
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 99, NO. 99, SEPTEMBER 2099 1

GPstruct: Bayesian Structured Prediction
using Gaussian Processes

Sébastien Bratières, Novi Quadrianto∗ and Zoubin Ghahramani

Abstract—We introduce a conceptually novel structured prediction model, GPstruct, which is kernelized, non-parametric and
Bayesian, by design. We motivate the model with respect to existing approaches, among others, conditional random fields
(CRFs), maximum margin Markov networks (M3N), and structured support vector machines (SVMstruct), which embody only
a subset of its properties. We present an inference procedure based on Markov Chain Monte Carlo. The framework can be
instantiated for a wide range of structured objects such as linear chains, trees, grids, and other general graphs. As a proof
of concept, the model is benchmarked on several natural language processing tasks and a video gesture segmentation task
involving a linear chain structure. We show prediction accuracies for GPstruct which are comparable to or exceeding those of
CRFs and SVMstruct.

Index Terms—Structured prediction, Gaussian processes, Segmentation

F

1 INTRODUCTION

Much interesting data does not reduce to points,
scalars or single categories. Images, DNA sequences
and text, for instance, are not just structured objects
comprising simpler indendent atoms (pixels, DNA
bases and words). The interdependencies among the
atoms are rich and define many of the attributes
relevant to practical use. Suppose that we want to
label each pixel in an image as to whether it belongs
to background or foreground (image segmentation),
or we want to decide whether DNA bases are coding
or not. The output interdependencies suggest that we
will perform better in these tasks by considering the
structured nature of the output, rather than solving a
collection of independent classification problems.

Existing statistical machine learning models for
structured prediction, such as maximum margin
Markov Network (M3N) [1], structured support vector
machines (SVMstruct) [2] and conditional random
field (CRF) [3], have established themselves as the
state-of-the-art solutions for structured problems (cf.
figure 1 and table 1 for a schematic representation of
model relationships).

In this paper, we focus our attention on CRF-like
models due to their probabilistic nature, which allows
us to incorporate prior knowledge in a seamless man-
ner. Further, probabilistic models make it possible to

• S. Bratières is with Department of Engineering, University of Cam-
bridge, Cambridge, UK.

• N. Quadrianto is with SMiLe CLiNiC, Department of Informatics,
University of Sussex, UK.

• Z. Ghahramani is with Department of Engineering, University of
Cambridge, Cambridge, UK.

∗Corresponding Author: N.Quadrianto@sussex.ac.uk
Manuscript received July 2013.

compute posterior label probabilities that encode our
uncertainty in the predictions.

On the other hand, SVMstruct and M3N offer the
ability to use kernel functions for learning using
implicit and possibly infinite dimensional features,
thus overcoming the drawbacks of finite dimensional
parametric models such as the CRF. In addition, ker-
nel combination allows the integration of multiple
sources of information in a principled manner. These
reasons motivate introducing Mercer kernels in CRFs
[4], an advantage that we wish to maintain.

From training and inference point of views, most
CRF models estimate their parameters point-wise us-
ing some form of optimisation. In contrast, [5] provide
a Bayesian treatment of the CRF which approximates
the posterior distribution of the model parameters, in
order to subsequently average over this distribution at
prediction time. This method avoids important issues
such as overfitting, or the necessity of cross-validation
for model selection.

Reflecting on this rich history of CRF models, we
ask a very natural question: can we have a CRF model
which is able to use implicit features spaces and at
the same time estimates a posterior distribution over
model parameters? The main drive for pursuing this
direction is to combine the best of both worlds from
Kernelized CRFs and Bayesian CRFs. To achieve this,
we investigate the use of Gaussian processes (GP) [6]
for modelling structured data where the structure is
imposed by a Markov Random Field as in the CRF.

Our contributions are the following:
• a conceptually novel model which combines GPs

and CRFs, and its coherent and general formali-
sation;

• while the structure in the model is imposed by a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/42337882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 99, NO. 99, SEPTEMBER 2099 2

MRF Markov random field
GP Gaussian process [6]
GPMC GP multi-class classification [7]
CRF conditional random field [3]
KCRF kernelized CRF [4]
BCRF Bayesian CRF [5]
M3N maximum-margin Markov network [1]
GPC MAP GPC maximum a posteriori
GP seq MAP GP for sequence labelling [?], [8]
LR logistic regression (classification)
SVM support vector machine
SVMMC multiclass SVM [9],

[10]
SVMstruct structured SVM [2]
GPstruct structured GP classification this paper

TABLE 1: Models, acronyms and references. A unified
view of structured prediction models related to CRF
and SVM is given in [11]. [12] presents techniques and
applications resulting from a decade of work on CRFs.

KCRF
SVMstruct

GP seq MAP
M³N

GPC MAP

GPMCBayesian LR

BCRF

LR

CRF

GPstruct

non-
parametric�

�
Bay

es
ian

st
ru

ct
ur

ed
 �

Fig. 1: Schematic representation of structured predic-
tion models. The model we are describing here, GP-
struct, exhibits all three properties separately present
in other, existing, models.

Markov Random Field, which is very general, as
a proof of concept we investigate a linear chain
instantiation;

• a Bayesian learning algorithm which is able to
address model selection without the need of
cross-validation, a drawback of many popular
structured prediction models;

The present paper is structured as follows. Section
2 describes the model itself, its parameterization and
its application to sequential data, following up with
our proposed learning algorithm in section 3. In sec-
tion 4, we situate our model with respect to existing
structured prediction models. An experimental eval-
uation against other models suited to the same task
is discussed in section 5.

2 THE MODEL

The learning problem addressed in the present pa-
per is structured prediction. Assume data consists of
observation-label (or input-output) tuples, which we
will note D = {(x(1),y(1)), . . . , (x(N),y(N))}, where N
is the size of the dataset, and (x(n),y(n)) ∈ X × Y is
a data point. In the structured context, y is an object
such as a sequence, a grid, or a tree, which exhibits
structure in the sense that it consists of interdependent
categorical atoms. Sometimes the output y is referred
to as the macro-label, while its constituents are termed
micro-labels. The observation (input) x may have some
structure of its own. Often, the structure of y then re-
flects the structure of x, so that parts of the label map
to parts of the observation, but this is not required.
The goal of the learning problem is to predict labels
for new observations.

The model we introduce here, which we call
GPstruct, in analogy to the structured support vector
machine (SVMstruct) [2], can be succinctly described
as follows. Latent variables (LV) mediate the influence

of the input on the output. The distribution of the
output labels given the input and the LV is defined
per clique: in undirected graphical models, a clique is a
set of nodes such that every two nodes are connected.
Let this distribution be:

p(y|x, f) =
exp(

∑
c f(c,xc,yc))∑

y′∈Y exp(
∑
c f(c,xc,y

′
c))

(1)

where yc and xc are tuples of nodes belonging to
clique c, while f(c,xc,yc) is a LV associated with this
particular clique and values for nodes xc and yc. Let f
be the collection of all LV of the form f(c,xc,yc). We
call the distribution (1) structured softmax, in analogy
to the softmax (a.k.a. multinomial logistic) likelihood
used in multinomial logistic regression. The condi-
tional distribution in (1) is essentially a CRF over
the input-output pairs, where the potential for each
clique c is given by a Gibbs distribution, whose energy
function is E(x,y) =

∑
c−f(c,xc,yc).

In the CRF, potentials are log-linear in the parame-
ters, with basis function wTφc(xc,yc), where w is the
weight parameter and φc a feature extraction func-
tion. Here instead, rather than choosing parametric
clique potentials as in the CRF, the GPstruct model
assumes that f(c,xc,yc) is a non-parametric function
of its arguments, and gives this function a GP prior.
Note that we substitute not only w, but the entire
basis function by a LV. In particular, f(c,xc,yc) is
drawn from a GP with covariance function (i.e. Mercer
kernel) k((c,xc,yc), (c′,xc′ ,yc′)), so that:

f ∼ GP(0, k(·, ·)) (2)

In summary, the GPstruct is a probabilistic model in
which the likelihood is given by a structured softmax,
with a Markov random field (MRF) modelling output
interdependencies; the MRF’s LV, one per factor, are
given a GP prior. This MRF could take on many

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 99, NO. 99, SEPTEMBER 2099 3

Fig. 2: Linear-chain factor graph for sequence predic-
tion.

shapes: linear for text, grid-shaped to label pixels in
computer vision tasks [13], or even, to take a less
trivial example, hierarchical, in order to model prob-
abilistic context-free grammars in a natural language
parsing task using CRFs [14].

2.1 Linear chain parameterization

While this model is very general, we will now in-
stantiate it for the case of sequential data, on which
our experiments are based. Both the input and output
consist of a linear chain of equal length T , and where
the micro-labels all stem from a common set, i.e.
Y = ×

t=1,...,T
Yt with ∀t,Yt = L (and the same for X and

Xt). We will therefore write y = (y1, . . . , yt, . . . , yT)
and x = (x1, . . . ,xt, . . . ,xT). In this context, macro-
labels can be called label sequences, and micro-labels
just “labels”, without risk of confusion.

In our experiments below, we tackle text data: the
input consists of sentences (chains of words), and out-
puts of corresponding chains of task-specific micro-
labels. A common natural language processing task
is word/ sentence/ topic segmentation: here the (2-
class) micro-labels are B, to label the beginning of a
segment, and I , to label the inside of a segment.

We will now expose the design decisions involved
in instantiating GPstruct to a linear-chain MRF. A
priori, there is one LV per (c,xc,yc), i.e. per clique
and node values.

Parameter tying amounts to grouping (tying) some
of these LV, thus decreasing the number of LV which
need to be learnt. In particular, we will be interested
in grouping LV according to their clique type (or clique
template [4]) or to node values. In the linear chain
model, there are two clique types: pairwise cliques
(yt, yt+1), and unary cliques (xt, yt).

In our treatment of linear chain GPstruct, we tie
LV as follows: we distinguish each individual unary
clique, but tie all pairwise cliques, so that we can
denote them by c̃t resp. ˜̃c; further, we do not tie based
on node values. This is illustrated in figure 2. By
distinguishing each unary clique, we obtain a non-
parametric model, where the number of unary LV
grows with the data. Alternatively, we could decide
to group all c̃t to c̃, or maybe to group all c̃t except

for the edge positions t = 1 or t = T , where the
task may dictate a special behaviour. The same goes
for the pairwise LV, where alternative choices may be
relevant to the domain. Parameter tying for the linear
chain is essentially the same as e.g. for a grid.

Let T (n) denote the length of y(n) (which need not
be constant across label sequences). In our chosen
parameterization, there is one unary LV for each
position t, and each value yt, so there are

∑
n T

(n)×|L|
unary LV. This number usually dominates the number
of pairwise LV.

Note that we had to define LV for all possible
labels yt (more generally, ∀y ∈ Y), not just the ones
observed. This is because in (1), the normalisation
runs over y′ ∈ Y , and also because we want to
evaluate p(y|x, f) for any potential y. By contrast, the
input x and therefore xt is always assumed observed
in our supervised setting, and so we do not need to
define LV for ranges of xt values.

Now turning to pairwise LV: there is one pairwise
LV per (yt, yt+1) tuple; and so there are |Yt|×|Yt+1| =
|L|2 pairwise LV.

2.2 Kernel function specification
The Gaussian process prior defines a multivariate
Gaussian density over any subset of the LV, with usu-
ally zero mean and a covariance function given by the
positive definite kernel (Mercer kernel) k [15]. Here
we make use of decomposition property of kernels
on Markov random fields into substructures defined
by maximal cliques of the MRFs (see for example
[?, Lemma 5]). For a linear-chain MRF depicted in
figure 2, our choice of kernel decomposes into unary
and pairwise kernel functions since the clique struc-
ture consists of pairwise cliques (yt, yt+1) and unary
cliques (xt, yt):

k((c,xc,yc), (c
′,xc′ ,yc′)) =

I[c, c′is unary] ku((t,xt, yt), (t′,xt′ , yt′))
+ I[c, c′is pairwise] kp((yt, yt+1), (yt′ , yt′+1))

(3)

In the above, we make use of Iverson’s bracket no-
tation: I[P] = 1 when condition P is true and 0
otherwise. The positions of c, c′ are noted t, t′, and
xt,xt′ , yt, yt′ are the corresponding input resp. output
node values. The kernel function in (3) computes
similarity between any two cliques c, c′ but its value
will only be non-zero if both are of the same type,
that is both are unary or both are pairwise.

The unary kernel ku((t,xt, yt), (t
′,xt′ , yt′)) corre-

sponds to a dot product between features associated
with unary cliques (xt, yt) and (xt′ , yt′). We assume
the joint feature map defined on (xt, yt) factorizes into
an outer product between a feature map on xt and a
feature map on yt. With this factorization assumption,
the unary kernel is of the form

ku((t,xt, yt), (t
′,xt′ , yt′)) = ky(yt, yt′)kx(xt,xt′). (4)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 99, NO. 99, SEPTEMBER 2099 4

kx is an “input-only” kernel, for instance the linear
kernel 〈xt,xt′〉, or the squared exponential kernel,
defined as the inverse of the exponentiated Euclidean
distance: exp(− 1

γ ||xt − xt′ ||2), where γ is a kernel
hyperparameter. And ky is an “output-only” kernel.
Here we focus on a label diagonal output kernel
ky(yt, yt′) = I[yt = yt′] corresponding to the standard
winner-takes-all multiclass classification [2]. The final
form of our unary kernel is now:

ku((t,xt, yt), (t
′,xt′ , yt′)) = I[yt = yt′]kx(xt,xt′). (5)

Further, our pairwise kernel takes on the form

kp((yt, yt+1), (yt′ , yt′+1)) = I[yt = yt′ ∧ yt+1 = yt′+1]
(6)

We choose the above white noise kernel as it has also
been explored in [8].

With the proper ordering of LV, the Gram matrix
has a block-diagonal structure:

K = cov[f] =

(
Kunary 0

0 Kpairwise

)
(7)

It is a square matrix, of length equal to the total
number of LV

∑
n T

(n) × |L| + |L|2. Kunary is block
diagonal, with |L| equal square blocks, each the Gram
matrix of kx of size

∑
n T

(n), and Kpairwise = I|L|2 .
Summing up sections 2 to 2.2, designing an instance

of a GPstruct model requires three types of decisions:
the choice of the MRF, mainly dictated by the task and
the output data structure; parameter tying; kernel de-
sign. The next section now details attractive properties
of this model.

2.3 Model properties

The GPstruct model has the following appealing sta-
tistical properties:

Structured: the output structure is controlled by
the design of the MRF, which is very general. The
only practical limitation is the availability of efficient
inference procedures on the MRF.

Non-parametric: the number of LV grows with the
size of the data. In the linear chain case, it is the
number of unary LV which grows with the total
length of input sequences.

Bayesian: this is a probabilistic model that sup-
ports Bayesian inference, with the usual benefits of
Bayesian learning. At prediction time: error bars and
reject options. At learning time: model selection and
hyperparameter learning with inbuilt Occam’s razor
effect, without the need for cross-validation.

Kernelized: a joint (input-output) kernel is de-
fined over the LV. Kernels potentially introduce sev-
eral hyperparameters, making grid search for cross-
validation intractable. Kernelized Bayesian models
like GPstruct do not suffer from this, as they define a
posterior over the hyperparameters.

3 LEARNING

Our learning algorithms are Markov chain Monte
Carlo procedures, and as such are “any-time”, in that
they have no predefined stopping criterion.

3.1 Prediction
Given an unseen test point x∗, and assuming the
LV f∗ corresponding to x∗ to be accessible, we wish
to predict label ŷ∗ with lowest loss. Now, given f∗,
the underlying MRF is fully specified. In tree-shaped
structures, belief propagation gives an exact answer in
linear time O(T); in the linear chain case, under 0/1
loss `(y, ŷ) = δ(y = ŷ), we predict the jointly most
probable output sequence obtained from the Viterbi
procedure, and under Hamming (micro-label-wise)
error `(y, ŷ) =

∑
t δ(yt = ŷt), we predict the micro-

label-wise most probable output sequence. For other
cases than trees, where exact inference is impossible,
approximate inference methods such as loopy belief
propagation [16] are available.

Given f , due to the GP marginalisation property,
the test point LV f∗ are distributed according to a
multivariate Gaussian distribution (cf. e.g. [17, section
2] for a derivation):

f∗|f ∼ N(KT
∗ K

−1f ,K∗∗ −KT
∗ K

−1K∗), (8)

where matrices K,K∗,K∗∗ have their element (i, j)

equal to k(f i, f (j)) resp. k(f i, f (j)∗) resp. k(f (i)∗ , f
(j)
∗),

with k the kernel described section 2.2.
Uncertainty over f∗|f is accounted for correctly by

Bayesian model averaging: ŷ∗ = argmaxy∗∈Y∗ p(y∗|f),
with

p(y∗|f) =
1

Nf∗|f

∑
f∗|f

p(y∗|f∗) (9)

where Nf∗|f is the number of samples from f∗|f .

3.2 Sampling from the posterior
We wish to represent the posterior distribution f |D
(as opposed to performing a MAP approximation of
the posterior to a single value fMAP). The training
data likelihood is p(D|f) =

∏
n p(y

(n)|f ,x(n)), with
the single point likelihood given by (1). Training aims
at maximizing the likelihood, for which we propose
to use elliptical slice sampling (ESS) [18], an efficient
MCMC procedure for ML training of tightly coupled
LV with a Gaussian prior. In all our experiments
below, we discard the first third of the samples before
carrying out prediction, to allow for burn-in of the
MCMC chain.

The computation of the likelihood itself is a non-
trivial problem due to the presence of the normalising
constant, which ranges over y′ ∈ Y , of size exponen-
tial in the number of micro-labels |L|. In the case of
tree-shaped MRFs, however, belief propagation yields
an exact and usually efficient procedure; in the linear

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 99, NO. 99, SEPTEMBER 2099 5

case, it is referred to as forwards-backwards proce-
dure, and runs in O(T |L|2).

ESS requires computing the full kernel matrix, of
size O(N2

LV), where NLV is the total number of LV,
and its Cholesky, obtained in O(N2

LV) time steps. The
large size of the matrices is a limiting factor to our
implementation.

ESS yields samples of the posterior. To perform
prediction, it is necessary to introduce one more level
of Bayesian model averaging: continuing from (9),

p(y∗|D) =
1

Nf

∑
f

p(y∗|f) (10)

where Nf is the number of samples of f |D available.

4 RELATION TO OTHER MODELS

Our proposed method builds upon a large body of
existing models, none of which, however, exhibit all
properties mentioned in section 2.3.

4.1 GP classification

Gaussian process models (or any regression models
such as a linear regression) can be applied to clas-
sification problems. In a probabilistic approach to
classification, the goal is to model posterior prob-
abilities of an input point x belonging to one of
|L| classes, y ∈ {1, . . . , |L|}. For binary classifica-
tion (that is |L| = 2), we can turn the output of
a Gaussian process (in R) into a class probability
(in the interval [0, 1]) by using an appropriate non-
linear activation function. The most commonly used
such function is the logistic function p(y = 1|f,x) =

exp(f(x))
exp(f(x))+exp(−f(x)) . The resulting classification model
is called GP binary classification [7]. Let us now move
from binary classification to multi-class classification.
This is achieved by maintaining K regression models,
each model being indexed by a latent function fk. We
use the vector notation f = (f1 . . . fK) to index the
collection of latent functions. The desired multi-class
model is obtained by using a generalisation of the
logistic to multiple variables, the softmax function:
p(y = k|f ,x) = exp(fk(x))∑K

k=1 exp(fk(x))
. The corresponding

model is called Gaussian process multi-class classifi-
cation (GPMC) [7]. Note that the above multiclass
distribution is normalised over the set of possible
output labels L (here |Y| = K). Simply extending the
multi-class model for a structured prediction case is
computationally infeasible due to the sheer size of the
label set L. We provide a novel extension of Gaussian
process for structured problems. Structured prediction
itself has a long history of successful methods, which
we discuss in subsequent sections.

4.2 From logistic to structured logistic

A natural way to cater for interdependencies between
micro-labels at prediction time, is to define an MRF
over y, and to condition the resulting distribution
on the input x (i.e. in a graphical model represen-
tation, inserting directed edges from input to out-
put): we thus obtain a mixed graphical model, the
conditional random field (CRF) [3], a very popular and
successful model for structured prediction. The CRF
defines a log-linear model for p(y|x): p(y|x,w) =

1
Z(x,w) exp (

∑
c 〈wc, φ(xc,yc)〉) , for a weight vector

w. Instead of parameterizing the energy function,
E(x,y) := −〈wc, φ(xc,yc)〉, by means of a weight
vector, GPstruct place a Gaussian process prior over
energy functions, effectively side-stepping parameter-
ization. Recent advances in CRF modelling by [19]
also side-step linear parameterization of the energy
function. Instead, a random forest is used to model the
energy function, allowing higher order interactions.

4.3 Kernelizing structured logistic

[4] presents a kernelized variant of the CRF, the
kernel conditional random field (KCRF), where a kernel is
defined over clique templates. The kernelized version
of the CRF is generally difficult to construct, to train,
and have several hyperparameters that need to be set
via cross-validation, therefore, have not been adopted
as enthusiastically as regular CRF. Structured support
vector machines [2], SVMstruct, and maximum margin
Markov networks [1], M3N also model p(y|x) as a log-
linear function. However, to learn w, while traditional
CRF learning maximizes the conditional log likeli-
hood of the training data, both SVMstruct and M3N
perform maximum margin training: learn w which
predicts the correct outputs with a large margin com-
pared to incorrect outputs (all other outputs except
the correct ones). SVMstruct can be easily kernelized
by means of the representer theorem. Our proposed
GPstruct is also kernelized, with a practical advantage
that kernel hyperparameters can be inferred from the
data instead of requiring a cross-validation procedure.

4.4 Bayesian versus MAP inference

By Bayesian inference (as opposed to maximum like-
lihood ML or maximum a posteriori MAP inference),
we mean the preservation of the uncertainty over LV,
that is their representation, not as point-wise esti-
mates, but as random variables and their probability
distribution.

CRF parameters are usually estimated point-wise,
e.g. often with an ML or MAP objective using gradient
ascent or approximate likelihood techniques, cf. [12]
for a review. An exception to this is Bayesian conditional
random field (BCRF) proposed by [5]. Instead of point-
wise parameter estimation, the BCRF approximates
the posterior distribution of the CRF parameters as

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 99, NO. 99, SEPTEMBER 2099 6

Algorithm 1 Training and Prediction of GPstruct

Input Training dataset D = {(x(1),y(1)), . . . , (x(N),y(N))} and a test sequence x∗
Input Unary ku(·, ·) and pairwise kp(·, ·) kernel functions with the hyperparameters (e.g. hp, γ)
Compute the block-diagonal Gram matrix K of the training dataset as in (7)
Compute Cholesky factorization on (K + 10−4I∑

n T
(n)×|L|+|L|2)

Sample posterior distribution f |D using elliptical slice sampling (ESS)
with forwards-backwards procedure to compute likelihood p(y(n)|f ,x(n))

Sample predictive latent function f∗ of test sequence x∗ via (8)
Compute p(y∗|f∗,x∗) using forwards-backwards procedure
Perform averaging over f∗ to obtain p(y∗|f) as in (9)
Perform averaging over f to obtain p(y∗|x∗,D) as in (10)
Return predictive distribution p(y∗|x∗,D)

Gaussian distributions and learns them using ex-
pectation propagation [20]. GPstruct also follows a
Bayesian inference procedure, and combines it with
kernelization.

Despite the similarity in name, the model in [8]
is more similar to the KCRF than to GPstruct. Like
KCRF, this work tackles sequence labelling, while we
purposefully formulate GPstruct to apply to any un-
derlying MRF, even though we demonstrate its instan-
tiation in sequences. More importantly, [?], [8] take a
MAP estimation of the LV, making the model, among
others, unable to infer associated hyperparameters
directly from the data. However, the point-wise MAP
estimate comes with a benefit: sparsification, due to
the applicability of the representer theorem. The LV
appear as a weighted sum of kernel evaluations over
the data. Two methods are applicable from here. The
first, applied in [8, 4.2] and [4, 3], consists in greedily
selecting the LV/ clique associated to the direction
of steepest gradient, during the optimisation phase.
The second method consists of applying the “Taskar
trick” [1], and is concerned with the fact that in the LV
expression obtained from the representer theorem, the
sum runs over Y , i.e. all possible macro-labels, which
is exponentially large in |L|. This trick consists in a
rearrangement of terms inside the objective functions
which allows a lower-dimensional reparameteriza-
tion. These sparsification techniques are not accessible
to us due to the use of a Bayesian representation;
however alternative techniques may come from the
GP sparsification literature.

4.5 Structured prediction via output kernels
All previously mentioned structured prediction meth-
ods explicitly model the output interdependency via
MRF. A different strand of work aims at building
an implicit model of output correlations via a kernel
similarity measure [21], [22]. The twin Gaussian pro-
cesses of [22] address structured continuous-output
problems by forcing input kernels to be similar to
output kernels. This objective reflects the assumption
that similar inputs should produce similar outputs.
The input and output are separately modelled by GPs

with different kernels. Learning consists of minimis-
ing KL divergence.

5 APPLICATIONS

In order to appreciate how the proposed model and
learning scheme compare to existing techniques, we
conducted benchmark experiments on a range of
language processing tasks: segmentation, chunking,
and named entity recognition, as well as on a video
processing task, gesture segmentation, all involving a
linear chain structure.

5.1 Text Processing Task
Our data and tasks comes from the CRF++ toolbox1.
Four standard natural language processing tasks are
available, cf. table 2. Noun phrase identification (Base
NP) tags words occurring in noun phrases with B for
beginning, I for a word inside a noun phrase, and
O for other words. Chunking (i.e. shallow parsing)
labels sentence constituents. The Segmentation task
identifies words (the segments) in sequences of Chi-
nese ideograms. Japanese named entity recognition
(Japanese NE) labels several types of named entities
(organisation, person, etc.) occurring in text.

The data was used in pre-processed form, with
sparse binary features extracted for each word posi-
tion in each sentence. Results were averaged over five
experiments per task. Each experiment’s training and
test data was extracted from the full data set (sizes
given in table 2) so that the training sets were always
disjoint – except in the case of segmentation, a small-
data set of 36 sentences overall, which was subjected
to five random splits.

Baselines We compared GPstruct to CRF and SVM-
struct. The CRF implementation2 used LBFGS optimi-
sation. In nested cross-validation, the L2 regularisa-
tion parameter ranged over integer powers from 10−8

to 1. Prediction in the CRF and GPstruct minimised

1. by Taku Kudo http://crfpp.googlecode.com/svn/trunk/doc/
index.html

2. by Mark Schmidt http://www.di.ens.fr/∼mschmidt/
Software/crfChain.html

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 99, NO. 99, SEPTEMBER 2099 7

Base NP Chunking Segmentation Japanese NE
number of categories 3 14 2 17
number of features 6,438 29,764 1,386 102,799
size training/ test set (sentences) 150 / 150 50 / 50 20 / 16 50 / 50
SVMstruct 5.91±0.19 9.79±0.43 16.21±0.99 5.64±0.37
CRF 5.92±0.10 8.29±0.34 14.98±0.50 5.11±0.29
GPstruct (hp = 1) 4.81±0.21 8.76±0.48 14.87±0.80 5.82±0.37
GPstruct (prior whitening) 5.06±0.17 8.57±0.54 14.77±0.79 5.65±0.36

GPstruct Multiple Kernel: Linear + Squared Exponential

GPstruct MK (hp = 1&hse = 1) 5.06±0.18 8.68±0.57 14.82±0.69 5.55±0.32
GPstruct MK (prior whitening) ± 8.33±0.49 ± 5.58±0.34

TABLE 2: Experimental results on text processing task. Error rate across 5 experiments (mean ± standard
error). GPstruct experiments on 250 000 ESS steps (i.e. f samples), using the f∗ MAP scheme, linear kernel,
sampling hyperparamers every 1 000 steps (prior whitening) or fixing hp = 1, thinning at 1:1 000. The best
result and those results not significantly worse than it, are highlighted in boldface. We used a paired t-test
with 99% confidence level as reference. The last two rows show results of kernels combination (section 5.2).

Hamming loss (cf. section 3.1). The SVMstruct3 used
a linear kernel as the toolbox does not support non-
linear kernels yet. We also used a linear kernel for GP-
struct. The regularisation parameter in nested cross-
validation ranged over integer powers from 10−3 to
102.

Computing The CRF package is MEX-compiled
Matlab, while the SVMstruct system is coded in
C++. Our Matlab implementation of GPstruct used
MEX functions from the UGM toolbox4 for likelihood
(implementing the forward-backward algorithm). To
illustrate runtimes, a 10 hour job on a single core
of a 12-core Hex i7-3930K 3.20 GHz machine can ac-
commodate CRF/SVMstruct learning and prediction,
including nested cross-validation over the parameter
grid mentioned above, for one experiment, for one
task. In the same computing time, GPstruct can per-
form 100 000 iterations for one experiment for the
chunking or segmentation task (the fastest), including
hyperparameter sampling (50 000 resp. 80 000 iter-
ations for Base NP resp. Japanese NE). Getting a
precise runtime comparison of CRF, SVMstruct and
GPstruct code is not straightforward since implemen-
tation languages differ. Having said that, our GPstruct
experiments were roughly a factor of two slower than
the baselines including grid search.

Kernel hyperparameter learning The GP prior over
f is parameterized by its mean (zero in our case), and
the kernel function, which may possess hyperparam-
eters. To explore the effect of kernel hyperparameter
learning, we introduce a multiplicative hyperparam-
eter hp in front of the pairwise kernel, and give it a
scaled Gamma hyperprior : hp/10−4 ∼ Gamma(1, 2).

MCMC sampling of the hyperparameter is per-
formed using the prior whitening technique [18],

3. by Thorsten Joachims http://www.cs.cornell.edu/people/tj/
svm light/svm hmm.html

4. also by Mark Schmidt http://www.di.ens.fr/∼mschmidt/
Software/UGM.html

which is easy to implement. Surrogate data modelling
[18] is tailored to GP prior LV models, and is reported
to give better results; however, it requires an approx-
imation of the posterior variance for the structured
softmax case. While it is possible to derive such ap-
proximations, we could not observe any performance
gain in our experiments so far.

Experimentally, ESS (which samples f |D) needs to
be run over many more iterations than hyperpa-
rameter sampling (sampling from the hyperparam-
eter posterior h|D). We therefore sample from the
hyperparameter once every 1 000 ESS steps. Kernel
learning is possible as well with GPstruct, but a
few exploratory experiments using polynomial and
squared exponential kernels on the binary-valued text
datasets did not improve the performance.

Results and interpretation Our experimental re-
sults are summarised in table 2. GPstruct is gener-
ally comparable to the CRF, and slightly better than
SVMstruct. Our choice of hyperprior does not seem to
fit the Base NP task, where hyperparameter sampling
turns out to be worse than keeping hp fixed at 1.

5.2 Text Processing Task with Distributional Sim-
ilarity

In section 5.1 we show experimental results using
sparse binary features based on outputs of a part-of-
speech (POS) tagger. Recently, in NLP field, there is an
increased interest in the so-called word vector [?], [?],
that is continuous word representations encoding sim-
ilarity between words. This concept of distributional
similarity is potentially useful when we encounter
rarely occuring or unknown words. To incorporate
the word vectors, we could use feature concatenation
which in the kernel terminology is corresponding to
a linear kernel combination. However, the framework
of GPstruct allows us to move beyond combination
of linear kernels. More importantly, we will be able

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 99, NO. 99, SEPTEMBER 2099 8

0 500000 1000000 1500000 2000000 2500000

#f samples

0.06

0.08

0.10

0.12

0.14

0.16

E
rr

o
r

ra
te

hp = 1; chunkinghp sampling

hp = 1; segmentation
hp sampling

hp = 1; japanesenehp sampling
hp = 1; basenphp sampling

20000 40000 60000 80000
f samples

0.00

0.05

0.10

0.15

0.20

0.25

e
rr

o
r

ra
te

thin 1:1
thin 1:1000
thin 1:4000
thin 1:8000
thin 1:16000

20000 40000 60000 80000
f samples

0.00

0.05

0.10

0.15

0.20

e
rr

o
r

ra
te

f* MAP
1 f* sample
2 f* samples
10 f* samples

Fig. 3: left: Effect of sampling hyperparameters every 1 000 steps versus fixing hp = 1, over the full history of
f samples. f∗ MAP scheme, thinning at 1:1 000. middle: Effect of thinning, i.e. sampling f∗|f more rarely than
every f sample. Chunking task, f∗ MAP scheme, hp = 1. right: Effect of number of f∗|f samples for each f
sample. Chunking task, thinning at 1:1 000, hp = 1.

to perform MCMC sampling on the kernel combina-
tion weights. We extract 200 dimensional continuous
word-vector representation using a neural network
skip-gram architecture [?]5. We used a linear kernel for
the sparse binary features and a squared exponential
kernel, exp(− 1

γ ||xt − xt′ ||2), for the continuous word
vectors where the kernel width γ is set to the median
pairwise distance. Similar to the pairwise kernel, we
introduce a multiplicative hyperparameter hse in front
of the squared exponential kernel, and give it a scaled
Gamma hyperprior : hse/10

−4 ∼ Gamma(1, 2). The
results are presented in the last two rows of table
tab:nlp.

5.3 Video Processing Task
In a second set of experiments, we apply CRF and
GPstruct to the ChaLearn gesture recognition dataset6.
The data in this case consists of video sequences of an
actor performing certain gestures. Each video frame is
labelled with a gesture. The videos have an average
length of 86 frames, and maximum length 305 frames.
The dataset has 20 sessions of 47 videos each. The
label space size varies for different sessions, between
9 and 13. For each session, we use 10 videos to train
a chain CRF or GPstruct and the rest as test data.
At each frame of the video we extract HOG/HOF
[23] descriptors and construct a codebook of 30 visual
words using a k-means clustering algorithm. Frames
are represented by normalized histograms of visual
words occurrence, resulting in 30 feature dimensions.
A squared exponential kernel was used. The kernel
hyperparameter γ is given a Gamma(1, 2) prior and
is initially set to the median pairwise distance.

Results The experimental results summarize as fol-
lows: averaged across all 20 sessions, the error rates
were 52.12 ± 11.73 for the CRF, 51.91 ± 11.02 for
GPstruct linear kernel, and 50.42± 11.24 for GPstruct
SE kernel. Since each session effectively represents

5. https://code.google.com/p/word2vec/
6. https://sites.google.com/a/chalearn.org/gesturechallenge/

20 30 40 50 60 70 80
CRF, Error rate

20

30

40

50

60

70

80

G
P
st

ru
ct

 S
E
 k

e
rn

e
l,
 E

rr
o
r

ra
te

 5 / 20

15 / 20

Fig. 4: Error rate cross plot of the 20 gesture video
sessions. The axes correspond to error rate of GPstruct
with SE kernel and CRF, the diagonal line shows equal
performance. The shadowed stars are those with at
least 5% performance difference.

one specific learning task, we compare the pairwise
performances across 20 sessions between GPstruct SE
kernel and CRF in figure 4. GPstruct outperforms the
CRF baseline by more than 5% in five cases, while
it underperforms it in one case. The performance be-
tween GPstruct linear kernel and CRF are comparable
and we did not include details here due to space
constraints.

5.4 Practical insights

We will open-source our GPstruct code on MLOSS7 to
expose the GPstruct model more widely and encour-
age experimentation.

Kernel matrix positive-definiteness To preserve
numerical stability of the Cholesky operation, diag-
onal jitter of 10−4 is added to the kernel matrices.
Depending on the hyperprior, some hyperparameter

7. www.mloss.org

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 99, NO. 99, SEPTEMBER 2099 9

samples may make the kernel matrices badly con-
ditioned: this is best prevented by rejecting such a
proposal by simulating a very low likelihood value.

How many f samples? All subplots in figure 3 plot
the error rate of some configuration against the num-
ber of f samples generated (i.e. iterations of the ESS
procedure). For all our tasks, the error rate improves
until 100 000 iterations, which shows heuristically that
sampling histories of at least this length are needed
to attain equilibrium for these problems.

How many f∗|f samples? f∗ need not be sam-
pled for every f sample which is generated; to save
computing time, we can thin and e.g. sample f∗|f
only every 10th f sample, disregarding the other nine
samples entirely. Our exploratory experiments show
the following: high thinning rates, such as 1:4 000,
seem to have very limited impact on the error rate, cf.
figure 3 (middle). Similarly, how many samples f∗|f do
we need? Do we need any at all, or could we use only
the mean of the predictive posterior? This would save
computing the predictive variance, which involves a
Cholesky matrix inversion, and is called “f∗ MAP”
here. Figure 3 (right) answers this: sampling more
often does not decrease the error rate. These findings
are very valuable in practice, and seem to indicate that
the predictive posterior is peaked, while the posterior
is rather flat, and requires a long MCMC exploration
path to be adequately sampled from. Computing time
is dictated by the ESS sampling procedure, so per-
formance improvement efforts should clearly aim at
obtaining decorrelated posterior samples.

6 CONCLUSIONS AND FUTURE WORK

As a model, GPstruct possesses many desirable prop-
erties, discussed in detail above. Our experiments
with sequential data yielded encouraging results: we
achieve performance comparable to CRF and exceed
SVMstruct in text processing tasks, and exceed CRF
in a video processing task. While GPstruct is the-
oretically attractive and empirically promising, we
have clearly only touched the surface of the model’s
possibilities. An important limitation preventing the
application to larger data sets is the size of the
kernel matrix K, square in the number of LV. One
promising direction is an ensemble learning approach
in which weak learners can be trained on subsets
of the LV constrained by the underlying MRF (thus
with quadratically smaller K), and their predictions
combined, by Bayesian model combination, into a
strong learner [?].

ACKNOWLEDGMENTS

The authors would like to thank Simon Lacoste-Julien,
Viktoriia Sharmanska, and Chao Chen for discussions.

REFERENCES
[1] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin

Markov networks. In NIPS, 2004.
[2] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann,

and Yasemin Altun. Large margin methods for structured and
interdependent output variables. JMLR, 6:1453–1484, 2005.

[3] John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In ICML, 2001.

[4] John Lafferty, Xiaojin Zhu, and Yan Liu. Kernel conditional
random fields: representation and clique selection. In ICML,
2004.

[5] Yuan Qi, Martin Szummer, and Thomas P. Minka. Bayesian
conditional random fields. In AISTATS, 2005.

[6] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian
Processes for Machine Learning. MIT Press, 2006.

[7] Christopher K. I. Williams and David Barber. Bayesian Clas-
sification With Gaussian Processes. IEEE Trans. Pattern Anal.
Mach. Intelligence, 20(12):1342–1351, 1998.

[8] Yasemin Altun, Thomas Hofmann, and Alexander J. Smola.
Gaussian process classification for segmenting and annotating
sequences. In ICML, 2004.

[9] Jason Weston and Chris Watkins. Support vector machines for
multi-class pattern recognition. In Proceedings of the Seventh
European Symposium On Artificial Neural Networks, 1999.

[10] Koby Crammer and Yoram Singer. On the algorithmic imple-
mentation of multiclass kernel-based vector machines. JMLR,
2:265–292, 2001.

[11] Fernando Perez-Cruz, Massimiliano Pontil, and Zoubin
Ghahramani. Conditional graphical models. In Predicting
Structured Data, pages 265–282. MIT Press, 2007.

[12] Charles A. Sutton and Andrew McCallum. An introduction to
conditional random fields. Foundations and Trends in Machine
Learning, 4(4):267–373, 2012.

[13] Sebastian Nowozin and Christoph H. Lampert. Structured
learning and prediction in computer vision. Foundations and
Trends in Computer Graphics and Vision, 2011.

[14] Ben Taskar, Dan Klein, Michael Collins, Daphne Koller, and
Christopher Manning. Max-margin parsing. In Conference
on Empirical Methods on Natural Language Processing (EMNLP),
2004.

[15] Bernhard Schölkopf and Alexander J. Smola. Learning with
Kernels: Support Vector Machines, Regularization, Optimization,
and Beyond. MIT Press, 2001.

[16] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy
belief propagation for approximate inference: An empirical
study. In UAI, 1999.

[17] Hannes Nickisch. Approximations for Binary Gaussian Pro-
cess Classification. JMLR, 2008.

[18] Iain Murray, Ryan P. Adams, and David J. C. MacKay. Ellip-
tical slice sampling. JMLR - Proceedings Track, 9:541–548, 2010.

[19] Jeremy Jancsary, Sebastian Nowozin, Toby Sharp, and Carsten
Rother. Regression tree fields - an efficient, non-parametric
approach to image labeling problems. In CVPR, 2012.

[20] Thomas P. Minka. A family of algorithms for approximate bayesian
inference. PhD thesis, MIT, 2001.

[21] Jason Weston, Olivier Chapelle, André Elisseeff, Bernhard
Schölkopf, and Vladimir Vapnik. Kernel dependency estima-
tion. In NIPS, 2002.

[22] Liefeng Bo and Cristian Sminchisescu. Twin gaussian pro-
cesses for structured prediction. IJCV, 2010.

[23] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Ben-
jamin Rozenfeld. Learning realistic human actions from
movies. In CVPR, 2008.

