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Abstract 

 

Objective: To examine the association between sleep duration and cardiometabolic risk factors among 

individuals with recently diagnosed type 2 diabetes (n=391). 

 

Methods: Sleep duration was derived using a combination of questionnaire and objective heart rate 

and movement sensing in the UK ADDITION-Plus study (2002-2007). Adjusted means were 

estimated for individual cardiometabolic risk factors and clustered cardiometabolic risk (CCMR) by 

five categories of sleep duration. 

 

Results: We observed a J-shaped association between sleep duration and CCMR – individuals 

sleeping 7-<8 hours had a significantly better CCMR profile than those sleeping ≥9 hours. 

Independent of physical activity and sedentary time, individuals sleeping 7-<8 hours had lower 

triacylglycerol (0.62 mmol/l [0.29, 1.06]) and higher HDL-cholesterol levels (0.23 mmol/l [0.16, 

0.30]) compared with those sleeping ≥9 hours, and a lower waist circumference (7.87 cm [6.06, 9.68]) 

and BMI (3.47 kg/m
2
 [2.69, 4.25]) than those sleeping <6 hours. Although sleeping 7-<8 hours was 

associated with lower levels of systolic- and diastolic- blood pressure, HbA1c, total cholesterol and 

LDL-cholesterol, these associations were not statistically significant.  

 

Conclusions: Sleep duration has a J-shaped association with CCMR in individuals with diabetes, 

independent of potential confounding. Health promotion interventions might highlight the importance 

of adequate sleep in this high risk population.  
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1. Introduction 

It is currently recommended that adults should aim to get 7 to 9 hours of sleep each day [1]. However, 

a large majority of adults report sleeping less than this, a trend which has become increasingly 

prevalent in modern society. Recent data from ‘The Great British Bedtime Report’ revealed that in 

2013 70% of the adult population slept for ≤7 hours, and 33% slept for <6 hours per night compared to 

27% in 2010 [2]. Sleep duration in adult Americans follows a similar declining trend [3]. In the last 

decade, an increasing number of laboratory and epidemiological studies have linked short sleep 

duration with increases in hunger and appetite [4], decreased glucose tolerance [5] and an increased 

risk of weight gain [6, 7], obesity [6, 7], hypertension [8, 9], type 2 diabetes [10] and cardiovascular 

outcomes [11].  

 

While laboratory studies provide important insights into the potential pathways linking acute short 

sleep duration with cardiovascular health, major limitations are that they are conducted in artificial 

settings and usually have small sample sizes [12]. Whether prolonged short sleep duration is 

associated with factors predisposing to cardiovascular disease in free-living populations remains 

unclear. Although a number of epidemiological studies have examined associations between habitual 

sleep duration and cardiovascular health outcomes, they have traditionally used self-report measures 

of sleep duration [13] which are prone to error and bias and which have only moderate agreement with 

objectively assessed sleep duration [14]. Furthermore, though physical activity and sedentary time 

may confound the association between sleep duration and cardiovascular health [15, 16], only a small 

number of studies have adjusted for self-reported physical activity [17, 18]; to our knowledge no 

studies have adjusted for objective measures of physical activity and sedentary time. These important 

limitations preclude a clear understanding of the potential role that sleep duration may have in 

cardiovascular health. Finally, few studies have examined the role of sleep duration among individuals 

with type 2 diabetes, who are, as a consequence, at higher risk of developing cardiovascular risk [17-

21]. Improved understanding of this relationship will inform future intervention programmes aimed at 

identifying and managing high-risk individuals.   

 

The objective of the current study was to quantify the association between sleep duration derived 

using a combination of self-report questionnaire and objectively measured free-living data and 

established cardiometabolic risk factors, independent of potential confounding by physical activity and 

sedentary time, among a population at high risk of developing cardiovascular disease.  

 

2. Methods 

The design and rationale for the ADDITION-Plus study has been reported previously (2002-2007) [22]. 

In brief, ADDITION-Plus is a randomised controlled trial nested within the intensive treatment arm of 

the ADDITION-Cambridge study, which evaluated the efficacy of a facilitator-led, theory-based 

behaviour change intervention for recently diagnosed type 2 diabetes patients. 34 general practices in 



East Anglia participated. Eligible individuals were those aged 40-69 years diagnosed with diabetes 

following screening in the ADDITION study or clinically diagnosed during the three previous years in 

participating GP surgeries. Exclusion criteria included women who were pregnant or lactating or 

anybody with a psychotic illness or an illness with a likely prognosis of less than one year. 478 out of 

1,109 eligible individuals agreed to participate in ADDITION-Plus and were individually randomised 

to receive either intensive treatment alone (n=239), or intensive treatment plus a facilitator-led 

individual behaviour change intervention (n=239). All participants gave written informed consent, and 

the study was approved by the Eastern Multi-Centre Research Ethics Committee (reference number: 

02/5/54). The trial is registered as ISRCTN 99175498. 

 

2.1. Assessment of physical activity and sleep duration  

Participants activity intensity was assessed using a combined heart-rate and movement sensor 

(Actiheart, CamNtech, Cambridge, UK) worn continuously for four days at 30-second resolution, as 

described in detail elsewhere [23]. A graded treadmill walk test was used to individually calibrate 

heart-rate, as described elsewhere [15, 24]. For participants who did not complete an individual 

calibration test, all valid calibration tests in the rest of the sample were used to derive an age, sex, 

beta-blocker, and sleeping heart-rate adjusted group calibration equation for the translation of heart-

rate to activity intensity. Heart-rate data collected during the free-living period were processed using 

noise classification followed by Gaussian robust regression [25] and average activity intensity (J min
-1

 

kg
-1

) was estimated using a branched equation framework [26]. Resulting time-series data were 

summarised into physical activity energy expenditure (PAEE; kJ kg
-1

 day
-1

) and sedentary time whilst 

minimising diurnal information bias caused by non-wear periods (segments of non-physiological data). 

Sedentary time was defined as a MET value (metabolic equivalent of task) of <1.5 in accordance with 

current convention [27] using the Oxford estimate of resting metabolic rate (RMR) to define 1 MET 

[28]. To derive sleep duration, time-series data from the combined heart-rate and movement sensor 

were summarised after constraining assessment to within each participant’s mean self-reported getting 

up and going to bed times (self-reported using open-ended questions asking “at what time do you 

normally get up?” and “at what time do you normally go to bed?” on weekdays and on weekend days 

[29]) in combination with the requirement that intensity was ≤1.04 METs. This intensity threshold was 

applied according to recent research demonstrating that values below this MET cut-point are 

symptomatic of being in a reclined posture (indicative of sleep) as opposed to a seated posture [30]. 

The appropriateness of this method was verified by visual inspection by overlaying self-reported 

getting up and going to bed times on the objective time-series data. 

 

2.2. Outcome measurements 

Body weight and height were measured in light clothing and without shoes using a scale (SECA, UK) 

and a fixed rigid stadiometer, respectively. BMI was calculated as weight in kilograms divided by 

height in metres squared (kg/m
2
). Waist circumference was calculated as the average of two 



measurements taken halfway between the lowest point of the rib cage and the anterior superior iliac 

crests while standing. Blood pressure was calculated as the mean of three measurements performed after 

10 minutes of rest and with participants seated with a cuff placed on the predominant arm at the level of 

the heart, using an automatic sphygmomanometer (Omron M4, UK). HbA1c was measured in venous 

samples using an ion-exchange high-performance liquid chromatography method (Tosoh Bioscience, 

Redditch, UK). Serum triacylglycerol, total cholesterol, HDL- and LDL-cholesterol were measured 

using enzymatic techniques (Dade Behring Dimension analyser, Newark, USA). All measures were 

carried out by trained staff following standard operating procedures and who were unaware of 

participants’ sleep patterns. 

 

A summary clustered cardiometabolic risk score (CCMR-score) was created, incorporating measures 

of central obesity (waist circumference), dyslipidaemia (fasting triacylglycerol and HDL-cholesterol), 

hypertension (systolic blood pressure) and hyperglycaemia (HbA1c). Individual measures were 

standardised (i.e. z-scores were computed: z = [value – mean]/SD) after log-transformation (ln) of 

triacylglycerol due to a non-normal distribution. Next, individual z-scores were summed after 

inverting HDL-cholesterol values. CCMR was also calculated without the inclusion of BMI (CCMR no 

BMI), thereby allowing examination of the association of sleep duration on CCMR independent of BMI. 

 

2.3. Covariates 

PAEE and sedentary time were assessed using combined heart-rate and movement sensing (see: 

Assessment of physical activity and sleep duration). Standardised self-report questionnaires were used 

to collect information on socio-demographic characteristics, smoking status and prescribed medication. 

Total energy and alcohol intake were assessed using a validated food frequency questionnaire [31]. As 

psychological disorders can contribute to chronic sleep deprivation, and are positively associated with 

weight gain [32], we adjusted for the mental components of health status using the short-form-36 (SF-

36) health survey questionnaire [33].  

 

Complete data on objectively measured sleep duration, PAEE, time spent sedentary, metabolic risk 

factors and potential confounding variables were available on 391 participants. 

 

2.4. Statistical analysis 

The data for this analysis were treated as a cohort and not analysed by trial arm because the 

intervention used in ADDITION-Plus was not designed to influence sleep duration and no evidence of 

interaction by trial arm was found in the proceeding multivariate analyses (all p-interaction ≥0.09). 

Descriptive characteristics of the participants were summarised by categories of sleep duration (<6 

hours, 6 to <7 hours, 7 to <8 hours, 8 to <9 hours and ≥9 hours) using means with SDs, medians with 

interquartile ranges or frequencies. P for trend, Kruskal-Wallis and chi
2
 tests were used to examine 

differences in participant characteristics across categories of sleep duration.  



 

We examined associations between sleep duration categories (<6 hours, 6 to <7 hours, 7 to <8 hours, 8 

to <9 hours and ≥9 hours) and CCMR, CCMR no BMI, waist circumference, BMI, systolic- and 

diastolic- blood pressure, HbA1c, triacylglycerol, total cholesterol, and HDL- and LDL-cholesterol 

using multivariate linear regression analyses. Triacylglycerol values were log-transformed (ln) for 

statistical analysis due to a non-normal distribution. We estimated the adjusted means and 95% CIs of 

CCMR, CCMR no BMI, waist circumference, BMI, systolic- and diastolic- blood pressure, HbA1c, 

triacylglycerol (ln), total cholesterol, and HDL- and LDL-cholesterol for each sleep category and 

tested for linear and nonlinear trends across categories using the post-estimation polynomial ‘contrast’ 

command in Stata. We included potential confounders in the models based on previously published 

associations, biological reasoning and statistical associations between exposure and outcomes in the 

current dataset. All regression models are presented adjusted for age, sex and trial arm (age- sex 

adjusted) and adjusted for age, sex, trial arm, occupational socio-economic class, PAEE, time spent 

sedentary, smoking status, alcohol intake, day-time tiredness, mental health score and sleep affecting 

medication e.g. beta-blockers, sleeping tablets and minor tranquilisers [34] (multivariate adjusted). 

Triacylglycerol values were back-transformed and reported as adjusted geometric means and their 

95% CIs. When the outcome of interest was either blood pressure, HbA1c, triacylglycerol or HDL- and 

LDL-cholesterol, we additionally adjusted for use of anti-hypertensive, glucose lowering, or lipid-

lowering medication, respectively. For CCMR we adjusted for use of anti-hypertensive, glucose 

lowering and lipid-lowering medications and additionally for BMI when examining CCMR no BMI. The 

variance inflation factor did not exceed 4 in any of the models, indicating absence of multicollinearity. 

To investigate differences between sleep duration categories we used Dunnett’s significant difference 

post hoc test to compare each category of sleep duration with those sleeping 7 to <8 hours/night 

(comparison category). 7 to <8 hours/night of sleep was chosen as the comparison category a 

posteriori based on this category having the lowest CCMR risk profile. We formally examined 

whether associations between sleep duration categories and CVD risk factors were modified by sex by 

entering cross-product terms in the multivariate models. 

 

In sensitivity analyses we assessed whether our findings were sensitive to: 1) the inclusion of energy 

intake in all multivariate models, 2) inclusion of waist circumference as opposed to BMI in all 

multivariate models adjusted for BMI, and 3) using a cut-point of ≤1.04 METs for the definition of 

sleep as opposed to a cut-point of ≤1.00 MET. All statistical analyses were performed using Stata/SE 

13.1 (Stata-Corp, College Station, TX). 

 

3. Results 

The mean (SD) age of study participants was 60.3 (7.4) years. 97.7% of participants were of white 

European decent. 41.9% of participants reported having a managerial job. More men than women 

(n=248 vs. 143, respectively) met the inclusion criteria for the study and agreed to participate. Mean 



duration of diabetes did not differ across categories of sleep duration (P =0.43). The percentage of 

study participants who slept <6 hours and >9 hours per night was 11.3% and 5.9%, respectively. 

Table 1 shows the characteristics of the study population by categories of sleep duration. Compared 

with participants with short sleep durations, participants with longer sleep durations were older, were 

more likely to be female and were less likely to be employed in a managerial position. When 

expressed in absolute terms, both PAEE and sedentary time decreased across increasing sleep 

categories. In contrast, when expressed relative to hours awake, participants sleeping 7 to <8 

hours/day had the highest PAEE level and spent the lowest proportion of the day sedentary. Sleep 

duration was weakly inversely correlated with sedentary time (r = -0.22; p <0.001) and PAEE (r = -

0.26; p <0.001). Sedentary time was strongly inversely correlated with PAEE (r = -0.73; p <0.001). 

The mean duration of valid combined heart rate and movement sensing data was 4.02 (SD: 0.40) days. 

 

As shown in Table 2, after adjustment for age, sex and trial arm, participants sleeping 7 to <8 

hours/night had a lower CCMR and CCMR no BMI than all other sleep categories, which was 

significantly lower when compared with those sleeping ≥9 hours/night (p<0.05). The J-shaped 

associations between sleep duration and CCMR and CCMR no BMI remained after additional adjustment 

for other potential confounding factors including objectively assessed physical activity, sedentary time, 

feelings of daytime tiredness, sleep affecting medication (P-quadratic-trend: 0.004) and BMI in the 

CCMR no BMI model (P-quadratic-trend: 0.025). After multivariate adjustment, sleep duration was 

inversely associated with waist circumference and BMI (P-linear-trend both <0.001), such that 

participants sleeping 7 to <8 hours/night had a 7.9 cm lower waist circumference and 3.5 kg/m
2
 lower 

BMI than those sleeping <6 hours/night (p<0.05). In adjusted analyses, triacylglycerol levels were 

lowest among participants sleeping 7 to <8 hours/night, and were significantly lower when compared 

with those sleeping ≥9 hours/night (p<0.05). HDL-cholesterol levels did not differ across sleep 

categories except for individuals sleeping ≥9 hours/night, among whom levels were significantly 

lower than those sleeping 7 to <8 hours/night (mean 0.98 mmol/l [95% CI: 0.86, 1.11] vs. 1.21 mmol/l 

[95% CI: 1.16, 1.25], respectively). We found no consistent associations between sleep duration and 

systolic- or diastolic blood pressure, HbA1c, total cholesterol or LDL-cholesterol, although the lowest 

levels tended to be observed among those sleeping 7 to <8 hours/night.  

 

We found no evidence of interaction by sex (all p-values:≥0.08) except for the association with 

diastolic blood pressure (p-for-interaction: 0.03). When stratified by sex, men sleeping 6 to <7 

hours/night had a diastolic blood pressure 9.53 mmHg (95% CI: 5.29, 13.77) higher than women 

sleeping 6 to <7 hours/night; no other differences between men and women across sleep categories 

were found. Additional adjustment for total energy intake in the multivariate models did not materially 

change our findings (data not shown). Using a cut-point of ≤1.00 MET to define sleep, as opposed to a 

cut-point of ≤1.04 METs, did not materially change our findings (data not shown).  

 



4. Discussion 

 

This study demonstrates that patients with type 2 diabetes who sleep 7 to <8 hours per night have a 

better cardiometabolic risk profile, including measures of waist circumference, BMI, triacylglycerol 

and HDL-cholesterol than those who sleep fewer than 6 hours or more than 9 hours per night. To the 

best of our knowledge, this is the first epidemiological study to investigate the association between 

objectively measured sleep duration and a wide range of cardiovascular risk factors independent of 

potential confounding by objectively measured physical activity and sedentary time. Our findings 

support the hypothesis that sleep duration is a potentially important and modifiable behaviour related 

to cardiometabolic risk in individuals with type 2 diabetes who are at high risk of cardiovascular 

disease. 

 

An inverse association between sleep duration and anthropometric measures is consistent with 

previous literature. In a meta-analysis of 18 cross-sectional studies, which included a total of more 

than 604,000 adults [35], each additional hour of sleep was found to be associated with a pooled β-

coefficient for BMI of -0.35 kg/m
2
 (95% CI: -0.57, -0.12). Several [6, 7], but not all [36], prospective 

studies have also reported inverse associations between sleep duration and weight gain. For example, 

in the Quebec Family Study cohort, individuals sleeping 5-6 hours/day gained 1.98 (95% CI: 1.16, 

2.82) kg more than those sleeping an average of 7-8 hours/day, over a period of 6-years [6]. 

Additionally, the risk for developing obesity was shown to be 27% higher among short duration 

sleepers compared with those sleeping 7-8 hours/day after 6-years of follow-up. Several studies have 

indicated that a J-shaped association may exist between sleep duration and weight in healthy adults, 

such that sleeping more than 8 hours/day is similarly related to excess weight as sleeping too few 

hours [37]. However, we did not find strong evidence indicative of deviation from linearity, which is 

consistent with a recent study in individuals with type 2 diabetes [18]. Previous studies have found 

that sleep restriction can adversely affect glucose metabolism in response to a glucose challenge, but 

not fasting glucose or insulin levels [5, 38]. A recent cross-sectional study also reported no association 

between sleep duration and fasting glucose, insulin or the homeostatic model assessment (HOMA) 

index in individuals with or without type 2 diabetes [20], which is consistent with our finding of no 

clear association between sleep duration and HbA1c.  

 

Previous studies examining the association between sleep duration and lipid levels have yielded mixed 

results [17, 39, 40]. Consistent with our findings, it has previously been shown that longer sleep 

durations are associated with relatively  higher triacylglycerol levels and lower HDL-cholesterol levels 

[40]. In a cross-sectional study comprised mostly of participants free from diabetes, it was also 

observed that individuals sleeping >8 hours per night had a borderline significantly lower HDL-

cholesterol level relative to individuals sleeping 7-8 hours per night [39]. However, in a similar study 

to ours, but which included only women with diabetes, Williams et al [17] found no association 



between sleep duration and lipid levels, although HDL-cholesterol levels did appear to increase with 

increasing sleep duration, but only among normotensive individuals.  

 

In the NHANES study, sleeping ≤5 hours compared with sleeping 7-8 hours per night was associated 

with a 60% higher risk of hypertension in healthy adults aged 32-59 years, but not among individuals 

aged over 60 years [8]. In a prospective analysis of sleep duration and hypertension in the Whitehall-II 

study [41], a non-significant inverse association between sleep duration and hypertension was found 

among women, but not men, sleeping ≤5 hours per night. In our study, we observed no clear 

associations between sleep duration and blood pressure across sleep duration categories. Explanations 

for differences between study findings, other than diabetes status, might be the method used for sleep 

assessment, differences in the age of the participants and differences in covariate selection and 

adjustment. 

 

The biological mechanisms underlying the relationship between short sleep duration and 

cardiometabolic risk factors remain to be fully elucidated, but several plausible mechanisms have been 

suggested in relation to the risk of overweight and obesity [12]. One plausible mechanism to explain 

our finding is provided by Spiegel et al [4]. In a randomised cross-over trial which involved two days 

of sleep restriction preceded/followed by two days of sleep extension, Spiegel et al showed that the 

appetite-stimulating hormone, ghrelin, increased by 28% whereas the appetite suppressing hormone, 

leptin, decreased by 18% following the two days of sleep restriction. Resultantly, appetite increased by 

23%, especially for calorie-dense, high carbohydrate foods. To examine whether the association 

between sleep duration and anthropometric measures was mediated by energy intake in our analyses 

we additionally adjusted for total energy intake, but this did not materially change our findings, 

suggesting that our findings are unlikely explained by self-reported increased food intake. As short 

sleep duration can also increase feelings of fatigue [42], which may lead to relative reductions in 

physical activity [43] and resting metabolic rate [44], this may also partly explain the associations we 

observed. Indeed, we did find that participants sleeping 7 to <8 hours per night tended to be more 

physically active and less sedentary than those sleeping fewer than 7 hours per night (when expressed 

relative to time awake). 

 

The current study has a number of strengths. First, to derive sleep duration we used a combination of 

self-report questionnaire and objectively measured free-living data from a combined heart rate and 

movement sensor worn continually for four days, unlike previous studies which have tended to use 

self-report data only [13]. While this method has not been used previously, our MET definition of 

sleep has been shown to be consistent with a posture indicative of sleep as opposed to a seated posture 

[30]. MET thresholds are commonly used in the scientific literature to define both low energy 

expenditure activities such as reading and watching television as well as vigorous intensity activities 

such as running [45]. In addition, combining self-report and objective data for the assessment of sleep 



duration has been recommended in order to overcome the limitations of subjective and objective data 

when used in isolation [46]. Unlike previous studies, a major strength of our study was that we 

accounted for objectively measured physical activity and sedentary time in our models, both of which 

differ by sleep duration. Our study also has a number of limitations. The cross-sectional analysis of 

our study precludes inference of the direction or causal nature of the observed associations. As such, it 

is equally plausible that obesity may have influenced sleep duration. However, our results are 

consistent with the epidemiological evidence indicating that short sleep duration is adversely 

associated with cardiovascular risk factors [6-9, 13, 33, 47]. We were unable to account for potential 

confounding by sleep apnoea, the prevalence of which may be as high as 83% in patients with type 2 

diabetes [48]. Nevertheless, we have adjusted our analyses for several factors known to be associated 

with sleep apnoea, and which are currently used for the screening of sleep apnoea (i.e. Berlin 

Questionnaire [49]), including age, sex, feelings of daytime tiredness and BMI. Finally, although we 

included many potential confounding variables we cannot exclude the possibility of residual 

confounding, for example by variation in day-time napping. To address the limitations of the current 

study future well designed prospective studies are needed which have measures of sleep duration, 

physical activity, sedentary time and which also account for potential confounding by sleep apnoea 

and sleep quality. 

 

In summary, our results provide further evidence of the potentially important role of sleep on 

cardiometabolic risk in people with type 2 diabetes. Examining the prospective association between 

sleep duration and a wide range of cardiometabolic risk factors, and the likely multiple determinants of 

sleep duration, will be important for improving the future design of lifestyle interventions aimed at 

reducing cardiovascular morbidity in this high risk population.  
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Table 1. Characteristics of the UK ADDITION-Plus study (2002-2007) participants according to sleep duration 
 

 Sleep duration (hours/day)  

 <6 6 to <7 7 to <8 8 to <9 ≥9 P value 

N 44 102 138 84 23  

Sleep duration (hours/day) 5.2 (0.7) 6.6 (0.3) 7.4 (0.3) 8.4 (0.3) 9.5 (0.7)  

Age (years) 58.6 (6.5) 58.5 (7.4) 60.3 (7.2) 61.9 (7.5) 65.9 (5.4) <0.001 

Male (%) 77 75 66 48 26 <0.001 

Duration of diabetes (years) 2.1 (2.3) 2.2 (1.7) 2.0 (1.8) 2.4 (2.1) 2.4 (2.2) 0.43 

Sex-adjusted energy intake (kcal/ day-1) 1762 (492) 1834 (494) 1735 (490) 1651 (499) 1662 (499) 0.15 

Total PAEE (kJ kg-1 day-1) 40.7 (17.7) 36.2 (17.4) 36.7 (16.2) 29.7 (16.0) 22.6 (8.2) <0.001 

PAEE/hour (kJ kg-1 woken hour-1) 2.17 (0.95) 2.07 (0.99) 2.22 (0.97) 1.91 (1.02) 1.55 (0.55) 0.005 

Total sedentary time (hours/day) 11.1 (2.8) 10.9 (2.6) 9.4 (2.5) 9.8 (2.0) 9.6 (1.8) <0.001 

Percentage woken hour-1 sedentary (%) 0.59 (0.15) 0.62 (0.15) 0.57 (0.15) 0.63 (0.13) 0.66 (0.12) 0.008 

Managerial socio-economic class (%) 41 51 44 32 26 0.02 

Current smoker (%) 20 19 10 10 17 0.15 

Sex-adjusted alcohol intake (g/d) 11.2 (1.6) 6.5 (1.0) 6.6 (0.9) 9.6 (1.1) 7.8 (2.2) 0.03 

Tiredness during the day (%) 34 32 23 27 17 0.33 

Mental health score 73 (22) 78 (16) 79 (18) 75 (18) 80 (14) 0.27 

Sleep medication user (%) 14 14 12 21 9 0.29 

Use anti-hypertensive drugs (%) 70 76 67 73 87 0.28 

Use hypoglycaemic drugs (%) 50 56 50 49 52 0.88 

Use lipid-lowering drugs (%) 73 76 78 74 74 0.95 

Values are expressed as means (SD) unless stated otherwise. P-values are from P-trend, Kruskal-Wallis and chi2 tests, as appropriate.  

IQR = interquartile range. PAEE = physical activity energy expenditure. 

 

 



Table 2. Adjusted means (95% CIs) for cardiovascular risk factors according to sleep duration categories for UK ADDITION-Plus study (2002-2007) 

participants 
 

 Sleep duration (hours/day)   

 <6 6 to <7 7 to <8 8 to <9 ≥9 P for 

linear 

trend 

P for 

quadratic 

trend 

N 44 102 138 84 23   

CCMR-score        

Age- and sex adjusted 0.17 (-0.58, 0.92) 0.08 (-0.42, 0.58) -0.44 (-0.86, -0.02) -0.20 (-0.74, 0.35) 1.33 (0.27, 2.39)* 0.154 0.005 

Multivariate adjusted 0.53 (-0.26, 1.32) 0.10 (-0.41, 0.61) -0.39 (-0.81, 0.02) -0.37 (-0.93, 0.18) 0.92 (-0.16, 2.00) 0.839 0.004 

CCMR no BMI        

Age- and sex adjusted -0.09 (-0.73, 0.55) 0.07 (-0.35, 0.49) -0.34 (-0.69, 0.02) -0.09 (-0.55, 0.37) 1.29 (0.39, 2.19)* 0.032 0.011 

Multivariate adjusted -0.05 (-0.74, 0.64) -0.02 (-0.46, 0.43) -0.29 (-0.65, 0.07) -0.07 (-0.55, 0.42) 1.22 (0.28, 2.17)* 0.075 0.013 

Multivariate + BMI -0.24 (-0.94, 0.46) -0.06 (-0.50, 0.38) -0.27 (-0.63, 0.09) 0.02 (-0.46, 0.51) 1.31 (0.37, 2.25)* 0.024 0.025 

Waist (cm)        

Age- and sex adjusted 112.92 (109.11, 116.72) 109.95 (107.42, 112.48) 108.03 (105.90, 110.16) 107.41 (104.62, 110.19) 108.50 (103.08, 113.92) 0.118 0.193 

Multivariate adjusted 116.18 (112.38, 119.98)* 111.08 (108.64, 113.53) 108.31 (106.32, 110.30) 104.98 (102.28, 107.67) 104.42 (99.19, 109.64) <0.001 0.201 

BMI (kg/m2)        

Age- and sex adjusted 33.60 (31.97, 35.23) 32.42 (31.34, 33.51) 31.74 (30.82, 32.65) 31.57 (30.38, 32.77) 32.35 (30.03, 34.68) 0.285 0.153 

Multivariate adjusted 35.23 (33.59, 36.88)* 33.00 (31.94, 34.06) 31.76 (30.90, 32.63) 30.46 (29.29, 31.62) 30.57 (28.30, 32.83) <0.001 0.110 

Systolic BP (mmHg)        

Age- and sex adjusted 130.40 (125.43, 135.38) 129.44 (126.11, 132.76) 129.93 (127.13, 132.73) 130.11 (126.47, 133.75) 131.12 (124.03, 138.21) 0.825 0.701 

Multivariate adjusted 132.45 (127.03, 137.87) 130.28 (126.77, 133.78) 129.60 (126.74, 132.46) 129.02 (125.17, 132.86) 129.48 (122.04, 136.92) 0.513 0.572 

Multivariate + BMI 132.48 (126.94, 138.02) 130.29 (126.76, 133.81) 129.60 (126.73, 132.46) 129.00 (125.12, 132.89) 129.47 (121.99, 136.94) 0.515 0.571 

Diastolic BP (mmHg)        

Age- and sex adjusted 77.82 (75.15, 80.49) 74.75 (72.97, 76.53) 76.54 (75.04, 78.04) 76.20 (74.25, 78.15) 76.69 (72.89, 80.50) 0.875 0.325 

Multivariate adjusted 78.78 (75.87, 81.70) 75.28 (73.39, 77.17) 76.18 (74.64, 77.72) 75.79 (73.72, 77.85) 76.18 (72.17, 80.18) 0.427 0.205 

Multivariate + BMI 78.44 (75.47, 81.41) 75.20 (73.31, 77.09) 76.22 (74.68, 77.76) 75.96 (73.87, 78.04) 76.34 (72.32, 80.35) 0.567 0.245 

HbA1c (%)        

Age- and sex adjusted 6.63 (6.36, 6.90) 6.80 (6.62, 6.97) 6.53 (6.38, 6.68) 6.63 (6.44, 6.83) 6.79 (6.41, 7.17) 0.750 0.484 

Multivariate adjusted 6.63 (6.36, 6.90) 6.74 (6.57, 6.92) 6.56 (6.42, 6.71) 6.64 (6.44, 6.83) 6.79 (6.42, 7.17) 0.688 0.482 

Multivariate + BMI 6.60 (6.32, 6.88) 6.74 (6.56, 6.91) 6.57 (6.43, 6.71) 6.65 (6.46, 6.85) 6.81 (6.43, 7.18) 0.551 0.546 

Triacylglycerol (mmol/l) 1        

Age- and sex adjusted 1.75 (1.49, 2.05) 1.63 (1.46, 1.80) 1.55 (1.42, 1.70) 1.67 (1.48, 1.86) 2.12 (1.70, 2.66)* 0.175 0.014 

Multivariate adjusted 1.66 (1.40, 1.97) 1.58 (1.41, 1.76) 1.58 (1.45, 1.73) 1.73 (1.53, 1.95) 2.16 (1.71, 2.75)* 0.075 0.035 

Multivariate + BMI 1.59 (1.33, 1.89) 1.56 (1.40, 1.74) 1.59 (1.46, 1.74) 1.76 (1.56, 1.99) 2.21 (1.75, 2.80)* 0.026 0.059 

Total cholesterol (mmol/l)        

Age- and sex adjusted 4.40 (4.14, 4.66) 4.22 (4.05, 4.39) 4.25 (4.11, 4.40) 4.39 (4.20, 4.57) 4.34 (3.97, 4.71) 0.919 0.440 

Multivariate adjusted 4.30 (4.04, 4.56) 4.21 (4.04, 4.38) 4.29 (4.15, 4.42) 4.41 (4.22, 4.59) 4.30 (3.95, 4.66) 0.696 0.958 

Multivariate + BMI 4.29 (4.03, 4.56) 4.21 (4.04, 4.37) 4.29 (4.15, 4.42) 4.41 (4.22, 4.60) 4.31 (3.95, 4.67) 0.664 0.977 

HDL-cholesterol (mmol/l)        

Age- and sex adjusted 1.23 (1.15, 1.32) 1.18 (1.12, 1.23) 1.21 (1.16, 1.25) 1.21 (1.15, 1.27) 0.99 (0.87, 1.10)* 0.004 0.023 

Multivariate adjusted 1.23 (1.14, 1.32) 1.19 (1.13, 1.25) 1.21 (1.16, 1.25) 1.20 (1.13, 1.26) 0.98 (0.86, 1.11)* 0.009 0.018 

Multivariate + BMI 1.25 (1.16, 1.34) 1.20 (1.14, 1.26) 1.20 (1.15, 1.25) 1.18 (1.12, 1.25) 0.97 (0.85, 1.09)* 0.002 0.031 

LDL-cholesterol (mmol/l)        

Age- and sex adjusted 2.26 (2.02, 2.49) 2.28 (2.12, 2.43) 2.28 (2.15, 2.41) 2.38 (2.22, 2.55) 2.38 (2.05, 2.70) 0.424 0.902 



Multivariate adjusted 2.20 (1.97, 2.42) 2.27 (2.13, 2.42) 2.31 (2.20, 2.43) 2.37 (2.22, 2.53) 2.33 (2.03, 2.63) 0.415 0.580 

Multivariate + BMI 2.21 (1.98, 2.43) 2.28 (2.13, 2.42) 2.31 (2.19, 2.43) 2.37 (2.21, 2.53) 2.33 (2.03, 2.63) 0.463 0.604 

Numbers in parentheses represent the 95% Confidence Intervals.  

Age- and sex adjusted models also included adjustment for trial arm. Multivariate adjusted models included age, sex, trial arm, occupational socio-economic class, PAEE, sedentary time, smoking status, 

alcohol consumption, self-reported feelings of tiredness, mental health score and sleep affecting medication. 

Systolic- and diastolic blood pressure were additionally adjusted for prescription of anti-hypertensive drugs; HbA1c was additionally adjusted for prescription of glucose lowering drugs; triacylglycerol, 

total cholesterol, HDL- and LDL-cholesterol were additionally adjusted for prescription of lipid-lowering drugs. 
1 Data are geometric means (95% CIs) 

* Denotes significant difference from those sleeping 7 to <8 hours/night at p<0.05 using Dunnett’s significant difference comparison. 

 


