

DFT+U Study of CeO₂ and Its Native Defects

Bolong Huang¹[†], Roland Gillen², and John Robertson²*

- 1. Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
- 2. Engineering Dept. Cambridge University, Cambridge CB3 0FA, United Kingdom
 - 1. *: Email: <u>jr@eng.cam.ac.uk</u> Tel: (+44)-01223-748-331
 - 2. †: Email: <u>bolhuang@cityu.edu.hk</u> Tel: (+852)-2784-4027

Abstract:

We investigated the native point defects in CeO₂ by the density functional (DFT) +U method, and using a non-linear core-corrected norm-conserving Ce pseudopotential. We find the neutral oxygen vacancy (V_0^0) in CeO₂ to have a very low formation energy of only 0.39eV in the Opoor limit. It is a deep donor with negative U behavior, only stable in its neutral and doubly positive states. The anion Frenkel defect is found to be the lowest energy disorder defect, with a formation energy of only 2.08eV per defect site. These low formation energies arise from the improved transferability of our Ce pseudopotential for its +3 and +4 valence states. The negative U behavior of V₀ leads to excellent photo-catalytic behavior, while the low formation energy of the anion Frenkel defect leads to a superior oxygen storage-and-release capability.

Keywords: Oxygen vacancy, Frenkel defect, pseudopotential transferability, oxidation catalyst

1. Introduction

CeO₂ is an important lanthanide oxide which is widely used as an oxygen buffer in car exhaust catalysts¹, as a fast ion conductor in solid state fuel cells², as a catalyst³⁻⁶, as a high-dielectric constant gate oxide⁷, and in resistance random access memories (ReRAM)⁸. Many properties of CeO₂ are determined by its intrinsic defects⁹⁻²³ and the unusual behavior of the semi-core Ce 4f levels. CeO₂ has a mixed valence behavior accompanied by the localization of electrons on Ce 4f states due to oxygen-related defects⁹⁻²³. The oxygen vacancy is the most common defect of the CeO₂ surface, as noted in both experimental¹¹ and theoretical studies²³. It is found that the structural distortion plays a key role in stabilizing the vacancy and this is related to the oxygen ion transport^{9, 10}. It is therefore important to understand the properties and energetics of the native defects and in particular the oxygen vacancy and the structural disorder defects.

There have been numerous first-principles studies of the electronic structure of $\text{CeO}_2^{16-18, 21, 22, 24-29}$. It is well known that the conventional density functional theory (DFT) fails to describe well the localized 4f orbitals due to a lack of self-interaction cancellation (SIC) in DFT^{21, 22, 24-29}. There has therefore been considerable effort to correct this error. The simplest method is to use the DFT+U method, which adds an on-site repulsive potential U for the localized d and f orbitals³⁰⁻³². However, this method is somewhat empirical, and further methods such as the GW method^{26, 27} and the hybrid functionals^{23, 28, 29, 33, 34} can be used. However, self-consistent GW is computationally expensive. Jiang et al^{26, 27} proposed the lower cost G₀W₀ version, based on an initial electronic structure derived from the local density approximation (LDA) +U method. This gives a substantially improved band structure. Hybrid functionals like the Heyd-Scuseria-

Erzenhof (HSE) function or screened exchange (sX) schemes are an efficient way to improve band gaps in electronic structure calculations and to carry out geometry relaxations for defects in these systems^{23, 24}.

On the other hand, the transferability of pseudopotential is another possible source of error in such mixed valence systems, and there has been less work on this aspect. The pseudopotential tends to be calculated for a single valence state within the DFT method. It is not necessarily fully transferable. The errors arise because of the spatial overlap of the core and valence charge density. As the exchange-correlation potential is a non-linear function of the charge density, it is desirable that the core and valence charge densities are spatially separated. Otherwise, the pseudopotential is dependent on the valence configuration and spin polarization. This overlap between valence and core charge density and the non-linearity causes a systematic error in the total exchange-correlation potential. It is desirable to use a pseudopotential to restrict the basis set for computational speed, especially in defect supercell calculations. However, this source of error can lead to the use of all-electron calculations.

The electronic structure of CeO₂ is still a matter of some debate. It has two gaps between 2p-4f states and 2p-5d states which must be quantified. The experimental data on the band gaps³⁵⁻⁴¹ mostly have low resolution of 0.3-0.6 eV due to the lifetime broadening. To normalize the experimental values, the most reliable value for the O_{2p} -Ce_{5d} gap is chosen as 6eV and the O_{2p} -Ce_{4f} gap is taken from the PL measurements, which shows the higher accuracy (3.33 and 3.39eV above the O_{2p} valence band edge).

Here, we carry out DFT+U band calculations using a non-linear core corrected normconserving pseudopotential, which is a basis for other lanthanide materials. We then carry out calculations on the point defects of CeO_2 as starting point for other lanthanide oxides and the higher actinide oxides with partially filled f-orbitals.

2. Non-linear core correction for 4f levels in lanthanides

In order to correct the error induced by overlaps of valence-core charge density, we choose the non-linear core correction (NLCC) method to take the core charge density into account for each atom before computing the LDA or GGA potential. For fast Fourier transform, only some of the core charge is included by the partial core correction (PCC). Following Louie et al⁴², the full core charge density can be replaced with a partial core charge density defined as below, for non-linear core correction:

$$\rho_{partial}^{\sigma}(r) = \begin{cases} A\sin(Br)/r, \ tf \ r < r_0 \\ \rho^{\sigma}(r), \ tf \ r > r_0 \end{cases}$$
(1)

where the r_0 is a radius where the core charge density is from 1 to 2 times larger than the valence charge density. A and B are determined by the value and the gradient of the core charge density at r_0 . By this method, the core charge is therefore retained and used to reconstruct the full exchange-correlation potential in the calculations. A similar method has been proposed by Fuchs et al⁴³, but we focus on the theoretical prototype of NLCC used in preliminary calculations.

3. Calculation Setup

Our DFT+U calculation uses the CASTEP⁴⁴ code. The norm-conserving pseudopotentials of Ce and O are generated by OPIUM code in the Kleinman-Bylander projector form⁴⁵ and already employ non-linear partial core correction⁴² and scalar relativistic averaging scheme⁴⁶ for spin-orbital coupling effect. The RRKJ method is chosen as optimization of pseudopotentials⁴⁷. The PBE functional was chosen for PBE+U calculations with a kinetic cutoff energy of 750eV, which expands the valence electrons states in a plane-wave basis set. The ensemble DFT (EDFT) method of Marzari et al⁴⁸ is used for convergence. For bulk properties of CeO₂, we use a 4x4x4 Monkhost-Pack (MP) k-point mesh, which converges the total energy to under 5.0x10⁻⁷eV per atom. The Hellmann-Feynman force on each atom was converged to lower than 0.01eV/Å.

For defects, we use a 2x2x2 CeO₂ supercell containing 96 atoms. We select the ($\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$) special k-point⁴⁹ in the simple cubic 2x2x2 supercell. The geometry optimization used the Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm through all bulk and defect supercell calculations.

We follow the Anisimov type DFT+U method³⁰ and the self-consistently determined Hubbard U parameter (U_f =4eV) for Ce 4f orbital by ab-initio linear response method of Cococcioni et al^{31, 32}. To stabilize the hole states lying in the O 2p orbitals, we also apply a Hubbard U potential to the O 2p states (U_p =4eV) following Lany^{50, 51}, Morgan et al⁵², and Keating et al²¹. Accordingly, both the f- and p- orbital electrons of the rare earth and oxygen should be considered when using DFT+U. Note that all of our PBE+U calculations were implemented with NLCC, and U is set to U_f =4.0eV for Ce and U_p =4.0eV for O, which is U_{pf} for short.

For the calculation of defect formation energy in different charge states, the overall supercell size was kept fixed based on the relaxed neutral bulk unit cell. The defect formation energy (H_q) at the charge state q as a function of the Fermi energy (E_F) and the chemical potential $\Delta\mu$ of element α is given by

$$H_q(E_F,\mu) = \left[E_q - E_H\right] + q\left(E_V + \Delta E_F\right) + \sum_{\alpha} n_{\alpha} \left(\mu_{\alpha}^0 + \Delta \mu_{\alpha}\right), \tag{2}$$

where E_q and E_H are the total energy of a defect cell and a perfect cell, respectively, calculated of charge q, ΔE_F is the Fermi energy with respect to the valence band maximum, n_{α} is the number of atoms of element α , and μ_{α}^0 is reference chemical potential, following Lany and Zunger⁵³.

4. Results and Discussions

4.1 Bulk

Bulk CeO₂ has the cubic fluorite structure, with lattice constant 5.411Å⁵⁴. Table 1 shows our PBE result of geometry optimization gives 5.450Å, with an error of 0.7%. The PBE+U calculation similarly gives 5.458Å with around 0.9% error, representing comparable reliability when the U parameter is introduced. The PBE+U results compare with the 5.494Å found by Keating et al²¹ and Zacherle et al²² within GGA+U scheme. The bulk modulus of CeO₂ is calculated by PBE and PBE+U. The results obtained are B₀=184 GPa for PBE and B₀=201 GPa for PBE+U. Though these values are smaller than the experimental value of 220 GPa⁵⁵, they are

improved over the B₀=172 GPa (GGA) and B₀=181 GPa (GGA+U) values found by Zacherle et al^{22} . The calculated electronic density of states (DOS) with PBE+U (U_f=4, U_p=4) under NLCC has a good agreement with XPS experimental data, see Fig. 1.

The band structures of CeO₂ calculated from both GGA and GGA + U [see Fig. 1] methods are compared, respectively. This work found that the band gap of O_{2p} -Ce_{4f} orbitals increases from 2.30eV in GGA to 3.30eV in GGA+U, which is very consistent with the experimental value of 3.33eV from photoluminescence⁴⁰. The secondary band gap of O_{2p} -Ce_{5d} orbitals also increases from 5.47eV in GGA to 5.98eV in GGA+U which is close to the optical reflectance value of 6.0eV³⁹. The upper valence band (mainly 2p orbitals of oxygen atoms) width increases from 3.90eV in PBE to 4.69eV in GGA+U, which matches the range of 4.5 to 5.0eV reported by Wuilloud et al³⁵ and Mullins et al³⁷.

For the bulk formation enthalpy, $\mu_{Ce} + 2\mu_o = \Delta H_f (CeO_2)$, the experimental formation enthalpy of CeO₂ is -11.28eV at T=298K⁵⁶. Our calculations give -10.54eV by PBE and -11.50 eV by PBE+U (U_f=4, U_p=4) at T=0K (ground state) which agrees well with the experimental value at T=298K⁴⁶. Before we discuss the defect formation energy, the value of the chemical potential of oxygen and cerium in CeO₂ is determined by the limitation of the phase boundaries between CeO₂ and Ce₂O₃. The upper bound of μ_o , which is the Ce-poor/O-rich environment, is limited by the formation of O₂ molecule (gas), which means: $\mu_o = 0eV$ and $\mu_{Ce} = -11.50eV$. The lower bound of μ_o , the Ce-rich/O-poor limit, is given by the formation of Ce₂O₃, or $2\mu_{Ce} + 3\mu_o \leq \Delta H_f (Ce_2O_3) = -20.23eV$, giving $\mu_o = -2.77eV$ and $\mu_{Ce} = -5.95eV$.

4.2 Oxygen Vacancy

The neutral oxygen vacancy leaves two excess electrons which localize onto two of four adjacent Ce sites, changing their valence from Ce⁴⁺ to Ce³⁺. For V₀⁰, after geometry relaxation, eight neighboring oxygen atoms move off their ideal lattice sites towards the vacancy site since vacancy site is an effective positive charge center, while neighboring Ce atoms move away from the vacancy with the two Ce⁴⁺ moving further. Moreover, the neighboring O atom bridging two Ce⁴⁺ moves by 0.25Å, while the O atom bridging two Ce³⁺ moves only 0.01Å from our PBE+U calculations. The four O atoms connected to one Ce³⁺ move toward the V₀⁰ by 0.15Å. The difference of O atoms is due to Ce³⁺ ions having less positive charge than Ce⁴⁺. The two Ce³⁺ ions move a distance of 0.13Å toward to each other due to weak coupling of two unpaired electrons in 4f states, while the two Ce⁴⁺ ions move a distance of 0.18Å [Fig. 2 (a)]. This trend is absent in simple PBE calculations.

Fig. 2 (b) shows the electronic density of states (DOS) of the CeO₂ with V_0^0 calculated by PBE+U (U_f=4eV, U_p=4eV). It can be seen that O_{2p} dominates the valence band and Ce_{4f} dominates the conduction band as the 4f band is empty. Between O_{2p} and Ce_{4f} bands, there are two gap states with spin-up and spin-down lying well inside the band gap (near the mid-gap) with antiferromagnetic arrangement. Moreover, these defect states denote the occupied Ce_{4f} states, indicating the occurrence of Ce³⁺ ions near the V₀ site.

For the DOS of V_0^+ , there is only a gap state with single peak near the mid-gap. The gap states of V_0^- are 1.55eV below the conduction band edge. The gap state of V_0^+ also lies near mid-gap, at about 1.05eV below the conduction band edge.

Fig. 2 (c) shows the defect formation energies of oxygen vacancy for both O-poor and O-rich conditions within different charge states by PBE+U ($U_f=4eV$, $U_p=4eV$). For V_0^0 in the O-rich condition, the calculated formation energy is 3.16eV, corresponding to 0.39eV for the O-poor limit. The formation of V_0^0 in the O-rich condition is higher than the value of 2.22eV by Keating et al²¹ but closer to 3.27eV by Zacherle et al²², while our V_0^0 formation energy of 0.39 eV in the O-poor limit is lower than both 1.03eV of Zacherle et al^{22} and 0.58eV of Keating et al^{21} . The transition energy levels correspond to Fermi energies where two charge states q and q' have the same formation energies according to Eq 2. The calculated transition energy level of V_0^0/V_0^{2+1} by PBE+U (U_f =4eV, U_p =4eV) is 2.53eV, which is 0.77eV below the conduction band minimum E_c. This compares to ~1.7 eV by Zacherle²², 2.0 eV by Jiang et al¹⁹ and 1.5 eV by Hellman²⁰. The 0/+ transition energy level of V₀ is 0.97eV below the E_c . However, V₀⁺ is never the most stable charge state. The defect tends to disproportionate according to the reaction of $2V_0^+ \rightarrow V_0^0 + V_0^{2+}$ leaving a neutral (V_0^0) and +2 charge state (V_0^{2+}). This corresponds to a socalled negative U defect, with U = -0.39 eV. The negative-U behavior of V_0 in CeO₂ is in accordance with experimental phenomenon that the catalytic activity of CeO2 with Vo is higher than the perfect bulk CeO₂. Thus, the oxygen vacancy is a near-deep donor defect, of which V_0^0 and V_0^{2+} are the stable states.

There has been a long debate on the ferromagnetic (FM) behavior that was observed in nonmagnetic oxides, when synthesized as thin film or as nanoparticles. However, CeO₂ is unusual. Castleton⁴¹ and Andersson¹⁷ both found that the antiferromagnetic (AFM) and FM configurations are degenerate with ΔE <1meV in the bulk CeO₂ with V₀. The reduced CeO₂ surface has similar effects. Fabris⁵⁷ found that V₀ causes CeO₂ surface to have AFM behavior independent of the V₀ concentration, while Nolan⁵⁸ and Han⁵⁹ noted that oxygen vacancies will induce FM in CeO₂.

Here, we find an AFM behavior of the neutral state of V_0 in CeO₂ and a near degeneracy to the FM state. This is similar to the results obtained by Keating et al²¹, Andersson et al¹⁷ and Castleton et al⁴¹. Zhang et al⁶⁰ also find that the AFM is slightly more stable than FM by 0.02 eV.

4.3 Cerium Vacancy

The cerium vacancy (V_{Ce}) gives four hole states on its adjacent O sites. Fig. 3 (a) shows the relaxed structure of V_{Ce} with four localized hole states. The defect has a quintet spin state which is slightly lower in energy than the triplet or singlet states, and also selectively localized on specific O atoms with T_d symmetry. For the local structure relaxed by PBE+U (U_f =4eV, U_p =4eV), the O atoms without four localized holes states uniformly move away from the V_{Ce} site by 0.35Å, whereas the O atoms with localized hole states all move toward the V_{Ce} site by 0.10Å. This phenomenon cannot be found by simple PBE+U without U parameters on O_{2p} . Our results on local O atoms movement are all larger and more obvious than the results of Keating et al²¹.

From the electronic DOS of CeO_2 with V_{Ce} shown in Fig. 3 (b), the system shows a defect state with 0.55eV below the conduction band minimum (CBM), which shows that the localized hole states are dominated by the empty O_{2p} orbitals. The calculation by PBE+U (U_f=4.0eV,

 U_p =4.0eV) shows the importance of including a U interaction of the O 2p states, otherwise V_{Ce} in CeO₂ would have a metallic DOS, due to the incorrect description of the hole states.

The calculated formation energies of cerium vacancy are shown in Fig. 3(c) with different charge states of V_{Ce}^{0} , V_{Ce}^{-1} , V_{Ce}^{-2} , V_{Ce}^{-3} , and V_{Ce}^{-4} . The transition energy level of 0/-4 is 1.00eV above VBM. The formation energy of V_{Ce}^{0} in the O-rich limit is 5.00eV and 10.55eV for Ce-rich. Compared to Zacherle et al²², our results gave 1.22eV and 0.15eV lower under O-rich and O-poor limit, respectively. On the other hand, Keating et al²¹ show very similar results under the O-rich limit, which is 4.91eV with only 0.09eV difference compared with ours. However, their formation energy of V_{Ce}^{0} in O-poor limit is remarkably low (8.19eV), being about 2.5eV lower than the results of Zacherle et al²² and ours. This may due to the overestimation of the μ_{Ce} with larger U_f and U_p values.

4.4 Oxygen Interstitial

The local structural relaxation between oxygen interstitial (I_O) and lattice oxygen sites leads to absence of hole states. The relaxed structure of the oxygen interstitial (I_O) is obtained by PBE+U with U_f=4.0eV and U_p=4.0eV. I_O is found to rebond to an adjacent lattice O site with a bond length of 1.391Å. This is larger than the O-O bond length (1.217Å) of O₂ and shows characteristics of a peroxide species. The lattice O site moves 0.071Å towards the I_O, and the I_O moves 0.88Å towards the neighboring lattice O site. Fig. 4 (a) shows the localized orbitals around the oxygen interstitial site. The oxygen interstitial forming peroxide ion in closed packed metal oxides is also seen in Al₂O₃, TiO₂ and ZnO.

In the electronic DOS of I₀ [in Fig. 4 (b)], there are three peaks with both spin-up and spindown, which lie in the range from -6.5 to 0eV. The σ state of the peroxide is at -4.4eV which slightly below the lower limit of the valence band. The π and π^* states are found at -6.05eV and 0eV, respectively.

The formation energy of I_0 in charge states of 0, -1, and -2 under O-rich chemical potential limit are 1.82eV, 4.49eV, and 7.40eV, respectively. The formation energy of I_0^{0} is about 1eV lower than the one obtained by Zacherle et al²². As seen from Fig. 4(c), the I_0 gives almost the same formation energy in O-rich as the Keating et al²¹, which supports the reliability of introducing the U on O_{2p} . We also found the positive-U effect of between 0 and -2 states compared to -1 state, showing that the energy cost of merely introducing O cannot be fully compensated by disordering the lattice.

4.5 Cerium Interstitial

Interstitial Ce atom provide four excess electrons [Fig . 5 (a)] with one electron remains on the interstitial Ce (I_{Ce}) while the three others move to the neighboring cerium atoms [see right bottom of the Fig. 5 (a)]. The local structure relaxed by the PBE+U method with U_f=4.0eV and U_p=4.0eV shows that three of the nearest neighboring Ce atoms move 0.244Å away from their original Ce lattice positions, while the remaining three nearest neighboring Ce atoms move 0.324Å away from their original place. Analyzing the orbital composition, we find that, the three Ce atoms with 0.244Å movement are the Ce³⁺ ions and the rest three Ce atoms with 0.324Å movement are the Ce⁴⁺ ions.

From the electronic DOS results shown in Fig. 5 (b), the ground state electronic configuration of the CeO₂ system with I_{Ce} presents a ferromagnetic feature. There are in fact four states deep in the gap, and two states have nearly the same energy pinning of the charge neutral level (CNL) 1.45eV below the CBM. These deep levels stay 1.45eV, 1.53eV, 1.57eV and 2.03eV below the CBM with same spin-up configurations and fully occupied states, which is different from the results of Keating et al²¹, who reported the system as being antiferromagnetic and all defect states as being partially occupied.

The energy cost of accepting the additional Ce in CeO₂ as I_{Ce} is very high in neutral state. Under Ce-poor (or O-rich) limit, the energy is 11.69eV for I_{Ce}^{0} , and 6.14eV under Ce-rich (or Opoor) limit, shown in Fig. 5 (c). The formation energy of our I_{Ce}^{0} is around 1eV higher than those reported by Zacherle et al²² due to the difference of processing the chemical potential with different pseudopotentials and Hubbard-U parameters. However, a large difference is presented for I_{Ce}^{4+} under Ce-poor limit since the formation energy of I_{Ce}^{4+} of 5.60eV by Zacherle et al²² is about 5eV higher than ours. This may due to the errors when calculating the ionization energies with different pseudopotentials and U parameters.

4.6 Frenkel and Schottky Defects

We have also studied the anion Frenkel and Schottky defects, respectively. These defects are an important as they determine how CeO₂ responds to disorder. The anion Frenkel defect corresponds to moving an oxygen atom from its original lattice site to leave an oxygen vacancy (V_O) and create an interstitial (I_O) [see Fig. 6 (a)]. From the electronic DOS calculation, it is found that there is an acceptor-like state appearing at 1.02eV above VBM [see Fig. 6 (b)]. The orbitals of the defect state are mainly dominated by π orbitals of I_O while there are no states from V_O. From the relaxed structure, the lattice around V_O is more obviously distorted than the structure near I_O, since the V_O localizes two electrons in the f-orbitals of adjacent Ce atoms, which cause large Coulomb repulsive interactions, while the π -orbitals around I_O from the oxygen atoms will participate in new coupling interaction therefore induce less lattice distortion. Meanwhile the excess O_{2p} level of I_O will shift to a higher energy due to the Coulomb repulsive interaction.

In the case of the Schottky defect, the structure has not been affected by the presence of the defect. Also, no gap states have been found in the electronic DOS [Fig. 6 (c)], since four holes generated by V_{Ce} passivate the four electrons left by two V_{O} .

We found that the anion Frenkel defect can easily form with a relatively low formation energy of 2.08 eV, while the Schottky defect cost more energy (3.86eV). Note that the anion Frenkel defect is generated through formations of V_0 and I_0 with a diffusion distance. We recall that the V_0 has a low formation energy of 0.39eV in the O-poor limit. Therefore, we believe that the V_0+I_0 complex will have a similar formation energy of the anion Frenkel defect under specific the charged state and chemical potential environment. This implies the possible dynamics of oxygen assisted defects (vacancy formation, migration and etc.) in CeO₂ system, which would reveal the physical nature of oxygen storage and reversible catalytic behaviors.

The anion Frenkel (a-Fr) defect is the dominant defect contributing to the ionic conductivity and diffusion of CeO_2 . We find it to be the lowest cost disorder defect (2.08eV in 96-atom supercell), which is consistent with CaF_2 or other materials in fluorite structure. Table 2 shows

that our value of 2.08 eV is slightly higher than that found by Keating et al^{21} (1.98 eV) and similar to Zacherle et al^{22} (2.07 eV). Thus, the anion Frenkel defect will account for the high ionic conductivity of the CeO₂ consistent with the experimental data of Stratton and Tuller¹⁰.

We have calculated the effect of defect pair separation on the formation energy of a-Fr pair. The formation energy converges to 2.03 eV for large supercell sizes (Fig. S1 in supplemental material). Thus, the $2 \times 2 \times 3$ supercell of 144 atoms is suitable size to model the a-Fr pair diffusions. Fig. 6 (d) also shows that 5.95Å represents a cross-over separation; below this the a-Fr pair recombines, whereas above this the pair can remain separate, due to the stabilization of separate defects by lattice distortion.

With considerable efforts on verifying the results, our value for its formation energy is indeed with less error than that given by Keating et al^{21} because we included both the U_p term on the O 2p orbitals, and a more transferable Ce pseudopotential to represent the energy difference between Ce +3 and +4 states.

5. Conclusion

This work has used a corrected DFT+U method combined with partial core correction (under non-linear core correction scheme) in the pseudopotentials, which can ameliorate conventional DFT+U deficit and is remarkably close to the reported experimental results. We have used this for a systematic study of the native point defects in CeO₂ system. We find that the V₀ has a low formation energy of 0.39 eV in the O-poor limit, accounting for the ease of reduction, and that the anion Frenkel defect is the lowest energy disorder defect, consistent with experiment (ref 37 of Zacherle²²). This shows the importance of including both U correction on Ce 4f and O 2p stats, and having a fully transferable pseudopotential.

Acknowledgement

All computing facilities and calculation resources receive funding from the Research Grant Council, University Grants Committee of the HKSAR government. BH would like to thank the fund support and calculations resources all supplied by the Department of Physics and Materials Science, City University of Hong Kong.

Supporting Information Available:

To illustrate the subtle interplay between the lattice distortions and diffusion barriers of a-Fr defect pair, we further investigate the formation energy of a-Fr pair regarding to the relative separation of the defect pair. All of the calculation settings are remained unchanged except the supercell size. With extrapolated the supercell convergence (Fig. S1 in supplemental material), the more realistic value converges to 2.03 eV if the supercell size approaches to infinite large. Meanwhile, the $2\times2\times3$ supercell (144 atoms) has a suitable size to model the a-Fr pair diffusions (Fig. S1). Such investigation supports the diffusion barrier of forming a-Fr pair will be substantially overcome with the lattice distortions. It further supports our calculations to be more reliable in estimating the defect concentrations and minimum formation energy with minimum cross-over separation according to the feature shown in Fig. 6 (d).

This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Kašpar, J.; Fornasiero, P.; Graziani, M., Use of CeO₂-Based Oxides in the Three-Way Catalysis. *Catal. Today* **1999**, *50*, 285-298.

(2) Kharton, V. V.; Marques, F. M. B.; Atkinson, A., Transport Properties of Solid Oxide Electrolyte Ceramics: A Brief Review. *Solid State Ionics* **2004**, *174*, 135-149.

(3) Deng, W.; Carpenter, C.; Yi, N.; Flytzani-Stephanopoulos, M., Comparison of the Activity of Au/CeO_2 and Au/Fe_2O_3 Catalysts for the CO Oxidation and the Water-Gas Shift Reactions. *Top. Catal.* **2007**, *44*, 199-208.

(4) Si, R.; Flytzani-Stephanopoulos, M., Shape and Crystal-Plane Effects of Nanoscale Ceria on the Activity of Au-CeO₂ Catalysts for the Water–Gas Shift Reaction. *Angew. Chem. Int. Ed.* **2008**, *47*, 2884-2887.

(5) Panagiotopoulou, P.; Papavasiliou, J.; Avgouropoulos, G.; Ioannides, T.; Kondarides, D. I., Water–Gas Shift Activity of Doped Pt/CeO₂ Catalysts. *Chem. Eng. J.* **2007**, *134*, 16-22.

(6) Ganduglia-Pirovano, M. V.; Popa, C.; Sauer, J.; Abbott, H.; Uhl, A.; Baron, M.; Stacchiola, D.; Bondarchuk, O.; Shaikhutdinov, S.; Freund, H.-J., Role of Ceria in Oxidative Dehydrogenation on Supported Vanadia Catalysts. *J. Am. Chem. Soc.* **2010**, *132*, 2345-2349.

(7) Robertson, J., High Dielectric Constant Oxides. Eur. Phys. J-appl. Phys 2004, 28, 265-291.

(8) Liao, Z.; Gao, P.; Meng, Y.; Fu, W.; Bai, X.; Zhao, H.; Chen, D., Electrode Engineering for Improving Resistive Switching Performance in Single Crystalline CeO₂ Thin Films. *Solid State Electron* **2012**, *72*, 4-7.

(9) Tuller, H. L.; Nowick, A. S., Defect Structure and Electrical Properties of Nonstoichiometric CeO₂ Single Crystals. *J. Electrochem. Soc.* **1979**, *126*, 209-217.

(10) Stratton, T. G.; Tuller, H. L., Thermodynamic and Transport Studies of Mixed Oxides. The CeO₂-UO₂ System. *J. Chem. Soc., Faraday Trans.* 2 **1987**, *83*, 1143-1156.

(11) Esch, F.; Fabris, S.; Zhou, L.; Montini, T.; Africh, C.; Fornasiero, P.; Comelli, G.; Rosei, R., Electron Localization Determines Defect Formation on Ceria Substrates. *Science* **2005**, *309*, 752-755.

(12) Göbel, M. C.; Gregori, G.; Maier, J., Electronically Blocking Grain Boundaries in Donor Doped Cerium Dioxide. *Solid State Ionics* **2012**, *215*, 45-51.

(13) Pu, Z.-Y.; Liu, X.-S.; Jia, A.-P.; Xie, Y.-L.; Lu, J.-Q.; Luo, M.-F., Enhanced Activity for CO Oxidation over Pr- and Cu-Doped CeO₂ Catalysts: Effect of Oxygen Vacancies. *J. Phys. Chem. C* **2008**, *112*, 15045-15051.

(14) Paier, J.; Penschke, C.; Sauer, J., Oxygen Defects and Surface Chemistry of Ceria: Quantum Chemical Studies Compared to Experiment. *Chem. Rev.* **2013**, *113*, 3949-3985.

(15) Skorodumova, N. V.; Simak, S. I.; Lundqvist, B. I.; Abrikosov, I. A.; Johansson, B., Quantum Origin of the Oxygen Storage Capability of Ceria. *Phys. Rev. Lett.* **2002**, *89*, 166601-1-166601-4.

(16) Skorodumova, N. V.; Ahuja, R.; Simak, S. I.; Abrikosov, I. A.; Johansson, B.; Lundqvist, B. I., Electronic, Bonding, and Optical Properties of CeO₂ and Ce₂O₃ from First Principles. *Phys. Rev. B* **2001**, *64*, 115108-1-115108-9.

(17) Andersson, D. A.; Simak, S. I.; Johansson, B.; Abrikosov, I. A.; Skorodumova, N. V., Modeling of CeO_2 , Ce_2O_3 , and CeO_{2-X} in the LDA + U Formalism. *Phys. Rev. B* **2007**, *75*, 035109-1-035109-6.

(18) Loschen, C.; Carrasco, J.; Neyman, K. M.; Illas, F., First-Principles LDA + U and GGA + U Study of Cerium Oxides: Dependence on the Effective U Parameter. *Phys. Rev. B* 2007, 75, 035115-1-035115-8.

(19) Jiang, Y.; Adams, J. B.; van Schilfgaarde, M.; Sharma, R.; Crozier, P. A., Theoretical Study of Environmental Dependence of Oxygen Vacancy Formation in CeO₂. *Appl. Phys. Lett.* **2005**, *87*, 141917-1-141917-3.

(20) Hellman, O.; Skorodumova, N. V.; Simak, S. I., Charge Redistribution Mechanisms of Ceria Reduction. *Phys. Rev. Lett.* **2012**, *108*, 135504-1-135504-4.

(21) Keating, P. R. L.; Scanlon, D. O.; Morgan, B. J.; Galea, N. M.; Watson, G. W., Analysis of Intrinsic Defects in CeO₂ Using a Koopmans-Like GGA+U Approach. *J. Phys. Chem. C* **2011**, *116*, 2443-2452.

(22) Zacherle, T.; Schriever, A.; De Souza, R. A.; Martin, M., *Ab Initio* Analysis of the Defect Structure of Ceria. *Phys. Rev. B* 2013, 87, 134104-1-134104-11.

(23) Ganduglia-Pirovano, M. V.; Da Silva, J. L. F.; Sauer, J., Density-Functional Calculations of the Structure of near-Surface Oxygen Vacancies and Electron Localization on CeO₂ (111). *Phys. Rev. Lett.* **2009**, *102*, 026101-1-026101-4.

(24) Hay, P. J.; Martin, R. L.; Uddin, J.; Scuseria, G. E., Theoretical Study of CeO₂ and Ce₂O₃ Using a Screened Hybrid Density Functional. *J. Chem. Phys.* **2006**, *125*, 034712-1-034712-8.

(25) Da Silva, J. L. F.; Ganduglia-Pirovano, M. V.; Sauer, J.; Bayer, V.; Kresse, G., Hybrid Functionals Applied to Rare-Earth Oxides: The Example of Ceria. *Phys. Rev. B* 2007, 75, 045121-1045121-10.

(26) Jiang, H.; Gomez-Abal, R. I.; Rinke, P.; Scheffler, M., Localized and Itinerant States in Lanthanide Oxides United by *GW* @ LDA + *U. Phys. Rev. Lett.* **2009**, *102*, 126403-1-126403-4.

(27) Jiang, H.; Rinke, P.; Scheffler, M., Electronic Properties of Lanthanide Oxides from the GW Perspective. Phys. Rev. B 2012, 86, 125115-1-125115-13.

(28) Kullgren, J.; Castleton, C. W. M.; Müller, C.; Ramo, D. M.; Hermansson, K., B3LYP Calculations of Cerium Oxides. J. Chem. Phys. 2010, 132, 054110-1-054110-12.

(29) Gillen, R.; Clark, S. J.; Robertson, J., Nature of the Electronic Band Gap in Lanthanide Oxides. *Phys. Rev. B* 2013, 87, 125116-1-125116-6.

(30) Anisimov, V. I.; Zaanen, J.; Andersen, O. K., Band Theory and Mott Insulators: Hubbard U Instead of Stoner I. Phys. Rev. B 1991, 44, 943-954.

(31) Cococcioni, M.; de Gironcoli, S., Linear Response Approach to the Calculation of the Effective Interaction Parameters in the LDA + U Method. *Phys. Rev. B* **2005**, *71*, 035105-1-035105-16.

(32) Kulik, H. J.; Cococcioni, M.; Scherlis, D. A.; Marzari, N., Density Functional Theory in Transition-Metal Chemistry: A Self-Consistent Hubbard U Approach. *Phys. Rev. Lett.* **2006**, *97*, 103001-1-103001-4.

(33) Heyd, J.; Scuseria, G. E.; Ernzerhof, M., Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207-8215.

(34) Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E., Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals. *J. Chem. Phys.* **2006**, *125*, 224106-1-224106-5.

(35) Wuilloud, E.; Delley, B.; Schneider, W. D.; Baer, Y., Spectroscopic Evidence for Localized and Extended *f*-Symmetry States in CeO₂. *Phys. Rev. Lett.* **1984**, *53*, 202-205.

(36) Allen, J. W., Valence Fluctuations in Narrow Band Oxides. J. Magn. Magn. Mater. 1985, 47–48, 168-174.

(37) Mullins, D. R.; Overbury, S. H.; Huntley, D. R., Electron Spectroscopy of Single Crystal and Polycrystalline Cerium Oxide Surfaces. *Surf. Sci.* **1998**, *409*, 307-319.

(38) Pfau, A.; Schierbaum, K. D., The Electronic Structure of Stoichiometric and Reduced CeO₂ Surfaces: An XPS, UPS and HREELS Study. *Surf. Sci.* **1994**, *321*, 71-80.

(39) Marabelli, F.; Wachter, P., Covalent Insulator CeO₂: Optical Reflectivity Measurements. *Phys. Rev. B* **1987**, *36*, 1238-1243.

(40) Chai, C.; Yang, S.; Liu, Z.; Liao, M.; Chen, N., Violet/Blue Photoluminescence from CeO₂ Thin Film. *Chinese. Sci. Bull.* **2003**, *48*, 1198-1200.

(41) Castleton, C. W. M.; Kullgren, J.; Hermansson, K., Tuning LDA+U for Electron Localization and Structure at Oxygen Vacancies in Ceria. *J. Chem. Phys.* **2007**, *127*, 244704-1-244704-11.

(42) Louie, S. G.; Froyen, S.; Cohen, M. L., Nonlinear Ionic Pseudopotentials in Spin-Density-Functional Calculations. *Phys. Rev. B* **1982**, *26*, 1738-1742.

(43) Fuchs, M.; Scheffler, M., Ab Initio Pseudopotentials for Electronic Structure Calculations of Poly-Atomic Systems Using Density-Functional Theory. *Comput. Phys. Commun.* **1999**, *119*, 67-98.

(44) Clark Stewart, J.; Segall Matthew, D.; Pickard Chris, J.; Hasnip Phil, J.; Probert Matt, I. J.; Refson, K.; Payne Mike, C., First Principles Methods Using CASTEP. In Z. Kristallogr., 2005,220, 567-570.

(45) Kleinman, L.; Bylander, D. M., Efficacious Form for Model Pseudopotentials. *Phys. Rev. Lett.* **1982**, *48*, 1425-1428.

(46) Grinberg, I.; Ramer, N. J.; Rappe, A. M., Transferable Relativistic Dirac-Slater Pseudopotentials. *Phys. Rev. B* **2000**, *62*, 2311-2314.

(47) Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D., Optimized Pseudopotentials. *Phys. Rev. B* 1990, *41*, 1227-1230.

(48) Marzari, N.; Vanderbilt, D.; Payne, M. C., Ensemble Density-Functional Theory for *Ab Initio* Molecular Dynamics of Metals and Finite-Temperature Insulators. *Phys. Rev. Lett.* **1997**, *79*, 1337-1340.

(49) Probert, M. I. J.; Payne, M. C., Improving the Convergence of Defect Calculations in Supercells: An *Ab Initio* Study of the Neutral Silicon Vacancy. *Phys. Rev. B* **2003**, *67*, 075204-1-075204-11.

(50) Lany, S.; Zunger, A., Generalized Koopmans Density Functional Calculations Reveal the Deep Acceptor State of N_0 in Zno. *Phys. Rev. B* **2010**, *81*, 205209-1-205209-5.

(51) Lany, S.; Zunger, A., Polaronic Hole Localization and Multiple Hole Binding of Acceptors in Oxide Wide-Gap Semiconductors. *Phys. Rev. B* 2009, *80*, 085202-1-085202-5.

(52) Morgan, B. J.; Watson, G. W., Intrinsic N-Type Defect Formation in TiO₂: A Comparison of Rutile and Anatase from GGA+U Calculations. *J. Phys. Chem. C* **2010**, *114*, 2321-2328.

(53) Lany, S.; Zunger, A., Assessment of Correction Methods for the Band-Gap Problem and for Finite-Size Effects in Supercell Defect Calculations: Case Studies for ZnO and GaAs. *Phys. Rev. B* 2008, 78, 235104-1-235104-25.

(54) Rossignol, S.; Gerard, F.; Mesnard, D.; Kappenstein, C.; Duprez, D., Structural Changes of Ce-Pr-O Oxides in Hydrogen: A Study by in Situ X-Ray Diffraction and Raman Spectroscopy. *J. Mater. Chem.* **2003**, *13*, 3017-3020.

(55) Gerward, L.; Staun Olsen, J.; Petit, L.; Vaitheeswaran, G.; Kanchana, V.; Svane, A., Bulk Modulus of CeO₂ and PrO₂—an Experimental and Theoretical Study. *J. Alloy. Compd.* **2005**, *400*, 56-61.

(56) Haynes, W. M., CRC Handbook of Chemistry and Physics. CRC Press: Boca Raton, FL., 2011.

(57) Fabris, S.; Vicario, G.; Balducci, G.; de Gironcoli, S.; Baroni, S., Electronic and Atomistic Structures of Clean and Reduced Ceria Surfaces. J. Phys. Chem. B 2005, 109, 22860-22867.

(58) Nolan, M.; Parker, S. C.; Watson, G. W., The Electronic Structure of Oxygen Vacancy Defects at the Low Index Surfaces of Ceria. *Surf. Sci.* 2005, 595, 223-232.

(59) Han, X.; Lee, J.; Yoo, H.-I., Oxygen-Vacancy-Induced Ferromagnetism in CeO₂ from First Principles. *Phys. Rev. B* 2009, *79*, 100403-1-100403-4.

(60) Zhang, C.; Michaelides, A.; King, D. A.; Jenkins, S. J., Oxygen Vacancy Clusters on Ceria: Decisive Role of Cerium *f* Electrons. *Phys. Rev. B* **2009**, *79*, 075433-1-075433-11.

Table 1. Calculated bulk properties of CeO_2 compared with results of previous other groups and experiments. We gave the error that between our PBE+U_{pf}+NLCC calculated results and experimental values. The "*" means that we take the value of 4.5 eV as experimental VB width for error comparison.

	PBE-w/o- NLCC	PBE+U _{pf} + NLCC	Keating et al Ref.21	Zacherle et al Ref. 22	sX-LDA Ref. 29	Exp. Data	Error vs. Exp.	Exp. Ref.
Lattice, <i>a</i> (Å)	5.45	5.46	5.49	5.49	Exp. 5.411	5.411	0.9%	54
Eg (2p- 4f) (eV)	2.30	3.30	2.51	2.35	4.2	3.33	0.9%	40
Eg (2p- 5d) (eV)	5.47	5.98	5.30	5.31	6.5	6.0	0.3%	39
VB width (eV)	3.90	4.69	4.0	4.0	4.4	4.5-5.0	4.2% *	28, 35
Formation $\Delta H_f(eV)$	-10.54	-11.50	-10.50	-11.80		-11.28	1.9%	56
Bulk Modulus (GPa)	184	201		181		220	8.6%	55

Table 2. Formation energy comparison on neutral oxygen vacancy (V_0) anion Frenkel, Frenkel, and Schottky defects^{21, 22}. As denoted from the table, this work shows the improvement on the defect formation energy calculation by non-linear core correction on Ce pseudopotentials.

Unit: eV	Zacherle et al	Keating et al	this work
neutral V _O (O-poor)	1.03	0.58	0.39
anion Frenkel	2.07	1.98	2.08
Frenkel	6.23		5.80
Schottky	2.29	3.66	3.86

Fig. 1. The left panel is the calculated band structures of CeO₂ by PBE+U with U_f =4eV and U_p =4eV based on NLCC. The black dashed line is the Fermi level (E_F). The red solid line in the right panel is the calculated total density of states of CeO₂ by non-linear core corrected PBE+U with U_f =4eV and U_p =4eV (shown as PBE+ U_{pf} +NLCC), where the 2p-4f gap is 3.30eV and 2p-5d gap is 5.98eV. The zero energy is the highest occupied level. The blue dotted line denotes the experimental results re-printed and re-plotted from the literature results³⁵. The red arrow shows the Fermi level (E_F).

Fig. 2. (a) The local view of the relaxed structure of CeO₂ with V₀ by PBE+U, the blue and green isosurfaces denotes the two electrons localized on the f-orbitals of two Ce atoms and therefore producing the gap states with spin-up and spin-down states, respectively. The Ce³⁺ and Ce⁴⁺ have been shown. The length of the arrows means the distance of the different displacements of Ce ions. (b) Total DOS of CeO₂ with V₀ in neutral state. The Fermi-level is shown by the arrow. The "AF" means the anti-ferromagnetic configurations of the defect states. (c) Summary of calculations on formation energies of V₀ calculated by our PBE+U_{pf} with NLCC, PBE+U_{pf} with PAW²¹ and PBE+U_f with PAW²² under the both O-poor and O-rich chemical potential limit.

Fig. 3. (a) The local side view of the relaxed structure of CeO_2 with V_{Ce} (the V_{Ce} site locates in the center), the blue and green isosurfaces denotes the four holes localized on the nearest O sites, which two of them are spin-up and the other two are spin-down states, respectively. The length of the arrows means the distance of the different displacements of O ions. (b) Total DOS of CeO_2 with V_{Ce} in neutral state. The dash line at zero energy denotes as the highest occupied level. The Fermi-level is shown by the arrow. (c) Formation energy of V_{Ce} in charge state 0, -1, -2, -3, and -4 under the O-rich (or Ce-poor) chemical potential limit.

Fig. 4. (a) The local front-view and side view of the relaxed structure of CeO₂ with I_O. The localized orbitals are sitting along I_O and host O ions. Small π -orbitals locates the O ions next the I_O. (b) Total DOS of CeO₂ with I_O. The dash line at zero energy denotes as the highest occupied level. The Fermi-level is shown by the arrow. (c) Summary of calculations on formation energies of I_O in CeO₂ calculated by our PBE+U_{pf} with NLCC, PBE+U_{pf} with PAW²¹ and PBE+U_f with PAW²² under the both O-poor and O-rich chemical potential limit.

Fig. 5. (a) The relaxed structure of I_{Ce} in CeO₂. The light blue sphere is the I_{Ce} atom. The right bottom figure is the local view of localized gap states orbitals induced by I_{Ce} in CeO₂. (b) Total DOS of CeO₂ with I_{Ce} . The dash line at zero energy denotes as the highest occupied level. The Fermi-level is shown by the arrow. (c) Formation energy of I_{Ce} in CeO₂ under O-poor (or Ce-rich) chemical potential limit.

Fig. 6. (a) The relaxed structure of the anion Frenkel defect (V_0+I_0) in CeO₂. The pink sphere is I₀. The localized orbitals of the gap states induced by the Frenkel defect (V_0+I_0) in CeO₂. The light green arrow shows the formation path of the anion Frenkel defect in CeO₂. (b) Total DOS of the anion Frenkel defect (V_0+I_0) in CeO₂. The dash line at zero energy denotes as the highest occupied level. The Fermi-level is shown by the arrow. (c) Total DOS of the Schottky defect $(V_{Ce}+2V_0)$ in CeO₂. The dash line at zero energy denotes as the highest occupied level. The Fermi-level is shown by the arrow. (d) Formation energies (per-defect) of anion Frenkel (a-Fr) pair defect with related to the separation (Å) of the a-Fr pair.

Table of Content Image

