
For Peer Review

 

 

 

 

 

 

Sensitivity of tropical deep convection in global models: 

effects of horizontal resolution, surface constraints and 3D 
atmospheric nudging 

 

 

Journal: Atmospheric Science Letters 

Manuscript ID: ASL-14-064.R1 

Wiley - Manuscript type: Research Article 

Date Submitted by the Author: n/a 

Complete List of Authors: Chemel, Charles 

Russo, Maria 
Hosking, Scott 
Telford, Paul 
Pyle, John 

Keywords: tropical deep convection, global models, nudging, surface fluxes 

  

 

 

http://mc.manuscriptcentral.com/asl

Atmospheric Science Letters



For Peer Review

Sensitivity of tropical deep convection in global models: effects of horizontal 1 

resolution, surface constraints and 3D atmospheric nudging 2 

(Short running title: Tropical Deep Convection in Global Models) 3 

Charles Chemel1*, Maria R. Russo2,3, J. Scott Hosking2,4, Paul J. Telford2,3, and John A. 4 

Pyle2,3 5 

1National Centre for Atmospheric Science (NCAS Weather), Centre for Atmospheric & 6 

Instrumentation Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK 7 

2Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, 8 

Lensfield Road, Cambridge, CB2 1EW, UK 9 

3National Centre for Atmospheric Science (NCAS Climate), Centre for Atmospheric Science, 10 

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, 11 

UK 12 

4Now at British Antarctic Survey, NERC, Madingley Road, High Cross, Cambridge, CB3 13 

0ET, UK 14 

*Correspondence to: Charles Chemel, Centre for Atmospheric & Instrumentation Research, 15 

University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK. E-mail: 16 

c.chemel@herts.ac.uk 17 

Abstract 18 

We investigate the ability of global models to capture the spatial patterns of tropical deep 19 

convection. Their sensitivity is assessed through changing horizontal resolution, surface flux 20 

constraints, and constraining background atmospheric conditions. We assess two models at 21 

typical climate and weather forecast resolutions. Comparison with observations indicates that 22 

increasing resolution generally improves the pattern of tropical convection. When the models 23 

are constrained with realistic surface fluxes and atmospheric structure, the location of 24 

convection improves dramatically and is very similar irrespective of resolution and 25 

parameterisations used in the models. 26 

Keywords:     tropical deep convection; global models; nudging; surface fluxes 27 

1. Introduction 28 

Tropical deep convection plays an important role in determining the dynamics and composition of the 29 

atmosphere in both the tropics and extra-tropics over a broad range of spatial and temporal scales. For 30 

long climate simulations, and the study of chemistry-climate interactions, tropical deep convection is 31 

key for a correct representation of (i) a realistic distribution of high clouds and associated changes in 32 

the radiative balance of the atmosphere (e.g., Ramanathan et al., 1989), (ii) the vertical transport of 33 

pollutants and water vapour to the upper troposphere and lower stratosphere (Holton et al., 1995), and 34 
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(iii) coupling to large-scale dynamics through gravity waves and modulation of the Madden-Julian 35 

oscillation (Zhang, 2005). The fast vertical transport of very short-lived brominated substances by 36 

deep tropical storms is also potentially important for the recovery of the stratospheric ozone layer 37 

over the coming century (Yang et al., 2014). In the context of numerical weather predictions, the 38 

location, timing and intensity of tropical deep convection are important for a reliable forecast of 39 

severe storms and associated natural hazards. Getting a realistic representation of tropical deep 40 

convection is therefore a crucial issue for both global forecast runs and climate and Earth-system 41 

simulations.  42 

Although several sub-grid scale convection parameterisation schemes have been developed, their 43 

ability to represent convection has been shown to be highly dependent on the resolution of the host 44 

model (e.g., Brankovic and Gregory, 2001). This is linked to the inability of coarse resolutions to 45 

properly represent geographical features which have been shown to be strongly linked to convection; 46 

these include proper representation of coastlines (Schiemann et al., 2014), orography (Kirshbaum and 47 

Smith, 2009) and land use (Anthes, 1984). Furthermore, coarse resolution models fail to resolve 48 

small-scale dynamical features such as sea breezes, one of the triggering mechanisms for convection 49 

in coastal areas (Qian, 2008). In addition to the above effects driven by model resolution, convection 50 

parameterisation schemes rely on the host model to provide a realistic distribution of heat and 51 

moisture fluxes at the surface, which are in turn dependent on surface characteristics such as 52 

temperature, soil moisture (Taylor et al., 2012) and winds. These fluxes often determine the initial 53 

stages of convection development, particularly for continental convection (e.g., over Africa), where 54 

soil moisture is crucial in driving the formation of shallow cumulus clouds (Ek and Holtslag, 2004). 55 

After this initial stage, the transition between shallow and deep convection depends on the vertical 56 

structure of the air column and the measure of its instability, and therefore convection 57 

parameterisation schemes also rely on the host model to provide a realistic three-dimensional (3D) 58 

structure of the atmosphere (Martin et al., 2010). 59 

Our aim is to investigate the ability of models with parameterised convection to represent the 60 

location and intensity of tropical deep convection over varying scales and with varying constraints. 61 

We use two models, the Weather Research and Forecasting (WRF) modelling system (Skamarock et 62 

al., 2008), and the UK Met Office Unified Model (MetUM) (Davies et al., 2005). We quantify the 63 

model ability to match the observed monthly mean pattern of tropical deep convection and examine 64 

the relative importance of horizontal resolution, surface fluxes and 3D state of the atmosphere, and 65 

how their changes affect model convection. 66 

2. Methodology and data 67 

In this section we describe the convection parameterisations used for this study, the set-up of the 68 

numerical experiments, and the observational data and statistical techniques used for the model 69 

evaluation. The sub-grid scale effects of convection were parameterised using the ensemble cumulus 70 
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scheme of Grell and Dévényi (2002) in WRF and the mass flux convection scheme of Gregory and 71 

Rowntree (1990) in MetUM. For a detailed description of WRF and MetUM the reader is directed to 72 

Skamarock et al. (2008) and Davies et al. (2005), respectively. Static characteristics of the land 73 

surface (such as orography, vegetation and soil types) were derived from the default geographical 74 

datasets provided with each model.  75 

We run the two models using the same four horizontal resolutions, namely N48 (3.75ºx2.50º), 76 

N96 (1.87ºx1.25º), N144 (1.25ºx0.83º), and N216 (0.83ºx0.56º); the vertical resolution is kept the 77 

same and is defined similarly in the two modelling systems, i.e. 38 vertical levels up to 5 hPa for 78 

WRF and up to about 40 km for MetUM, giving a vertical resolution of about 1 km in the upper 79 

troposphere/lower stratosphere region. The WRF experiments used the same physics options for all 80 

horizontal resolutions, while the MetUM experiments are based on the HadGAM climate setup 81 

(Martin et al., 2006) for coarse resolutions (N48 and N96), and on the UK Met Office operational 82 

global forecast setup (Petch et al., 2007) for higher resolutions (N144 and N216). In order to 83 

minimise the impact of synoptic scale model biases, we initialise model simulations to analysis and 84 

integrate the models over a relatively short timescale (1 month), similar to the approach used for 85 

instance in Stock et al. (2014). All experiments are run for a neutral El Niño–Southern Oscillation 86 

year, specifically for the months of July and November 2005, which exhibit convection patterns 87 

typical of the summer and winter seasons, respectively (see Section 3). Otherwise, there is no 88 

particular reason for the selection of these two months. The initial conditions are derived from the 89 

European Centre for Medium-range Weather Forecasts (ECMWF) operational analyses for WRF, and 90 

from the UK Met Office data-assimilated start dumps for MetUM. 91 

For each model resolution we ran 3 sets of experiments: 92 

• Sea only: sea surface temperature and sea ice are updated daily to observed values: for MetUM 93 

and WRF we use data from the AMIP dataset (AMIP-II; Gates et al., 1999) and ECMWF 94 

operational analyses, respectively.  Heat and moisture fluxes over land are determined by the 95 

interaction of the atmosphere with soil moisture and soil temperature calculated by the land 96 

surface scheme. 97 

• Sea + Land: sea surface temperature and sea ice are treated as described above, while heat and 98 

moisture fluxes over land are constrained as follows: in WRF the first (surface) atmospheric layer 99 

is nudged towards ECMWF temperature and water vapour with a relaxation timescale of 1 hour 100 

(see Stauffer and Seaman, 1990, for details on the nudging technique); in MetUM, since there is 101 

no option in the model for nudging below the free troposphere, soil temperature and soil moisture 102 

are updated daily from a climatological dataset provided with the model release. 103 

• Nudged: these runs apply the same surface constraints as the Sea + Land runs; additionally the 3D 104 

structure of the free troposphere is constrained by nudging horizontal winds and temperature 105 
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towards ECMWF operational analyses. We only performed Nudged runs for MetUM at N48 106 

resolution; technical details on the nudging technique are described in Telford et al. (2008). 107 

In order to evaluate the different model runs we compare the model monthly mean outgoing long-108 

wave radiation (OLR) and precipitation rate (PR) to observations. OLR is commonly used to identify 109 

the presence of cold cloud tops, which are linked to high clouds produced by tropical deep convection 110 

(e.g., Arkin and Ardanuy, 1989). We use monthly mean OLR to identify geographical areas of 111 

recurrent convection and the estimated depth of the convection. Monthly mean OLR and PR, used in 112 

combination, are a good proxy for the location and intensity of recurrent tropical deep convection 113 

(Hosking et al., 2010; Russo et al., 2011). The model OLR is compared to those derived from the 114 

AVHRR instrument on board NOAA polar-orbiting satellites (Gruber and Krueger, 1984) and from 115 

the AIRS instrument on board the EOS Aqua satellite (Aumann et al., 2003), available as gridded 116 

products with a grid resolution of 2.5ºx2.5º and 1ºx1º, respectively. The model PR is compared to 117 

values from the CPC Merged Analysis of Precipitation (CMAP) standard (Huffman et al., 1997), the 118 

Global Precipitation Climatology Project (GPCP) 1DD (Huffman et al., 2001), and the Tropical 119 

Rainfall Measuring Mission (TRMM) 3A12 (Kummerow et al., 1998) products, available as gridded 120 

products with a grid resolution of 2.5ºx2.5º, 1ºx1º and 0.5ºx0.5º, respectively. The model and 121 

observed monthly mean OLR and PR data is then degraded to the coarsest product resolution 122 

(2.5ºx2.5º) and for each model simulation we calculate the spatial correlation and the coefficient of 123 

variation of the root mean square error (CVRMSE) between modelled and observed OLR and PR. 124 

The spatial correlation r (calculated using Pearson correlation coefficient) gives a measure of the 125 

linear relationship between models and observations. A value close to one indicates that model and 126 

observations have very similar spatial patterns, although model biases are not picked up using this 127 

metric. The CVRMSE (defined as the root mean square error relative to the observed mean) is used as 128 

a complementary metric to estimate how accurately a model can reproduce the observed magnitude of 129 

a specific variable. A value closer to zero indicates better agreement between model and observations. 130 

The combination of these two metrics provides a measure of the models ability to represent the 131 

geographical location (measured by r) and intensity (measured by CVRMSE) of tropical deep 132 

convection.  133 

3. Results and discussion 134 

Correlation coefficients and CVRMSE between the AIRS and TRMM products and both the model 135 

and the other observational datasets are calculated for the Tropics (20ºS–20ºN) and the tropical Land 136 

and Sea areas, respectively (see Tables S1 to S4). The two observed OLR are in very good agreement, 137 

with correlation coefficients greater than 0.97 and CVRMSE of about 7.5% for the Tropics. In 138 

contrast, the agreement between the three observed PR datasets is not as good, with correlation 139 

coefficients between r = 0.87 and 0.92 and CVRMSE greater than 47% for the Tropics. Explaining 140 
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the differences between the different observational products is out of the scope of the present work. In 141 

the following, we use the correlation coefficients and CVRMSE between different observational 142 

datasets as a reference value to measure the strength of the agreement between models and 143 

observations: we then define ‘very good agreement’ and ‘good agreement’ with observations if the 144 

modelled r or CVRMSE are respectively within 10% and 20% of our reference values.  The use of 145 

monthly mean data ensures that the emphasis of this analysis is not on the models ability to represent 146 

single convective events but rather on their ability to represent the effects of convection at the 147 

monthly mean scale.  148 

We now investigate the models ability to represent the observed geographical location of tropical 149 

convection. Analysis of the correlation coefficients in table S1-S4 shows that overall ~70% of the 150 

model configurations are in good agreement with observations over the Tropics. However, there is a 151 

much better agreement between modelled and observed values for OLR (~90% of model 152 

configurations are in good agreement with observations) than for PR (only ~45% of model 153 

configurations are in good agreement with observations). Similarly, the percentage of models in good 154 

agreement with observations is larger for the month of July (~80%) than November (~55%). There is 155 

also a small difference in the models ability to represent convection over land than over sea: the 156 

percentage of model configurations in good agreement with observations is ~85% and ~60% 157 

respectively for land and sea). 158 

After looking at the geographical location of convection, we now address how well the models 159 

can represent the intensity of tropical convection. Analysis of CVRMSE values in Tables S1 to S4 160 

shows that model errors over the tropics are generally small for OLR and much larger for PR. This is 161 

in agreement with previous studies, which show large model precipitation biases in tropical ocean 162 

regions (Martin et al., 2010; Schiemann et al., 2014). For OLR ~85% of model configurations are in 163 

good agreement with observations while for PR none of the models are in good agreement with 164 

observations, with values of CVRMSE around a factor of two larger than the values between different 165 

observations. Differences in model performance between different months or between land and sea 166 

areas are negligible, indicating that models are much better at representing the physical processes that 167 

link convection to OLR while they struggle to satisfactorily represent the processes linking tropical 168 

convection to the intensity of precipitation, although changes in the parameterisation scheme have 169 

shown to significantly improve these biases (Martin et al. 2010).    170 

We now specifically address the effect of increasing model constraints, as illustrated in Figure 1. 171 

For this purpose we use the MetUM runs at N48 resolution for November 2005. Figures 1a and 1b 172 

show observed OLR and PR for November 2005, and highlight the three main wintertime tropical 173 

convective regions: sub-Saharan Africa, the Eastern Indian Ocean and Maritime Continent, and 174 

tropical South America. The Inter Tropical Convergence Zone (ITCZ), and to a smaller extent the 175 

South Pacific Convergence Zone (SPCZ), also have their signatures in the OLR and PR fields. When 176 

the model is constrained only at the surface, the OLR and PR fields show some unrealistic convective 177 
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features, for instance over most of the Indian Ocean and off the East coast of Africa, compared to 178 

those observed. Despite adding the constraints over Land areas, the correlation coefficients between 179 

modelled and observed values over the Tropics are similar for the Sea only and Sea + Land runs and 180 

none of the model configurations is in good agreement with observations (r = 0.73 and 0.76 for OLR, 181 

and r = 0.66 and 0.67 for PR, respectively). Comparison of the correlation coefficients for Sea only 182 

and Sea + Land runs shows a similar behaviour for all MetUM resolutions, with generally similar 183 

correlation coefficients for Land values when land constraints are applied and only small differences 184 

in the correlation for the Tropics. To explain the lack of improvement of MetUM to adding the 185 

surface constraints over Land areas, we analysed monthly mean water vapour at 20 m (not shown). 186 

Constraining soil moisture and soil temperature produces only small changes to the surface water 187 

vapour, indicating that monthly mean fluxes of heat and moisture over land are well represented by 188 

the coupling between the atmosphere and land surface scheme. When the state of the atmosphere is 189 

constrained by nudging towards operational analyses, the pattern of convection improves 190 

significantly, both over Land and Sea areas, and correlation coefficients for the Tropics of show very 191 

good agreement for OLR and good agreement for PR (r = 0.89 and 0.74, respectively). The analysis 192 

of data from WRF model runs shows that the sensitivity of the model to changes in constraints for a 193 

given resolution is very similar to that of MetUM, with a significant improvement in performance for 194 

the Nudged runs only (see Tables S1 to S4). Overall, the location of convection is in very good 195 

agreement with observations in ~60% of Nudged runs as opposed to ~10% of the runs where only 196 

surface constraints are applied. This highlights the importance of a realistic structure of the 197 

atmosphere and global circulation patterns in representing the location and intensity of tropical deep 198 

convection.  199 

The sensitivity of both MetUM and WRF to changes in horizontal resolution is also very similar. 200 

The effect of increasing horizontal resolution is illustrated in Figure 2. For this purpose we choose the 201 

WRF model simulations for July 2005 with the least constraints, i.e. the Sea only runs, for which the 202 

benefit of increasing model resolution is expected to be the largest. Figures 2a and 2b show the 203 

observed convection patterns typical of the northern hemisphere summer season, with convective 204 

regions mostly north of the Equator, for example sub-Saharan Africa, the ITCZ and SPCZ, and the 205 

strong Asian and the North American monsoon. Figure 2 shows that the main convective areas are 206 

well captured, although the model SPCZ is less visible than that observed. Tables S1 and S3 show a 207 

consistent improvement as WRF model resolution is increased from N48 to N216, with correlation 208 

coefficients of r = 0.84 and 0.88 for OLR, and r = 0.69 and 0.73 for PR, and CVRMSE of 7.2 and 209 

5.7% for OLR, and 91 and 85% for PR, respectively.  The sensitivity of MetUM to changes in 210 

horizontal resolution is also very similar. Overall, correlation coefficients in Tables S1 to S4 show 211 

that ~80% of N216 model configurations are in good agreement with observations, as opposed to 212 

~60% for N48, and these change to ~70% and ~40% when Nudged runs are not included. The gain in 213 

WRF performance with resolution is of the same order for the Sea + Land runs. This indicates that the 214 
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improvement from increasing resolution is mainly the result of a better representation of small-scale 215 

dynamical features in Sea areas (such as low level convergence leading to the ITCZ, and sea breezes 216 

leading to convection in coastal areas). However, for the Nudged runs, where the model surface and 217 

free troposphere are both constrained, only the CVRMSE values are significantly reduced as model 218 

resolution is increased, while the difference in the correlation coefficients becomes almost negligible, 219 

indicating that the intensity of convection can still be improved by increasing resolution, while the 220 

location of convection in the Nudged runs is well captured even at the coarsest resolution. 221 

4. Conclusions 222 

Figure 3 summarises the effect of increasing resolution and constraints on the model ability to 223 

reproduce the observed pattern of convection for the two models in both seasons. 224 

The sensitivity of both models to horizontal resolution is reflected by a general improvement 225 

going from N48 to N216. For example, Figure 4a shows how increasing horizontal resolution for the 226 

MetUM Sea only runs leads to an improvement in the correlation coefficients between modelled and 227 

observed OLR, and Figure 4b shows that the errors decrease for the same model runs as the resolution 228 

increases from N48 to N216. This is generally true for both models and for both sets of runs using 229 

surface constraints (Sea only and Sea + Land). However, for Nudged runs, where constraints are 230 

applied throughout the atmospheric column, the improvement resulting from increased resolution is 231 

much smaller and is generally notable only in the intensity of convection (as measured by the 232 

CVRMSE values). 233 

Both models show very little change when increasing the surface constraint from Sea only to 234 

Sea + Land, while a significant improvement in performance (higher correlation coefficients and 235 

lower CVRMSE) is notable for the Nudged runs, where the model surface and free troposphere are 236 

both constrained. Furthermore, the similar performance of Nudged WRF and MetUM runs indicates 237 

that when the surface fluxes and 3D structure of the host model are constrained, the ability to 238 

represent the preferential location of tropical deep convection is almost insensitive to the 239 

parameterisations used, including the convection parameterisation scheme. However, note that both 240 

surface fluxes and 3D atmospheric structure can also be affected by convection, as well as being 241 

crucial in determining its onset and development; it is therefore difficult to truly disentangle the extent 242 

to which errors in the representation of convection are due to biases introduced by the convection 243 

parameterisation itself (e.g. through positive feedbacks in radiation and precipitation/evaporation) or 244 

to biases arising from other model components. 245 

 Additionally, for the Nudged runs, the major impact of convection on temperature and moisture 246 

through condensation and latent heat release is strongly constrained and therefore one must not 247 

conclude that current convection parameterisation schemes are able to reproduce the observed 248 

intensity of tropical convection. 249 
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Supporting information 250 

Table S1. July 2005 monthly correlation coefficients and CVRMSE for OLR. 251 

Table S2. July 2005 monthly correlation coefficients and CVRMSE for PR. 252 

Table S3. November 2005 monthly correlation coefficients and CVRMSE for OLR. 253 

Table S4. November 2005 monthly correlation coefficients and CVRMSE for PR. 254 

Acknowledgments 255 

The research was funded by the UK Natural Environment Research Council (NERC) and the UK 256 

National Centre for Atmospheric Science (NCAS). PJT acknowledges the UK National Centre for 257 

Earth Observation (NCEO) for funding. JSH gratefully acknowledges an e-Science PhD studentship 258 

by NERC. Model simulations were performed on the UK national supercomputing facilities 259 

(HECToR), accessed through NCAS. This work was conducted while CC was a visiting researcher at 260 

the Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Lensfield 261 

Road, Cambridge, CB2 1EW, UK. 262 

References 263 

Anthes RA. 1984. Enhancement of convective precipitation by mesoscale variations in vegetative 264 

covering in semiarid regions. Journal of Climate and Applied Meteorology 23: 541–554. 265 

Arkin PA, Ardanuy PE. 1989. Estimating climatic-scale precipitation from space: A review. Journal 266 

of Climate 2: 1229–1238. 267 

Aumann HH, Chahine MT, Gautier C, Goldberg MD, Kalnay E, McMillan LM, Revercomb H, 268 

Rosenkranz PW, Smith WL, Staelin DH, Strow LL, Susskind J. 2003. AIRS/AMSU/HSB on the 269 

Aqua mission: Design, science objectives, data products, and processing systems. IEEE 270 

Transactions on Geoscience and Remote Sensing 41: 253–264. 271 

Brankovic C, Gregory D. 2001. Impact of horizontal resolution on seasonal integrations. Climate 272 

Dynamics 18: 123–143. 273 

Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, White AA, Wood N. 2005. A new 274 

dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quarterly 275 

Journal of the Royal Meteorological Society 131: 1759–1782. 276 

Ek MB, Holtslag AAM. 2004. Influence of soil moisture on boundary layer cloud development. 277 

Journal of Hydrometeorology 5: 86–99. 278 

Gates WL, Boyle JS, Covey C, Dease CG, Doutriaux CM, Drach RS, Fiorino M, Gleckler PJ, Hnilo 279 

JJ, Marlais SM, Phillips TJ, Potter GL, Santer BD, Sperber KR, Taylor KE, Williams DN. 1999. 280 

An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bulletin 281 

of the American Meteorological Society 80: 29–55. 282 

Page 8 of 13

http://mc.manuscriptcentral.com/asl

Atmospheric Science Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Tropical Deep Convection in Global Models 9

Gregory D, Rowntree PR. 1990. A mass flux convection scheme with representation of cloud 283 

ensemble characteristics and stability-dependent closure. Monthly Weather Review 118: 1483–284 

1506. 285 

Grell GA, Dévényi D. 2002. A generalized approach to parameterizing convection combining 286 

ensemble and data assimilation techniques. Geophysical Research Letters 29: Art. No. 1693. 287 

DOI:10.1029/2002GL015311. 288 

Gruber A, Krueger AF. 1984. The status of the NOAA outgoing longwave radiation data set. Bulletin 289 

of the American Meteorological Society 65: 958–962. 290 

Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L. 1995. Stratosphere-291 

troposphere exchange. Reviews of Geophysics 33: 403–440. 292 

Hosking JS, Russo MR, Braesicke P, Pyle JA. 2010. Modelling deep convection and its impacts on 293 

the tropical tropopause layer. Atmospheric Chemistry and Physics 10: 11175–11188. 294 

Huffman GJ, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf B, 295 

Schneider U. 1997. The Global Precipitation Climatology Project (GPCP) combined data set. 296 

Bulletin of the American Meteorological Society 78: 5–20. 297 

Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J. 2001. 298 

Global precipitation at one-degree daily resolution from multi-satellite observations. Journal of 299 

Hydrometeorology 2: 36–50. 300 

Kirshbaum DJ, Smith RB. 2009. Orographic precipitation in the tropics: large-eddy simulations and 301 

theory. Journal of the Atmospheric Sciences 66: 2559–2578. 302 

Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J. 1998. The Tropical Rainfall Measuring 303 

Mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology 15: 808–816. 304 

Martin GM, Ringer MA, Pope VD, Jones A, Dearden C, Hinton TJ. 2006. The physical properties of 305 

the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: 306 

Model description and global climatology. Journal of Climate 19: 1274–1301. 307 

Martin GM, Milton SF, Senior CA, Brooks ME, Ineson S, Reichler T, Kim J. 2010. Analysis and 308 

reduction of systematic errors through a seamless approach to modelling weather and climate. 309 

Journal of Climate 23: 5933–5957. 310 

Petch JC, Willett M, Wong RY, Woolnough SJ. 2007. Modelling suppressed and active convection. 311 

Comparing a numerical weather prediction, cloud-resolving and single-column model. Quarterly 312 

Journal of the Royal Meteorological Society 133: 1087–1100. 313 

Qian J-H. 2008. Why precipitation is mostly concentrated over islands in the Maritime Continent. 314 

Journal of the Atmospheric Sciences 65: 1428–1441. 315 

Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D. 1989. 316 

Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. 317 

Science 243: 57–63. 318 

Page 9 of 13

http://mc.manuscriptcentral.com/asl

Atmospheric Science Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  C. Chemel et al. 10

Russo MR, Marécal V, Hoyle CR, Arteta J, Chemel C, Chipperfield MP, Dessens O, Feng W, 319 

Hosking JS, Telford PJ, Wild O, Yang X, Pyle JA. 2011. Representation of tropical deep 320 

convection in atmospheric models – Part 1: Meteorology and comparison with satellite 321 

observations. Atmospheric Chemistry and Physics 11: 2765–2786. 322 

Schiemann R, Demory M-E, Mizielinski MS, Roberts MJ, Shaffrey LC, Strachan J, Vidale PL. 2014. 323 

The sensitivity of the tropical circulation and Maritime Continent precipitation to climate model 324 

resolution. Climate Dynamics 42: 2455–2468. 325 

Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, 326 

Powers JG. 2008. A description of the Advanced Research WRF Version 3. The National Center 327 

for Atmospheric Research: Boulder, CO, USA (NCAR Technical Note NCAR/TN-475+STR). 328 

Stauffer DR, Seaman, N. 1990. Use of Four-Dimensional Data Assimilation in a limited-area 329 

mesoscale model. Part I: Experiments with synoptic-scale data. Monthly Weather Review 118: 330 

1250–1277. 331 

Taylor CM, de Jeu RAM, Guichard F, Harris PP, Dorigo WA. 2012. Afternoon rain more likely over 332 

drier soils. Nature 489: 423–6. 333 

Telford PJ, Braesicke P, Morgenstern O, Pyle JA. 2008. Technical Note: Description and assessment 334 

of a nudged version of the new dynamics Unified Model. Atmospheric Chemistry and Physics 8: 335 

1701–1712. 336 

Yang X, Abraham NL, Archibald AT, Braesicke P, Keeble J, Telford P, Warwick NJ, Pyle JA. 2014. 337 

How sensitive is the recovery of stratospheric ozone to changes in concentrations of very short 338 

lived bromocarbons? Atmospheric Chemistry and Physics Discussions 14: 9729–9745. 339 

Zhang CD. 2005. Madden-Julian Oscillation. Reviews of Geophysics 43: Art. No. RG2003. 340 

DOI:10.1029/2004RG000158.  341 

Page 10 of 13

http://mc.manuscriptcentral.com/asl

Atmospheric Science Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Tropical Deep Convection in Global Models 11

 

 

 

 

 

Figure 1. Monthly mean maps of outgoing long-wave radiation (OLR) in W m-2 (left) and 342 

precipitation rate (PR) in mm d-1 (right) for November 2005 from the AIRS (a) and TRMM (b) 343 

products, and the MetUM N48: (a) and (b) Sea only, (c) and (d) Sea + Land, and (e) and (f) 344 

Nudged runs.   345 
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Figure 2. Monthly mean maps of outgoing long-wave radiation (OLR) in W m-2 (left) and 346 

precipitation rate (PR) in mm d-1 (right) for July 2005 from the AIRS (a) and TRMM (b) 347 

products, and from the WRF Sea only runs at: (a) and (b) N48, (c) and (d) N96, (e) and (f) 348 

N144, and (g) and (h) N216 resolutions.   349 

Page 12 of 13

http://mc.manuscriptcentral.com/asl

Atmospheric Science Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Tropical Deep Convection in Global Models 13

 

 

 

Figure 3. Matrix plots of correlation coefficients (left) and CVRMSE in % (right) between 350 

modelled and observed values over the Tropics (20ºS–20ºN) for July and November 2005, 351 

calculated against the AIRS and TRMM datasets for (a) and (b) outgoing long-wave 352 

radiation (OLR) and (c) and (d) precipitation rate (PR), respectively. 353 
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