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Abstract 

Nano-structured silicon anodes are attractive alternatives to graphitic 

carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. 

Despite their advantages, numerous issues remain to be addressed, the most basic 

being to understand the complex kinetics and thermodynamics that control the 

reactions and structural rearrangements. Elucidating this necessitates real-time in-

situ metrologies, which are highly challenging, if the whole electrode structure is 

studied at an atomistic level for multiple cycles under realistic cycling conditions. 

Here we report that Si nanowires grown on a conducting carbon-fibre support 

provide a robust model battery system that can be studied by 7Li in-situ NMR 

spectroscopy. The method allows the (de)alloying reactions of the amorphous 

silicides to be followed in the 2nd cycle and beyond. In combination with density-

functional theory calculations, the results provide insight into the amorphous and 

amorphous-to-crystalline lithium-silicide transformations, particularly those at 

low voltages, which are highly relevant to practical cycling strategies. 
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Introduction 

Silicon represents an extremely attractive alternative to graphite as a lithium ion 

battery (LIB) negative electrode (anode) due to its ten times higher specific capacity.  

However, this high capacity is associated with large volume changes (of up to 300 %), 

1,2 resulting in fracture, capacity loss, 3-7 and cell design issues. Recently, various 

nano/micro-sized Si powders 3,8-12, nano-Si composites, 8,13-16 and Si nanowire (SiNW)-

based LIBs have been reported 9,17-19 which can help accommodate the volume 

expansion. An alternative practical strategy involves the use of Si/graphite composite 

structures that couple the good capacity and cyclability of graphite with a small fraction 

of the Si capacity (of an all-Si electrode) to provide modest but still significant increases 

in capacity. One problem with this strategy is that it requires the electrode to be cycled 

to low voltages 20,21 to access the full graphite capacity. At these low voltages, the 

amorphous Li-silicides (a-LixSi) formed on lithiation are converted to crystalline phases 

such as c-Li3.75Si, 5,12,22-27 a process that is associated with a large overpotential on 

delithiation. This approach differs from other practical strategies to improve capacity 

retention that limit the Si cycling regimes to approximately 1200–1500 mAhg−1, cycling 

at higher potentials between different a-LixSi compositions. 3,28 To utilize Si to its full 

potential using these very different cycling regimes, an understanding needs to be 

developed of the different structural processes that occur, the kinetics of the various 

transformations, and how they correlate with capacity retention. 

A range of in and ex-situ mechanistic studies have recently been reported to 

investigate the Li-Si system, including in-situ nuclear magnetic resonance (NMR), 29-31 

in-situ X-ray diffraction (XRD), 23,24,27 in-situ transmission electron microscopy (TEM) 

studies 5,12,22,26,32-36 and ex-situ pair distribution function analysis (PDF). 30 These 
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studies show that crystalline Si (c-Si) is converted into a-LixSi phases during the first 

lithiation, which transform into a metastable crystalline phase c-Li3.75Si at low voltages 

(< 70 mV vs. Li),5,12,22-27 and possibly over-lithiated phases such as c-Li3.75+δSi 24,29 or 

Li4.4Si/Li4.2Si. 2,22 The formation of the crystalline phase is associated with a large 

overpotential particularly on charge, which is energetically inefficient in an operating 

cell and results in a lower operating voltage. Despite all these reports, it remains a 

challenge to investigate the complex kinetics that govern the series of the key LixSi 

phase transformations starting from amorphous-Si (a-Si) in the 2nd and subsequent 

cycles under relevant cycling conditions so as to correlate the insights with practical 

cycling strategies. Elucidating this needs diagnostic tools that are capable of providing 

real-time atomistic information concerning the structures of both the amorphous and 

crystalline phases across the whole electrode. 

Here we develop a new strategy for performing in-situ, in operando 7Li NMR 

spectroscopy, which allows us to study in unprecedented detail the kinetics of the 

electrochemical lithiation and delithiation reactions that occur in technologically 

relevant nm-sized Si based anodes under realistic cycling conditions (with careful 

voltage/current controls) over multiple cycles. We note that poor electrochemistry was 

observed beyond the 1st discharge in our previous in-situ NMR studies of micron-sized 

Si, 29 in part due to problems associated with maintaining electrical contacts between 

the Si particles and the current collector within earlier anode designs. The current study 

makes use of SiNWs directly grown on commercial carbon supports, which provide an 

extremely effective, binder-free model system for in-situ NMR studies, maintaining 

good electrical connections and accommodating the volume expansion. The in-situ 
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NMR studies of the SiNWs are here combined with a systematic electrochemical 

characterisation, ex-situ XRD, ex-situ magic angle spinning (MAS) NMR spectroscopy, 

and density-functional theory (DFT). The approach allows us to follow the structural 

transformations that occur in the 2nd cycle and beyond involving the nano-structured 

amorphous Si phase. The ability to control the voltage and current carefully enables an 

understanding of how the charge and discharge processes in the NMR experiment are 

connected, identifying, for example, the inhomogeneous growth of crystalline Li3.75Si 

from the amorphous phase, the electrochemical and NMR signatures of the process 

involving the over-lithiation of Li3.75Si that occurs below 50 mV, and the formation of 

small clusters within the Li3.75Si phase on charge.  These results, in combination with 

DFT calculations, show that the phases formed on delithiation strongly depend on the 

rate of lithiation and allow us to rationalize the large voltage hysteresis seen in these 

systems. Such understanding is of high relevance to practical cycling strategies. 

 

Results 

  

SiNW-based model system for in-situ NMR spectroscopy 

Figure 1 shows scanning electron microscopy (SEM) images of the SiNW-based 

model anode system and schematics of the LIB cell design and NMR measurement 

set-up. We use catalytic chemical vapour deposition (CVD) to grow the SiNWs (Figure 

1 a-c) directly on a commercial carbon fibre based gas diffusion layer support 

(CFGDL), making use of the prior work of Chan et al. who grew similar wires on a 

stainless steel (SS) support. 19 The light, high surface area structure and conductive, 
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nonmagnetic properties of the CFGDL (Supplementary Figure 1) allow a facile, scalable 

assembly of an NMR-compatible hierarchical model electrode system (Figure 1 d) 

which intrinsically results in all NWs being electrically well connected to the current 

collector. These SiNWs are grown with the standard Au catalyst and are highly 

crystalline and more than 50 µm in length with a diameter distribution centred around 

60 nm (see Supplementary Figure 2). The catalytic NW growth mode 37-39 favours a 

<111> growth direction, but a range of other crystallographic orientations and defects 

are also found. Air exposure during post-growth transfer results in the formation of a 

~2 nm thick native oxide layer surrounding each SiNW. 

In the following analysis of our materials, we first performed a detailed 

electrochemical characterization of the SiNW-based electrode assembled in coin cells 

(see Methods), identifying a number of characteristic key processes on discharge 

(labelled with prefix X#d) and charge (labelled with prefix X#c) for corresponding 

element(s) (X≡Si, Au, C, SiO) by galvanostatic cycling of coin cells (Figure 2). In order 

to record the intrinsic signatures of the SiNWs, they were also grown on SS support, 

with Si being the only electrochemically active material. Additional characterisation 

was performed after cycling by scanning and transmission electron microscopy (Figure 

3). The local structural evolutions associated with these processes were then 

investigated for the first time over multiple cycles by in-situ NMR, using the CFGDL 

supported SiNWs in a plastic bag battery cell design. Major peaks in the NMR spectra 

(Figure 4 and 5) are labelled with prefix P, and their respective assignments will be 

discussed in detail below. Figure 6 gives a schematic overview of the complex structural 

and phase transformations in the different Li-Si processes. 
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Ex-situ galvanostatic cycling for SiNWs 

A specific capacity of more than 3000 mAhg−1 over multiple cycles was seen for 

galvanostatic cycling of the SiNWs in the coin cells (i.e., by applying a constant 

current) at C/25 (see Methods and Supplementary Figure 3), as observed previously. 

3,4,19 The dQ/dV profiles (Figure 2 a,b) show the characteristic Si lithiation processes 

(see Supplementary Figure 4 for dQ/dV at C/75).3,4 The 1st discharge differs from the 

subsequent cycles since it is dominated by the 100 mV process (Si#d1) corresponding to 

the conversion of c-Si to a-LixSi, where x~3.5 (see Methods for the calculation of x in 

LixSi). 23,24 An irreversible process with a capacity of ~170 mAhg−1 is also observed at 

around 200 mV, which is assigned to the lithiation of Si-O, i.e., surface sites (SiO#d1) 

and to the lithiation of residual gold catalyst (Au#d1) (see Supplementary Figure 5 and 

Methods for details of the assignments).  

Clearly-defined processes are seen in the 2nd and subsequent cycles, 3,4,23,24 some 

of which can be assigned to specific structural changes, based on our previous NMR 

and PDF studies. 29,30 On discharge, four different processes are observed (Figure 2 a). 

The first discharge process at ~300−250 mV (broad and possibly two distinct processes) 

is due to the gradual lithiation of the a-Si lattice (Si#d2) to form Li~2.0Si, a phase that 

still contains extended Si networks and large Si-Si clusters. 29,30 The second process at 

100 mV (Si#d3 to form Li~3.5Si), is ascribed to the further breakup of the Si–Si bonds to 

form small Si clusters and eventually isolated Si anions. The third process at 50 mV, 

Si#d4, corresponds to the formation of c-Li3.75Si from a-LixSi, 4,12,24,26,27
 (experiments 

performed with a wider variety of cycling conditions, Supplementary Figure 6, indicate 

that the thermodynamic equilibrium value is closer to 60 mV). Ex-situ XRD patterns 

(Supplementary Figure 7-9) contain reflections from c-Li3.75Si below 50 mV along with 
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much weaker reflections due to c-LiAu3 and c-Li3.75Au. A broader process, Si#d5, never 

observed before, appears at 30 mV on discharge and becomes more prominent with 

further cycling. Ex-situ XRD confirms that c-Li3.75Si remains below 30 mV and that no 

distinct new sets of reflections from new crystalline phases such as Li4.2Si 2,22 and 

Li4.4Si 2 are observed. Hence we tentatively assign the broad 30 mV process to the 

formation of an over-lithiated phase, c-Li3.75+δSi (δ=0.2-0.3), structurally related to 

c-Li3.75Si. 29,30 We confirm this assignment and study its formation over multiple cycles 

by in-situ NMR in the following parts of the paper. On charge, at least four processes 

are observed electrochemically (Figure 2 b) at 170 mV (Au#c1; see Supplementary 

Figure 5 c,d), ~270-300 mV (Si#c2, broad), 430 mV (Si#c3, sharp) and 500 mV (Si#c4, 

broad).  

 

Link between the processes on charge and discharge 

  In order to correlate the charge and discharge processes, the coin cell system was 

galvanostatically (C/25) studied as a function of the depth of discharge (Figure 2 c,d) 

initially cycling to 0 V to convert all the c-Si into a-Si. In the following cycles, the 

cut-off discharge voltage is reduced every cycle in 10 mV steps from 150 mV to 0 V 

and then increased to 180 mV, again in 10 mV steps. For cut-off discharge voltages 

higher than 110 mV, the broad peaks Si#d2 (dx=~2.0, dx representing the change in x in 

LixSi ascribed to the process) and Si#c4 (dx=~2.0) are clearly correlated, and thus Si#c4 

corresponds to the removal of Li from a-Li~2.0Si (i.e., phases with extended Si 

clusters/networks) to form a-Si. Upon further discharge to less than 110 mV, the Si#d3 

process (dx=~1.6) commences, and the broad Si#c2 process (dx=~1.6) appears on 

charge. Thus, Si#c2 is assigned to the formation and growth of small Si clusters from 
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isolated Si anions. The Si#c2 peak maximum moves to lower voltage as the cut-off 

voltage is decreased, consistent with the fact that it is not a single process but in fact 

corresponds to a whole range of different reactions of the Si network/clusters, which 

occur over a relatively narrow range of potentials. The profiles on charge change 

dramatically at a cut-off lower than 50 mV, with a sharp Si#c3 (dx=~2.2) process being 

observed at 430 mV, corresponding to the conversion of c-Li3.75Si to a Li substituted 

amorphous phase, a-Li~1.1Si. We could not clearly observe the Si#d5 process in the 

cut-off experiments, probably because the ease by which c-Li3.75Si and c-Li3.75+δSi form 

appears to increase as a function of cycling (Figure 2 a and Supplementary Figure 4 a). 

Even following full discharge to 0 V, we still observe a residue of the Si#c2 process on 

charge, which we ascribe to the difficulty of fully converting all of the NWs to the 

crystalline phase c-Li3.75Si at C/25: some a-LixSi remains, which then reconverts to a-Si 

via Si#c2 and Si#c4. 

 

Electrochemical signatures of the SiNW-CFGDL composite 

  Prior to the in-situ NMR study, similar galvanostatic electrochemical 

experiments (C/25) in the coin cells were performed to identify the electrochemical 

processes in the SiNW-CFGDL composite (Supplementary Figure 5 a,b). 

Electrochemical processes from a series of reference materials including, bare CFGDL, 

gold nanoparticles, and Si films, are described in detail in the Methods section, 

“Electrochemistry of reference materials” and also in Supplementary Figure 5 c-h. The 

Si electrochemical processes in the composite can be separated from the other processes 

and essentially identical to those on SS.  

  The SEM/TEM images of SiNWs on CFGDL after one cycle show curled and 
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flattened SiNWs (Figure 3). The majority of the SiNWs were completely amorphized, 

showing a variety of morphologies (Supplementary Figure 10). This variety may be due 

to the anisotropic nature of the lithiation in the different crystallographic directions 

along the NW. 40,41 After two cycles, the formation of voids was prevalent throughout 

the entire length of the SiNWs. 

 

In-situ NMR studies  

In-situ NMR analysis was first performed on the bare CFGDL to identify 7Li 

signals originating from lithiated CFGDL. Due to relatively long spin lattice relaxation 

times of the signals from the LixC phases (at 180 to −80 ppm) 42-44 as compared to those 

for LixSi phases, 29 the LixC signals are suppressed in the following in-situ NMR 

experiments by using a moderately short recycle delay (Supplementary Figure 11 and 

video, bare-CFGDL_C25.avi).  

In-situ 7Li NMR experiments on SiNW-CFGDL composites were performed 

with two different electrochemical schedules: galvanostatic (C/30; rate defined based on 

the total active material, 3579 mAhg−1 for Si and 372 mAhg−1 for C) and potentiostatic 

steps (i.e., stepped potential electrochemical spectroscopy (SPECS), see Methods). A 

schematic of the measurement set-up is shown in Figure 1 c and videos showing the in-

situ NMR spectra evolution are available as supplementary information (galvanostatic: 

SiNW-CFGDL_C30.avi, potentiostatic: SiNW-CFGDL_SPECS.avi). In earlier studies 

of micron-size Si (325 mesh, Aldrich), we showed that the 7Li NMR signals could be 

used to identify Si environments 29,30 in semiconducting LixSi phases, 7Li shifts at 0−10, 

10−15, and 15−20 ppm being characteristic of Li ions near isolated Si atoms, mixtures 

of small clusters and isolated ions, and small clusters (of 2−5 Si atoms), respectively. 
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Resonances from Li nearby or within more extended Si networks were suggested to 

overlap with those due to Li nearby isolated Si4− anions. Negative shifts at around 

−10 ppm were assigned to the over-lithiated crystalline phase (c-Li3.75+δSi). 29,30 Our ex-

situ MAS 7Li NMR (Supplementary Figure 12) studies of the SiNWs confirm that the 

assignments made earlier for Si-325 can be applied here. For simplicity, we label the 7Li 

resonances at around 20−10 ppm, 0-10 ppm and −10 ppm as P1 (Li nearby small Si 

clusters), P2 (isolated Si anions, c-Li3.75Si, and extended Si networks), and P3 (the over-

lithiated crystalline phase, c-Li3.75+δSi), respectively. Consistent with these assignments, 

the in-situ NMR spectra performed under galvanostatic cycling (Figure 4 a,c and 

Supplementary Figure 13-15), clearly show that Si#d3 (seen in the 2nd cycle at 100 mV) 

is associated with the observation of the P1 (Li nearby small Si clusters) peak. P3 is 

then formed as the potential approaches 0 V; this resonance is not observed when 

limiting the cut-off voltage to 50 mV. However, P1 is still observed in these experiments 

at 0 V, which is associated with the difficulty in converting all of the a-Li3.5-3.75Si phase 

to c-Li3.75Si, indicative of a kinetic barrier to c-Li3.75Si formation; this is further 

discussed in the following sections. P3 (c-Li3.75+δSi) disappears abruptly on charge, as 

observed previously, with P1 only disappearing after the end of the Si#c2 process.  

In order to investigate the formation of the Li-rich phases further, in-situ 

potentiostatic experiments were performed (Figure 4 b,d) under conditions that are as 

close as possible to equilibrium within the time constraints of the NMR experiment (see 

Methods). The cell was first discharged galvanostatically to 150 mV; below 150 mV, 

the electrode was then discharged potentiostatically in small steps of 10 mV every 2 

hours.  The characteristic processes for a-Si, namely Si#d2 and Si#d3, are clearly seen 

on the 2nd discharge (Figure 2 a and Supplementary Figure 5 g,h). The peak associated 

 11 



with small clusters (P1) grows, as expected, only during the Si#d3 process at around 

100 mV, its chemical shift progressively shifting to lower frequencies, tracking the 

reaction of the larger Si clusters 29,30 to form smaller clusters and mixtures of small 

clusters and isolated ions. Higher voltage processes (> 150 mV on discharge and 

> 400 mV on charge) are summarised in Supplementary Figure 16 and 17. Deconvolved 

spectra obtained at lower voltages are presented in Supplementary Figure 18, 19 and 

Supplementary Table 1, 2 for easier observation of the small changes. 

At 50 mV and below, there is a sudden increase of the P2 resonance at 3 ppm 

(Supplementary Figure 20 and 21), which we assign to the formation of c-Li3.75Si 

(dx=~0.25). At the same time, the P1 resonance shifts to higher frequencies (Figure 5 

a,b), indicating that the remaining a-LixSi phase has fewer isolated Si anions. This 

suggests that the c-Li3.75Si phase nucleates inhomogeneously in the SiNWs from the 

regions that are richer in isolated Si anions, leaving behind an a-LixSi phase that has a 

higher concentration of small Si-Si clusters as a by-product of the c-Li3.75Si nucleation 

and growth. P3 only grows below 50 mV, in agreement with the assignment of the new 

Si process Si#d5 to the lithiation of c-Li3.75Si to form c-Li3.75+δSi. This process occurs 

over a relatively broad range (40 to 10 mV) consistent with the breadth of the Si#d5 

dQ/dV peak (Figure 2 a) and indicating that the reaction of c-Li3.75Si to form c-Li3.75+δSi 

occurs via a solid solution mechanism. The shift of the Li signal to negative frequencies 

indicates that the Li ions are more shielded, consistent with a reduction of the average 

charge n on the Lin+ ions. 

This stepped-voltage in-situ NMR experiment clearly shows that the Si#d5 

process already occurs in the first cycle, provided that the cycling rate is low enough. 

Furthermore, the Si#d4 and Si#d5 processes are more clearly resolved in the 2nd cycle as 
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compared to the 1st cycle (the shift in the P1 peak to higher frequencies is clearly 

observed before the P3 resonance appears); we suggest that the more open porous 

structure of Si in the 2nd cycle, as observed by TEM, will help to reduce the stresses 

associated with the formation of the crystalline phase, speeding up the kinetics of the c-

Li3.75Si crystallization from a-LixSi.  

The cells were held at 0 V in the 1st and 2nd discharges to convert all of the 

a-LixSi phase to c-Li3.75Si and c-Li3.75+δSi, a process that can be monitored in real-time 

via the complete loss of the P1 resonance (Figure 5 a,b). The ex-situ XRD confirms that 

the “c-Li3.75Si” crystal structure is still present at 0 V although the c-Li3.75Si reflections 

have slightly broadened. On charge, the intensity of the P3 resonance decreases 

noticeably and broadens between 30 and 80 mV (Figure 5 a,b) and simultaneously a 

very weak and broad 7Li NMR P1 signal from small clusters is seen. The ex-situ MAS 

NMR study indicates that some of the signal is too broad to be clearly detected in the in-

situ static experiment (see Supplementary Figure 12) in this potential window. P3 has 

completely disappeared by ~250 mV in the 2nd charge, and thus, there is clearly an 

additional Li-Si process in this voltage window, that corresponds to a capacity of only 

~200 mAhg−1. (This process must be partially obscured by the gold process Au#c1 at 

170 mV and thus is difficult to resolve). We label this process Si#c1 (lying at 

50−150 mV in Figure 2 b) and ascribe it to the conversion of c-Li3.75+δSi into the 

stoichiometric crystalline phase (c-Li3.75Si) and potentially (on the basis of the detection 

of a small and broad 7Li NMR P1 signal, i.e. small clusters, seen in Figure 5 a,b) a 

partially de-lithiated/more disordered (defective) crystalline phase (c-Li3.75−δSi).  The 

subsequent sharp Si#c3 process at 430 mV is associated with a decrease of intensity in 

the peak at around 0 ppm (Supplementary Figure 21), corresponding to the 
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transformation of c-Li3.75Si/c-Li3.75−δSi to a-Li~1.1Si. Note that clear dQ/dV and NMR 

signatures of the Si#c2 and Si#c4 processes are only observed if residual a-LixSi 

remains.  To show this more clearly, lithiation was stopped at 30 mV in the 3rd cycle. At 

this stage, c-Li3.75+δSi already started to form from the Li-rich amorphous phase, but the 

process has not finished: Li nearby small Si clusters remain, which give rise to the P1 

peak (Figure 5 c) in the 20 to 10 ppm region; this peak shifts and diminishes as the 

Si#c2 process commences above 0.15 V. The results confirm that the conversion of 

c-Li3.75+δSi to a-Si does not follow the same structural path and furthermore does not 

occur via a distinct and separate amorphous phase containing small Si clusters.   

One key question that needs to be addressed is the very different apparent over-

potentials associated with the amorphous-crystalline Li-silicide conversions on 

discharge (Si#d4) and charge (Si#c3). The composition of the amorphous phase that 

forms at the end of Si#c3 (a-Li1.1Si) is different from that at the onset of Si#d4 (a-Li3.5-

3.75Si), and the voltage difference is thus ascribed to the different pathway taken on 

charge and discharge (i.e., a hysteresis in the reaction path). This does not, however, 

explain why the system takes this different path. That c-Li3.75Si crystallizes from a 

highly lithiated amorphous phase containing only a few residual small Si-Si clusters, 

a-Li3.5-3.75Si is simply ascribed to kinetics: it is easier to nucleate and grow the c-Li3.75Si 

phase if Si4- isolated anions dominate and no or few Si-Si bonds need to be broken 

during the nucleation and growth process. Once c-Li3.75Si is formed, it is easier, 

kinetically, to further lithiate c-Li3.75Si to form c-Li3.75+0.2~0.3Si than convert residual 

a-LixSi to c-Li3.75Si (Supplementary Figure 14). We previously ascribed the 

“overpotential” on charge to the difficulty of growing the a-Si phase from the c-Li3.75Si 

phase, which contains no residual Si-Si bonds that can act to help nucleate this phase.30 
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Preliminary DFT calculations (Supplementary Figure 22 and also see Methods) allow us 

to go one step further and suggest that the energetics of the defects formed in c-Li3.75Si 

are key. Firstly, it is much easier to add additional Li to c-Li3.75Si to form c-Li3.75+δSi than 

it is to remove Li from the structure: the defected structure formed on adding 1 Li atom 

to a supercell formed with two Li15Si4 unit cells, i.e., Li3.875Si, has a lower formation 

energy than the structure formed by removal of Li, Li3.625Si (see Supplementary 

Figure 22 for the relative energies of the different c-Li3.75Si defects). Secondly, the 

lowest energy Li3.33Si structure formed by adding a Si atom to the 2Li15Si4 simulation 

cell does not contain Si-Si “dumb-bells” but instead contains longer Si-Si bonds (~2.64 

Å) and SiSi3 “stars”, i.e., Si units similar to those present in the crystalline phase Li12Si7 

(Li1.71Si), rather than in the more Li rich Li7Si3 (Li2.33Si) and Li13Si4 (Li3.25Si) phases. 

Taken together, the theory and the in-situ experiments suggest that Si#c1 is associated 

with the removal of excess Li from c-Li3.75+δSi and the formation of a small 

concentration of Si-Si clusters. This is associated with the very small (but reproducible) 

increase in the intensity of the P1 resonance seen in Figure 5 a,b at 50−150 mV on 

charge which we assign to defects/small clusters within the c-Li3.75−δSi crystalline 

phase. It is important to stress that the ability to remove the P1 resonance (i.e., to 

convert the amorphous phase completely to c-Li3.75Si and c-Li3.75+δSi) on discharge, by 

performing potentiostatic experiments, means that we can link this new P1 formation to 

the charge process (rather than the presence of residual a-LixSi). The subsequent 

complete disappearance of the weak P1 resonance at 300 mV suggests that the small Si 

clusters may act as nuclei for the transformation of c-Li3.75Si/c-Li3.75−δSi into a-Li1.1Si. 

Importantly, the energy of the defects in the crystalline phase controls, at least in part, 

the potential at which c-Li3.75Si converts to a-Li1.1Si and this helps to rationalize the 
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hysteresis seen in this system. 

 

Discussion 

This paper presents an in-situ NMR study of Li-Si processes in SiNWs for 

multiple cycles with galvanostatic and potentiostatic schedules.  The ability to probe 

this system beyond the 1st cycle is key, because it is the transformations of the 

amorphous silicon phases that govern the behaviour of this system in a practical cell. 

The direct growth of SiNWs on a carbon support allows the acquisition of NMR spectra 

without complications arising from binders and the use of metallic and/or magnetic 

supports. The robust nature of the nanowire-based model system means that the 

electrochemistry is highly reversible, allowing a detailed investigation of the various Si 

electrochemical processes. In particular, the combination of galvanostatic and stepped 

potential type cycling enables us to reveal the changes by NMR closer to their 

equilibrium voltage.  

Figure 6 provides a schematic overview of the different Li-Si phase 

transformations in amorphous Si (2nd and subsequent cycles) based on the different in-

situ NMR measurements (Figure 4 and 5): the galvanostatic at C/30 (moderately fast 

cycling) and the potentiostatic schedules (slow cycling). Structural transformations 

associated with two characteristic processes of the lithiation of amorphous Si (Si#d2 at 

300−250 mV and Si#d3 at 100 mV on discharge) are clearly visualized by in-situ 7Li 

NMR spectroscopy, small Si clusters only being formed during the 2nd (Si#d3) process. 

By using a combination of galvanostatic and stepped-voltage cycling, we correlate the 

Si charge and discharge processes (Figure 6). We show that the slow kinetics associated 
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with the amorphous to crystalline phase transformation in Li-rich LixSi phases (Si#d4 at 

50 mV) obscures the observation of a new electrochemical signature Si#d5, at 30 mV, 

which we associate with the lithiation of the crystalline phase c-Li3.75Si to form 

c-Li3.75+0.2~0.3Si. The inhomogeneous c-Li3.75Si nucleation from a-Li3.5-3.75Si at 

approximately 50 mV leaves behind more Li-deficient domains, since it is easier 

kinetically to nucleate and grow c-Li3.75Si from domains of a-LixSi that are richer in 

isolated Si4- anions, this process not requiring Si-Si bond breakage. The difficulty 

detecting the unobserved c-Li3.75+0.2~0.3Si process (Si#d5) when cycling 

galvanostatically has its origin in the kinetic barrier associated with the conversion of 

a-Li3.5-3.75Si to c-Li3.75Si: the activation barrier associated with the further lithiation of 

c-Li3.75Si to form c-Li3.75+0.2~0.3Si is lower than the barrier for the conversion of residual 

a-LixSi to c-Li3.75Si, and hence the two steps are observed as one overall process. 

c-Li3.75Si and c-Li3.75+0.2~0.3Si are more readily formed in the second and subsequent 

cycles, which we ascribe to a reduction in the stresses based on the more porous a-Si 

structures. On the basis of NMR, electrochemistry and DFT studies, the hysteresis seen 

in the reaction path on charge is ascribed at least in part to the energetics associated with 

defect formation within the c-Li3.75Si phase on charge. The defects formed within this 

phase on lithium removal can act as nuclei for the growth of larger Si clusters, which 

can then grow and form extended Si networks at above 300 mV on charge.  

Our SiNW-CF based model system allows for the first time the (de)alloying 

reactions (involving amorphous-Si) to be followed at an atomistic level for the whole 

electrode structure in the 2nd cycle and beyond, the reactions of the amorphous phases 

being key to the functioning of practical LIBs. Studies are currently on going to 

investigate a wider range of nanostructures by in-situ NMR spectroscopy, making use of 
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this versatile approach to study Li-ion and Na-ion batteries under a wide variety of 

electrochemical regimes. 

 18 



Methods 

 
Material synthesis 

SiNWs were synthesised by catalytic chemical vapour deposition (CVD) using a 

silane precursor and Au catalyst. Au (~50 nm, as measured by a quartz crystal balance) 

was evaporated onto 200 μm-thick carbon fibre based gas diffusion layer support 

(CFGDL: SGL group, GDL24AA, 99.9 % carbon) and onto 20 μm-thick stainless steel 

(SS) (SUS304, Agar Scientific). The CFGDL and SS substrates were transferred to a 

cold-wall CVD system (10−8 mbar base pressure), where they were heated in H2 or Ar 

and subsequently exposed to H2 or Ar-diluted SiH4 for 10 min. An Ar or H2/SiH4 ratio 

of 200/20 sccm was used at 15 mbar (total pressure) at 450 ºC, resulting in crystalline 

SiNWs of ~60 nm in average diameter, and more than 50 μm in length. The growth 

temperature values refer to pyrometer measurements (IMPAC IGA 8 Plus, single band 

1.6 μm) using a carbon nanotube forest reference sample for which an emissivity of 1 is 

assumed. Upon air exposure for subsequent cell assembly, a ~2 nm native oxide layer 

forms on the SiNW surfaces. Amorphous Si thin films were also grown by exposing SS 

support to undiluted SiH4 at 15 mbar at 450 ºC for 20 min.  The mass of the SiNWs and 

Au catalyst loading of the support was measured using a calibrated microbalance 

(Sartorius, SE2-F) with a precision of 0.1 µg. 

As reference for the electrochemistry and ex-situ XRD studies, Au colloids were 

synthesised using the following procedure: 10 ml of 38.8 mM sodium citrate 

(NaH2C6H5O7) was injected into 100 ml of 1 mM HAuCl4 solution in a 250 ml round-

bottomed flask under vigorous stirring. The solution was refluxed at 120 ºC for 10 min, 
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and allowed to cool to room temperature under constant stirring. The final Au particle 

size distribution is centred at 20 nm (standard deviation σ=3 nm).  

 

Plastic bag and coin cell preparation 

A flexible plastic LIB design 29,42,44 was used for the in-situ NMR 

measurements. Bare CFGDL and SiNWs grown on CFGDL (typical size 5 mm by 

8 mm, mass of active material ~3 mg) were used as electrodes and a Li metal ribbon 

(typical size 5 mm by 8 mm, 0.38 mm thick, Aldrich) was used as the counter electrode. 

Cells were assembled in an Argon glovebox to prevent reaction with atmospheric 

nitrogen, oxygen or water (typically, O2 < 0.1 ppm, H2O < 0.6 ppm). The electrolyte was 

1 M LiPF6 in a 1:1 (volume) ethylene carbonate (EC) and dimethyl carbonate (DMC) 

solution (LP 30 Selectilyte® Merck). A porous glass fibre mat (Whatman GF/B, ~1 mm 

thick) soaked with the electrolyte was used as a separator and a Cu mesh (Dexmet) as 

the current collectors. The cell components were assembled in a polyester bag (Ampac), 

which was then hermetically sealed before removal from the glovebox. Typical cell 

dimensions were approximately 10 mm × 6 mm (area) × 2 mm (height). Flexible cells 

were then placed tightly inside a hand-wound 8 mm coil in a conventional static probe 

(Chemagnetics), keeping the cell face perpendicular to the magnetic field of the NMR 

magnet. For ex-situ measurements, 2032-type coin cells were used following a standard 

assembly procedure with the same electrolyte and separator as used for the in-situ bag 

cells. 

Characterization of the NWs by SEM, TEM and XRD 
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The NWs were characterised by scanning electron microscopy (SEM; Hitachi 

S5500, Zeiss Sigma) and transmission electron microscopy (TEM: FEI Tecani F20, 

200 kV acceleration voltage) before and after cycling in the batteries. Prior to the 

SEM/TEM observation of cycled SiNWs, cells were held at 2.5 V for 24 h to extract 

residual Li. For SEM/TEM observation, the fully de-lithiated SiNWs were disassembled 

in an Ar glovebox, rinsed with DMC and dried under vacuum for 10 min. This 

procedure seems to remove most of SEI (also see 7Li MAS NMR results; 

Supplementary Figure 12); if the SEI is not removed, it decomposes under the influence 

of the electron beam and it disrupts the imaging. The SiNWs after one cycle 

(galvanostatically at C/25) show a variety of morphologies (Supplementary Figure 10 a-

d): some retained their original straight sides, some had lumpy sides, and some showed 

both lumpy sides and internal voids. After two cycles, all the observed NWs were fully 

amorphized and the formation of voids was much more prevalent (Supplementary 

Figure 10 e-h).  

For ex-situ X-ray diffraction measurements (PANalytical X’Pert, Cu Kα 

radiation (λ=1.54 Å)), samples were charged/discharged to a target voltage and held at 

this voltage so as to relax the current to less than C/100. The samples were then 

immediately disassembled in the Ar glovebox, washed with DMC and dried 10 min 

under vacuum. The dry samples were finally assembled in the XRD holder and sealed 

hermetically by Kapton film to prevent air exposure. SiNWs on SS were cycled 

galvanostatically at C/25 (Supplementary Figure 7) and C/75 (Supplementary Figure 8) 

to target voltages (80, 40, 0 mV on discharge, 50, 250, 430, 600 mV on charge). Each 

spectrum is acquired from 5 to 80° (2θ) in approximately 50 min. The measurements 

were also carried out for Au on SS (Supplementary Figure 9). c-Li3.75Si is observed for 
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voltages lower than 50 mV on discharge, for both C/25 and C/75, along with much 

smaller reflections from Li3Au and Li3.75Au. Note that the characteristic peaks of 

c-Li3.75Si were detected at 0 V, indicating only negligible changes in lattice parameters 

between c-Li3.75Si and c-Li3.75+δSi. The c-Li3.75Si phase completely disappears at 

430 mV on charge, which is in a good agreement with prior in-situ XRD studies.24,27  

 

Ex-situ 7Li MAS NMR spectroscopy 

In order to obtain spectra of LixSi with better resolution and without any overlap 

from the electrolyte and solid electrolyte interphase (SEI) peaks (around 0 ppm), 7Li 

NMR spectra were acquired by ex-situ magic angle spinning (MAS) NMR at 

71.55 MHz (4.7 T magnet and Avance III spectrometer, Bruker), with a 1.8 mm MAS 

probe (Samoson) and at a 20 kHz spinning rate with π/2-one-pulse and/or Hahn-echo 

(π/2-τ-π-τ) measurements. SiNWs on SS were cycled galvanostatically at C/75, and held 

at target voltages (typically until the current falls below C/100). The samples were then 

opened in the Ar glovebox, washed with DMC, dried for 10 min in vacuum and 

immediately packed in the rotor for the NMR measurements. All the 7Li NMR shifts 

were referenced to 1 M LiCl (at 0 ppm) as an external reference.  

 

Identification of a suitable substrate for in-situ 7Li NMR  

Potential substrates (SUS304 non-magnetic stainless steel (SS) mesh, SUS304 

non-magnetic SS sheet, SUS316 non-magnetic SS sheet, and carbon fibre gas diffusion 

layer (CFGDL)) for the in-situ NMR experiments were cut into 5 mm × 8 mm pieces 
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and sealed in a plastic bag filled with electrolyte (1 M LiPF6 in a 1:1 volume mixture of 

EC and DMC. The effect of these substrates on the 7Li lineshape of the electrolyte 

resonance was tested by measuring the 7Li NMR spectra of the electrolyte with a static 

one-pulse experiment (Supplementary Figure 1). Even stainless steel (SS) samples that 

are nominally non-magnetic gave rise to significant distortions to the 7Li NMR spectra 

of the liquid electrolyte making assignments extremely difficult. CFGDL sheet was 

chosen as the best substrate on which to grow SiNWs for all the in-situ NMR 

measurements, resulting in minimal lineshape distortions. 

 

In-situ 7Li NMR spectroscopy 

Static in-situ 7Li NMR experiments were carried out at room temperature at 

116.6 MHz (7 T magnet and TecMag LapNMR spectrometer) with a series of one-pulse 

experiments using an RF power of 50 or 150 kHz and recycle delays of 0.5 s. The 7Li 

RF powers were calibrated by nutation experiments on a 1 M LiCl solution. Spectra 

were recorded at uniform (10 minutes) intervals during the entire length of the 

electrochemical cycle. Low-pass filters (50 MHz) were used inline to the in-situ 

measurements to filter high frequency noise and improve the signal-to-noise ratio. As 

the Li-metal NMR signal is shifted by the Knight shift (to ~250 ppm), it can easily be 

separated from the spectral region of interest in this study (±30 ppm). The recorded 

series of spectra were phase corrected and processed by custom-written Matlab scripts. 

Spectra extracted at low voltages were fitted with “Fityk” 48 using a linear baseline and 

Voigt (Gaussian/Lorentzian) peak functions.  
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For the galvanostatic cycling in the in-situ NMR measurements for the SiNW-

CFGDL composite, the battery was cycled (Arbin Instruments) at C/30 with potential 

limits of 2−0 V. An open-circuit rest for 20 min at the upper and lower voltage limits 

was used to separate NMR acquisitions between discharge and charge. For the 

potentiostatic cycling, namely stepped potential electrochemical spectroscopy (SPECS), 

the composite was cycled with potential steps of 10 mV every 2 hours from 150 mV to 

0 V on discharge and 0 to 400 mV on charge. The step magnitude was increased to 

50 mV in some of the voltage regions on charge to save time. Outside these voltage 

regions, the battery was cycled galvanostatically at C/25 to save experimental time and 

to focus on the lower voltages that were of greater interest to this study.  

 

Definition of capacity in the SiNW-CFGDL composite 

For the in-situ NMR measurements, we first define the experimental specific 

capacity of the SiNW-CFGDL composite, 𝐶𝐶SiNW+CFGDL_exp, by taking both the CFGDL 

and Si mass into account, as shown in the following equation, 

𝐶𝐶SiNW+CFGDL_exp[mAhg−1] = 𝑄𝑄exp/(𝑚𝑚Si + 𝑚𝑚CFGDL)           

Eq. 1 

In our experiments, the Si mass (𝑚𝑚Si) and CFGDL mass (𝑚𝑚CFGDL) were 1.0 and 2.0 mg 

for the galvanostatic experiment, and 0.8 and 2.3 mg for the potentiostatic schedule, 

𝑄𝑄exp  is the absolute value of experimental charge on either lithiation or de-lithiation. 

The theoretical specific capacity of SiNW-CFGDL composite is also defined as follows: 

𝐶𝐶SiNW+CFGDL_theo[mAhg−1] = (𝐶𝐶Si_theo × 𝑚𝑚Si + 𝐶𝐶C_theo × 𝑚𝑚CFGDL)/(𝑚𝑚Si + 𝑚𝑚CFGDL)      
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Eq. 2 

where 𝐶𝐶Si_theoand 𝐶𝐶C_theo denote theoretical specific capacity of Si (3579 mAhg−1 for 

c-Li3.75Si) and graphite (372 mAhg−1 for LiC6). The dQ/dV profile of bare CFGDL was 

in a good agreement with that of graphite (Supplementary Figure 5 a,b), and therefore 

we assume here that 𝐶𝐶C_theo for CFGDL is equivalent to that of graphite.  

In our experiments, the cycle rate, C/X, is defined as the current required for the 

cell to reach its theoretical capacity in X hours. Hence, the current, 𝐼𝐼SiNW+CFGDL, in the 

composite for all the in-situ measurements is defined as 

𝐼𝐼SiNW+CFGDL = (𝐶𝐶Si_theo × 𝑚𝑚Si + 𝐶𝐶C_theo × 𝑚𝑚CFGDL)/𝑋𝑋           

Eq. 3 

The experimental capacity of the SiNWs (on SS) at 50 mV (Si#d4) was typically 

~12 % less than the theoretical capacity expected at this voltage (3579 mAhg−1). We 

assume that this corresponds to a fraction of inactive wires due to breakage of 

Si-nanowires (and thus loss of electrical contact) during the cell assembly. Hence, the 

reported values of x in LixSi and dx in this study are corrected for this 12 % difference. 

 

In-situ NMR measurements of bare CFGDL 

Since CFGDL is electrochemically active, in-situ NMR spectroscopy of the bare 

CFGDL was conducted. The CFGDL was cycled galvanostatically at C/25 over two 

cycles with a potential limit of 2−0 V with the same in-situ NMR set-up as that of the 

main experiments. As shown in Supplementary Figure 11, the 7Li signals from LixC 

(180 ppm to −80 ppm) 42-44 are suppressed with the recycle time used here (0.5 s), 
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owing to their longer relaxation time: under these conditions, the highest 7Li signal 

intensity at shifts higher than 5 ppm and lower than −5 ppm is less than ~1 % of the 

intensity of the central peak. In contrast, signal from LixSi formation in this region of 

the in-situ NMR experiments accounts for more than 10 % of the intensity of central 

peak. Hence, we can assume that, in the in-situ NMR measurements of the composite, 

the 7Li peaks appearing in chemical shift regions of between 5 ppm and −5 ppm 

originate mostly from SiNWs and not the CFGDL. Intensity changes in the region from 

5 to −5 ppm in bare CFGDL were carefully monitored, and are summarised in 

Supplementary Figure 21. 

 

Density-functional theory based theoretical calculations 

Calculations were performed with the plane-wave density-functional theory code 

CASTEP 49 using the PBE functional and a basis set containing plane waves with 

energies up to 400 eV. The Brillouin zone was integrated with a grid spacing finer than 

2π×0.03 Å−1. Ab initio random structure searching (AIRSS) 50,51 has previously been 

applied to point defects in the Li-Si system.52,53 Using AIRSS, ~3500 searches were 

performed where a Li or Si atom was randomly added or removed from the 2-formula-

unit c-Li15Si4 (c-Li3.75Si) simulation cell and the resulting structure and lattice 

parameters were relaxed to a local energy minimum. Supplementary Figure 22 shows 

that the over-lithiated phases (Li3.75Si+Li0.125 and Li3.75Si−Si0.125) have a lower 

formation enthalpy than those of the de-lithiated phases (Li3.75Si−Li0.125 and 

Li3.75Si+Si0.125), although the lithiated and de-lithiated phases found lie above the 

 26 



Li3.25Si/Li4.2Si (i.e. c-Li13Si4/c-Li15Si4 /c-Li21Si5) tie-lines. This indicates that it is easier 

to over-lithiate than de-lithiate c-Li3.75Si. 

 

Electrochemistry of reference materials  

In order to separate the Si electrochemical processes in the SiNW-CFGDL 

composite from those of CFGDL and Au, the electrochemistry of bare CFGDL and Au 

colloids on SS was studied in coin cells along with that of SiNW-CFGDL composite 

with galvanostatic cycling at C/25 to C/75 with potential limits of 2-0 V. A Si thin-film 

deposited on SS without Au was also studied to investigate the origin of the 200 mV 

process on the 1st discharge in the SiNW-CFGDL composite.  

For bare CFGDL (Supplementary Figure 5 a,b), there are three distinct processes 

both on discharge and charge with a capacity of ~300 mAhg−1: dQ/dV peaks at 200 mV 

(namely C#d1, 84 mAhg−1 ≡ LiC27), 110 mV (C#d2, 171 mAhg−1 ≡ LiC13), and 

80 mV(C#d3, 300 mAhg−1 ≡ LiC7.4) on discharge, and at 90 mV(C#c1, 

171 mAhg−1 ≡ LiC13), 140 mV(C#c2, 80 mAhg−1 ≡ LiC28), and 230 mV (C#c3) on 

charge. These dQ/dV processes are in good agreement with those in graphite, 20,21 even 

though our CFGDL is partially disordered.  

The electrochemistry of Au colloids on SS (supplementary Figure 5 c,d) was 

investigated since Au is largely found on the tips of the SiNWs.  20 nm Au colloids 

were dispersed on SS (cycled with a current rate of C/25,calculated based on a 

theoretical capacity of Li3.75Au, 451 mAhg−1).45 The colloids have distinctive processes 

at 240−200 mV (namely, Au#d1) and 80−110 mV (Au#d2) on discharge, and 160 mV 

(Au#c1), 370 mV (Au#c2), and 450 mV (Au#c3) on charge, in good agreement with 
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other studies.19,46,47 A 50 nm-thick Au film on SS was also cycled with the same 

electrochemical schedule, which failed to charge in the 1st cycle, probably due to 

stresses from the LixAu volume expansion in the film.  50 nm-thick Au on CFGDL was 

also cycled galvanostatically at C/25, however, the Au processes were overshadowed by 

the CFGDL processes. 

For the Si thin-film on SS (Supplementary Figure 5 e,f: note that there is no Au 

in the film), an irreversible 200 mV process in the 1st discharge was identified, which 

indicates that the 200 mV process derives from the native oxide layer (SiO#d1) rather 

than from Au. 

For SiNW-CFGDL composite (Supplementary Figure 5 g,h), the following 

processes were identified: Au#d1/SiO#d1 and C#d1 at 200 mV, Si#d2/C#d2 at 100 mV, 

C#d3 at 80 mV, and Si#d4 at 60 mV in the 1st discharge. In subsequent discharges, 

Si#d2 at 250−300 mV, C#d1/Au#d1 at 200 mV, C#d2 at 110 mV, Si#d3 at 95 mV, C#d3 

at 80 mV, Si#d4 at 50 mV, and Si#d5 at 40 mV were all observed.  On charge, C#c1, 

C#c2, C#c3, Si#c2, Si#c3, and Si#c4 were all identified. Hence, the Si processes in the 

SiNW-CFGDL composite can be separated from the ones from CFGDL. 
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Figure legends  

Figure 1. SEM images of as-grown SiNWs on CFGDL. (a) Planar view, (b) cross 

sectional view, and (c) a magnified image of (b). The scale bars for (a), (b), and (c) are 

50 μm and 15 μm, and 1 μm, respectively. (d) Schematics of the SiNW-composite based 

cell and the set-up for the in-situ 7Li NMR measurements. The cell design comprises Si 

nanowires (SiNW), carbon fibre based gas diffusion layer support (CFGDL), electrolyte 

(1 M LiPF6 in ethylene carbonate (EC) and dimethyl carbonate (DMC) solution), a 

porous glass fibre mat, and a Cu mesh sealed in a polyester bag.  

 

Figure 2. The dQ/dV plots obtained for SiNWs grown on a SS (SUS304) support, in a 

Si-Li cell. Galvanostatic (a) discharge and (b) charge at C/25 plots with potential limits 

of 2 to 0 V for the first ten cycles; the red-lines show the profiles in the 1st 

discharge/charge cycle, and the black-lines in the 2nd cycle and beyond. Galvanostatic 

(c) discharge and (d) charge plots at C/25 as a function of cut-off voltage: the discharge 

cut-off voltage is reduced every cycle in 10 mV steps from 150 mV to 0 V and then 

increased to 180 mV, again in 10 mV steps. The nanowires were first cycled to 0 V and 

back to 2 V, so as to convert the crystalline Si into an amorphous Si phase. The different 

Si processes on discharge/charge are labelled as Si#d/Si#c; the dQ/dV profiles are 

stacked with a constant pitch to show the different processes more clearly. 

 

Figure 3. SEM and TEM images of cycled SiNWs. (a) Cross sectional SEM image and 

(b) high-resolution TEM image (fast Fourier transformation, inset) of the cycled SiNWs 

on CFGDL following one galvanostatic cycle at C/25 with potential limits of 2-0 V and 
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then holding at 2.5 V for 24 h so as to fully de-lithiate the NWs. The scale bars for (a) 

and (b) are 6 μm and 10 nm, respectively. 

 

Figure 4. Colour-mapped in-situ 7Li NMR spectra of the SiNW-CFGDL composite. (a) 

Acquired with a C/30 galvanostatic experiment with potential limits of 2-0 V for the 1st 

and 2nd cycle and 50 mV cut-off for the 3rd discharge, (b) acquired with a potentiostatic 

experiment with potential limits of 2-0 V for the 1st and 2nd cycle and 30 mV cut-off for 

the 3rd discharge. The corresponding contour and Li/Li+ voltage vs. accumulated specific 

capacity plots are shown for the galvanostatic and the potentiostatic experiments in (c) 

and (d), respectively. The specific capacities of the composite are calculated from the 

CFGDL and SiNW masses; see Methods for the details. The 7Li resonances at around 

20−10 ppm, 0−10 ppm and −10 ppm are labelled as P1 (Li nearby small Si clusters), P2 

(isolated Si anions, c-Li3.75Si, and extended Si networks), and P3 (the over-lithiated 

crystalline phase, c-Li3.75+δSi), respectively.  

 

Figure 5. Stacked in-situ 7Li NMR spectra of the SiNW-CFGDL composite obtained 

during the potentiostatic experiment and enlarged to show the weaker, broader peaks. 

The spectra are extracted from the data shown in Figure 4 b and plotted from 150 mV 

on discharge to 430 mV on charge in the first three cycles. The discharge was stopped at 

0 V for the (a) 1st and (b) 2nd cycles and (c) 30 mV for the 3rd cycle. P1-3 are assigned to 

the 7Li environments as explained in the legend to Figure 4.  

 

Figure 6. Phase transformation diagram for the amorphous silicon nanowires on 

lithiation and de-lithiation showing the dependence of the phase evolutions on the rate 
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of cycling. The pie-charts show schematically the evolution of the local and long-range 

environments in the SiNW-CFGDL composite in the 2nd cycle and beyond for  

moderately fast cycling (galvanostatic at C/30) vs. slow cycling (potentiostatic), the 

results being based on the in-situ NMR measurements (Figure 4 and 5). The top-left 

inset shows the different phases present in this system and the assignments of the six 

different Li environments to the three main NMR features, P1, P2 and P3 (Figures 4 and 

5). The phases formed on discharge are shown on the left hand side, while those on 

charge are shown on the right, the circles (pies) in the flowchart showing the LixSi 

phases present at each stage of the electrochemistry (shown at the bottom of the figure). 

The sizes of the segments within the “pies” indicate the relative proportion of each 

phase. The figure illustrates that the path taken on charge strongly depends on the rate at 

which the system is lithiated and on the cut-off voltage used. 
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