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ABSTRACT
Motivated by recent observations of the Sagittarius stream, we devise a rapid algorithm
to generate faithful representations of the centroids of stellar tidal streams formed in a
disruption of a progenitor of an arbitrary mass in an arbitrary potential. Our method
works by releasing swarms of test particles at the Lagrange points around the satellite
and subsequently evolving them in a combined potential of the host and the progeni-
tor. We stress that the action of the progenitor’s gravity is crucial to making streams
that look almost indistinguishable from the N-body realizations, as indeed ours do.
The method is tested on mock stream data in three different Milky Way potentials
with increasing complexity, and is shown to deliver unbiased inference on the Galactic
mass distribution out to large radii. When applied to the observations of the Sagittar-
ius stream, our model gives a natural explanation of the stream’s apocentric distances
and the differential orbital precession. We, therefore, provide a new independent mea-
surement of the Galactic mass distribution beyond 50 kpc. The Sagittarius stream
model favours a light Milky Way with the mass 4.1± 0.4× 1011

M⊙ at 100 kpc, which
can be extrapolated to 5.6± 1.2× 1011

M⊙ at 200 kpc. Such a low mass for the Milky
Way Galaxy is in good agreement with estimates from the kinematics of halo stars
and from the satellite galaxies (once Leo I is removed from the sample). It entirely
removes the “Too Big To Fail Problem”.

Key words: Galaxy: halo – Galaxy: fundamental parameters – Galaxy: kinematics
and dynamics – galaxies: dwarf: Sagittarius

1 INTRODUCTION

Over many years, the uncertainty with which the total mass
of the Milky Way is known has been vexing theorists and
observers alike. The spread of allowed masses covers a large
range of possibilities in which both light (< 1012M⊙) and
heavy (> 2 × 1012M⊙) Galaxies are permitted to exist. At-
tempts to gauge the Galactic matter budget have been made
using a variety of stellar kinematic tracer populations (see
e.g. Smith et al. 2007; Xue et al. 2008; Bovy et al. 2012).
However, these methods suffer from systematics caused by
the lack of reliable tangential velocity and distance mea-
surements. For non-rotating populations, this is exacerbated
by the paucity of fast-moving and/or distant tracers. For a
dataset covering a large variety of sight-lines, the need for
tangential velocities for every star can be alleviated by using
an assumption as to the velocity anisotropy for the popu-
lation as a whole. The line of sight velocity contains con-
tributions from both the radial and tangential velocities as
judged from the Galactic centre. Provided the population is
relatively nearby, say at most ∼ 50 kpc away, then the veloc-
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ity anisotropy can be usefully constrained and some of the
degeneracy in mass estimates broken (Deason et al. 2012).

Other attempts at mass measurement have used the
motion of the population of the Galactic dwarf satellites
and globular clusters (e.g Little & Tremaine 1987; Zaritsky
et al. 1989; Wilkinson & Evans 1999; Sakamoto et al. 2003;
Watkins et al. 2010). These have the capability to probe the
mass of the Milky Way to much larger radii. Nonetheless,
many Galactic satellites do not possess reliable proper mo-
tions, and in any case the number of such objects is limited.
A further problem is the ambiguous position of the Leo I
dwarf satellite, which has a large line of sight velocity and
Galactocentric distance (Sohn et al. 2013). Leo I, if included,
contributes ∼ 30% to Watkins et al. (2010)’s estimate of the
virial mass of the Milky Way. However, there is an element
of circularity in this argument, as once Leo I is assumed to
be bound, the mass of the Milky Way must be large enough
to bind it (∼ 2 × 1012M⊙) !

On smaller scales, the tidal streams emanating from the
satellites of the Milky Way have been suggested as useful
constraints on the mass. This has been done most mem-
orably by Koposov et al. (2010) in their modelling of the
GD-1 stellar stream. Note that the GD-1 stream is only
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∼ 15 kpc from the Galactic centre, so their analysis con-
strains the mass out to modest Galactocentric distances.
What is needed is the modelling of a much more gigantic
structure that reaches out to much greater distances.

Recently, Belokurov et al. (2014) have demonstrated
that the trailing arm (see e.g. Koposov et al. 2012, 2013;
Slater et al. 2013) of the Sagittarius (Sgr) stream can be
traced out to its apocentre at ∼ 100 kpc. This confirms the
earlier discovery of Newberg et al. (2003) and complements
the earlier detections of the leading debris, whose apocentre
lies at ∼ 50 kpc (Belokurov et al. 2006). The vast scale of
the Sgr stream has therefore only recently become apparent.
It spans an enormous range of Galactocentric radii, unparal-
leled when compared to other known Milky Way streams and
substructures. Thus, the Sgr stream gives us a unique op-
portunity to make a precision measurement of our Galaxy’s
mass out ∼ 100 kpc, far further than hitherto possible.

However, to carry this out program requires the devel-
opment of new modelling techniques. In the past, N-body
simulations have been fitted to Sgr stream data with some
success (e.g. Fellhauer et al. 2006; Law & Majewski 2010),
but they suffer from the drawback that they are extremely
time-consuming and so preclude a full exploration of param-
eter space. Other attempts at potential inference using the
Sgr stream (e.g. Deg & Widrow 2013; Vera-Ciro & Helmi
2013; Ibata et al. 2013), while typically faster than the full-
blown N-body computations, have not tackled the problem
of producing realistic looking streams.

The main aim of this paper is to develop an approx-
imate method of quickly generating streams with realistic
centroids by stripping stars at the tidal radius of a progen-
itor. Their evolution in the Galactic gravitational potential
gives us the morphology of the stream, and in particular
the locations of the apocentres of the leading and trailing
branches. This enables us to search through a large class of
models to constrain the mass of the Milky Way.

The structure of the paper is as follows. In Section 2, we
summarize the data on the Sgr Stream. Section 3 introduces
a new way to generate streams and thence to perform infer-
ence on the Milky Way potential, which we term modified
Lagrange Cloud Stripping (mLCS). The mLCS algorithm
is tested against simulations of disruption in realistic Milky
Way-like potentials in Section 4. Finally, in Section 5, we
apply this method to the observations of the Sgr Stream to
recover an estimate of the mass profile of the Milky Way.
Section 6 summarises our results and their implications for
conundrums such as the “Too Big To Fail Problem”.

2 THE DATA

The most direct way of inferring the Galactic gravitational
potential is by modeling the paths of test particles orbiting
in it. Such inference, however, suffers from degeneracies if
only a small section of a single orbit is observed (see e.g.
Eyre & Binney 2009). In spherical potentials, the rosette
pattern of an orbit can be uniquely described by the size and
eccentricity of its “petals” – or equivalently the apocentric
and pericentric distances and the azimuthal precession rate
(see e.g. Binney & Tremaine 2008).

In the Milky Way, of all known stellar tidal streams,
only the Sgr stream has data covering two nearly complete

Table 1. The Sagittarius dwarf at a glance

Property Value Ref

Galactic latitude b −14◦.1669 [1]
Galactic longitude l 5◦.5689 [1]
Heliocentric distance d⊙ 22.0 to 28.4 kpc [2]
Heliocentric LOS velocity vr⊙ 153 ± 2 km s−1 [3]
Proper motion µb 1.97 ± 0.3 mas yr−1 [4]+[5]
Proper motion µl cos b −2.44 ± 0.3 mas yr−1 [4]+[5]

[1] Majewski et al. (2003) [2] Kunder & Chaboyer (2009)
[3] Ibata et al. (1994) [4] Pryor et al. (2010)
[5] Dinescu et al. (2005)

orbital loops, one for the leading tail and one for the trailing.
As Belokurov et al. (2014) show, the apocentre of the lead-
ing tail is firmly placed at ∼50 kpc and the trailing debris
are revealed to reach the maximal distance of ∼100 kpc from
the Galactic centre. The opening angle, as viewed from the
centre of the Galaxy, between the positions of the respec-
tive apocentres is measured to be ∼ 93◦. The apocentric
distances of the two tails contain information on the extent
of the progenitor’s orbit. Importantly, these also reflect the
differences in energy and angular momentum between the
orbit and the debris, which is essential for the stream mod-
elling. The differential precession is controlled, to first order,
by the radial mass profile in the Galaxy, but also is a weak
function of the Sgr’s orbital eccentricity. Finally, to com-
plete the model, we require the location of the progenitor in
both position and velocity space. These values will be taken
from the literature. In essence, to measure the total mass
distribution in the Galaxy, we aim to reproduce the apocen-
tric distances together with the differential precession angle
(raL, raT,∆ψ) of the Sgr stream.

Our best knowledge of the Sgr’s current position and
velocity is summarised in Table 1. Where there is disagree-
ment in the literature as to the value of some of these prop-
erties, we have tried to be as conservative as possible. This
is especially evident in the determination of the heliocen-
tric distance (see Kunder & Chaboyer 2009, for a summary
of recent measurements), which we assume lies somewhere
between the extrema of values measured (22.0 - 28.4 kpc).
The two best estimates of the progenitor’s proper motion
(Dinescu et al. 2005; Pryor et al. 2010) agree reasonably
well with one another, so we take the mean of their deter-
minations as a best estimate.

We take care in converting from the observable space of
heliocentric distance and proper motions to the true Galac-
tocentric distance and velocities to avoid introducing any
biases. For the peculiar motion of the Sun with respect to
the Local Standard of Rest (LSR), we take (U, V,W ) =
(11.1, 12.24, 7.25) km s−1 from Schönrich et al. (2010). For
the distance from the Sun to the Galactic center, we use
R0 = 8 kpc and we take the circular speed 1 at R0 to be
vc(R0) = 237 km s−1.

1 Note that we do not tie the circular speed at the Solar radius to
the fitted halo model as this induces a bias at small Galactocentric
radii of the order of 10%.
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Figure 1. The formation of a tidal stream in the energy and angular momentum space. Each of the three panels show snapshots of an
N-body simulation in E and L space at different time steps along the progenitor’s orbit, namely at pericentre (left), between pericentre
and apocentre (middle) and at apocentre (right). The progenitor forms an elongated pseudo-ellipse which rotates (and changes its aspect
ratio) as the orbital phase of the satellite grows. In this diagram, the unbound debris are seen as two fans offset from the E and L of the
progenitor’s centre of mass. The cloud with greater E and L is the trailing arm and the fan with lower E and L is the leading arm. Once
unbound the positions of stars in the “bow-tie” are frozen (bar possible small changes of the angular momentum in non-axisymmetric

potentials).

3 THE MODEL

Motions of bodies in a gravitational field are deterministic.
Thus, in principle, given the full velocity and position in-
formation for only 2 points on the orbit, initial and final,
the underlying potential can be constrained. This inspires
Rewinder (Price-Whelan & Johnston 2013), which takes ad-
vantage of the fact that the initial conditions for stars in
the tidal debris are fully specified if the progenitor is iden-
tified and its orbit is known. Similarly, Yu & Madau (2007)
show that it might be possible to constrain the Galactic halo
triaxiality based on the current positions and velocities of
hypervelocity stars, assuming these originate in the vicinity
of the central black hole. In reality, we rarely have accu-
rate measurements of all six phase-space coordinates across
large distances in the Galaxy. Instead, we typically attempt
to leverage the precise knowledge of some of the six dimen-
sions along a length of an orbit to simultaneously infer the
initial conditions as well as the properties of the force field.

Stellar streams follow their progenitors’ orbits approx-
imately. That is to say, there exists an offset between the
satellite’s orbit and each of the two tidal arms of the stream.
Quite simply, the stars in the debris are launched with ini-
tial conditions that are slightly different from those of the
progenitor. If sphericity of the underlying potential is as-
sumed, then the misalignment between the stream and the
orbit can be modelled simply by using the debris energy
and angular momentum distributions (e.g. Johnston 1998).
In general, this orbit-stream deviation (see e.g. Eyre & Bin-
ney 2011) can be stipulated in terms of a change in actions
and phases between the progenitor and the tidal debris (e.g.
Sanders & Binney 2013). As Eyre & Binney (2011) illustrate,
stars bound to the progenitor form an ellipse in action-space,
whose flattening and orientation are tied to the orbital phase
of the progenitor (see their Figure 10). As the progenitor
moves along the orbit and the ellipse rotates, the stripped
stars are frozen in action-space in those exact configurations
they were at the time of unbinding. As the disruption contin-

ues, the segments of the rotating ellipse contributed by the
stripped stars start to overlap, forming a bow-tie pattern.
This picture clearly indicates that there is an intricate link
between the time of disruption and the orbital parameters
of the stripped stars. However, the complexity of the debris
properties is largely concealed if the disruption is visualized
in frequency space. Here, the leading and the trailing tail
distributions look nearly one-dimensional and can be mod-
elled as Gaussian (see e.g. Bovy 2014; Sanders 2014).

Based on the pioneering ideas of Helmi & White (1999),
such stream models built in action-angle and frequency
space have been shown to work extremely well for cold
streams, i.e. those originating from progenitors with masses
up to 107

− 108M⊙ (for discussion, see e.g. Bovy 2014). For
more massive systems, the assumption that the distribution
of debris in action space can be approximated by a Gaus-
sian and that the frequency offset between the progenitor
and the stream is constant throughout the disruption are
likely to break down. Additionally, above 108M⊙ the grav-
ity of the progenitor is bound to muddle the elegant pre-
dictions based on the action-angle formalism. According to
Niederste-Ostholt et al. (2010), before the disruption, the
progenitor of the Sgr stream had in excess of 108M⊙ in stel-
lar mass alone. It is expected that the total mass of the Sgr
dwarf was even higher, quite possibly surpassing 109M⊙.
Therefore, to analyse the properties of the Sgr tidal tails,
we strive to build a stream model that works equally well
for progenitors of any mass.

3.1 Tidal Stream Mechanics

The objective of this paper is to explore the many-
dimensional space spanned by the parameters controlling
the mass profile in the Galaxy, while simultaneously fitting
for the appropriate progenitor model. Therefore, our method
of producing tidal tails must be as fast as possible while
maintaining the necessary degree of likeness when compared
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Figure 2. Left: Distribution of the tidal debris produced in the N-body simulation in configuration space. The particles are coloured
by “phase”, a metric monotonically increasing along the stream. This particular snapshot of the simulation corresponds to the fourth
pericentric passage, some 4 Gyr after the onset of disruption.Right: Distribution of the debris in E and L space. The colouring scheme
applied to the stream “bow-tie” is the same as in the Left panel. The particles are binned in E and L space and the median value of
the phase in each bin is shown. The main panel shows all stream particles created up to this time-step. The mini-panels on the right
show the distributions of particles created at the previous stripping epochs. Note that particles created the earliest (Epoch 1) have had
the most time to spread along the stream, thus creating a strict energy sorting. Even though particles from different individual epochs
overlap in the configuration space, the energy sorting persists as evidenced by the main panel.

to a “gold standard” stream. But what would such a gold
standard be in the case of the Sgr ?

Given the estimated mass of the dwarf prior to disrup-
tion and its orbital period, it seems appropriate to have a
“live” (as opposed to a static parameterized density-law) N-
body and hydrodynamical model for both the host and the
satellite. The need for the inclusion of not only the dark
matter, but also gas and stars is dictated by the complexity
of the available Sgr stream data. Both leading and trailing
tails show strong metallicity gradients and evidence for star
formation that possibly ceased only a few Gyrs ago. More-
over, each of the tails seems to be bifurcated into a bright
and faint component (Belokurov et al. 2006; Koposov et al.
2012). The very few studies that address the problem of the
disruption of a system with multiple components do find
that it can affect the resulting tidal tails significantly (see
e.g. Peñarrubia et al. 2010; Niederste-Ostholt et al. 2012).
Similarly, there are many reasons for the Milky Way model
itself to be “live”. First, this would naturally account for the
dynamical friction effects. Second, the Sgr disruption could
have been going on for so long (see e.g. Fellhauer et al. 2006)
that the Galaxy’s mass distribution has evolved. Finally, not
all combinations of the disc and the dark halo that can be
written down in a parameterized form are actually stable.
However, as Debattista et al. (2013) show, in a “live” Milky
Way the disc and the central parts of the halo would adjust
to each other’s presence to form a long-lived configuration.

As far as we are aware, such an in-depth study of the
Sgr disruption does not yet exist. Instead, the most widely
cited recent analysis (Law & Majewski 2010) relies on N-
body modelling in which the host potential is parameterized
(and fixed), while the single-component satellite is repre-
sented with particles. While not the ideal specification, this
particular simulation does reproduce the largest number of
observables in both the progenitor and the stream to date.

Thus, we attempt to build a rapid modelling algorithm that
reproduces the salient features of tidal streams produced in
N-body simulations such as that of Law & Majewski (2010).
Our goal, however, is to speed the stream production by sev-
eral orders of magnitude.

Before we proceed to assemble the stream model, let
us have a glance at a typical satellite disruption. The pro-
genitor’s evolution in the external gravitational potential is
simply understood in the action-angle and frequency space,
but it is equally transparent when looked at in energy and
angular momentum (E, L) space. Fig. 1 shows the results
of the simulation of the disruption of a satellite modelled
as a Plummer sphere with 6.4 × 108M⊙ and a = 0.85 kpc
in a spherical NFW potential (Navarro et al. 1996) with
the mass 7.5 × 1011M⊙ and the concentration c = 20. The
satellite is represented with 105 particles and the optimal
smoothing length was chosen according to the prescription
of Dehnen (2001). The orbit has apocentre at 70 kpc and
pericentre at 18 kpc and was evolved for 4.31 Gyr (∼ 3.5
orbital periods). These choices of parameters for the satel-
lite and its orbit are chosen to mimic those of the Sgr dwarf.
The satellite disruption simulation was carried out using the
Gadget-2 code (Springel 2005). This utilises a tree algorithm
to calculate the forces between each of the particles in the
simulation. We have modified the code to implement a static
Milky Way potential by adding an additional force compo-
nent, dependent on position, at each force computation.

Note that the projection of the progenitor’s distribution
function onto the (E, L) space forms a shape closely resem-
bling an ellipse. The inclination of the ellipse can be approx-
imated using the expressions for particle excursions in (E,
L) space presented in Equation 10 of Yoon et al. (2011). For
Roche lobe under-filling satellites and satellites with small
Roche lobes, the terms with ∆R can be neglected, giving
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Figure 3. Comparison between the N-body simulation (blue) and the Modified Lagrange Cloud Stripping method (red), excluding (left)
and including (right) the effects of the progenitor’s gravity. The snapshot shown is at 4.31 Gyr after the start of the simulation, just after
the progenitor’s 4th pericentre passage. It is evident that the inclusion of the progenitor’s gravity is required to correctly model warm
streams. If the progenitor’s gravity is not included, the model stream barely reaches half of the length of the N-body representation.

a simple expression for the ratio of the amplitudes of the
energy and the angular momentum variations:

∆E

∆L
≃

vp
Rp

, (1)

where vp and Rp are the current velocity and the Galac-
tocentric distance of the progenitor. The subsequent trans-
formation of the particle distribution happens in the man-
ner identical to the action-space evolution described earlier.
As the pseudo-ellipse rotates, the stripped particles “freeze-
out” and stop moving within this space. In Fig. 1, these can
be seen best in the right panel (which presents the situa-
tion at the apocentre crossing) where the debris form two
fans, offset from the energy and angular momentum of the
progenitor. The leading tail is composed of particles with
lower E and lower L, the trailing tail particles have higher
E and higher L relative to the progenitor. Curiously, given
the shape and the extent of the tidal debris cloud, it barely
overlaps with the progenitor’s ellipse at the pericentre and
the apocentre. Therefore, one would conclude that very little
material is stripped at the pericentric crossing, and almost
none at the apocentric.

As Fig. 1 illustrates, there is a tight correlation between
the initial conditions of the debris and the orbital phase of
the progenitor at stripping. In other words, after just one
radial period, the stars in the stream will be sorted accord-
ing to their energy, with the most distant portions of the
tails populated by stars with the largest differences in energy
with respect to the progenitor. As the satellite completes the
subsequent revolutions on its orbit, the stars in the freshly
unbound debris are launched with the same (E, L) proper-
ties as the previously torn-off stars, but from locations much

closer to the progenitor as compared to the current positions
of the earlier stripped material. Therefore, as the disruption
progresses and more stars are being pumped into the tails,
the strict energy sorting is blurred: at each location along
the stream, the debris posses a mixture of ∆E and ∆L.
However, depending on the mass of the progenitor, which
determines the extent of the ∆E, ∆L distributions and its
orbital period, the debris might not have enough time to
fully mix.

Fig. 2 shows exactly how much mixing can be expected
for a Sgr-like disruption. The left panel of the Figure shows
the distribution of the debris in the orbital plane, color-
coded according the particle offset from the progenitor as
measured along the stream. The right panel shows the famil-
iar “bow-tie” pattern of debris in (E, L) space color-coded
using the same notation. This particular snapshot of the sim-
ulation corresponds to the fourth pericentric passage, some
4 Gyr after the onset of disruption. Up to now, the satellite
has experienced 3 bouts of tidal stripping and the extent of
the debris unbound in each round can be gleaned from the
three mini-panels accompanying the right panel of the Fig-
ure. These show the obvious: stars stripped as recently as 1
period ago, (i.e. Epoch 3) have not had much time to travel
far enough along the stream. On the other hand, the stars
stripped in the very beginning of the disruption (Epoch 1)
now cover the entire extent of the tidal tails. Note however,
that notwithstanding the apparent mixing, at each location
along the stream, the superposition of the debris stripped
at different times remains ordered in energy space.
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3.2 Modified Lagrange Cloud Stripping

Naturally, any stream model aiming to closely reproduce
the results of an N-body simulation like the one discussed
above must be able to generate the tidal debris with the
correct shape and extent in energy and angular momen-
tum space. However, this condition is only necessary but not
sufficient, as the stripped stars must also exhibit a certain
amount of correlation between the angle along the stream
and (∆E, ∆L). These conditions are straightforwardly re-
alised within the framework outlined by Varghese et al.
(2011) and Küpper et al. (2012) where particles are released
from the two Lagrange points around the progenitor as it
moves in the galactic potential. Here, we utilise a subtly dif-
ferent method as – rather than predicting the centroid of
the stream directly – we instead generate individual stream
members. It is from these members that we calculate the
track of the stream and the location of the apocentres to
compare with the observed data. This is very similar to the
methodology used by Lane et al. (2012) in their modelling
of the tidal tails of 47-Tuc, here we will demonstrate the
method’s utility in producing streams from progenitors 1000
times more massive. Let us first explain how the method
works in practice and then prove that it passes the neces-
sary quality checks.

We start by taking the current position of the pro-
genitor and integrating it back in time in the assumed
galactic potential, Φ, to its position at a time t = −tback

from the present day. Stream particles are then produced at
equal time steps δt along the orbit of the progenitor from
t = −tback to the present day. These are launched from two
locations on the line joining the progenitor to the galactic
centre at radial offsets ∆r = ±rt, where rt is the instanta-
neous tidal radius of the progenitor defined by:

rt =

 

GMsat

Ω2 −
d2Φ

dr2

!1/3

(2)

Here Msat is the mass of the progenitor and Ω is the in-
stantaneous orbital angular velocity of the progenitor. The
particles released closer to the Galactic centre (∆r < 0) will
form the leading arm of the stream and the particles set free
further away from the Galactic centre (∆r > 0) will form the
trailing arm. The velocity of these particles are drawn from
a Gaussian distribution centered upon the velocity of the
progenitor with a dispersion σ in each direction. This dis-
persion is chosen to be representative of the internal velocity
distribution of the stars within the outer parts of the pro-
genitor. The clouds of stream particles released at Lagrange
points are then evolved within the combined potential of the
host galaxy and the progenitor until the present day (t = 0).
In our experiments, the progenitor’s potential is treated as
a Plummer sphere of fixed mass Msat and scale radius asat

which moves along the orbit of the progenitor.
Each of the created particles are entirely independent

of one other (since the progenitor’s orbit is determined only
by the galactic potential) therefore will scale linearly with
the number of particles produced. Thus each particle can
be evolve separately using an adaptive stepping algorithm,
naturally accounting for the differences in dynamical times
between the particles which are recaptured by the progenitor
and those which quickly escape. Whilst this would imply

that the mLCS algorithm is trivially parallelizable, we opt
not to, instead using a parallelizable MCMC sampler when
exploring parameter space.

Our model requires 3 hidden parameters to describe
the structure of the progenitor: its mass Msat, an internal
scale length asat, and the velocity dispersion in the outer
parts of the progenitor σ. Note that, while in principle one
should be able to calculate the third from any two of these
for a self-gravitating body, we opt to keep all three indepen-
dent. This is due to the fact that the progenitor of the Sgr
Stream was presumably embedded in a dark matter halo as
it was accreted, and this will affect the velocity dispersion
of the satellite’s stars especially in the outer regions. The
degree of this embeddedness is unknown and therefore to
encode our ignorance we leave all three parameters within
the model to be marginalised over. Note that, additionally,
Küpper et al. (2012) require a special treatment of the tan-
gential component of stream velocity: having experimented
with values between the orbital and the angular velocity of
the progenitor, the settle on the latter. We find this distinc-
tion makes no perceptible difference to the model streams
that we produce and therefore we stipulate, for simplicity,
that the debris mean velocity for both leading and trailing
tails is that of the progenitor.

One crucial difference between our stream model and
the previous implementations based on Modified Lagrange
Cloud Stripping is the inclusion of the progenitor’s grav-
ity. Fig. 3 compares a stream produced in N-body simula-
tion (blue points) and two different runs of our model (red
points), without (left) and with (right) the progenitor’s grav-
ity. Without the effects of the satellite’s gravity, the tidal
tails seem to possess approximately the correct shape, but
drastically reduced length. This paper is concerned with the
modelling of the positions of the Sgr leading and trailing
apocentres. However, having such stubby tails means that
the apocentres would be barely reached by the stream parti-
cles, therefore biasing the model prediction. The right panel
of Fig. 3 and Fig. 5 demonstrates that the inclusion of the
satellite’s potential produces a tidal stream almost indistin-
guishable from the N-body realization in configuration and
velocity spaces as well as reproducing the overall structure
of the stream in integral of motion space (albeit with a dis-
tribution which is slightly more extended in energy space
than the N-body). The slight differences appear mostly in
the density of stream particles, which we do not expect to
be able to reproduce due to the assumption of uniform strip-
ping along the orbit. However, as we shall see in section 4,
these minute deviations do not introduce any significant bi-
ases when inferring the galaxy’s mass distribution.

Yet, there is one important distinction: the Gadget-2
run took 17.6 CPU hours (i.e. 2.2 hours wall time on 8
cores), producing 31765 particles which were unbound from
the progenitor and became members of the stream; on aver-
age, this is 2 CPU-seconds per stream particle. Our Modified
Lagrange Cloud Stripping model only takes 16 CPU sec-

onds to run on a single core of the same server used for the
N-body. Here, 12660 particles were created, of which 9022
ended as stream members. This is 0.002 CPU seconds per
stream particle. Hence our model shows itself to be 3 orders
of magnitude faster than an N-Body to produce the same
number of unbound stream particles. This speed increase
is primarily due to the fact that we do not attempt to re-
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Figure 4. Distributions of the velocity components of the trailing debris particles at the moment of unbinding. The velocity is computed
in the frame comoving with the progenitor. The panels show the component of velocity along the line joining the Galactic centre to the
progenitor ∆vr (left), the component of velocity orthogonal to this in the plane of the progenitor’s orbit, oriented in the direction of
motion of the progenitor, ∆vt (middle), and the component of velocity out of the plane of the progenitor’s orbit ,∆voop (right). Plotted
in black is the Gaussian distribution from which velocities of stream particles are initially drawn. The velocity distribution of stream
particles the last time they are at one tidal radii from the progenitor is shown by the blue histogram. Note that under the action of the
satellite’s gravity, the distributions of velocities become skewed towards higher ∆vt and ∆vr , whilst the component of velocity out of
the progenitor’s orbital plane is unaffected.

solve the progenitor with live particles, hence both largely
reducing the number of particles that need to be followed, as
well as cutting down the expense of the inter-particle force
computations. In both cases the code was run on a dual
socket server using quad core Intel Xeon X5460 processors,
the GADGET-2 run was parallelized to use all 8 cores whilst
the mLCS code ran on only one. Note that the timings pre-
sented are for the production of a single stream and not for
a parameter search. Finally it should also be noted that the
speed up of this technique over the N-body run will be de-
pendent on the size, mass and orbit of the progenitor; the
timings presented here are for a progenitor that is typical of
a Sgr-like object, but could differ e.g. for the case of a much
larger plummer sphere the majority of the particles would
become unbound almost immediately.

In the next section, we take a closer look at the effects
of the progenitor’s gravity which appears to increase the
numbers of particles escaping onto orbits with greater ∆E
and ∆L as compared to the progenitor itself.

3.3 Action of the Progenitor’s Gravity

Even though the method laid down in the previous Sec-
tion appears to be an over-simplified brute-force imitation
of the tidal disruption process, something curious happens
to the clouds of particles released at the inner and the outer
Lagrange points in the presence of the progenitor’s grav-
ity. Fig. 4 compares the Gaussian distributions, from which
the particle velocities were drawn, with the actual velocity
distributions at the time they became unbound from the
satellite. The exact unbinding time is not easy to calculate,
therefore instead we use the time of the last tidal radius
crossing. Fig. 4 shows the distributions of the three velocity
components of the trailing tail particles. The chosen pro-

jections are: the component of the velocity along the radial
vector vr; the component perpendicular to vr in the plane
of the orbit, pointing in the direction of motion of the pro-
genitor, vt; and, finally, the component pointing out of the
orbital plane voop. As Fig. 4 illustrates, the leaving popula-
tion has a prominent excess in vr and vt.

With this in mind, it is now easy to explain the dis-
crepancy identified in the previous Section, namely the pro-
duction of very short tidal tails in the absence of the pro-
genitor’s gravity. The bottom right panel of Fig. 5 gives the
E and L distribution of particles produced both with (red)
and without (green) the satellite’s gravity. It is immediately
obvious that in the case without gravity, stream particles
are not launched with sufficiently high energies and angu-
lar momenta relative to the progenitor. Thus, the effect of
the satellite’s self-gravity is to modify the crude Gaussian
approximation of the velocity distribution at the time of
stripping to a more realistic one. The initial speeds of the
particles drawn form the Gaussian are too low, therefore
many of these are accreted by the progenitor. These recap-
tured particles are then evolved internally within the pro-
genitor until the conditions are favorable for their release.
The released particles have an excess in the radial velocity
component as they must be traveling away from the satel-
lite. The excess of angular momentum is attained by higher
tangential velocities relative to the satellite.

The action of progenitor’s gravity explains why, unlike
Küpper et al. (2012), we do not need to tweak the tangen-
tial velocity of the released particles . Our stream production
works effectively as a constrained N-body simulation where
we follow the orbital evolution of large number of massless
tracer particles. However, importantly, these are not neces-
sarily stripped at the time at which they are produced within
the model. Thus, the absolute distribution of velocities given
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Figure 5. Comparison between an N-body stream (left) and the Modified Lagrange Cloud Stripping model (right) in configuration
space (upper), velocity space (middle) and (E,L) space (lower). The location of the progenitor is marked with the black filled circle.
For ease of comparison we have plotted a random selection of the N-body particles so that the same number (6500) are plotted for both
cases. The bottom right panel also shows over-plotted with green points the energy and angular momentum distribution of the debris in
absence of the progenitor’s gravity. It is evident that the progenitor’s gravity is required to assign the correct orbital properties to the
debris particles

c© 2014 RAS, MNRAS 000, 1–16
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Figure 6. Illustration of the stream unwrapping process and the extraction of the observables. Left: This shows the model stream as
in Fig. 5 coloured according to the “phase” of the debris. The “phase” metric increases approximately monotonically along the stream.
Right: This shows the same stream unwrapped as a function of angle (on the celestial sphere) along the stream, measured from the
galactic centre Λ̃GC with the progenitor located at Λ̃GC = 0. This angle is as defined in Belokurov et al. (2014). The points indicate the
centres of the bins used to locate the apocentres and the lines show the fitted Gaussians. This allows to measure the apocentric distances
of the mock stream raL = 53.6 kpc and raT = 92.6 kpc as well as the precession angle ∆ψ = 119◦.5

to stream particles will be erased due to some amount of evo-
lution within the progenitor’s potential. Bear in mind that
some accreted particles are never released. We have esti-
mated that the fraction of these stuck tracers is mostly of
order of 25% and never above 50%, thus the method can be
potentially sped up, but only up to a factor of 2.

The obvious advantage of this stream model is that it
should work equally well and equally fast in any host po-
tential, including a live potential, generated, for example,
as part of the cosmological zoom-in simulation. However, it
should be noted that due to the release of the stream parti-
cles at equal times along the progenitor’s orbit, our method
will not be able to reproduce the density of stars along the
stream exactly. Despite this, stream particles are located
where they should be in both the configuration and the ve-
locity space.

3.4 Extraction of Apocentres

We now devise a method to extract the locations of the
stream apocentres from the generated particle distributions.
The model streams generally have multiple wraps and thus
overlap in space. We cannot therefore simply use a simple
angular coordinate in the orbital plane to parameterise the
location of a particle along the stream. Instead, we construct
a method of explicitly unwrapping the stream by defining a
coordinate which increases monotonically along the stream.

To do this, we introduce the phase (χ) of each particle,
which is defined as follows:

χ =
X

p

x2 + y2 + z2 −

q

x2
p + y2

p + z2
p. (3)

Here, the sum is taken over equal time steps for each
stream particle, from the moment that it is generated in the

model up until the epoch of observation. The subscript p’s
denote the progenitor. This definition works as the particles
in the leading (trailing) arm tend to be at positions which
have lower (higher) Galactocentric radii than the progeni-
tor. Whilst this doesn’t provide an entirely monotonically
increasing variable, it does work well enough for our pur-
poses to unwrap the stream particles and to identify how
each segment of the stream joins together. The results of
applying this method are demonstrated in Figs 2 and 6.

With the model stream unwrapped, we can measure the
centroids of the apocentres along each of the dimensions of
the phase-space. This is done in a manner which is as close
as possible to the method used in analysing the observa-
tional data (Belokurov et al. 2014). In general, more than
one apocentre of the stream is produced with this method
(and would be produced in reality as the stream lengthens
with time). The data presented in Belokurov et al. (2014)
are almost certainly from the first wrap of the stream, and
thus we consider only the closest apocentre to the progenitor
for both the leading and trailing arms. The trailing arm can
show a feature in which the debris stripped from the most
recent orbital passage lies on top of the measured apocentre
of interest and must therefore be removed from the apocen-
tre detection (see the right hand panel of Fig. 6). This can
be done by removing any particles stripped between the last
apocentric passage of the progenitor and the current epoch,
where we define the stripping time to be the last time that
the stream particle was within rt of the progenitor. Next,
we bin the stream particles as a function of angle along the
stream to produce an estimate of the stream’s centroid. With
this estimate, we then find a first approximation to the posi-
tions of the apocentres as the bins showing a local maximum
closest to the location of the progenitor. We then take the
stream particles within ±40◦ of the initial guess, and fit a
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Gaussian to the binned particles in this range2. An example
of this binning and the extraction is shown in the right hand
panel of Fig. 6.

3.5 Galactic Potential Model

The final ingredient required to carry out the inference is
the model for the Galactic gravitational potential. The HI
rotation curve in the inner Milky Way is flat to a good ap-
proximation. Once the HI gas gives out beyond ∼ 20 kpc
(e.g. Sofue et al. 2009), the rotation curve may continue flat
or may decline. A simple yet flexible family of models which
encompasses such behaviour is:

v2
circ =

v2
0rs

α

(rs2 + r2)α/2
. (4)

The implied Galactic density is

ρ(r) =
v2
0rs

α

4πGr2
rs

2 + (1 − α)r2

(rs2 + r2)1+α/2
. (5)

Naturally, given the sphericity of these models, the en-
closed mass as a function of radius can be found directly
from vcirc:

M(r) =
rv2

circ

G
=

r v2
0rs

α

G (rs2 + r2)α/2
. (6)

We shall refer to these models as the truncated, flat
rotation curve family (TF). The circular velocity curve (4)
is flat with amplitude v0 in the inner parts and tends to
a power-law with slope −α/2 in the outer parts with the
transition scale given by rs. A plot showing the variety of
possible rotation curves is shown in Fig. 7. When α = 0,
this is the singular isothermal sphere. When α = 1, this is
the model first introduced by Lin & Lynden-Bell (1982) to
study the orbits of the Magellanic Clouds and subsequently
used by Wilkinson & Evans (1999) in their measurement of
the mass of the Milky Way. As 0 6 α 6 1, the outer rotation
curve spans the physical range from flat to Keplerian. Note,
that our model represents the combined contribution of the
disc and the dark halo to the rotation curve. On the plus
side, it is extremely concise, but it suffers from the obvious
drawbacks: it is spherically symmetric and does not con-
tain a mass component mimicking the central over-density
due to the Galactic bulge/bar. Nonetheless, surprisingly, as
we demonstrate in Section 4, this simple model does not
suffer any significant biases when applied to analyze the be-
haviour of streams produced in significantly more complex
potentials.

It is illuminating to enquire how sensitive the predicted
observables are to each of the model parameters. We take
a progenitor with a fixed position and velocity today and
vary each of the parameters in turn whilst keeping the oth-
ers fixed. The results are shown in Fig. 8. As the rotation

2 Whilst any strongly peaked function will work adequately here,
the choice of a Gaussian is to follow Belokurov et al. (2014) as
closely as possible in extracting the observables, therefore circum-
venting any additional biases introduced by the choice of func-
tional form.

Figure 7. Selection of rotation curves generated by the trun-
cated, flat rotation curve (TF) model. As α→ 0, this corresponds
to the everywhere flat rotation curve of an isothermal sphere. As
α→ 1 and rs → 0, the model tends towards the Keplerian point-
mass limit of vcirc ∝ r−1/2.

curve becomes more steeply decreasing in the outer parts
(rs decreases and α increases), we see that the precession
angle ∆ψ increases. This is the same qualitative behaviour
one would expect by treating the stream as an orbit (Be-
lokurov et al. 2014). Fig. 8 also gives a clear prediction as
to how the inter-arm apocentric distance difference behaves:
lighter Milky Ways, either due to a smaller circular velocity
normalization or due to a steeper fall-off in density, produce
tails that differ the most in their apocentric distances.

Additionally, the difference in apocentric distances de-
creases as the stream is allowed to evolve for a longer time.
This can be understood on noting that the stars produced
in each of the arms of the stream have a significant spread in
energy (see e.g. Fig. 5). The stars with the greatest difference
in energy also have the greatest difference in orbital period
as compared to the progenitor. Thus, these end up furthest
from the progenitor along the stream and form stream apoc-
entres first. As the stream is allowed to evolve for a longer
time, particles with a smaller difference in energy, and thus
smaller difference in apocentric radii, reach apocentre thus
causing the observed effect. A similar effect can be seen when
looking at the dependence on the observables on the mass of
the progenitor Msat. Here, we see an increase in difference of
apocentric distances on the mass of the progenitor. This is
caused by the greater difference in energy between the two
arms of the stream.

3.6 Constructing the Mass Estimate

With a model in place to predict the apocentric properties
of a stream in a given potential, it is now viable to use the
observations to infer the parameters controlling the Galactic
mass distribution. This is done by comparing the predictions
of the model to the observed values with the following like-
lihood function:
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Figure 8. Dependence of each of the observables on one of the model parameters whilst keeping the rest fixed. The blue (green) line
shows the apocentric distance of the leading (trailing) tail raL (raT ), while the black line displays the evolution of the value of differential
orbital precession ∆ψ. In each panel, vertical dashed line shows the value that each of the parameters is fixed to when others are varied.
Note that the observables are mostly sensitive to changes in the potential model. For example, decreasing v0, rs and increasing α all lead
to a lighter Milky Way, which helps to bring the differential precession down and move the two tidal tails apart. Additionally, smaller
and subtler evolution of the observables is displayed when the nuisance parameters such as progenitor’s mass and look-back time are
varied.

Figure 9. Testing the model on mock stream data. Each of the three groups of panels shows the posterior probability distributions for
rs, α and v0 when fitting the TF model to the stream observables from the test N-body simulations. Left Group: The mock Galaxy is
the spherical TF model. While there are obvious degeneracies between the model parameters, the marginalized 1d posterior distributions
peak in the close proximity of the input “true” values for α and v0 marked by red stars. The marginalised posterior for rs is much broader,
nonetheless the input value is well contained within the 68% credible region. Middle Group: The mock Galaxy is a three-component
model with spherical DM halo. Degeneracies similar to the earlier case are present. However, it is not straightforward to interpret what
the peaks in the marginalized posterior distributions symbolize. Right Group: The mock Galaxy is that of Law & Majewski (2010).
All parameters have long tails in the posterior distributions and evidence for strong degeneracies. However, despite the obvious model
mismatch the cumulative mass profiles are closely reproduced (see Fig. 10)
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L =
Y

i

1
p

2πσ2
i

exp

»

−(xmodel,i − xdata,i)
2

2σ2
i

–

(7)

where xi is each of the observables and σi is the error as-
sociated with it. The product is taken over each of the three
observables, namely the apocentric distances of the leading
and trailing arms and the precession angle, (raL, raT,∆ψ)

In practice, the model streams are produced by first in-
tegrating the Sgr dwarf orbit back from the location in the
phase-space which is allowed by the current observations.
While all 6 coordinates of the Sgr dwarf have been mea-
sured to date, some (for example, the proper motion) carry
more uncertainty than the others (for example, location on
the sky). This is reflected in Table 1 as well as Table 2 which
summarizes the priors used in the modeling. In a nutshell,
we are constraining the total of 3 gravitational potential pa-
rameters while marginalizing over 10 nuisance parameters
in total: 6 controlling the progenitor’s orbital initial condi-
tions, 3 controlling its structural properties, as well as the
look-back time

The parameter space is sampled with the parallel
Markov Chain Monte Carlo code emcee (Foreman-Mackey
et al. 2013) to build a set of samples from the posterior dis-
tributions. From these, it is a simple task to convert into the
estimated mass at a given radius, M(r). We take the joint
samples of the potential parameters and calculate the mass
implied by each at the radius of interest. By using a large
number (≈ 105) of such samples, we build up the implied
posterior on the mass enclosed at a given radius and thus
can compute the most likely value and its error with ease.

4 TESTS ON MOCK DATA

To gain confidence in any inferences obtained from our
model, we test it for biases using simulations of disruption
within a realistic Milky-Way like potential.

4.1 Description of Simulations

The test simulations are performed in three different static
Galactic potentials. Our first mock Galaxy is the same as the
model used to measure the mass distribution, i.e. the trun-
cated, flat rotation curve family introduced in Section 3.5.
The second case is a standard three component model of
the Milky Way’s potential with bulge, disc and dark matter
halo. Here, the central parts of the potential are flattened
due to the disc contribution, but the dark halo and, there-
fore, the outer Galaxy is spherical. Finally, the third case is
the potential proposed by Law & Majewski (2010) with a
triaxial dark halo.

In each case, the disrupting progenitor is a Plum-
mer sphere of mass Msat = 6.4 × 108M⊙ and scale-length
asat = 850 pc. This yields a satellite with the internal ve-
locity dispersion of ∼ 30 kms−1 in line with observational
constraints of the Sgr dwarf. The progenitor was placed on
a polar orbit with an apocentre of 75 kpc and a pericentre
of 17 kpc and evolved for ≈ 2.5 orbital periods (∼3 Gyr)
using the Gadget-2 code (Springel 2005).

Using the mock N-body observations, it is possible to
test the stream model for any possible biases present in the

mass recovery. Of course, the simulation data provide per-
fect knowledge of the current phase space location of the
progenitor. When we apply the model to the real data, un-
certainties in the satellite’s coordinates will be marginalised
over.

4.2 Truncated, Flat Rotation Curve Model

An N-body simulation of a satellite disruption is carried
out in a TF potential with the following parameters. The
amplitude of the circular velocity curve is v0 = 210 km/s,
the scale radius is rs = 12 kpc and the outer power law is
α = 0.45. The apocentres of the tidal tails were extracted
using the method presented in Section 3.4, yielding apoc-
entric radii and a precession angle of raL = 54.6 ± 1.0 kpc,
raT = 90.5 ± 1.2 kpc and ∆ψ = 85◦.8 ± 1.3.

The resulting mock stream data are then modeled by
applying the mLCS algorithm described in Section 3. In
this particular test case, the functional form of the model
potential coincides exactly with that used to produce the
disruption simulation. The left group of panels in Fig. 9
displays the quality of the inference. Unsurprisingly, there
are strong degeneracies between all three model parameters,
most prominently between rs and α. The coupling between
the parameters controlling the steepness of the radial mass
density profile was already apparent in Fig. 8. Notwithstand-
ing this degeneracy, the true parameter values (marked with
red stars) all fall within the uncertainties implied by the pos-
terior distributions.

The accompanying Fig. 10 presents the details of the
mass profile recovery. In particular, the left panel shows the
results for the mock TF Galaxy discussed here. The true cu-
mulative mass profile is shown in red, while the black curve
gives the inferred mass distribution. The slope of the over-
all mass (dark matter plus baryons) profile changes quickly
within 10-30 kpc from the Galactic centre and then stays
constant. As is obvious from Fig. 10, the mismatch between
the true and the inferred profiles is minimal everywhere
within the range considered, i.e. < 100kpc. While the sys-
tematic error appears tiny, the random error has a charac-
teristic “pinch” radius at around 40 kpc, within which it
stays minimal, i.e. 1%, and then blows up to 10% beyond 50
kpc. In other words, the constraining power of the method
lies mostly inside the leading tail apocentre (the apocentric
distance are marked by vertical dashed lines). Importantly,
while the rs and α parameters are measured with large error-
bars due to the above-mentioned degeneracy, the outer slope
of the total radial mass profile is clearly constrained, as ev-
idenced by the lack of any significant systematic error be-
tween 50 and 100 kpc.

4.3 Bulge, Disc and Spherical Halo

While it is reassuring to see that the model performs well
in the case where the functional form of the density and
potential distribution is known, we do not have such a luxury
when analyzing the real Milky Way. Therefore, we proceed
to test the algorithm on mock disruption data produced in
Galaxies that differ from the assumed model distribution.

Here, in particular, the disruption is produced in the
three-component (bulge, disc and dark halo) mock Galaxy,

c© 2014 RAS, MNRAS 000, 1–16



“Skinny Milky Way”, says Sagittarius. 13

Figure 10. Mass recovery for Sgr disruption in three different mock Galaxies. Red curves show the true cumulative mass profile, while
black lines report the most likely model inferences. The dark and light blue regions show the 1 and 2 σ confidence regions of the recovered
mass. The vertical dashed lines show the radii of the leading and trailing apocentres (with raL < raT). Left: The mock Galaxy is the
spherical TF model. Note the “pinch” radius at around 40 kpc where the random error is at its minimum. The systematic offset between
the true and recovered mass is less than 1 standard deviation everywhere between 10 and 120 kpc. Middle: Cumulative mass profile for
the mock three-component Galaxy with a bulge, disc and a spherical dark halo. Results are very similar to the test case shown in the
left panel, albeit the random error blows up slightly faster beyond the pinch radius. Right: Mass distribution in the mock Milky Way
with Law & Majewski (2010) potential. No significant systematic offset between data and the model is detected. Note, however, that
beyond 50 kpc, the error regions are the largest of the three cases considered. This is likely to be due to the fact that the stream probes
a reduced range of Galactocentric radii in this case as shown by the locations of the apocentres.

but the stream fitting is done using the TF model. The
bulge is taken as a Hernquist (1990) sphere with mass of
Mb = 3 × 1010M⊙ and scale-length ab = 500 pc. The thick
and thin discs are represented as a single component which
follows the Miyamoto & Nagai (1975) model with total mass
Md = 3.3 × 1010M⊙, the scale-length ad = 4 kpc and the
scale-hight bd = 400 pc. Finally, the dark halo is represented
with a spherical NFW model (Navarro et al. 1996). The DM
halo’s mass is M200 = 1.2×1012M⊙ and its concentration is
c200 = 16. The rotation curve given by this three-component
model is shown in Fig. 11. It gives a reasonable representa-
tion of the LSR as measured by Bovy et al. (2012), with
an amplitude of ≈ 240 km s−1 around 8 kpc. The result-
ing apocentric radii and the precession angle are the fol-
lowing: raL = 57.2 ± 0.6 kpc, raT = 100.3 ± 0.3 kpc and
∆ψ = 110◦.6 ± 0.7.

As before, the posterior distributions for rs, α and v0
are shown in the middle panels of Fig. 9. Unsurprisingly, the
signs of the same degeneracy between rs and α are clearly
visible. It is, however, more difficult to interpret these pos-
terior distributions in view of the mismatch between the
input and the model. Nonetheless, regardless of the degen-
eracy and the model mismatch, the marginalized probabil-
ity distributions appear to have well-defined peaks. Most
importantly, the cumulative mass profile is recovered with
inspiring fidelity as evidenced by the middle panel of Fig. 10.
As in the previous test case, the posterior distribution of the
cumulative mass profile displays a “pinch” at around 40 kpc.
Note that the two mock streams actually have similar apoc-
entric distances. The behaviour of the random error beyond
50 kpc is slightly different: it grows to somewhat larger value
13%, which we consider to by symptomatic of the mismatch
between the “true” and the assumed Galactic mass distri-
butions. Interestingly, the rotation curve inferred from the
stream apocentric data looks a very good match to the input
one as seen in Fig. 11.

Figure 11. Rotation curve of the three component (bulge, disc
and spherical halo) mock Galaxy (red curve). The blue line shows
the rotation curve based on the maximum likelihood stream fit,
while the black curve is the marginalized stream fit. It is clear
that the spherical TF model is a viable choice to describes the
mass distribution in a more complex potential in the range of
Galactocentric distances probed by the stream (10 kpc - 100 kpc).

4.4 Model of Law & Majewski (2010)

It is clear from the two test cases discussed above that the
algorithm can be used to infer the cumulative mass distri-
butions in both spherical and flattened Galaxies. However,
how does it cope with a yet more complex potential?

To this end, we produce an N-body simulation of a
satellite disruption mirroring the setup of Law & Majewski
(2010). The result of their modeling of the Sgr stream data
available at the time is intriguing. Together with the usual
components for the bulge/bar and the discs, their model fa-
vors a DM halo that appears almost perfectly oblate, but
with the minor axis stuck in the Galactic plane. The com-
bined gravity of the spherical bulge, highly flattened disc
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and the “hockey puck” halo results in a complex overall po-
tential with the shape evolving between 5 and 60 kpc.

The outcome of our N-body simulations looks identical
to the snapshots published by Law & Majewski (2010). In
particular, for the Sgr stream we find the apocentric radii
of following: raL = 47.5 ± 1.3 kpc, raT = 68.7 ± 1.4 kpc
and the precession angle is ∆ψ = 114◦.1 ± 3.0. Note that
these values are markedly different from the early two cases
and from those measured as pointed out by Belokurov et al.
(2014). The result of applying the model of a stream forming
in the TF potential to these mock data are show in the
right panel of Fig. 9. The model parameters appear to be
even less constrained in this case, although, the marginalized
posterior probability distributions for rs and v0 do show very
clear peaks.

The most important conclusion, however, can be
gleaned from the right panel of Fig. 10 which proves that
the Galactic total mass and the radial matter distribution
can be measured even in such a complicated potential. It is
true that both systematic and random error (which is at 20%
level at 100 kpc) in this case are larger than the previous two.
The “pinch” radius has moved in and is now at around 30
kpc, but this is simply the consequence of the smaller apoc-
entric radii of the mock stream. The mismatch between the
true and the inferred mass starts to grow quickly beyond 60
kpc, but stays comfortably within one standard deviation.

5 APPLICATION TO THE MILKY WAY
GALAXY

With confidence in our model’s ability to perform unbiased
inference, we now turn to the task of fitting the data for the
apocentric distances and precession angle of the Sgr stream.
The priors used on each of the model parameters are tab-
ulated in Table 2. We use completely uninformed priors on
each of the parameters of the Galaxy model, allowing this
method to give us an independent measure of the Milky
Way’s potential.

The inference on the potential parameters is presented
in Fig. 12. Here, the same general structure as with the test
cases can be seen, with the obvious degeneracy between rs
and α. In this case, the narrow banana-shaped clouds are
significantly broadened due to the noise in the determina-
tion of the current phase-space position of the progenitor.
The inferred mass profile and rotation curve of the Milky
Way are shown in Fig. 13, alongside a selection of recent
mass determinations from the literature. According to our
model, the cumulative mass profile flattens out at around
40 kpc, and from there onwards remains rather shallow. If
the matter density profile actually does not change slope
beyond 80-100 kpc, the total Milky Way mass ought to be
rather low, i.e. 0.5 − 0.8 × 1012M⊙. Indeed, quantitatively,
our measurement appears to be at the lower bound of most
previous estimates. We tabulate our mass estimates for a
range of radii in Table 3.

At 50 kpc we are in good agreement with the mass de-
termined by Wilkinson & Evans (1999) from satellite and
globular cluster motions. There is, however some tension
with the measurement from BHB tracers of Deason et al.
(2012), where agreement is only at the 2σ level. We are in ex-
cellent agreement with the mass measurement out to 60 kpc

Figure 12. Posterior probability distributions for rs −α param-
eters in the TF model as inferred from the Sgr stream preces-
sion. Note – as seen previously in the tests with mock Galaxies –
that there is a degeneracy between the two shape parameters of
the model. However, the degeneracy appears more bloated, most
likely due to the uncertainty in the determination of the 6D posi-
tion of the Sgr dwarf. Histograms show the marginalized posterior
for each of the parameters.

of Xue et al. (2008). There is also tension with the mea-
surement of Gnedin et al. (2010) of the mass out to 80 kpc.
This discrepancy is easy to explain. The analysis is based on
the sample of hyper-velocity stars published by Brown et al.
(2010). However, a staggering 50% of these are actually pro-
jected to lie in the Sgr stream. The already crippling effects
of soaring Sgr stream contamination are possibly exacer-
bated by additional contamination from Blue Stragglers. A
more recent study of the kinematics of the outer stellar halo
tracers by Deason et al. (2012) finds evidence of a dramatic
drop in the velocity dispersion beyond 50 kpc. Superficially,
their measurement of the line-of-sight velocity dispersion be-
yond 100 kpc, σr ∼ 60 kms−1 is consistent with our measure-
ment of the circular velocity at similar distances, Vc ∼ 120
kms−1.

Finally, we compare our results to those of Watkins
et al. (2010). They performed inference based upon the satel-
lite population of the Milky Way, again assuming smooth
density laws. Their results are strongly dependent on the
(unknown) velocity anisotropy of their population, giving
a wide range of possible masses. They find that the plau-
sible range of masses out to 100 kpc lies between 3.3 and
13.8×1011M⊙. The results of this work favour the lower end
of their range.
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Figure 13. Left: Cumulative mass profile of the Milky Way as inferred by the model of the Sgr stream precession. The solid black
line shows the most likely mass, the light and dark blue shaded regions show the 68% and the 95% confidence regions respectively. The

black points are previous determinations from the literature and are labelled as follows: D12 – Deason et al. (2012); G10 – Gnedin et al.
(2010); X08 – Xue et al. (2008); W99 – Wilkinson & Evans (1999); W10 – Watkins et al. (2010). The D12 and W99 points at 50 kpc
have been offset from each other for clarity. Note that the error bars for G10 and W10 extend up to 9.9 × 1011M⊙ and 13.8 × 1011M⊙

respectively. Our mass determination agrees well with most of the literature values, but systematically favors the lower margin of the
reported confidence intervals Right: Milky Way circular velocity curve as inferred by the model. The solid black line shows the most
likely Vc, the light and dark blue shaded regions show the 68% and the 95% confidence regions respectively.

6 DISCUSSION AND CONCLUSIONS

We have developed the first rapid algorithm capable to gen-
erate realistically looking streams produced in disruption of
progenitors of arbitrary mass in arbitrary potentials. In our
model, stars are released with a Gaussian velocity distribu-
tion at the inner and outer Lagrange points of the disrupting
progenitor. An essential ingredient is the inclusion of the ef-
fect of the progenitor’s gravity on stream particles around
the time of un-binding. In essence, the progenitor’s gravity
naturally corrects our crude guess for the velocity distribu-
tion of stripped particles to a more realistic one.

This model provides a natural explanation for the differ-
ences in the apocentric distances and the precession angle
found for the Sagittarius (Sgr) stream in Belokurov et al.
(2014). The behaviour of the stream properties is controlled
mostly by the host potential in which the satellite is disrupt-
ing, though there is a small dependence upon the internal
properties of the progenitor. Thus, the observations are ex-
plicable without the need to invoke dynamical friction (c.f.,
Chakrabarti et al. 2014).

Exploiting the sensitivity of the precession measure-
ment to the underlying potential, we tested the ability of
our model to infer the potential from mock observations
from N-body simulations. We find the model performs re-
markably well and produces a nearly unbiased estimate of
the enclosed mass. When applied to observations of the
precession of the Sgr Stream, we obtain a new measure-
ment of the mass profile of the Milky Way out to dis-
tances of ∼ 100 kpc. We find the masses within 50 kpc
and 100 kpc to be M(50 kpc) = 2.9 ± 0.5 × 1011M⊙ and
M(100 kpc) = 4.0 ± 0.7 × 1011M⊙ respectively. We em-
phasise that this is an entirely independent method to any
previous determinations.

What are the limitations of our method? Ideally, when
modelling the satellite disruption, one should aim at repro-
ducing the properties of both the stream as well as the rem-

nant. By design, the mLCS algorithm presented in this pa-
per has nothing to say about the final state of the stream
progenitor. Additionally, while we have established that the
centroids of streams generated by Modified Lagrange Cloud
Stripping matches well the centroids of streams produced
in N-body simulation, there is no evidence that our model
gives realistic density distribution along or the tidal tails.
This is because in the current implementation, the stripping
rate is independent of time. However, as the N-body simu-
lations show the stellar flux out of the satellite is a strong
function of time. Moreover, if the progenitor contains both
stars and dark matter, the stellar stripping rate is highly
suppressed in the initial throes of accretion, and sharply in-
creases once most of the DM has been removed (see e.g.
Niederste-Ostholt et al. 2012). Finally, if the Galactic dark
matter halo is strongly triaxial, it might be possible to bias
our stream-based inference of the total mass. We have ex-
plored how the assumption of sphericity of the overall po-
tential influences the mass recovery. However, none of our
mock Galaxies are truly triaxial, for example, the dark halo
in the model of Law & Majewski (2010) is nominally triax-
ial, but in reality it is just a oblate ellipsoid standing on a
side.

Our results represent another piece in the growing body
of evidence (Battaglia et al. 2005; Bovy et al. 2012; Deason
et al. 2012; Rashkov et al. 2013) that suggests the Milky
Way galaxy is less massive than previously assumed. The
total mass of the Milky Way inferred from the kinematics
of satellites depends critically on whether the distant and
fast moving dwarf galaxy Leo I is included or not (see e.g.,
Wilkinson & Evans 1999; Watkins et al. 2010). If Leo I is
unbound, then M(200 kpc) . 1 × 1011M⊙, whilst if Leo I
is bound, then M(200 kpc) . 2 × 1012M⊙. Boylan-Kolchin
et al. (2013) argue that Leo I is most likely bound, as 99.9
per cent of sub-haloes in their simulations are bound to the
host. Nonetheless, processes to create fast-moving satellites
are known. For example, infall of a satellite pair onto a host
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Table 2. The priors on each of the model parameters when
fitting to the Sgr stream data in section 5. When a uniformly
distributed prior is used, the range is indicated with square
brackets. When a normally distributed prior is used, the mean
and standard deviation is indicated as a pair (µ, σ) in round
brackets.

Parameter Distribution Prior

Potential Parameters

v0 Uniform [40, 400] km s−1

rs Uniform [1, 100] kpc
α Uniform [0,1]

Progenitor Properties

msat Uniform [0.1, 1] × 109M⊙

asat Uniform [0.1, 1] kpc
σ Uniform [0.5, 10.0] km s−1

Progenitor’s Orbit

l Fixed 5◦.5689
b Fixed −14◦.1669

dhelio Uniform [22.0, 28.4] kpc
vlos Normal (153, 2) km s−1

µl cos b Normal (1.97, 0.3) mas yr−1

µb Normal (−2.44, 0.3) mas yr−1

tback Uniform [0, 10] Gyr

LSR Properties

R0 Fixed 8.0 kpc
vc(R0) Fixed 237.0 km s−1

U⊙ Fixed 11.1 km s−1

V⊙ Fixed 12.24 km s−1

W⊙ Fixed 7.25 km s−1

Table 3. The enclosed mass of the Milky Way as inferred from
the stream precession modeling. We provide estimates at 50,
100, 150 and 200 kpc. Along with 68% and 95% confidence
intervals.

r/kpc M(r)/1011M⊙ 1σ/1011M⊙ 2σ/1011M⊙

50 2.9 0.4 0.9
100 4.1 0.7 1.6
150 4.9 1.0 2.4
200 5.6 1.2 3.0

may cause the heavier satellite to remain bound whilst the
lighter satellite is ejected. Sales et al. (2007) find that that
as many as a third of all satellites in their suite of simu-
lations lie on such orbits. Although such extreme satellites
may still be bound, the important point is that they do not
constitute part of the virialized population. Mass estimates
of the Milky Way using satellites depend on applying the
virial theorem or the Jeans equations to the satellite popu-
lations assuming time-independence. Extreme satellites pro-
duced by three-body interactions should not be included in
the sample.

Despite the advocacy of Boylan-Kolchin et al. (2013),
there is another strong reason to exclude Leo I from the sam-
ple of bound satellites. Then, three independent methods of
estimating the mass of the Milky Way – namely from the
kinematics of distant halo stars (Deason et al. 2012; Rashkov

et al. 2013), the kinematics of the satellite galaxies (Watkins
et al. 2010) and the modelling of the Sgr stream (this paper)
– are all in good agreement. They all suggest that the total
mass of the Milky Way is . 1× 1012M⊙. It is important to
realise that high mass estimates for the Milky Way galaxy
essentially depend on a single datapoint, namely the inclu-
sion of Leo I in the sample of satellites galaxies modelled as
a virialized population.

This has substantial implications for one of the al-
leged problems of ΛCDM, the “Too Big to Fail Problem”.
Boylan-Kolchin et al. (2011) provide a lucid articulation of
the problem. For simulated Milky Way analogues of mass
∼ 2 × 1012M⊙, the most massive subhaloes are too dense
to correspond to any of the known satellite galaxies of the
Milky Way. They typically have peak circular velocities of
30 kms−1, which is too large to plausibly correspond to the
most luminous dwarf spheroidal satellites of the Milky Way.
Baryonic feedback does not appear to solve the problem en-
tirely (Garrison-Kimmel et al. 2013), so many researchers
have interpreted this as evidence for changing the nature of
the dark matter particle to warm (Lovell et al. 2012) or self-
interacting (Vogelsberger et al. 2012) or asymmetric (Zurek
2014). However, by far the simplest and likeliest way to re-
solve the “Too Big to Fail Problem” is to reduce the mass
of the Milky Way Galaxy to ∼ 1 × 1012M⊙.

The work in this paper now provides a completely new
and independent line of argument supporting a much leaner
Milky Way Galaxy. Certainly out to ∼ 100 kpc, the Sgr
stream provides a particularly clean tool for mass estimation
of the Milky Way. It is preferable to analyses of the satellite
galaxies, as it circumvents the problem of sample contami-
nation by unbound or unvirialized objects. It is preferable to
analyses of the kinematics of halo stars as there is no mass-
anisotropy degeneracy to frustrate mass determinations. We
anticipate that – with increasing quality and quantity of
data over the next few years – it will become the gold stan-
dard for mass measurements of the Milky Way.
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