thanks to the fact that

for θ in [0, π/2],

Z(θ)Y (θ)α 6 |v| |v∗|
(
|v|2 + |v∗|2

)α
. (6.3.5)

In the case −1 < α < 0 we have easily that (6.3.5) yields

Z(θ)Y (θ)α 6 2α
(
|v|2 + |v∗|2

)1+α
,

which, combined with (6.3.4) gives us the expected inequality in point ii).

In the case α > 0 we use (6.3.5) in two different ways. First of all we notice the

following

∀ |v|
2

6 |v∗| 6 2 |v| , Z(θ)Y (θ)α 6 22+α5α (|v| |v∗|)α+1 . (6.3.6)

Then basic computations yields

∀ε > 0, ∀v, v∗, |v| |v∗|
(
|v|2 + |v∗|2

)α
6

1

εα
(|v| |v∗|)1+α + ε

(
|v|2 + |v∗|2

)1+α
. (6.3.7)
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To conclude in that case we gather (6.3.6) and (6.3.7) to obtain that

∀ε > 0, Z(θ)Y (θ)α 6 Cε (|v| |v∗|)1+α + ε
(
|v|2 + |v∗|2

)1+α
χ(v, v∗).

This last bound combined with (6.3.4) gives the inequality of point i), up to the fact that

we choose ε small enough so that the second term in the right-hand side of the inequality

above can be included in the inequality satisfied by H, which only leads to a slight change

of definition for H in that case.

Upper bound in cases iii). We start from (6.3.2)

|I| 68 ‖F‖L∞v,v∗,σ

×
∫ π/2

0
b̄(θ)

∫ π/2

0
[ψ (Y (θ) + τZ(θ)cos ω)− ψ (Y (θ)− τZ(θ)cos ω)] dωdθ.

In case iii) we consider ψ(x) = xφ(x) with ψ being convex and φ being concave. Therefore,

the latters are almost everywhere differentiable with

ψ (Y − τZcos ω) > ψ (Y )− τZcos ωψ′(Y ),

φ (Y + τZcos ω) 6 φ (Y ) + τZcos ωφ′(Y ).

Hence, developing every term in (6.3.2) yields

|I| 68 ‖F‖L∞v,v∗,σ

×
∫ π/2

0
b̄(θ)

∫ π/2

0

[
2τZcos ωφ(Y ) + 2τZcos ωY φ′(Y ) + τ2Z2cos2 ωφ′(Y )

]
dωdθ.

We recognize here the term I for F = 1, see proof of Lemma 2.2 in [77]. Therefore

|I| 6 2 ‖F‖L∞v,v∗,σ |I1| ,

and hence iii) follows directly from the case where F = 1.

This concludes the proof of Lemma 6.3.1.

6.4 A priori control on the L∞v
(
(1 + |v|γ)L1

t

)
This section is dedicated to proving an a priori estimate in the L∞v space for solutions to

(6.1.3), in small times. We cannot expect more than small times as we know from [40]

that, even for radially symmetric solutions, there exists solutions with a blow-up in finite

time.

We will prove the following result
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Proposition 6.4.1 Let f0(v) be in L1
2,v ∩ L∞v .

Let f be a non-negative solution of (6.1.3) in L∞[0,T0)

(
L1

2,v ∩ L∞v
)
, with initial value f0,

satisfying the conservation of mass and energy.

Then for all 0 6 T < T0 there exists CT > 0 such that following controls holds

sup
[0,T ]×Rd

(
f(t, v) +

∫ t

0
(1 + |v|γ) f(s, v) ds

)
6 CT .

6.4.1 Some properties of the Boltzmann-Nordheim operator

Here we gather and prove some useful properties about the positive operator Q− and Q+.

First, we have the following control on the negative part

Lemma 6.4.2 Let f > 0 be in L1
2,v. Then there exists Cγ > 0 (given by (6.4.2)) such that

∀v ∈ Rd, Q−(f)(v) > CΦlb (1 + |v|γ) ‖f‖L1
v
− CΦCγlb ‖f‖L1

2,v
.

Proof of Lemma 6.4.2 We have that

Q−(f)(v) = CΦ

∫
Rd×Sd−1

|v − v∗|γ b(cos θ)f∗
[
1 + f ′∗ + f ′

]
dv∗dσ.

We supposed that f is positive, thus

Q−(f)(v) > CΦ

∫
Rd×Sd−1

|v − v∗|γ b(cos θ)f∗ dv∗dσ

Since γ is in [0, 1], we know that the following triangular inequality holds

(|v|γ − |v∗|γ) 6 |v − v∗|γ 6 (|v|γ + |v∗|γ) . (6.4.1)

This yields

Q−(f)(v) > CΦlb

∫
Rd

(
(1 + |v|γ)− (1 + |v∗|γ)

)
f∗ dv∗

> CΦlb

[
(1 + |v|γ) ‖f‖L1

v
− Cγ

∫
Rd

(1 + |v∗|2)f∗ dv∗

]
,

because γ 6 1 and so there exists Cγ > 0 such that for all x > 0,

(1 + xγ) 6 Cγ(1 + x2). (6.4.2)
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Remark 6.4.3 If
∫
Rd f lnf dv was finite then it would be possible to lower bound Q−(f)

by a quantity that is strictly positive. Unfortunately, this quantity decreases in the case of

the classical Boltzmann equation whereas the decrease of entropy for Boltzmann-Nordheim

is given by the decrease of ∫
Rd

[(1 + f)ln(1 + f)− f lnf ] dv,

which does not bring any knowledge about a non-concentration property for f .

Moreover we also have the following general bound on the positive part

Lemma 6.4.4 Let f and h be in L1
2,v ∩ L∞v (1 + |v|γ). Then we have that for all λ > 0

there exists C(λ) > 0 such that

lim
λ→0

C(λ) = 0

and such that

∥∥∥∥CΦ

∫
Rd×Sd−1

|v − v∗|γb (cos θ) f ′h′∗dv∗dσ

∥∥∥∥
L∞v

6 CγCΦlb ‖h‖L1
2,v

[
C(λ) ‖(1 + |v|γ) f‖L∞v +

2d−2

λd−1
Cγ ‖f‖L1

2,v

]
,

(6.4.3)

and

∥∥∥∥CΦ

∫
Rd×Sd−1

|v − v∗|γb (cos θ) f ′h′∗dv∗dσ

∥∥∥∥
L∞v

6 (1 + |v|γ)CγCΦlb ‖h‖L1
2,v

[
C(λ) ‖f‖L∞v +

2d−2

λd−1
‖f‖L1

v

]
,

(6.4.4)

where Cγ has been defined in (6.4.2) and C(λ) is given by (6.4.7).

Proof of Lemma 6.4.4 The L∞v -norm is intricate and for this purpose we write the

operator under another form. We use the Carleman representation of the operator (see

[27]), which uses the final velocities after a collision, v′ and v′∗, as the parameters we

integrate against:

∫
Rd×Sd−1

|v − v∗|γb (cos θ) f ′h′∗dv∗dσ

= CΦ

∫
Rd
dv′
∫
Evv′

dv′∗
1

|v − v′|d−1
B̃

(
2v − v′ − v′∗,

v′ − v′∗
|v′ − v′∗|

)
f ′h′∗.
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In this form we have that Evv′ is the hyperplane orthogonal to v−v′ going throught v and

the new operator B̃ is such that

B̃(z, ω) = 2d−2

〈
z

|z| , ω
〉d−2

B(z, σ).

With this new representation we have that∣∣∣∣∫
Rd×Sd−1

|v − v∗|γb (cos θ) f ′h′∗dv∗dσ

∣∣∣∣
6 2d−2CΦlb

∫
Rd×Rd

(1 + |v′|γ) (1 + |v′∗|γ)

|v − v′|d−1
f ′h′∗ dv

′dv′∗

6 2d−2CΦlbCγ ‖h‖L1
2,v

∫
Rd

(1 + |v′|γ) f ′

|v − v′|d−1
dv′. (6.4.5)

Now we are going to split our integral into velocities far from v and velocities close to

v. Let us consider λ > 0,∫
Rd

(1 + |v′|γ) f ′

|v − v′|d−1
dv′ 6 ‖(1 + |v|γ)f‖L∞v

∫
|v−v′|6λ

dv′

|v − v′|d−1
+

Cγ
λd−1

‖f‖L1
2,v
. (6.4.6)

The function 1/ |x|d−1 is integrable near 0 and therefore we can define

C(λ) = 2d−2(1 + λ)

∫
|x|6λ

dv′

|x|d−1
, (6.4.7)

which fulfils the requirements of (6.4.3) in Lemma 6.4.4.

In (6.4.6), instead of taking ‖(1 + |v|γ)f‖L∞v we could also use

(
1 +

∣∣v′∣∣γ) 6 (1 +
∣∣v − v′∣∣γ) (1 + |v|γ)

and the fact that 0 6 γ 6 1. Then taking the L∞v -norm of f leads to the expected (6.4.4)

with C(λ) described by (6.4.7).

6.4.2 A priori estimate: proof of Proposition 6.4.1

Let f be a solution of the Boltzmann-Nordheim equation (6.1.3), satisfying the assump-

tions of Proposition 6.4.1. This means that

∀(t, v) ∈ [0, T0)× Rd, f(t, v) = f0(v) +

∫ t

0
Q (f(s, ·)) (v) ds. (6.4.8)

We consider 0 6 T < T0 and we define the following quantities, for 0 6 t < T and v in

Rd:
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e(f)(t, v) =

∫ t

0
(1 + |v|γ) f(s, v) ds,

E(f)(t, v) = f(t, v) +

∫ t

0
(1 + |v|γ) f(s, v) ds.

In (6.4.8), we apply to Q(f) the Lemmas 6.4.2 and 6.4.4 (with λ1 and λ2 to be defined

later) together with the conservations laws satisfied by f (6.1.6) to get

f(t, v) 6 ‖f0‖L∞v − CΦlb ‖f0‖L1
v

∫ t

0
(1 + |v|γ) f(s, v) ds

+ C0

∫ t

0
f(s, v) ds

+ C0

[
C(λ1) sup

|u−v|6λ1

(e(f)(t, u)) +
2d−2Cγ

λd−1
1

T ‖f0‖L1
2,v

]

+ 2C0 ‖f‖L∞
[0,T ]×Rd

[
C(λ2) sup

|u−v|6λ2

(e(f)(t, u)) +
2d−2Cγ

λd−1
2

T ‖f0‖L1
2,v

]
,

(6.4.9)

where we set

M0 = min{1, CΦlb ‖f0‖L1
v
},

C0 = CγCΦlb ‖f0‖L1
2,v
.

We emphasize here that we slightly changed Lemma 6.4.4 since we put the integrale in

time before taking the supremum in v. Which is obtain by exactly the same proof but

integrating first in time.

By bounding all quantities in (6.4.9) in time and velocities, one gets

M0E(f)(t, v) 6

[
C0C(λ1) + 2C0C(λ2) ‖f‖L∞

[0,T ]×Rd

]
sup

[0,T ]×B(v,λ1+λ2)
E(f)

+

[
‖f0‖L∞v + C0T ‖f‖L∞

[0,T ]×Rd
+ C0Cγ2d−2 ‖f0‖L1

2,v
T

(
1

λd−1
1

+
‖f‖L∞t,v
λd−1

2

)]
.

To conclude, we notice that by assumption ‖f‖L∞
[0,T ]×Rd

is finite and therefore we fix λ1

and λ2 small enough such that C0C(λ1) + 2C0C(λ2) ‖f‖L∞
[0,T ]×Rd

6 M0/2. Then we take

the supremum over t in [0, T ] and v in Rd to obtain the expected result.
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6.5 Creation of moments of all order

In this section we prove that moments of all order appear immediately for solutions of the

Boltzmann-Nordheim equation, as long as they are in L∞loc

(
[0, T0), L1

2,v ∩ L∞v
)
.

The first part of this section is dedicated to the proof of this a priori result. It thoroughly

follows the proof established in [77] for the Boltzmann equation which was relying on a

subtle Povzner inequality. Our extension of their Povzner-type inequality, see Section 6.3,

allows us to apply their methods directly to the Boltzmann-Nordheim equation.

Then, in a second part we quantify the explosion of the (2 + γ)th moment as time

goes to 0. This estimate will be of great importance in the proof of the uniqueness, see

Section 6.6. Here again we copy the arguments of [77] thanks to the extension of Povzner

inequality, Lemma 6.3.1.

All the details of the proofs are exactly the same as for the Boltzmann equation given

by S. Mischler and B. Wennberg in [77]. However, we still write them down roughly in

order to show that they are indeed a straight combination of their proofs and our Povzner-

type inequality. Basically we show that we can apply our inequality each time they applied

theirs and that the outcome is the same.

6.5.1 A priori estimate on the moments of a solution

The immediate appearance of moments is characterized by the following proposition.

Proposition 6.5.1 Let f0(v) be in L1
2,v ∩ L∞v .

Let f be a non-negative solution of (6.1.3) in L∞loc
(
[0, T0), L1

2,v ∩ L∞v
)
, with initial value

f0, satisfying the conservation of mass and energy.

Then for all for all s > 0 and for all 0 < T < T0,∫
Rd
|v|s f(t, v) dv ∈ L∞loc ([T, T0)

The proof of that proposition is done by induction and requires two lemmas, which

gives the same estimates as the ones for the Boltzmann equation in [77]. The first one is

the initialisation of the induction, it controls the L1
2+γ/2,v-norm, and the second lemma

gives an inductive bound on moments.

We start by taking f0, f , T0 as in Proposition 6.5.1. We have that f0 is positive

and such that
(

1 + |v|2
)
f0(v) is in L1

v. Proposition A1 in the appendix of [77] gives the

existence of ψ a positive convex function on R+ such that there exists C > 0 such that∫
Rd
ψ
(
|v|2
)
f0(v) dv 6 C.

- 274 -



6.5 Creation of moments of all order

Moreover, ψ can be written ψ(x) = xφ(x), where φ is concave, increasing to infinity, and

such that for any ε > 0 and any α in (0, 1), it satisfies (φ(x)− φ(αx))xε →∞ as x→∞.

Lemma 6.5.2 We have that for all T in [0, T0) there exists cT , CT > 0 such that for all

0 6 t 6 T , ∫
Rd
f(t, v)ψ

(
|v|2
)
dv + cT

∫ t

0

∫
Rd
f(τ, v)

[
M2+γ/2 + ψ

(
|v|2
)]

dvdτ

6
∫
Rd
ψ
(
|v|2
)
f0(v) dv + CT t. (6.5.1)

Proof of Lemma 6.5.2 We fix T in [0, T0) and we consider 0 6 t 6 T .

As proved in the proof of uniqueness in [77], we can construct an increasing sequence

(ψn)n∈N of convex function converging pointwise to ψ and such that ψn+1 −ψn is convex.

The ψn are such that there exists a sequence (pn)n∈N of polynomial of order 1 such that

ψn − pn is of compact support.

Moreover, for a given F satisfying the assumptions of Lemma 6.3.1, we have that Hψn

is non-negative and converges pointwise to Hψ (see Remark 6.3.2) and |Gψn(v, v∗)| 6
CG |v| |v∗| for all n.

We know that f preserves mass and energy and therefore∫
Rd

[f(t, v)− f0(v)]ψn

(
|v|2
)
dv =

∫
Rd

[f(t, v)− f0(v)]
(
ψn

(
|v|2
)
− pn

(
|v|2
))

dv.

Now, ψn − pn is of compact support so we can use the fact that f is solution to the

Boltzmann-Nordheim equation and the integral property of the operator Q, Lemma 6.1.1.

This yields

∫
Rd

[f(t, v)− f0(v)]ψn

(
|v|2
)
dv

=
CΦ

2

∫ t

0

∫
Rd×Rd×Sd−1

q(f)(τ, v, v∗)
[
ψ′n∗ + ψ′n − ψn∗ − ψn

]
dvdv∗dτ,

with

q(f)(τ, v, v∗) = |v − v∗|γb (cos θ) f(τ)f∗(τ)
(
1 + f ′(τ) + f ′∗(τ)

)
.

We can decompose the left handside as in point iii) of Lemma 6.3.1 with F (v, v∗, σ) =

1 + f ′∗ + f ′ which fulfils the assumptions needed since f is in L∞[0,T ]. We obtain

- 275 -



6 The homogeneous Boltzmann-Nordheim equation for bosons

∫
Rd
f(t, v)ψn

(
|v|2
)
dv +

Cφ
2

∫ t

0

∫
Rd×Rd

f(τ)f(τ)∗ |v − v∗|γ Hψn dv∗dvdτ

=

∫
Rd
f0(v)ψn

(
|v|2
)
dv +

Cφ
2

∫ t

0

∫
Rd×Rd

f(τ)f(τ)∗ |v − v∗|γ Gψn dv∗dvdτ.(6.5.2)

Thanks to Lemma 6.3.1, our operators Hψn , Gψn , Hψ and Gψ satisfies exactly the same

properties than the operators Hψn , Gψn , Hψ and Gψ in step 1 of proof of Theorem 1.1′ in

[77], with CH and CG depending on T which has been fixed. Equality (6.5.2) is exactly

equality (3.4) in step 1 of proof of Theorem 1.1′ in [77]. Thus we can compute this equality

in exactly the same way as Mischler and Wennberg did.

This yields the inequality of Lemma 6.5.2.

We turn to the induction property.

Lemma 6.5.3 Let T be in (0, T0).

For all n in N there exists Tn > 0 as small as we want such that

M2+(2n+1)γ/2(Tn) <∞

and such that for all t in [Tn, T ] there exists CT > 0 and cTn,T > 0 such that

M2+(2n+1)γ/2(t) + cT

∫ t

Tn

[
M2+(2n+1)γ/2(τ) +M2+(2n+3)γ/2(τ)

]
dτ 6 CTn,T (1 + t), (6.5.3)

where Ms(t) is the moment of order s at time t, see (6.2.1).

Proof of Lemma 6.5.3 The fact that there exists Tn+1 as small as we want such that

M2+(2n+3)γ/2(Tn) < ∞ is given by the second term on the left-hand side of inequality

(6.5.3) at rank n, and from the second term on the left-hand side of inequality (6.5.1) in

Lemma 6.5.2 for n = 0.

Then the proof amounts to using Povzner inequality of Lemma 6.3.1 in exactly the

same way as in [77], this time considering the function ψ to be ψ(x) = x1+(2n+3)γ/4 (so we

use point i) of Lemma 6.3.1). We can therefore follow the proof of [77] (step 2 of proof of

Theorem 1.1′) and apply our Lemma 6.3.1 with F (v, v∗, σ) = 1+f ′+f ′∗ and the constants

CH and CG depending on T via ‖f‖[0,T ],v.

We are now able to finish the proof of the main proposition of this section.

Proof of Proposition 6.5.1 First of all we notice that f is in L1
2,v and therefore the

Proposition is true for all s in [0, 2].
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For s > 2 we just have to notice that the first term on the left-hand side of inequality

(6.5.3) in Lemma 6.5.3 gives that M2+(2n+1)γ/2(t) 6 CTn,T (1 + T ) for all t in [Tn, T ], Tn

given but being as small as we want. This being true for all n gives that Ms is bounded

on [T1, T2] for all 0 < T1 6 T2 < T0.

Remark 6.5.4 We can emphasize here that this result is slightly different from the one

in the Boltzmann equation. Indeed, in that case T0 = +∞ and the bounds on the moments

on [T, T0) only depend on T . For the Boltzmann-Nordheim equation in our settings we

can only reach locally bounded moments since we require the boundedness of the solution

f in order to apply Povzner inequality. This boundedness property is only local (as shown

by the explosion at T−0 of the L∞-norm) and so we cannot expect the moments to be in

L∞[0,T0] even if T0 = +∞.

6.5.2 Control of the explosion of the L1
2+γ,v-norm at time 0

In this section we show that M2+γ explodes at most like 1/t when t goes to zero. This is

the purpose of the next proposition.

Proposition 6.5.5 Let f0(v) be in L1
2,v ∩ L∞v .

Let f be a non-negative solution of (6.1.3) in L∞loc
(
[0, T0), L1

2,v ∩ L∞v
)
, with initial value

f0, satisfying the conservation of mass and energy.

Then there exists 0 < τ < T0 and there exists Cτ > 0 such that

∀t ∈ (0, τ ], M2+γ(t) 6
Cτ
t
.

Proof of Proposition 6.5.5 We take 0 < t 6 T < T0. Thanks to Proposition 6.5.1 we

know that Ms(t) is bounded by a constant CT > 0 depending on T and t.

The technical Lemma 6.1.1 yields

d

dt
M2+γ(t) =

Cφ
2

∫
Rd×Rd

|v − v∗|γ ff∗K1+γ/2(v, v∗) dv∗dv, (6.5.4)

where K1+γ/2(v, v∗) is given in Lemma 6.3.1 for ψ(x) = x1+γ/2. We can use point i) of

Lemma 6.3.1 since f is bounded on [0, T ]. Hence, (6.5.4) becomes

d

dt
M2+γ(t) 6

Cφ
2

∫
Rd×Rd

|v − v∗|γ ff∗
[
C ′G |v|1+γ/2 |v∗|1+γ/2 − C ′H |v|2+γ

]
dv∗dv,

where CG and CH are given in Lemma 6.3.1 (up to a multiplicative constant only depending

on γ).
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Since f preserves the mass and the energy and since 0 6 γ 6 1, a mere triangular

inequality in the first term in the integral yields

d

dt
M2+γ(t) 6 CφCγ ‖f0‖L1

2,v
M1+3γ/2 −

CφC
′
H

2
‖f0‖L1

v
M2+γ , (6.5.5)

where Cγ has been defined in (6.4.2). Besides,

∀ε > 0, |v|1+3γ/2 6 ε |v|2+γ + Cε |v|2γ .

Then, because 2γ 6 2 and taking ε small enough, (6.5.5) shows that there exists cT and

CT positive constants depending on T and independent of t such that

d

dt
M2+γ(t) 6 cT − CTM2+2γ(t).

We have the following Holder’s inequality

M2+γ 6M
1/2
2 M

1/2
2+2γ

and therefore
d

dt
M2+γ(t) 6 cT − CTM2

2+γ(t).

So we have two cases to consider. Either M2+γ(t) is bounded when t goes to 0 and then

Proposition 6.5.5 is proven. Or there exists τ such that M2+γ(τ) >
√

2cT /CT and then

for all t 6 τ , M2+γ(t) is decreasing and

∀t ∈ (0, τ ],
d

dt
M2+γ(t) 6 −CT

2
M2

2+γ(t),

which gives the expected bound on M2+γ(t).

6.6 Uniqueness of solution for the Boltzmann-Nordheim equa-

tion

In this section we prove that there exists at most one solution to the Boltzmann-Nordheim

equation for bosons (6.1.3) in the space L∞loc

(
[0, T0), L1

2,v ∩ L∞v
)

for T0 > 0.

The proof relies on precise estimates on the L1
v, the L1

2,v and the L∞v -norms of the

difference of two solutions. The main problem arises when, in order to control the L1
2,v-

norm, one has to deal with terms of the form |v|2+γ . A careful study allows us to control

this weight thanks to the 2 +γ moment of the solution (which has been studied in Section

6.5.2) and the fact that if f in L∞loc

(
[0, T0), L1

2,v ∩ L∞v
)

is a solution to the Boltzmann-
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Nordheim equation then, by Proposition 6.4.1,

∀T ∈ [0, T0), ∃NT > 0, sup
[0,T ]×Rd

E[f ](t, v) 6 NT , (6.6.1)

where

E[f ](t, v) = f(t, v) +

∫ t

0
(1 + |v|γ) f(s, v) ds.

These estimates lead to a system of three differential and non-differential inequalities that

we solve thanks to an extended Nagumo’s uniqueness criterion for small times and an

extended Gronwall lemma for larger times.

In the end, we prove the following theorem.

Theorem 6.6.1 Let h0(v) be in L1
2,v ∩ L∞v .

Let f and g be two non-negative solutions of (6.1.3) in L∞loc
(
[0, T0), L1

2,v ∩ L∞v
)

satisfying

the conservation of mass and energy.

If f and g have the same initial data h0 then f = g on [0, T0).

For now on we take f and g satisfying the assumptions of Theorem 6.6.1. In order to

shorten notations we still denote by NT the maximum of NT for f and for g, defined in

(6.6.1).

6.6.1 Evolution of ‖f − g‖L1
v

First of all we can write the following algebraic identity which we are going to use through-

out this section.

abc− def =
1

2
(a− d)(bc+ ef) +

a+ d

4
[(b− e)(c+ f) + (c− f)(b+ e)] . (6.6.2)

We have the following differential inequality,

Lemma 6.6.2 For all T in [0, T0), there exists CT > 0 such that for all t in [0, T ],

d

dt
‖f − g‖L1

v
6 CT

[
‖f − g‖L1

v
+ ‖f − g‖L1

2,v

]
.

CT only depends on CΦ, lb, γ, ‖h0‖L1
2,v

and NT (see (6.6.1)).

Proof of Lemma 6.6.2 We fix T in [0, T0) and we consider t in [0, T ]. Thanks to the
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integral property of Q, Lemma 6.1.1,

d

dt
‖f − g‖L1

v
=

∫
Rd

sgn(f − g)∂t (f − g) dv =

∫
Rd

sgn(f − g) (Q(f)−Q(g)) dv

=
CΦ

2

∫
Rd×Rd×Sd−1

b (cos θ) |v − v∗|γP (f, g)
[
Ψ′∗ + Ψ′ −Ψ∗ −Ψ

]
dσdv∗dv,

(6.6.3)

where we wrote Ψ(t, v) = sgn(f − g)(t, v) and

P (f, g) = ff∗(1 + f ′ + f ′∗)− gg∗(1 + g′ + g′∗) (6.6.4)

We easily have that |[Ψ′∗ + Ψ′ −Ψ∗ −Ψ| 6 4.

Furthermore, using the arithmetic identity (6.6.2) we compute

|P (f, g)| 61 + 2NT

2
|f − g| (f∗ + g∗) +

1 +NT

2
(f + g) |f∗ − g∗|

+
1

4
(f + g)(f∗ + g∗)

[ ∣∣f ′ − g′∣∣+
∣∣f ′∗ − g′∗∣∣ ].

We plug these two inequalities inside (6.6.3) which we cut into for integrals. The change

of variable (v, v∗)→ (v∗, v) shows that the first two terms are equal as well as the last two.

Thus,

d

dt
‖f − g‖L1

v
6 2CΦlb (1 + 2NT )

∫
Rd×Rd

|v − v∗|γ |f − g| (f∗ + g∗) dv∗dv

+ CΦ

∫
Rd×Rd×Sd−1

b (cos θ) |v − v∗|γ(f + g)(f∗ + g∗)
∣∣f ′ − g′∣∣ dσdv∗dv.

The first integral is easily dealt with by a mere triangular inequality together with (6.4.2).

In the second integral we use the change of variable (v, v∗)→ (v′, v′∗) and the terms in v′

and v′∗ are dealt with Lemma 6.4.4, inequality (6.4.4) with λ = 1. Therefore,

d

dt
‖f − g‖L1

v
6 2CΦlb (1 + 2NT )Cγ

(
‖h0‖L1

2,v
‖f − g‖L1

v
+ ‖h0‖L1

v
‖f − g‖L1

2,v

)
+ CγCΦlb ‖h0‖L1

2,v

[
2C(1)NT + 2d−1Cγ ‖h0‖L1

2,v

] ∫
Rd

(1 + |v|γ) |f − g| dv.

By setting CT the maximum among the multiplicative constants above, we reach the

inequality of Lemma 6.6.2.

6.6.2 Evolution of ‖f − g‖L1
2,v

The differential inequality satisfies by ‖f − g‖L1
2,v

is more intricate and requires to control

the (2 +γ)th moments of g and f by the L1
v-norm of the difference. This is achieve thanks
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to the next lemma.

Lemma 6.6.3 For all T in [0, T0), there exists CT > 0 such that for all t in [0, T ],

d

dt
‖f − g‖L1

2,v
6 CT

[
M2+γ(t) ‖f − g‖L1

v
+ ‖f − g‖L1

2,v
+ ‖f − g‖L∞

[0,T ],v

]
.

M2+γ is the (2 + γ)th moment of f + g (see (6.2.1)) and CT only depends on CΦ, lb, γ,

‖h0‖L1
2,v

and NT (see (6.6.1)).

Proof of Lemma 6.6.3 We fix T in [0, T0) and we consider t in [0, T ]. As in the proof of

Lemma 6.6.2 we have

d

dt
‖f − g‖L1

v
=
CΦ

2

∫
Rd×Rd×Sd−1

b|v − v∗|γP (f, g)
[
Ψ′∗ + Ψ′ −Ψ∗ −Ψ

]
dσdv∗dv, (6.6.5)

where this time we wrote Ψ(t, v) = sgn(f − g)(t, v)
(

1 + |v|2
)

and P (f, g) is still given by

(6.6.4).

Using the algebraic inequality (6.6.2) and using the change of variable (v, v∗)→ (v∗, v)

we obtain
d

dt
‖f − g‖L1

v
= CΦ

(
1

2
I1 +

1

4
I2 +

1

8
I3 +

1

4
I4

)
(6.6.6)

with

I1 =

∫
Rd×Rd×Sd−1

b|v − v∗|γ [G(Ψ)−Ψ] (f − g)(f∗ + g∗) dσdv∗dv,

I2 =

∫
Rd×Rd×Sd−1

b|v − v∗|γ [G(Ψ)−Ψ] (f − g)(f∗(f
′ + f ′∗) + g∗(g

′ + g′∗)) dσdv∗dv,

I3 =

∫
Rd×Rd×Sd−1

b|v − v∗|γ [G(Ψ)−Ψ] (f + g)(f∗ − g∗)(f ′ + f ′∗ + g′ + g′∗) dσdv∗dv,

I4 =

∫
Rd×Rd×Sd−1

b|v − v∗|γ [G(Ψ)−Ψ] (f + g)(f∗ + g∗)(f
′
∗ − g′∗) dσdv∗dv,

where we defined G(Ψ) = Ψ′∗ + Ψ′ −Ψ∗ and we have straightforwardly

|G(Ψ)| 6 3 +
∣∣v′∣∣2 +

∣∣v′∗∣∣2 + |v∗|2 = 2
(

1 + |v∗|2
)

+
(

1 + |v|2
)
. (6.6.7)

Thanks to the latter bound on G(Ψ) and the fact Ψ.(f − g) =
(

1 + |v|2
)
|f − g| we find

|I1| 6 2lb

∫
Rd×Rd

(
1 + |v∗|2

)
(|v|γ + |v∗|γ) |f − g| (f∗ + g∗) dvdv∗

6 4lbC
2
γ ‖h0‖L1

2,v
‖f − g‖L1

2,v
+ 2lbCγM2+γ ‖f − g‖L1

v
, (6.6.8)
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where Cγ has been defined in (6.4.2).

The term I2 is dealt exactly the same way, remembering the f and g are bounded by

NT .

|I2| 6 8NT lbC
2
γ ‖h0‖L1

2,v
‖f − g‖L1

2,v
+ 4NT lbCγM2+γ ‖f − g‖L1

v
. (6.6.9)

In the term I3 we make the change of variable (v, v∗) → (v∗, v) and after bounding the

terms in v′ and v′∗ by NT we recover |I1|. Therefore,

|I3| 6 8NT lbC
2
γ ‖h0‖L1

2,v
‖f − g‖L1

2,v
+ 4NT lbCγM2+γ ‖f − g‖L1

v
. (6.6.10)

The last term, I4, is more intricate and we have to deal with it carefully so that the terms

of order 2 + γ in v only appear in front of the L1
2,v-norm of f − g.

First of all, thanks to (6.6.7), we have

|G(Ψ)−Ψ| 6 2
[(

1 + |v|2
)

+
(

1 + |v∗|2
)]
,

so that

|I4| 6 2

∫
R2d×Sd−1

b|v − v∗|γ
[(

1 + |v|2
)

+
(

1 + |v∗|2
)]

(f + g)(f∗ + g∗)
∣∣f ′∗ − g′∗∣∣ dσdv∗dv.

Then, the change of variable (v, v∗)→ (v∗, v) followed by the change of variable σ → −σ,

which brings v′ to v′∗ and reciprocally, gives∫
Rd×Rd×Sd−1

b (cos θ) |v − v∗|γ
(

1 + |v∗|2
)

(f + g)(f∗ + g∗)
∣∣f ′∗ − g′∗∣∣ dσdv∗dv

=

∫
Rd×Rd×Sd−1

b (−cos θ) |v − v∗|γ
(

1 + |v|2
)

(f + g)(f∗ + g∗)
∣∣f ′∗ − g′∗∣∣ dσdv∗dv.

Therefore, if we denote b̃(x) = b(x) + b(−x) we obtain

|I4| 6 2

∫
Rd×Rd×Sd−1

b̃|v − v∗|γ
(

1 + |v|2
)

(f + g)(f∗ + g∗)
∣∣f ′∗ − g′∗∣∣ dσdv∗dv

6 16lbCγ ‖h0‖2L1
2,v
‖f − g‖L∞

[0,T ],v
(6.6.11)

+2

∫
Rd
dv
(

1 + |v|2
)
|v|γ (f + g)

∫
Rd×Sd−1

b̃(f∗ + g∗)
∣∣f ′∗ − g′∗∣∣ dσdv∗.

The last integral is dealt with in the same way as in the proof of Lemma 6.4.4, (6.4.6), by

studying the cases v′ is close to v and when not. We use the Carleman representation of
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this integral, which reads, with v∗ = v′∗ + v′ − v,∫
Rd×Sd−1

b̃(f∗ + g∗)
∣∣f ′∗ − g′∗∣∣ dσdv∗ =

∫
Rd×Evv′

b̃

|v − v′|d−1
(f∗ + g∗)

∣∣f ′∗ − g′∗∣∣ dv′dv′∗
6
∫
Rd

∣∣f ′∗ − g′∗∣∣
(∫

Rd

b̃

|v − v′|d−1
(f∗ + g∗) dv

′

)
dv′∗

6 lb

∫
Rd

∣∣f ′∗ − g′∗∣∣ (2C(1)NT + 2d−2 × 2 ‖h0‖L1
v

)
dv′∗,

where C(1) is defined in (6.4.7).

We plug the latter inequality into (6.6.11) to obtain the following control from above

|I4| 6 16lbCγ ‖h0‖2L1
2,v
‖f − g‖L∞

[0,T ],v
+ 4lbCγ

(
C(1)NT + 2d−2 ‖h0‖L1

v

)
M2+γ ‖f − g‖L1

v
.

(6.6.12)

To conclude we gather (6.6.8), (6.6.9), (6.6.10) and (6.6.12) into (6.6.6)

6.6.3 Control of ‖f − g‖L∞
[0,T ],v

For the L∞-norm of f − g, we derive the following inequality

Lemma 6.6.4 There exists τ in [0, T0), there exists Cτ > 0 such that for all t in [0, τ ]

and for all m in N,

‖f − g‖L∞
[0,t],v

6 Cτ sup
[0,t],v

‖f − g‖L1
2,v
.

Cτ only depends on CΦ, lb, γ, ‖h0‖L1
2,v

, τ and Nτ (see (6.6.1)).

Proof of Lemma 6.6.2 We fix T in [0, T0) and we consider t in [0, T ]. We have the

following decomposition

f(t, v)− g(t, v) = CΦ

∫ t

0

∫
Rd×Sd−1

b (cos θ) |v − v∗|γ P (f ′, g′) dσdv∗ds

−CΦ

∫ t

0

∫
Rd×Sd−1

b (cos θ) |v − v∗|γ P (f, g) dσdv∗ds

=

∫ t

0
J1(s, v) ds+

∫ t

0
J2(s, v) ds,

where P is given by (6.6.4).
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We have that at t = 0, f(0, v)− g(0, v) = 0 for all v and therefore

|f − g| (t, v) =

∫ t

0
∂t |f − g| (s, v) ds =

∫ t

0
sgn(f − g)(s, v)∂t(f(s, v)− g(s, v)) ds

6
∫ t

0
|J1| (s, v) ds+

∫ t

0
sgn(f − g)(s, v)J2(s, v) ds. (6.6.13)

We start by the first term J1. Using the algebraic equality (6.6.2) and the definition

of P one can bound P (f ′, g′) by

∣∣P (f ′, g′)
∣∣ 6(1 +NT )

∣∣f ′ − g′∣∣ (f ′∗ + g′∗) +
(1 + 2NT )

2

∣∣f ′∗ − g′∗∣∣ (f ′ + g′)

+
1

2
‖f − g‖L∞

[0,t],v
(f ′ + g′)(f ′∗ + g′∗).

The change of variable σ → −σ sends v′ to v′∗ and reciprocally. Therefore we have∫ t

0
|J1| ds 6 2CΦ(1 + 2NT )

∫ t

0

∫
Rd×Sd−1

b̃ (cos θ) |v − v∗|γ
∣∣f ′∗ − g′∗∣∣ (f ′ + g′) dσdv∗ds

+
CΦ

2
‖f − g‖L∞

[0,t],v

∫ t

0

∫
Rd×Sd−1

b (cos θ) |v − v∗|γ
∣∣f ′∗ + g′∗

∣∣ (f ′ + g′) dσdv∗ds,

where we defined b̃(x) = b(x) + b(−x).

For both integrals, we use Lemma 6.4.4 with λ > 0 to be chosen later. This yields∫ t

0
|J1| ds 6 4CγCΦlb(1 + 2NT ) sup

[0,t]

(
‖f − g‖L1

2,v

) [
2C(1)NT + 2d−2t ‖h0‖L1

2,v

]
+

1

2
CγCΦlb ‖f − g‖L∞

[0,t],v
2 ‖h0‖L1

2,v

[
2C(λ)NT +

2d−2

λd−1
2t ‖h0‖L1

v

]
.

We choose λ small enough such that

2CγCΦlb ‖h0‖L1
2,v
C(λ)NT 6

1

4
, (6.6.14)

and we define τ < T such that

CγCΦlb ‖h0‖L1
2,v

2d−1

λd−1
‖h0‖L1

v
τ 6

1

4
. (6.6.15)

These choices of constants lead to

∀t ∈ [0, τ ],

∫ t

0
|J1| ds 6

1

2
‖f − g‖L∞

[0,t],v
+ Cτ sup

[0,t]
‖f − g‖L1

2,v
, (6.6.16)

with Cτ a constant depending on τ .
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We now turn to the last term J2 in (6.6.13). By using (6.6.2) and the change of variable

σ → −σ we get∫ t

0
sgn(f − g)(s, v)J2(s, v) ds

6
CΦ

2

∫ t

0

∫
Rd×Sd−1

b |v − v∗|γ sgn(f − g)(g − f)

× (f∗(1 + f ′ + f ′∗) + g∗(1 + g′ + g′∗)) dv∗ds

+
CΦ

4
(2 + 4NT )lb

∫ t

0

∫
Rd×Sd−1

|v − v∗|γ |f∗ − g∗| (f + g) dv∗ds

+
CΦ

4

∫ t

0

∫
Rd×Sd−1

b̃ |v − v∗|γ (f + g)(f∗ + g∗)
∣∣f ′∗ − g′∗∣∣ dσdv∗ds,

(6.6.17)

where we wrote b̃(x) = b(x) + b(−x).

The second integral is easily dealt with and we have∫ t

0

∫
Rd×Sd−1

|v − v∗|γ |f∗ − g∗| (f + g) dv∗ds 6 2NTCγ sup
[0,t],v

‖f − g‖L1
2,v

(6.6.18)

The third and last integral is a bit more intricate and we use the Carleman represen-

tation of the integral against (σ, v∗). We emphasize that in the integral against (v′, v′∗) we

denote v∗ = v′∗ + v′ − v. This yields∫ t

0

∫
Rd×Sd−1

b̃ |v − v∗|γ (f + g)(f∗ + g∗)
∣∣f ′∗ − g′∗∣∣ dσdv∗ds

6
∫ t

0
(g + f)

(∫
Rd

∣∣f ′∗ − g′∗∣∣ (1 +
∣∣v′∗∣∣γ)

[∫
Rd

(1 + |v′|γ)

|v − v′|d−1
(f∗ + g∗) dv

′

]
dv′∗

)
ds

and we follow the idea developed in Lemma 6.4.4 with λ = 1∫ t

0

∫
Rd×Sd−1

b̃ |v − v∗|γ (f + g)(f∗ + g∗)
∣∣f ′∗ − g′∗∣∣ dσdv∗ds

6
∫ t

0
(1 + |v|γ) (g + f)(∫

Rd

∣∣f ′∗ − g′∗∣∣ (1 +
∣∣v′∗∣∣γ) [2NTC(1) + 2d−1 ‖h0‖L1

2,v

(
1 +

∣∣v′∗∣∣γ)] dv′∗) ds.

γ is in [0, 1] and thus we have∫ t

0

∫
Rd×Sd−1

b̃ |v − v∗|γ (f + g)(f∗ + g∗)
∣∣f ′∗ − g′∗∣∣ dσdv∗ds

6 2CγNT

[
2NTC(1) + 2d−1 ‖h0‖L1

2,v

]
sup
[0,t],v

‖f − g‖L1
2,v

(6.6.19)
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The first integral on the left-hand side of (6.6.17) is negative because f and g are both

non-negative solutions. Thus we plug (6.6.18) and (6.6.19) in (6.6.17), which gives

∀t ∈ [0, T ],

∫ t

0
sgn(f − g)(s, v)J2(s, v) ds 6 CT sup

[0,t],v
‖f − g‖L1

2,v
, (6.6.20)

where CT is a constant depending on T .

Therefore, if we take τ given by (6.6.15), we can use (6.6.16) and (6.6.20) inside (6.6.13).

This yields the result given in the statement of Lemma 6.6.4.

6.6.4 Uniqueness result: proof of Theorem 6.6.1

In this section we prove the uniqueness result stated in Theorem 6.6.1.

We set τ to be the minimum between τ in Proposition 6.5.5 and τ in Lemma 6.6.4.

Throughout this section, C will stand for a positive generic constant depending only on

τ , Nτ , on the parameters of the operator Q and on ‖h0‖L1
2,v

.

We use Lemma 6.6.2, Lemma 6.6.3 and Lemma 6.6.4 together to see that there exists

τ such that if t belongs to [0, τ ] then



d

dt
‖f − g‖L1

v
6 C

[
‖f − g‖L1

v
+ ‖f − g‖L1

2,v

]
d

dt
‖f − g‖L1

2,v
6 C

[
M2+γ(t) ‖f − g‖L1

v
+ ‖f − g‖L1

2,v
+ ‖f − g‖L∞

[0,T ],v

]
‖f − g‖L∞

[0,t],v
6 C sup

[0,t],v
‖f − g‖L1

2,v
.

(6.6.21)

The L1
v, L

1
2,v and L∞[0,t],v-norms of f and g are bounded by assumption. Therefore, the

first inequality in (6.6.21) gives ‖f − g‖L1
v
6 Ct.

Moreover, Proposition 6.5.5 says that for t in (0, τ ], M2+γ(t) 6 Cτ
t , where Cτ has been de-

fined in Proposition 6.5.5 and therefore the second inequality in (6.6.21) gives ‖f − g‖L1
2,v

6

Ct.

We can use these results to get ‖f − g‖L∞
[0,t],v

6 Ct in the third inequality in (6.6.21).

We can use this argument again to obtain that in fact ‖f − g‖L1
v
6 Ct2, ‖f − g‖L1

2,v
6

Ct2 and ‖f − g‖L∞
[0,t],v

6 Ct2. By induction we obtain that for all n in N, ‖f − g‖L1
v
6 Ctn,

‖f − g‖L1
2,v

6 Ctn and ‖f − g‖L∞
[0,t],v

6 Ctn.

Remark 6.6.5 We emphasize here that one would like to take the limit as n goes to +∞
to obtain the uniqueness on short times. Unfortunately, C is a generic constant and we

do not explicitely mentionned that this constant is increasing with n.
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Therefore the three norms are time-differentiable at 0 with their time-derivatives being

0 at t = 0. Therefore we can use (6.6.21) for all t in [0, τ ] and combining the second with

the third one we get

∀T ∈ [0, τ ],
d

dt
‖f − g‖L1

2,v
6
K1

t
‖f − g‖L1

2,v
+K2 sup

[0,t],v
‖f − g‖L1

2,v
, (6.6.22)

where K1,K2 > 0 only depend on τ , h0 and the operator Q.

We fix n > K1 and we defined X(t) = ‖f − g‖L1
2,v
/tn. We have that X(t) 6 Cτ t

2

which means that X(t) is continuous at 0 and also right-differentiable at 0 with X ′(0) = 0.

We differentiate X(t) in the same spirit that Nagumo’s fixed point theorem. The main

difference relies on the fact that we shall have to deal with terms of the form supX in the

differential inequality. Thanks to (6.6.22) we have

d

dt
X(t) =

1

tn

(
d

dt
‖f − g‖L1

2,v
− n

t
‖f − g‖L1

2,v

)
6

K2

tn
sup
[0,t],v

‖f − g‖L1
2,v

6 K2 sup
[0,t],v

X(s).

We integrate in time between 0 and t and because X(t) is positive we obtain

X(t) 6 tK2 sup
[0,t],v

X(s)

and by induction we obtain

∀t ∈ [0, τ ], ∀m ∈ N, X(t) 6 (tK2)m sup
[0,t],v

X(s).

Hence, we can take the limit as m goes to +∞ for all t < 1/K2. Which means that

∀t ∈ [0,min(τ, 1/K2)], X(t) = 0

and as a result, if we denote τ1 = min(τ, 1/K2),

∀t ∈ [0, τ1], ‖f − g‖L1
2,v

= 0. (6.6.23)

To conclude for all time in [0, τ ] we know that for t > τ1, M2+γ(t) is bounded by Cτ/τ1

(see Proposition 6.5.5) and therefore (6.6.22) becomes

∀T ∈ [τ1, τ ],
d

dt
‖f − g‖L1

2,v
6 Kτ1 ‖f − g‖L1

2,v
+K2 sup

[0,t],v
‖f − g‖L1

2,v
,
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which we can multiply by e−Kτ1 t, which is decreasing in t, to use an extended Gronwall

lemma:

∀T ∈ [τ1, τ ],
d

dt

(
e−Kτ1 t ‖f − g‖L1

2,v

)
(t) 6 K2 sup

[0,t],v

(
e−Kτ1s ‖f − g‖L1

2,v
(s)
)
,

which once again gives uniqueness between [τ1, 2τ1] and by induction we obtain that

‖f − g‖L1
2,v

= 0

on [0, τ ].

Finally, the uniqueness on [0, T ] is obtain by interating the latter proof starting from

τ to go up to 2τ . Indeed, τ only depends on the operator Q, NT and on ‖h0‖L1
2,v

which

is equal to ‖g‖L1
2,v

and ‖f‖L1
2,v

at time τ since these two solutions preserves mass and

energy. Therefore starting the proof at τ will give us the uniqueness between τ and 2τ .

By induction we have that f = g on [0, T ] for all 0 6 T < T0.

6.7 Local existence of solutions

This section is dedicated to proving the following theorem

Theorem 6.7.1 Let f0(v) be in L1
2,v ∩ L∞v .

Then there exists T0 > 0, depending only on CΦ, lb, γ, ‖f0‖L1
2,v

and ‖f0‖L∞v , such that

there exists f in L∞loc
(
[0, T0), L1

2,v ∩ L∞v
)

solution on (6.1.3) on [0, T0)× Rd such that

� T0 = +∞ or lim
T→T−0

‖f‖L∞
[0,T ]×Rd

= +∞,

� f preserves the mass, momentum and energy of f0,

� for all T < T0,

sup
[0,T ]×Rd

(
f(t, v) +

∫ t

0
(1 + |v|γ) f(s, v) ds

)
<∞.

For now on, we take f0, non identically 0, in L1
2,v ∩ L∞v .

The proof of this theorem relies on a time discretisation of equation (6.1.3) together

with an approximation of the Boltzmann-Nordheim operator Q. This raises a sequence of

functions (fn)n∈N that will be proven to be approximations of a solution of the Boltzmann-

Nordheim equation. This step is done by establishing the weak convergence of the sequence

(fn)n∈N to the unique solution of (6.1.3) (see Theorem 6.6.1).
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We shall first derive some properties for truncated operators approximating the Boltzmann-

Nordheim operator. Then we define some constants and construct a sequence of functions

and finally show that this sequence convergences to a solution of equation (6.1.3).

6.7.1 Some properties of truncated operators

This idea of approximating the collision kernel in the case of hard potentials is a common

one in the Boltzmann equation litterature (see for instance [2] or [77]). We consider now

the following truncated operators, where n is a positive integer,

Qn(f) = CΦ

∫
Rd×Sd−1

(|v − v∗| ∧ n)γ b
[
f ′f ′∗(1 + f + f∗)− ff∗(1 + f ′ + f ′∗)

]
dv∗dσ.

where a ∧ b = min(a, b).

We associate to these operator the natural decomposition (6.1.4)− (6.1.5):

Qn(f) = −fQ−n (f) +Q+
n (f).

The truncated operators are much easier to handle because they are easily bounded in

L1
2,v ∩L∞v , which is not the case for the full Boltzmann-Nordheim operator Q. Indeed, we

have the following controls on the negative part

Lemma 6.7.2 Let f be in L1
2,v ∩ L∞v . Then we have the following inequalities

� ‖fQ−n (f)‖L1
2,v

6 CΦlbn
γ
(

1 + 2 ‖f‖L∞v
)
‖f‖2L1

2,v
,

� ‖Q−n (f)‖L∞v 6 CΦlbn
γ
(

1 + 2 ‖f‖L∞v
)
‖f‖L1

v
,

� if, moreover, f > 0, then there exists Cγ > 0 (defined by (6.4.2)) such that

∀v ∈ Rd, Q−n (f)(v) > CΦlb (nγ ∧ (1 + |v|γ)) ‖f‖L1
v
− CΦCγlb ‖f‖L1

2,v
.

Proof of Lemma 6.7.2 We have that

Q−n (f)(v) = CΦ

∫
Rd×Sd−1

(n ∧ |v − v∗|)γ b(cos θ)f∗
[
1 + f ′∗ + f ′

]
dv∗dσ.

Therefore the first two inequalities are trivially obtained by bounding f ′∗ + f ′ by 2 ‖f‖L∞v
and the kernel by nγb(cos θ) and then taking the supremum in v or integrating against

(1 + |v|2) dv.
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Now we suppose that f is positive and we copy the proof of Lemma 6.4.2, thus

Q−n (f)(v) > CΦ

∫
Rd×Sd−1

(n ∧ |v − v∗|)γ b(cos θ)f∗ dv∗dσ

> CΦlb

[∫
|v−v∗|6n

|v − v∗|γ f∗ dv∗ +

∫
|v−v∗|>n

nγf∗ dv∗

]
.

Since γ is in [0, 1], we know that the following triangular inequality holds

(|v|γ − |v∗|γ) 6 |v − v∗|γ 6 (|v|γ + |v∗|γ) .

This yields

Q−n (f)(v) > CΦlb

[∫
|v−v∗|6n

(
(1 + |v|γ)− (1 + |v∗|γ)

)
f∗ dv∗ +

∫
|v−v∗|>n

nγf∗ dv∗

]

> CΦlb

[
(nγ ∧ (1 + |v|γ)) ‖f‖L1

v
− Cγ

∫
|v−v∗|6n

(1 + |v∗|2)f∗ dv∗

]
,

by definition of Cγ , see (6.4.2). We obtained the expected lower bound.

Moreover we also have the following bounds on the positive part

Lemma 6.7.3 Let f be in L1
2,v ∩ L∞v . Then we have the following inequalities

� ‖Q+
n (f)‖L1

2,v
6 CΦlbn

γ
(

1 + 2 ‖f‖L∞v
)
‖f‖2L1

2,v
,

� for all λ > 0,

∥∥Q+
n (f)

∥∥
L∞v

6 CΦlbCγ ‖f‖L1
2,v

(
1 + 2 ‖f‖L∞v

)[∫
|u−v|6λ

(nγ ∧ (1 + |u|γ)) f(u)

|u− v|d−1
du

+
Cγ
λd−1

‖f‖L1
2,v

]
.

Proof of Lemma 6.7.3 For the first inequality, we just have to notice that, after the

change of variable (v′, v′∗)→ (v, v∗) one obtains∫
Rd

(1 + |v|γ)Q+
n (f) dv =

∫
Rd

(1 + |v|γ) fQ−n (f) dv,

and we deal with the L1
2,v-norm the same way we did in proof of Lemma 6.7.2.

For the L∞v -norm, we use exactly the same approach than in Lemma 6.4.4, using

Carleman representation. This yields
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∣∣Q+
n (f)(v)

∣∣ 6 2d−2CΦlb

[
1 + 2 ‖f‖L∞v

] ∫
Rd×Rd

(|v′ − v′∗| ∧ n)γ

|v − v′|d−1
f ′f ′∗ dv

′dv′∗. (6.7.1)

We just have to deal with the integral whether (1 + |v|γ) is smaller than nγ or not.

In the case where (1 + |v|γ) 6 nγ we bound the integral from above in the following

way,

∫
Rd×Rd

(|v′ − v′∗| ∧ n)γ

|v − v′|d−1
f ′f ′∗ dv

′dv′∗ 6
∫
Rd×Rd

|v′ − v′∗|γ

|v − v′|d−1
f ′f ′∗ dv

′dv′∗

6 Cγ ‖f‖L1
2,v

∫
Rd

1 + |v′|γ

|v − v′|d−1
f ′ dv′, (6.7.2)

since γ is in [0, 1] and therefore, thanks to (6.4.2),

∣∣v′ − v′∗∣∣γ 6
(∣∣v′∣∣γ +

∣∣v′∗∣∣γ) 6 Cγ

(
1 +

∣∣v′∗∣∣2) (1 +
∣∣v′∣∣γ) .

We obtain the expected result in the case (1+ |v|γ) 6 nγ by splitting the integral in (6.7.2)

into small and large relative velocities v − v∗.
The case (1+ |v|γ) > nγ is dealt with in exactly the same way but we bound (|v′ − v′∗|∧

n) by n in (6.7.2). This gives us the expected result.

6.7.2 Construction of a sequence of approximations

We now fix a positive integer n and we want to discretise in time the Boltzmann-Nordheim

equation associated to the truncated operators Qn. Thus we need to work on a closed

interval. More precisely, we shall solve the truncated Boltzmann-Nordheim equation

∂tfn = Qn(fn)

by a implicit Euler scheme on an interval [0, T0], T0 not depending on n.

To this end, we require to fix some constants (like the ones appearing in Lemma 6.7.3)

that we are going to define below.

First of all, in order to shorten notations, we define

CL = CΦlb ‖f0‖L1
v
, (6.7.3)

C0 =
CΦlbCγ ‖f0‖L1

2,v

min (1, CL)
(6.7.4)
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where Cγ has been defined in (6.4.2). Then, we define

K0 =
2 ‖f0‖L∞v

min (1, CL)
. (6.7.5)

We have that |u|1−d is integrable near 0 in Rd. Therefore we can consider λ strictly

positive such that

C(λ) =

∫
|u|6λ

1

|u|d−1
du 6

1

2C0 (1 + 2K0)
. (6.7.6)

Now we are able to define the time interval we shall work on,

T0 =
K0

4C0

[
1 + (1 + 2K0)

Cγ
λd−1

‖f0‖L1
2,v

]−1

. (6.7.7)

We emphasize here that all the constants are independent of the integer n.

We consider the following explicit Euler scheme on [0, T0],
f (0)
n (v) = f0(v)

f (k+1)
n (v) = f (k)

n (v)
(

1−∆nQ
−
n

(
f (k)
n

))
+ ∆nQ

+
n

(
f (k)
n

)
, for k ∈

{
0, . . . ,

T0

∆n

}
,

(6.7.8)

where Q−n and Q+
n have been defined in (6.1.4)− (6.1.5). ∆n is the time step such that

∆n = min

(
1,

1

2CΦlbnγ ‖f0‖L1
v

[1 + 2K0]

)
. (6.7.9)

We first need to prove that the sequence
(
f

(k)
n

)
k∈
{

0,...,
T0
∆n

} is well-defined. This is the

purpose of the next proposition.

Proposition 6.7.4 For all k in {0, . . . , T0/∆n}, we have that f
(k)
n , see (6.7.8), is well-

defined and

i) f
(k)
n > 0,

ii)
∥∥∥f (k)

n

∥∥∥
L1
v

= ‖f0‖L1
v
,
∥∥∥|v|2 f (k)

n

∥∥∥
L1
v

=
∥∥∥|v|2 f0

∥∥∥
L1
v

and
∫
Rd vf

(k)
n dv =

∫
Rd vf0 dv,

iii)
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f (k)
n (v) 6 f0(v)− CL

k−1∑
i=0

∆n (nγ ∧ (1 + |v|γ)) f (j)
n

+k∆nCΦCγlb ‖f0‖L1
2,v

[
1 + (1 + 2K0)

Cγ

λd−1
1

‖f0‖L1
2,v

]

+CΦlbCγ ‖f0‖L1
2,v

(1 + 2K0)

∫
|u−v|6λ

k−1∑
i=0

∆n (nγ ∧ (1 + |u|γ)) f
(i)
n (u)

|u− v|d−1
du.

iv) if we define

En(f (k)
n ) = sup

v∈Rd

f (k)
n (v) + ∆n

k−1∑
j=0

(nγ ∧ (1 + |v|γ)) f (j)
n (v)


then

En(f (k)
n ) 6 K0,

where Cγ has been defined in (6.4.2) and CL, λ, K0, T0 and ∆n have been defined in

(6.7.3)− (6.7.9).

Remark 6.7.5 In particular, point iv) gives a uniform control on the L∞v -norm of f
(k)
n

which is bounded by K0.

Proof of Proposition 6.7.4 The proof of the proposition above will be done by induction.

The step k = 0 is direct since K0 > ‖f0‖L∞v (see (6.7.5)). So let us assume that this is

true at rank k with k < T0/∆n.

Combining Lemma 6.7.2 and points ii) and iv) of Proposition 6.7.4 at rank k we have

that

∆n

∥∥∥Q−n (f (k)
n

)∥∥∥
L∞v

6 ∆nCΦlbn
γ ‖f0‖L1

v
(1 + 2K0) 6

1

2
.

Therefore we have that, by definition of f
(k+1)
n , (6.7.8),

f (k+1)
n (v) >

1

2
f (k)
n (v) + ∆nQ

+
n

(
f (k)
n

)
and because f

(k)
n > 0 we obtain that f

(k+1)
n > 0, which is i).
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Furthermore, f
(k+1)
n > 0 implies that, thanks to Definition (6.7.8),∥∥∥∥∥∥∥

 1

v

|v|2

 f (k+1)
n

∥∥∥∥∥∥∥
L1
v

=

∫
Rd

 1

v

|v|2

 f (k+1)
n (v) dv

=

∫
Rd

 1

v

|v|2

 f (k)
n (v) dv + ∆n

∫
Rd

 1

v

|v|2

Qn(f (k)
n )(v) dv.

The last term on the right hand side is zero since Qn satisfies the same integral prop-

erty than the non-truncated Boltzmann-Nordheim operator, Lemma 6.1.1. Hence, f
(k+1)
n

satisfies point ii).

In order to prove iii) we use Lemma 6.7.2 (f
(k)
n being positive), Lemma 6.7.3 and the

fact that
∥∥∥f (k)

n

∥∥∥
L∞v

6 K0 in the definition of f
(k+1)
n , (6.7.8). This yields

f (k+1)
n (v) 6 f (k)

n (v)− CL∆n (nγ ∧ (1 + |v|γ)) f (k)
n

+∆nCΦCγlb ‖f0‖L1
2,v

[
1 + (1 + 2K0)

Cγ
λd−1

‖f0‖L1
2,v

]
+∆nCΦlbCγ ‖f0‖L1

2,v
(1 + 2K0)

∫
|u−v|6λ

(nγ ∧ (1 + |u|γ)) f
(k)
n (u)

|u− v|d−1
du.

Then, by applying iii) for f
(k)
n we obtain iii) for f

(k+1)
n .

Thanks to iv) at rank k we have that for all v in Rd

∆n

k−1∑
j=0

(nγ ∧ (1 + |v|γ)) f (j)
n (v) 6 k∆nn

γK0.

Thus, sup
v∈Rd

∆n

k−1∑
j=0

(nγ ∧ (1 + |v|γ)) f
(j)
n (v) exists and is finite.

Hence, we can consider property iii) at rank k + 1 and take the essential supremum

over v in Rd, noticing that k + 1 6 T0/∆n,

En(f (k+1)
n ) 6

K0

4
+ T0C0

[
1 + (1 + 2K0)

Cγ
λd−1

‖f0‖L1
2,v

]
C0C(λ) (1 + 2K0)E(f (k+1)

n ),

6
K0

2
+

1

2
En(f (k+1)

n ),

by definition of T0, see (6.7.7) and of λ, see (6.7.6). This gives us the expected result iv)
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for f
(k+1)
n .

6.7.3 Convergence towards a mass and momentum preserving solution

of the Boltzmann-Nordheim equation

For each n in N we have built a sequence of functions
(
f

(k)
n

)
k∈{0,...,T0/∆n}

in L1
2,v ∩ L∞v .

We shall see these functions as piecewise constant functions of time. Therefore we define

∀n ∈ N, ∀(t, v) ∈ [k∆n, (k + 1)∆n)× Rd, fn(t, v) = f (k)
n (v). (6.7.10)

We are about to prove that (fn)n∈N converges weakly in L1([0, T0] × Rd) towards

f in L1([0, T0], L1
2,v) ∩ L∞([0, T0] × Rd), the mass and energy preserving solution of the

Boltzmann-Nordheim equation (6.1.3) with initial data f0 (which is unique thanks to

Theorem 6.6.1). This is the purpose of the following proposition.

Proposition 6.7.6 There exists f in L1([0, T0]×Rd)∩L∞([0, T0]×Rd) such that a subse-

quence of (fn)n∈N, see (6.7.10) and (6.7.8), converges towards f weakly in L1([0, T0]×Rd)
and weakly-* in L∞([0, T0]× Rd). Moreover, f satisfies

� f is a solution of the Boltzmann-Nordheim equation (6.1.3) with initial data f0,

� f is positive and for all t in [0, T0], ‖f(t, ·)‖L1
v

= ‖f0‖L1
v

and
∫
Rd vf(t, v) dv =∫

Rd vf0(v) dv,

� recalling the definition of K0 > 0 (see (6.7.5)), f satisfies

sup
[0,T0]×Rd

(
f(t, v) +

∫ t

0
(1 + |v|γ) f(s, v) ds

)
6 2K0.

Proof of Proposition 6.7.6 Thanks to point ii) of Proposition 6.7.4 we have that (fn)n∈N

is bounded in L1([0, T0] × Rd) but also have a uniform bound on its second moment.

Therefore it is a tight sequence. Moreover, point iv) of Proposition 6.7.4 gives us that

(fn)n∈N is bounded in L∞([0, T0]×Rd) and thus it is equi-integrable. The Dunford-Pettis

theorem concludes that (fn)n∈N is weakly compact in L1([0, T0]× Rd).
Therefore, there exists f in L1([0, T0]×Rd) such that there exists a subsequence of (fn)N∈N,

that we will keep denoting by fn, which converges weakly in L1([0, T0]× Rd) towards f .

Point i) of Proposition 6.7.4 tells us that f > 0. The sequence (fn(t, ·))N∈N is tight

and its tightness property is independent of the time t (see the uniform control of the
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second moment, point ii) of Proposition 6.7.4). Therefore, for all ε > 0, it exists Rε > 0

such that for all n and t we have∫
Rd

1{|v|6Rε}fn(t, v) dv > ‖f0‖L1
v
− ε.

Since 1{|v|6Rε} is in L∞v we can take the weak limit as n tends to +∞ in the inequality

above to obtain

‖f(t, ·)‖L1
v
>
∫
Rd

1{|v|6Rε}f(t, v) dv > ‖f0‖L1
v
− ε,

this being true for all ε. Thus, ‖f(t, ·)‖L1
v
> ‖f0‖L1

v
. But Fatou’s Lemma offers us straight-

forwardly the opposite inequality.

This indicates that for all t in [0, T0], ‖f(t, ·)‖L1
v

= ‖f0‖L1
v
. A similar argument proves that

f(t, ·) has the same momentum as f0 for all t > 0.

The last point of Proposition 6.7.4, shows that (fn)n∈N is bounded in L∞([0, T0]×Rd)
and therefore is weakly-* compact in this space. We can extract a subsequence of fn,

still denoted by fn, which converges weakly-* in L∞([0, T0]×Rd). But since fn converges

weakly in L1([0, T0]×Rd) to f and therefore the weak-* limit in L∞([0, T0]×Rd) can only

be f .

Thus f belongs to L∞([0, T0]× Rd).

Thanks to point iv) of Proposition 6.7.4, we have, for all n in N and k in {0, . . . , T0/∆n−
1}, for all (t, v) in [k∆n, (k + 1)∆n)× Rd,

fn(t, v) +

∫ t

0
(nγ ∧ (1 + |v|γ)) fn(s, v) ds = f (k)

n (v) +
k−1∑
j=0

∆n (nγ ∧ (1 + |v|γ)) f (j)
n (v)

+∆n (t− k∆n) (nγ ∧ (1 + |v|γ)) f (k)
n (v)

6 K0 + ∆2
nn

γK0

6 2K0. (6.7.11)

Therefore, if we define

∀n ∈ N, ∀(t, v) ∈ [0, T0]× Rd, gn(t, v) =

∫ t

0
(nγ ∧ (1 + |v|γ)) fn(s, v) ds, (6.7.12)

we have that the sequence (gn)n∈N is bounded in L∞([0, T0]×Rd) and therefore is weakly-

* compact. There exists a subsequence, still denoted by gn, that converges weakly-* in

L∞([0, T0]× Rd) to, say, g.

Besides, since 0 6 γ 6 1, we have that (gn)n∈N is bounded in L1([0, T0]×Rd) and such
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that for all t in [0, T0], ∫
Rd
|v|2−γ gn(t, v) dv 6 2CγT0 ‖f0‖L1

2,v
,

where Cγ has been defined in (6.4.2). Therefore (gn)n∈N is tight and equi-integrable and

therefore is weakly compact in L1([0, T0] × Rd). As we did for fn we obtain that gn

converges (up to a subsequence) weakly to g in L1([0, T0]× Rd).

We are going to prove that

g(t, v) =

∫ t

0
(1 + |v|γ)f(s, v) ds. (6.7.13)

As we emphasised before, the compactness properties of fn and gn are the same for fn(t, ·)
and gn(t, ·) for a given t, because our bounds are independent of t. Therefore we fix a t in

[0, T0] and we take φ in C∞c (Rd). By weak convergence of fn in L1([0, T0]× Rd) we have∫
Rd

∫ t

0
(1 + |v|γ)φ(v)f(s, v) dsdv = lim

n→∞

∫
Rd

∫ t

0
(1 + |v|γ)φ(v)fn(t, v) dsdv = lim

n→∞
In.

But we have the following

In =

∫
(1+|v|γ)6nγ

φ(v)gn(t, v) dv +

∫ t

0

∫
(1+|v|γ)>nγ

(nγ ∧ (1 + |v|γ))φ(v)fn(s, v) dvds.

φ is of compact support so for n big enough we have that

∀s ∈ [0, t],

∫
(1+|v|γ)>nγ

(nγ ∧ (1 + |v|γ))φ(v)fn(s, v) dv = 0.

Finally, by the weak convergence of gn in L1
v we obtain

lim
n→∞

In =

∫
Rd
g(t, v)φ(v) dv.

Thus,

∀φ ∈ C∞c (Rd),
∫
Rd
φ(v)

[
g(t, v)−

∫ t

0
(1 + |v|γ) f(s, v) ds

]
dv = 0.

This gives us the expected equality (6.7.13), since both functions are in L1
v.

As a result, we have that
∫ t

0 (1 + |v|γ) f(s, v) ds is in L∞([0, T0] × Rd). Thanks to

(6.7.11) we also find

sup
[0,T0]×Rd

(
f(t, v) +

∫ t

0
(1 + |v|γ) f(s, v) ds

)
6 2K0. (6.7.14)
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To conclude the proof of Proposition 6.7.6 it remains to show that f is a solution of the

Boltzmann-Nordheim equation (6.1.3). However, this is now pretty straightforward since

gn(t, ·) converges weakly-* in L∞v and fn(t, ·) converges weakly in L1
v, for all t. Therefore,

thanks to the definition of f
(k)
n , see (6.7.8), we can take the limit in∫

Rd
fn(t, v)φ(v) dv =

∫
Rd
φ(v)

[
f0(v) +

∫ t

0
Qn(fn(s, ·))(v)

]
dsdv,

for all test functions φ in C∞c (Rd). Indeed, Qn is basically a convolution operator with a

kernel not growing faster than (nγ ∧ (1 + |v|γ)). Then, since we have the equality (6.7.13),

we obtain that for all test function φ∫
Rd
φ(v)

[
f(t, v)−

(
f0(v) +

∫ t

0
Q(f(s, ·))(v) ds

)]
= 0,

and thanks to (6.7.14) we have that f(t, v)−
(
f0(v) +

∫ t
0 Q(f(s, ·))(v) ds

)
belongs to L1

v ∩
L∞v and therefore we obtain

f(t, v) = f0(v) +

∫ t

0
Q(f(s, ·))(v) ds,

which means that f is a solution of the Boltzmann-Nordheim equation (6.1.3).

6.7.4 Preservation of the energy

This section is devoted to the proof of the following result, which is the fact that f preserves

the energy of the initial data.

Proposition 6.7.7 Let f be the function obtained in Proposition 6.7.6.

Then for all t in [0, T0], ∥∥∥|v|2 f(t, v)
∥∥∥
L1
v

=
∥∥∥|v|2 f0(v)

∥∥∥
L1
v

.

Proof of Proposition 6.7.7 We have, thanks to Proposition 6.7.4, that for all t in [0, T0]

the sequence
(
|v|2 fn(t, v)

)
n∈N

is bounded in L1
v with the following preservation of the

L1
v-norm,

∀n ∈ N,∀t ∈ [0, T0],

∫
Rd
|v|2 fn(t, v) dv =

∥∥∥|v|2 f0

∥∥∥
L1
v

.

Therefore, we fix t and notice that for all R > 0 we have that, since fn > 0,∫
Rd

1{|v|6R} |v|2 fn(t, v) dv 6
∥∥∥|v|2 f0

∥∥∥
L1
v

. (6.7.15)
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As we saw in the proof of Proposition 6.7.6, (fn(t, ·))n∈N converges weakly (up to a sub-

sequence) in L1
v towards f . We can then take the limit as n in (6.7.15),∫

Rd
1{|v|6R} |v|2 f(t, v) dv 6

∥∥∥|v|2 f0

∥∥∥
L1
v

,

which is true for all R. Thus, the positivity of f yields∫
Rd
|v|2 f(t, v) dv 6 ‖f0‖L1

v
. (6.7.16)

It remains to prove the opposite inequality.

To this end we shall show that
(
|v|2 fn(t, v)

)
n∈N

is tight in L1
v, uniformly in t. Indeed,

such a tighness property will yiels

∀ε > 0, ∃Rε > 0, ∀n, t,
∫
Rd

1{|v|6Rε} |v|2 fn(t, v) dv >
∥∥∥|v|2 f0

∥∥∥
L1
v

− ε

and since 1{|v|6Rε} is in L∞v we can take the weak limit as n tends to +∞ in the inequality

above to obtain (remember that f is positive)∥∥∥|v|2 f(t, v)
∥∥∥
L1
v

>
∫
Rd

1{|v|6Rε} |v|2 f(t, v) dv >
∥∥∥|v|2 f0

∥∥∥
L1
v

− ε,

this being true for all ε.

The tightness of our sequence of approximation is dealt with below.

We have that f0 is positive and such that
(

1 + |v|2
)
f0(v) is in L1

v. Proposition A1 in

the appendix of [77] gives the existence of ψ a positive convex function on R+ such that

there exists C > 0 such that ∫
Rd
ψ
(
|v|2
)
f0(v) dv 6 C.

Moreover, ψ can be written ψ(x) = xφ(x), where φ is concave, increasing to infinity, and

such that for any ε > 0 and any α in (0, 1), it satisfies (φ(x)− φ(αx))xε →∞ as x→∞.

To prove that
(
|v|2 fn(t, v)

)
n∈N

is tight in L1
v we are going to need the technical lemma

about Povner-type inequality, Lemma 6.3.1.

The tightness of
(
|v|2 fn(t, v)

)
n∈N

directly follows from the following control of the tail

of the distribution fn(t, v).

Proposition 6.7.8 For all n in N, for all k in {0, . . . , T0/∆n},∫
Rd
f (k)
n (v)ψ

(
|v|2
)
dv 6

∫
Rd
ψ
(
|v|2
)
f0(v) +

1

2
(k + 1)∆nCGC

2
γ ‖f0‖2L1

2,v
,
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where CG has been defined in Lemma 6.3.1.

Remark 6.7.9 We would like to emphasize here that CG depends on b, ψ (which depends

only on f0) and an upper bound for
∥∥∥f (k)

n

∥∥∥
L∞v

which is bounded by K0 (see point iv) of

Proposition 6.7.4). Therefore, CG is a constant of our problem, independent of k and n.

Proof of Proposition 6.7.8 The proof will be done by induction. The case k = 0 is

obvious so let us assume that this is true up to rank k < T0/∆n.

To shorten computation we set

M (k)
n =

∫
Rd
f (k)
n (v)ψ

(
|v|2
)
dv.

By definition of f
(k+1)
n , see (6.7.8), we obtain, after integrating in v and the use of the

usual changes of variables (v, v∗)→ (v∗, v) and (v, v∗)→ (v′, v′∗),

M (k+1)
n = M (k)

n + ∆n

∫
Rd
Qn(f (k)

n )(v) dv

= M (k)
n +

∆n

2

∫
Rd×Rd

(n ∧ |v − v∗|)γ f (k)
n (v)f (k)

n (v∗)

×
[∫

Sd−1

[
1 + f (k)

n (v′) + f (k)
n (v′∗)

]
b(cos θ)

(
ψ′∗ + ψ′ − ψ∗ − ψ

)
dσ

]
dv∗dv

= M (k)
n +

∆n

2

∫
Rd×Rd

(n ∧ |v − v∗|)γ f (k)
n (v)f (k)

n (v∗) [G(v, v∗)−H(v, v∗)] dv∗dv.

(6.7.17)

We can use Lemma 6.3.1 with

G(v, v∗) 6 CG |v| |v∗| ,
H(v, v∗) > 0.

This yields, applied to (6.7.17) because f
(k)
n is positive (see Proposition 6.7.4),

M (k+1)
n 6 M (k)

n +
∆n

2
CG

∫
Rd×Rd

|v − v∗|γ |v| |v∗| f (k)
n (v)f (k)

n (v∗) dv∗dv

6 M (k)
n +

∆n

2
CG

[∫
Rd

(1 + |v|γ) |v| f (k)
n (v) dv

]2

.

Because γ belongs to [0, 1] we also have (up to a change of constant Cγ in (6.4.2))

(1 + |v|γ) |v| 6 Cγ

(
1 + |v|2

)
,
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which yields, thanks to the preservation of the L1
2,v-norm (see Proposition 6.7.4),

M (k+1)
n 6M (k)

n +
∆n

2
CGC

2
γ ‖f0‖2L1

2,v
.

Applying the induction hypothesis at rank k gives us the expected result.

The tightness of (fn(t, ·))n∈N follows straightforwardly from the growing property of ψ

and Proposition 6.7.8 which states the following control, uniform in n and t,∫
Rd
fn(t, v)ψ

(
|v|2
)
dv 6

∫
Rd
f0(v)ψ

(
|v|2
)
dv +

T0

2
CGC

2
γ ‖f0‖2L1

2,v
<∞,

since k 6 T0/∆n and CG is a constant (see Remark 6.7.9).

This concludes the proof of Theorem 6.7.1 since f is a positive solution of (6.1.3), mass

and energy preserving and in L∞loc

(
[0, T0), L1

2,v ∩ L∞v
)
. Therefore, see Theorem 6.6.1, f

is the unique solution satisfying those properties and f preserves the momentum. Thus

the sequence (fn)n∈N converges weakly in Proposition 6.7.6, not only just a subsequence,

towards f .

If at T0 we have that ‖f‖L∞t,v 6 M then we can apply our proof starting at T0 and

construct a solution up to T1 (depending only on M , which depends only on f0, and

‖f(T0, ·)‖L1
2,v

= ‖f0‖L1
2,v

) and by uniqueness we have in fact extended f to T1. We can

inductively build a solution on [0, T ) up to the point where

lim
T→T−

‖f‖L∞
[0,T ]×Rd

= +∞.
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Dériv. Partielles. École Polytech., Palaiseau, 2009, pp. Exp. No. XVI, 21. 147, 149

[82] Mouhot, C., and Neumann, L. Quantitative perturbative study of convergence

to equilibrium for collisional kinetic models in the torus. Nonlinearity 19, 4 (2006),

969–998. 36, 37, 145, 147, 148, 150, 151, 189, 190, 191, 194, 224

[83] Mouhot, C., and Strain, R. M. Spectral gap and coercivity estimates for lin-

earized Boltzmann collision operators without angular cutoff. J. Math. Pures Appl.

(9) 87, 5 (2007), 515–535. 193

[84] Mouhot, C., and Villani, C. Regularity theory for the spatially homogeneous

Boltzmann equation with cut-off. Arch. Ration. Mech. Anal. 173, 2 (2004), 169–212.

246
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