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ABSTRACT 
 
We investigate the fluid mechanics of cleaning viscous drops attached to a flat inclined 
surface using thin gravity-driven film flows. We focus on the case where the drop cannot be 
detached from the surface by the mechanical forces exerted by the cleaning fluid on the drop 
surface. The fluid in the drop dissolves into the cleaning film flow, which then transports it 
away. To assess the impact of the drop on the velocity of the cleaning fluid, we have 
developed a novel experimental technique based on particle image velocimetry. We show the 
velocity distribution at the film surface in the situations both where the film is flowing over a 
smooth surface, and where it is perturbed by a solid obstacle representing a very viscous 
drop. We find that at intermediate Reynolds numbers the acceleration of the starting film is 
overestimated by a plane model using the lubrication approximation. In the perturbed case, 
the streamwise velocity is strongly affected by the presence of the obstacle. The upstream 
propagation of the disturbance is limited, but the disturbance extends downstream for 
distances larger than 10 obstacle diameters. Laterally, we observe small disturbances in both 
the streamwise and lateral velocity, owing to stationary capillary waves. The flow also 
exhibits a complex three-dimensional converging pattern immediately below the obstacle. 
 
KEYWORDS: cleaning surfaces; thin falling film; flow over obstacle; particle image 
velocimetry (PIV). 
 
INTRODUCTION 
 
Cleaning of fouling deposits using film flows is a common problem in many industrial 
processes, particularly in the food industry (see e.g. Wilson, 2004; Xin et al., 2002; Gillham et 
al., 2000). Fryer and Asteriadou (2009) explained that cleaning processes aim at overcoming 
cohesive forces within fouling deposits, as well as adhesive forces at the interface between a 
deposit and its substrate. Physical processes involve, for instance, fluid mechanical forces 
such as shear and pressure forces imposed at the deposit boundary by a liquid flow. Chemical 
processes can involve some material transport or diffusion and reactions. The shearing action 
of a film flow is often used to clean fouled surfaces in industrial processes as well as in our 
daily life (Yeckel and Middleman, 1987; Mickaily and Middleman, 1993), such as in a 
household dishwasher. In a full dishwasher, a jet of water impinges on the surface of some of 
the plates while others are simply covered by a thin draining film. The ability of the film to 
clean the drops of grease attached onto the plate surface is critical. Moreover, minimizing the 
water consumption and the energy of such automatic cleaning devices can have an important 
environmental and sustainable impact. Dussan (1987) analysed the effect of a shearing 
immiscible fluid flowing over a drop. He derived theoretically the rate of strain beyond which 
the drop is swept away by the fluid. In this study, we investigate the case where shear forces 
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cannot overcome adherence, and thus the drop remains attached onto the surface until it 
dissolves completely in the film.  
 
We are interested in the case of cleaning a single drop of viscous liquid lying on an inclined 
planar surface using a gravity-driven falling film (see figure 1). Blount (2010) developed a 
mathematical model for the dissolution and transport of the fluid from the drop into the film 
flow. The streamwise velocity in the film is obtained assuming a viscous–gravity balance and 
the lubrication approximation, 

����� � � �	
�
� ��2�� � ��,   (1) 

 
where � is the spatial coordinate in the direction orthogonal to the substrate (� the streamwise 
direction and � the lateral or spanwise direction), � is the constant of gravity, � is the 
inclination angle of the substrate from horizontal, � is the film kinematic viscosity and �� is 
the far-field film thickness. 
 

 
 
Figure 1. Schematic diagram of the cleaning problem. A liquid film flows over a viscous 

drop (shaded). 
 
The drop fluid (shaded in figure 1), considered as a passive tracer, is described using the 
advection–diffusion equation in the film phase 

��� � � ⋅ �� � ����,   (2) 
 
where �� is the partial differentiation with respect to time, � is the local concentration of the 
drop fluid, � � ��,  , !� is the local film velocity and � is the constant diffusion coefficient 
of the drop fluid in the film phase. Assuming that just outside the drop interface � is fixed, 
and equal to the maximum solubility, �", of the drop fluid in the film phase, and that the film 
fluid forms a boundary layer such that � ∝ �, Blount (2010) solved equation (2) to obtain a 
prediction for the total flux of drop fluid, integrated along the drop surface, into the film flow 
 

     $ � 0.808�" ()�
*+,-., �	
*�

* /
0 1⁄

,  (3) 

 
where Γ is the two-dimensional flow rate and 4 is the drop length. 
 
Our objective is to test the validity of the model developed by Blount (2010) and compare its 
prediction with experimental measurements. For simplicity, we focus here on the case of a 
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non-deformable drop, which corresponds to the very viscous limit. One of the main 
assumptions in Blount’s (2010) model is to consider that the film velocity is not affected by 
the drop and the velocity in the diffusive boundary layer remains linear with distance away 
from the boundary. To test this assumption we measure the velocity field of the film flow in 
the vicinity of a solid obstacle, representing a non-deformable drop. 
 
The flow of a gravity-driven film falling along a rigid surface has been studied extensively 
(see e.g. the review of Craster and Matar, 2009). Since the pioneering work of Nusselt in 
1916, who found a semi-parabolic velocity profile in the viscous–gravity regime, measuring 
the velocity field in film flows has always remained a technical challenge (see e.g. Moran et 
al. 2002, and Lel et al. 2005, for a review of various existing experimental techniques). 
Indeed, film flows are typically less than 1 mm thick and their velocity can reach 1 m s-1 at 
the free surface (Lan et al. 2010). Only recently, with the photochromic dye activation 
technique presented by Moran et al. (2002), the measurement of the instantaneous velocity 
field with a non-intrusive technique became possible. However, the measurements were still 
limited to only one location in the ��, �) plane. Moreover, Moran et al.’s (2002) technique 
required the ability to see through the sides of the film, by confining the film inside a channel. 
 
We have designed a new technique based on particle image velocimetry, which allows 
measurements of the two-dimensional instantaneous surface velocity of the film: i.e. 
�(�, ℎ, �, 5) and !(�, ℎ, �, 5) over an almost arbitrarily large area. This technique is non-
intrusive, neglecting the impact of the tracer particles on the flow. It can achieve large 
temporal and spatial resolution, depending on the capabilities of the high-speed camera and 
the strength of the light source. It also enables us to measure the film surface velocity in the 
vicinity of obstacles, such as drops. The deformation of a liquid film flowing down an 
inclined plane due to obstacles has been extensively studied theoretically and numerically in 
the past 25 years. Pozrikidis & Thoroddsen (1991) studied this problem theoretically and 
numerically for a three-dimensional film flowing over a particle, which is small compared to 
the film thickness. Using the boundary integral method for Stokes flow, Pozrikidis & 
Thoroddsen (1991) built the Green’s function to compute the perturbed flow field and the 
deformation of the interface. Based on this method, progress has been made recently in the 
theoretical and numerical modelling of the problem (see e.g. Hayes & O’Brien, 2000; Gaskell 
et al., 2004; Blyth & Pozrikidis, 2006; Baxter et al., 2009). However, owing to the difficulties 
mentioned above, there has been much less experimental work. To the best of our knowledge, 
there has not been any study reporting measurements of the velocity field in the vicinity of a 
film flowing over an obstacle. Experimentalists have usually focused on the measurement of 
the film thickness: the measurements of Decré & Baret (2003) and Wierschem & Askel 
(2004) compare well with the theoretical and numerical results. 
 
Our goal in this work is to measure experimentally the influence of a non-deformable viscous 
drop on the velocity field of a film flowing over the drop. Ultimately, we want to characterize 
the impact on the dissolution and cleaning of drops lying over an inclined planar surface. 
 
EXPERIMENTAL PROCEDURES 
 
We produced gravity-driven thin film flows in the experimental apparatus shown 
schematically in figure 2. A liquid film flowed from a constant-head reservoir through a thin 
gap (thickness ℎ6 = 0.4 mm, width 86 = 200 mm, length 96 = 15 mm) on a flat solid 
substrate inclined at an angle � to the horizontal. We measured the angle of inclination � 
using an electronic inclinometer. At the gap outlet (� = 0), the flow could be well 
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approximated by a plane Poiseuille flow. Then, the film flowed freely over a one millimetre 
thick sheet of polished stainless steel mounted on a 20 mm thick piece of PVC, which ensured 
the rigidity of the experimental apparatus. The stainless steel substrate was cleaned before 
each experiment with some water and soap, vinegar-based de-scaler and finally isopropanol. 
The film flowed on the substrate for a distance of approximately 300 mm from the outlet of 
the reservoir gap to the bottom-end of the substrate, and then fell freely into a large collecting 
tank. We obtained the flow rate of the film by measuring the flow rate of the pipe which 
supplied the reservoir and maintained the water level at a constant height. Using a precision 
balance (to measure the mass of fluid) and a stopwatch, the flow rate was measured and found 
to be consistent through repeated measurements with an accuracy of approximately 1%. The 
fluid could recirculate in the experimental apparatus using a submersible pump located in the 
collecting tank. The fluid was pumped into a primary reservoir located upstream. The fluid 
turbulence in the primary reservoir was dampened as it penetrated through a piece of foam 
(reticulated polyether foam with 57 to 70 pores per inch and a pore size of 0.5 mm) and a 5 
mm gap into the main U-shaped reservoir. Using some artificial pearlescence (Iriodin 120 
pigment, Merck) we observed that the fluid in the main U-shaped reservoir was free of 
turbulence. 
 
Once the flow was stable and steady, we started recording the experiment with a high-speed 
grey-scale camera (Photron–Fastcam SA1.1) mounted with a 60mm focal-length lens (AF 
Micro-Nikkor). Two 300 Watts arc lamps and two 250 Watts halogen lamps produced a 
uniform illumination on the film with minimal shadows or reflections at the crests and troughs 
of surface waves. The lens aperture was f/4.0D or f/5.6D, depending on the shutter speed. The 
lens aperture was adjusted to prevent over-illumination. We recorded the experiments as 8-bit 
sequences with the high-speed camera for a duration of approximately 1 s. We performed the 
PIV experiments in a dark room. 
 

 
 
Figure 2. Schematic diagram of the experimental apparatus. (a) Side view; (b) top view. 
  
The details of the control parameters for each experiment are presented in Table 1. For Exp. 
1–4, the camera view is centred on the film mid-width and with the top of the image just 
above the outlet, so as to see the film immediately after flowing through the gap. We analysed 
the images using DigiFlow (Dalziel et al., 2007). The spatial velocity resolution is 2.7mm 
based on interrogation areas of 17 < 17 pixels with 75% overlapping. The film Reynolds 
number is defined as Re = 4Γ/� with Γ��� � >/8��� the local two-dimensional flow rate, > 
the three-dimensional constant flow rate, 8 the local film width along the spanwise direction, 

(a) (b) 
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and the viscosity of water � = 10?@
 m

2 s-1 at ambient temperature A = 20° C. In Exp. 5, the 
camera view is centred on the obstacle in the flow. The resolution is approximately five times 
larger so that we have a very detailed measurement of the flow in the vicinity of the obstacle. 
The new spatial velocity resolution is 0.7 mm based on interrogation areas of 21 < 21 pixels 
with 5% overlapping. 
 
The film liquid used for the PIV experiments was a mixture of approximately 4 litres of cold 
water with 40 g (i.e. 1% wt) of methylene blue and 20 g (i.e. 0.5% wt) of artificial 
pearlescence, which was made of titanium-dioxide coated mica particles (size: 5 to 25 
microns; density: 3 g cm-3). The purpose of this very dark mixture of dye was to render the 
film opaque for the camera so that only the surface of the film could be seen. We noticed that 
methylene blue did not absorb strongly the infrared part of the spectrum of our lights. Since 
the camera was sensitive to this part of the spectrum, we mounted a UV/IR blocking filter on 
the camera lens to filter it out. The artificial pearlescence comprised small plates acting as 
tracers. Aligning with the shear, the plates predominantly orientated themselves parallel to the 
film surface. These tracers produced a non-uniform reflecting texture of light intensity at the 
surface of the film, from which the surface velocity could be computed using a PIV algorithm 
in DigiFlow. Since the particles of pearlescence were denser than water, they could sediment 
in the film flow. Assuming Stokes law for the settling velocity of the particles, we estimated 
that the smallest particles sank through less than 20% of the film depth. The sinking depth of 
the particle was of the order of the layer depth seen by the camera. Thus, there were always 
enough particles viewed by the camera for the PIV image analysis. To prevent sedimentation 
in the collecting tank a strong pump stirred the mixture vigorously. 
 
Table 1. Summary of the control parameters for all the experiments.  
Exp. Angle 

(°) 
> 

(cm3s-1) 
Resolution 

(pixel < pixel) 
View 

(cm < cm) 
Frame 

rate (Hz) 
Shutter 
time (s) 

Re =

4Γ/� 
1 44 50 1024 < 1024 17 < 17 2000 1/3000 1000–1200 
2 45 71 1024 < 1024 17 < 17 2000 1/2000 1400–1700 
3 45 41 1024 < 1024 17 < 17 2000 1/2000 800–1000 
4 61 65 1024 < 1024 15 < 15 2000 1/2000 1300–1600 
5 44 50 1024 < 896 3.4 < 3.0 6250 1/9000 1100 

 
The impact of a solid obstacle on the film flow was studied. We made a small obstacle by 
sticking a piece of Blu-Tack (Bostik) on the substrate located at a distance of approximately 
91 mm downstream of the outlet and approximately 10 mm to the right of the centreline. The 
size of the obstacle was 0.5 to 0.8 mm in thickness and 2.8 mm in diameter. The shape was a 
rough flattened hemisphere, which modelled the shape of a very viscous sessile drop. We can 
note that the obstacle was located sufficiently far away from the outlet that the film flow 
approaching the obstacle was fully developed. The obstacle was fully submerged by the film. 
 
RESULTS AND DISCUSSION 
 
In figure 3, we present the distribution of the local time-averaged surface velocity �D of the 
film and its standard deviation (dashed curves) along the streamwise (�) direction. These 
results correspond to Exp. 1 (see Table 1). The velocity is non-dimensionalised by the depth-
averaged velocity as � → +∞, i.e. < �� > computed from equation (1). The film Reynolds 
number varies from 1200 to 1000, owing to the change of film width with streamwise 
distance. In figure 3(a), we plot with pluses the velocity distribution taken at a lateral (�) 
location where the flow is undisturbed. We also plot with a thin solid line and a thick dashed 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Cleaning of viscous drops using film flows – Landel, McEvoy and Dalziel. 

Submitted to the IChemE Journal, Food and Bioproducts Processing. 
 

line the theoretical fits for two values of I = ℎ6/�� (Cerro and Whitaker, 1971b). Cerro and 
Whitaker (1971b) modelled the laminar, steady, plane flow of a film falling on an inclined 
plane as it develops from a Poiseuille profile at the outlet � � 0 (thickness �6) to the viscous–
gravity profile described in (1) as � → �∞ (thickness ��). They make use of the boundary 
layer approximation to simplify the Navier–Stokes equation, and then use the von Mises 
transformation (Schlichting, 1956, chap. 8) to account for the kinematic condition at the free 
surface. We solve the resulting non-linear partial differential equation, which also includes the 
continuity equation, using a finite-difference implicit numerical scheme.  
 

  
 

Figure 3. Experimental data from Exp. 1 and comparison with the theoretical predictions of 
Cerro & Whitaker (1971b). (a) Non-dimensional distribution of the time-averaged 
surface velocity of the film (pluses) and its standard deviation (dotted curves) along 
the streamwise (�) direction at a lateral (�) location where the flow is undisturbed. 
We also plot with a thin solid line and a thick dashed line the theoretical fits for two 
values of I � �6/��. The film Reynolds number varies from 1200 to 1000, owing 
to the change of film width with streamwise distance. (b) Non-dimensional 
distribution of the time-averaged surface velocity of the film (crosses) and its 
standard deviation (dotted curves) along the streamwise (�) direction at a lateral (�) 
location where the flow is disturbed by an obstacle (located between the two dashed 
vertical lines). The non-disturbed data are also plotted with pluses for comparison. 

 
The thick dashed curve in figure 3(a) corresponds to the theoretical prediction for the value 
I � 0.85 J 0.15. This curve does not fit the experimental data well in the transition region 
for 0 K L � 4� ���Re�⁄ K 0.5: the model predicts a much more rapid growth and even an 
overshoot, since I G 1 (Cerro and Whitaker, 1971b). Instead, the experimental data are better 
fitted with the value I � 1.2 (thin solid curve), which predicts a slower more stable growth of 
the surface velocity (Cerro and Whitaker, 1971a). We observed a similar discrepancy between 
the theoretical value of I and the best fit value for experiments at various flow rates or 
inclination angles. An ensemble average of Exp. 1–4, shows a best fit for 	I 35% larger than 
the theoretical value. We believe that this mismatch could in part be explained by the 
experimental error on the gap height of the slit �6 (owing to technical imperfection). 
Secondly, the film is not constrained laterally within a channel but flows freely on a planar 
surface. Surface tension across the film tends to pull the film inwards, narrowing it. The 
adjustment is particularly rapid at the beginning for the first 3 or 4 cm, with the edges of the 
film forming an angle of up to 30° to the �-axis. However, one should expect the film flow to 
accelerate as the film width reduces. Thirdly, surface tension effects, owing to surfactants in 
the film, could reduce the velocity at the free surface. Surface tension is not included in the 

(a) (b) 
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theoretical model, which assumes no shear at the free surface. This could also explain the 
mismatch between the experimental results and the theoretical model of Cerro and Whitaker 
(1971b), which consistently predicts a larger velocity in the acceleration region.  
 
In figure 3(b), we plot with crosses the velocity distribution taken at a lateral (�) location 
where the flow is disturbed by an obstacle, which is located within the two dashed vertical 
lines. The profile plotted at the location of the obstacle (crosses) shows a clear and strong 
disturbance of the time-averaged surface velocity both upstream and downstream of the 
obstacle. The propagation of the disturbance propagates approximately one obstacle diameter 
upstream. At L O 0.6 we can note first a very small decrease of the velocity followed by a 
slight increase. Then the velocity drops sharply over the obstacle, by approximately 20 to 
50%, compared with the undisturbed velocity (also plotted in figure 3b with pluses). The 
decrease is found consistently throughout the different experiments. The velocity increases 
again after the flow passes the centre of the obstacle. However, we can see that in the wake of 
the obstacle the surface velocity remains 5% lower than the undisturbed velocity. Comparing 
the different experiments, the velocity recovers its undisturbed value after 5 or more obstacle 
diameters downstream. The recovery distance tends to increase with Reynolds number. The 
profile of the disturbed surface velocity presented in figure 3(b) is typical across all the 
experiments. Only the magnitude of the velocity reduction and the recovery distance vary 
between the experiments. We believe that the velocity reduction is strongly related to the film 
thickness at the obstacle. 
 

       
 
Figure 4. Spatial distribution of the surface velocity of a film flowing over a fully submerged 

obstacle (located at ��, �� � ��6, 0� on the right-hand-side and top axis) at an angle 
of 44°, a flow rate of 50 cm3 s-1 (Exp. 5 in Table 1). (a) Non-dimensional time-
averaged streamwise velocity; (b) non-dimensional time-averaged lateral velocity 
(with negative values, in darker grey, pointing to the left). 

 
In figure 4, we show the spatial distribution of the surface velocity for the non-dimensional 
time-averaged streamwise velocity �D/G �� H (figure 4a), and the non-dimensional time-
averaged lateral velocity !Q/G �� H (figure 4b). The obstacle is located at ��, �� � ��6, 0� on 
the right-hand-side and top axis. Upstream of the obstacle, we can see that the amplitude of 
the time-averaged surface velocities �D and !Q  are fairly uniform. In figure 4(a), we can notice 
a small and gradual increase, by 6 to 7% compared with the maximum amplitude, in the 
amplitude of the streamwise velocity from left to right. This variation could be due to a small 
misalignment between the camera and the substrate. Moreover, we can observe, in figure 4(b), 

(a) (b) 
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vertical white bands in the lateral velocity field, denoting small variations of approximately 
5% compared with the maximum amplitude. These bands could be due to a non-uniformity of 
the tracers, which we have observed to segregate into streaks downstream of very small 
defects. The defects could be lying on the substrate or at the gap outlet, such as: variations in 
surface roughness, or some solid particles or micro bubbles stuck on the surface. 
 
In figure 4(a), we can see that the impact of the obstacle on the streamwise velocity is very 
limited upstream, but spreads laterally due to the formation of stationary capillary waves. 
These capillary waves, or ‘bow waves’, have a characteristic V shape similar to the wave 
front in the wake of ships. Pozrikidis and Thoroddsen (1991) observed that the amplitude of 
bow waves decrease in an exponential fashion with downstream distance away from the 
obstacle. Gaskell et al. (2004) noticed that the spread of the bow wave could be well-
represented by an inverse hyperbolic cosine function. The reduction in the velocity is 
concentrated on the obstacle and also immediately downstream of the obstacle. As we 
observed in figure 3, the magnitude of the velocity does not recover its upstream value in the 
wake of the obstacle, for a band ranging the full width of the obstacle. 
 
In figure 4(b), we should first note that the magnitude of the lateral velocity is at most 3% of 
the magnitude of the undisturbed streamwise velocity. The diverging flow on the obstacle is 
clearly visible in the velocity field, starting exactly at the top edge of the obstacle. Then, 
immediately downstream of the obstacle, !Q  points inwards revealing flow convergence in a 
narrow region extending more than five obstacle diameters downstream. At the bottom edge 
of the obstacle, the flow is quite complex and three-dimensional. We find that the standard 
deviation is rather large in this region. It is possible that the tracers segregate away from this 
region owing to the divergence of the flow immediately upstream. Therefore, there might be 
less information for the computation of the velocity field, and the velocity field is slightly less 
accurate in a narrow band downstream of the obstacle. The V-shape pattern of the stationary 
capillary waves is also clearly revealed by the distribution of the lateral velocity. 
 
CONCLUSION 
 
We investigate the problem of cleaning a very viscous drop attached to an inclined surface by 
a gravity-driven falling film flowing over the drop. We are interested in the case where the 
film cannot detach the drop from the substrate. Instead, the drop fluid diffuses slowly into the 
cleaning film before being transported away by the bulk flow. This problem was modelled 
theoretically by Blount (2010) using an advection–diffusion equation. One of the key 
assumptions in the model is to consider that the drop does not impact the velocity in the 
diffusive boundary layer at the interface. To test this assumption, we have developed a new 
experimental technique, based on particle image velocimetry, to measure the velocity field at 
the surface of a liquid film. We report in this study the first measurements of the two-
dimensional distribution of the film surface velocity in the vicinity of an obstacle. The film 
Reynolds number is in the intermediate range: 800 to 1700. The flow is laminar, but inertial 
effects can be important. 
 
First, we studied the undisturbed streamwise velocity profile, developing from a plane 
Poiseuille flow at the gap outlet, to the viscous–gravity regime in the far field. We found that 
the surface velocity reached asymptotically the viscous–gravity regime. However, the model 
developed by Cerro and Whitaker (1971b) consistently predicted a faster increase of the 
velocity. This discrepancy could be due to three-dimensional effects in the flow. The presence 
of surfactants and their impact on surface tension might also have had a strong influence on 
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the surface velocity. As water flows out of the gap outlet of the main reservoir, the film free 
surface is created. The surfactants, which are naturally present in tap water, are gradually 
adsorbed by the free surface, as they rise from within the bulk of the fluid to the newly created 
free surface. Hence, a positive gradient in surfactant concentration can exist at the film 
surface along the streamwise direction. This gradient in surfactant concentration can lead to 
an opposite gradient in surface tension, thus decreasing the acceleration of the liquid at the 
free surface. Using a typical background concentration of surfactant in tap water of the order 
of RS = 10-6 mol m-2 (per lateral unit length) and the relationship between surface tension and 
surfactant: T − TS = RA(RS − R) (where T is the surface tension, R is the ideal gas constant 
and the subscript U indicates the background), we estimate a force gradient at the free surface 
acting opposite to the flow direction of the order of 10-3 N m-1. This result gives a reasonable 
estimate of the force needed to explain the mismatch between Cerro and Whitaker’s (1971b) 
predictions of the film surface velocity and our measurements. 
 
Second, we studied the impact of an obstacle on the film velocity. We observed a large 
decrease in the magnitude of the streamwise velocity starting one obstacle diameter upstream 
of the obstacle. The recovery of the streamwise velocity downstream of the obstacle can be 
larger than 10 obstacle diameters. Laterally, characteristic V-shaped capillary waves perturb 
the velocity field. The magnitude of the disturbance due to the waves is small compared with 
the disturbance at the obstacle. We can also observe a complex three-dimensional converging 
flow just below the obstacle. The reduction of the film velocity and the decrease of the film 
thickness in the vicinity of the obstacle can have an impact on the mass transfer between the 
drop and the film. If we assume that, similarly to the case of convective mass transfer in a 
Blasius boundary layer above a flat plate, the thickness of the diffusive boundary layer above 
the drop is related to the Schmidt number and the local Reynolds number such that VW ∼

�Sc?0/)Re[
?0/�, then we can note that VW increases with decreasing Reynolds number. Hence, 

the diffusive boundary layer thickness increases with decreasing velocity in the film: for 
instance, a decrease of 50% in the velocity corresponds to an increase of 40% in VW. 
Furthermore, increasing the diffusive boundary layer thickness tends to decrease the mass 
transfer at the interface, which means a lower cleaning rate of the droplets. 
 
In conclusion, the drop has a strong impact on the film velocity. Therefore, the diffusion and 
advection of the drop fluid can be significantly affected as the film velocity decreases in the 
vicinity of the drop. The return flow immediately downstream of the drop could also have an 
effect of the cleaning process. 
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