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Abstract 38 

 39 

Cockade breccias are a type of fault fills in which individual clasts are completely surrounded by 40 

concentric layers of cement. They occur particularly in low-temperature near-surface hydrothermal 41 

veins. At least six mechanisms have been proposed for the formation of cockade breccia-like 42 

textures, but only two – repeated rotation-accretion, and partial metasomatic replacement of clast 43 

minerals – have been supported by detailed evidence. A typical example of cockade breccia from 44 

the Gower Peninsula (South Wales) shows clear evidence for the rotation-accretion mechanism: in 45 

particular, overgrown breakage points in cement layers – where cockades were previously touching 46 

each other – and rotated geopetal infills of haematitic sediment. Based on the available evidence, it 47 

is proposed that cockade textures result from low rates of cement growth compared to high rates of 48 

dilational fault slip. Seven criteria are given for the correct identification of cockade breccias.  49 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
1. Introduction 50 

 51 

Fault zones are important in controlling fluid flow in the upper crust. Depending on the 52 

permeability of the fault core and surrounding damage zone, an individual fault zone can act either 53 

as a barrier or a conduit for fluids (Caine et al., 1996; Faulkner et al., 2010). Most fluids alter the 54 

permeability of fault zones over time by deposition of mineral cements and reaction with the 55 

wallrocks (e.g. Woodcock et al., 2007). Critical to understanding fault zones is the identification and 56 

interpretation of fault rocks, particularly fault breccias: coarse fault rocks with potentially high 57 

permeability.  58 

Recent classification schemes for fault breccias (Mort and Woodcock, 2008; Woodcock and 59 

Mort, 2008) are non-genetic and easily applicable in the field. However, they do not deal 60 

satisfactorily with fault rocks dominated by crystalline cement. Rocks with less than 30% large (> 61 

2mm) clasts and less than 30% fine matrix are classified as ‘fault veins’ (Woodcock and Mort, 62 

2008, Fig. 5b). However, these cement-rich fault rocks include a puzzling type of ‘breccia’ in which 63 

clasts appear to be completely surrounded by cement: a geometry which has no simple genetic 64 

explanation. These cement-supported breccias are commonly termed ‘cockade breccias’. 65 

The term cockade breccia (also: cockade ore, cockade texture) refers specifically to 66 

hydrothermal fault fills in which centimetre- to decimetre-sized clasts appear to be completely 67 

enclosed by concentric bands of cement (Bastin, 1950; Kutina and Sedlackova, 1961; Genna et al., 68 

1996; Leroy et al., 2000). Cockade breccias are of considerable interest in the study of vein-type 69 

mineral deposits because they may record much of a vein’s mineralisation sequence (Leroy et al., 70 

2000) and provide evidence for syntectonic mineralisation (Van Alstine, 1944; Genna et al., 1996), 71 

allowing correlation of mineralisation with deformation. Yet, there is no consensus on the exact 72 

origin of cockade breccias, and some confusion exists in the literature about nomenclature and 73 

identification. This paper therefore aims a) to summarise research on the formation of cockade 74 

breccias, b) to present new evidence for the syntectonic formation of cockade textures in carbonate 75 

vein fills on the Gower Peninsula, Wales, and c) to review nomenclature and classification of 76 

cockade breccias, particularly to help their correct identification in the field and the laboratory. 77 

 78 

2. History and usage of the term cockade 79 

 80 

Cockade breccias were first described from Pb-Zn-Ag veins in the German part of the Erzgebirge 81 

Mountains as Sphärengestein (German sphere rock; Weissenbach, 1836), although this term 82 

apparently included varieties with only one generation of columnar cement. The terms Kokardenerz 83 

(cockade ore) and Ringelerz (ring ore) used by Cotta (1859) and other authors (Pošepný, 1895; 84 
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Beck, 1903) to describe similar ore-bearing fissure fills refer to the concentric banding around 85 

individual clasts seen in sections.1 It is from the translation of Cotta's work on ore deposits that this 86 

terminology seems to have entered English geological nomenclature (Cotta, 1870). Variants such as 87 

cocarde ore also appear (Pošepný, 1895) but have not stood the test of time. Sperling (1973) gives 88 

separate but overlapping definitions of the terms ring ore and cockade ore. He defines ring ore as an 89 

end member of the transition from banded veins with straight bands to those with wavy, and finally 90 

concentric bands, when overgrowing single wall rock fragments (calcite, sphalerite, galena). 91 

Cockade ore, on the other hand, is defined by fine-grained, layered intergrowths of galena and 92 

quartz overgrowing host-rock fragments. This distinction seems superficial since the resulting 93 

textures are symmetrically and genetically equivalent. Cockade ores have also been called orbicular 94 

or nodular ores by some authors (Spurr, 1926; Van Alstine, 1944; Penczak and Mason, 1997). 95 

In a number of publications, mis-applications of the terms cockade breccia or cockade texture 96 

deviating significantly from the original definition were encountered. For instance, breccias where 97 

only a single generation of cement surrounds individual fragments are sometimes called cockade 98 

breccias (Feitzinger and Paar, 1991; Hagemann et al., 1992; Feitzinger et al. 1995; Kontak et al., 99 

1999; Yilmaz et al., 2010), probably due to confusion with the earlier term Sphärengestein. Because 100 

of their superficially similar appearance in section, colloform cavity fills have also occasionally 101 

been called cockade breccias, particularly with reference to Mississippi-Valley-Type mineral 102 

deposits (Clar, 1929; Jicha, 1951; Kalliokoski, 1965; Schneider et al., 2002; Okrusch et al., 2007; 103 

Patrier et al., 2013). Other non-canonical applications include the use for oolites (Ilavsky et al., 104 

1991), peloids (Kucha et al., 1990), microscopic overgrowths of one mineral on another (Genkin et 105 

al., 1998), tourmaline sprays in aplite dikes (Boriani et al., 1988), vugs (Suh and Dada, 1997; 106 

Vishiti et al., 2013), and normal columnar or laminar cements growing on vein walls (Hodgson, 107 

1989; Byrne and Harris, 1993; Fusswinkel et al., 2013, 2014).  108 

Historically, the term cockade breccia or cockade texture was intended exclusively for 109 

hydrothermal breccias in which individual clasts are surrounded by several generations of cement 110 

and, to avoid confusion, its meaning should be restricted accordingly. A set of textural criteria which 111 

should be met by any true cockade breccia is presented below. 112 

 113 

3. Mode of occurrence 114 

 115 

A summary of 106 reported occurrences of cockade breccias in different types of deposits (Table 116 

                                                 
1 A cockade (French cocarde) is a symbol consisting of differently coloured concentric rings, used for recognition by 

many, particularly military, organisations around the world. In the past, they were also used to show the allegiance 
of the wearer to a political faction, most prominently during the French Revolution with the creation of the cocarde 
tricolor, now a popular symbol of France and the basis for the current French national flag. 
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1) shows that they are most often reported from low- to mid-temperature (typical formation 117 

temperatures between 50 – 350°C), vein-style mineralisation thought to have formed in near-surface 118 

environments. However, the clear prevalence of reports from ore-bearing veins is probably due to a 119 

significant sampling bias towards the well-exposed occurrences encountered in mines. Sampling 120 

bias might also be responsible for the apparent relative abundance in different types of mineral 121 

deposits. 122 

The presence of cockade breccias is often used to indicate space-filling processes – rather than 123 

replacement – during mineralisation (e.g. Perelló, 1994; Liu et al., 2011). However, this 124 

interpretation has been challenged in some cases where ore minerals replaced specific cement 125 

generations or formed along the contacts between cement and clasts (Kutina and Sedlackova, 1961; 126 

Rieder, 1969), leading to an appearance similar to that of cockades sensu stricto.   127 

 128 

4. Proposed formation mechanisms 129 

 130 

4.1. Six possible mechanisms 131 

Successive deposition of several cement generations is required for the formation of cockade 132 

breccias. The resultant volume of cement means that clasts seem not to touch each other and appear 133 

to be suspended within the cement. This was already noted by Weissenbach (1836), and a number of 134 

explanations have been put forward for this phenomenon since his first description: 135 

 136 

1) The cut effect (Fig. 1a). Pošepný (1895) noted as early as 1895 that a lack of contact points 137 

between clasts in any 2D section does not preclude contacts in 3D. Pošepný showed this for 138 

a few specific cases by preparing serial sections of specimens showing no contact points at 139 

their surface. Later experiments by Talmage (1929) also showed that there is a high 140 

probability for sections through random, self-supporting structures to contain abundant 141 

seemingly unsupported fragments. 142 

 143 

2) Crystallisation pressure (Fig. 1b). The earliest explanation for a true suspension of clasts 144 

within the cement was put forward by Weissenbach (1836) himself. He proposed that 145 

fragments were pushed apart by the crystallisation pressure exerted on the clasts by minerals 146 

precipitating between them. Many authors have repeated this hypothesis (Cotta, 1859; Beck, 147 

1903; Taber, 1918; Lindgren, 1919; Bastin, 1950). 148 

 149 

3) Suspension in fluid (Fig. 1c). Another early hypothesis was that clasts were suspended in a 150 

fluid during the growth of the cements, either because of the high viscosity or density of that 151 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
fluid (Spurr, 1926), or due to its fast speed of ascent (Farmin, 1938). Recently, the 152 

hypothesis of highly viscous and dense mineralising fluids was re-invoked by Dill and 153 

Weber (2010), while Jobson et al. (1994) re-introduced the hypothesis of a violently 154 

ascending fluid to explain the occurrence of cockade breccias. 155 

 156 

4) Partial metasomatic replacement of clast minerals (Fig. 1d). Partial inward 157 

replacement/alteration of clasts might result in a lack of contact points between the residual 158 

cores of the clasts (e.g. Bateman, 1924; Bastin, 1925). Later deposition of another mineral 159 

around the clasts might give the (superficial) appearance of concentric layers of cement. 160 

Kutina and Sedlackova (1961) as well as Rieder (1969) present evidence for such processes 161 

contributing to the formation of some cockade breccia-like textures.  162 

 163 

5) Infall of clasts during cementation (Fig. 1e). Kutina and Sedlackova (1961) pointed out that 164 

an apparent suspension of clasts within the cement might also be achieved by the gradual 165 

accumulation of rock fragments in a fissure simultaneous with mineral deposition.  166 

 167 

6) Repeated rotation and accretion (Fig. 1f). Van Alstine (1944) proposed that cockades form 168 

by repeated fracturing of a partially cemented breccia, mostly along the boundaries between 169 

individual clasts, in an extending fissure followed by growth of a partial layer of new 170 

cement. Although individual layers never completely enclose the clasts, the low spatial 171 

density of contact points leads to the appearance of complete concentric layers of cement, 172 

and to the suspension of clasts within the cement. Genna et al. (1996) recently presented 173 

evidence for the same mechanism, but without citing Van Alstine (1944). Van Alstine's 174 

contribution was also omitted by Kutina and Sedlackova (1961) in the most comprehensive 175 

review of cockade formation to date. 176 

 177 

While the cut effect (1) clearly explains some cockade-like textures, there are many breccias 178 

where clasts are demonstrably not in contact with each other. In such cases, detailed evidence has 179 

only been presented for the partial metasomatic replacement mechanism (4) (Kutina and 180 

Sedlackova 1961) and the rotation-accretion mechanism (6) (Van Alstine, 1944; Genna et al., 1996). 181 

However, a detailed discussion of the textural implications of all of the above possibilities is usually 182 

lacking. Therefore, such a discussion follows in the subsequent paragraphs.  183 

 184 

4.2. Crystallisation pressure hypothesis 185 

If cockade breccias were formed by the action of crystallisation pressure on loose granular 186 
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aggregates (2), the resulting textures would depend on the surface energies of the minerals involved. 187 

If the cockades and cement are composed of minerals with very similar surface energy and surface 188 

energy anisotropy, faces on individual crystallites would not develop, except in the first generation 189 

of cement that grew into open spaces. Successive cement generations would be expected to show 190 

only anhedral textures, similar to those developed in crack-seal veins. By contrast, cements 191 

containing minerals with significantly higher surface energy and surface energy anisotropy (e.g. 192 

pyrite in quartz; cf. Spry 1969), should develop crystal faces projecting into all directions, except 193 

where grains of the same mineral impinge on one another. The minerals with the lower surface 194 

energy should again not show developed crystal faces (Spry, 1969). Although veins have been 195 

described in which such textures are observed, and which might therefore have formed through the 196 

action of crystallisation pressure (Wiltschko and Morse, 2001; Hilgers and Urai, 2005; Philipp, 197 

2008; Noriel et al., 2010), cockades generally lack such textures. They instead show rims of crystals 198 

with well-developed growth faces projecting outward from the central clasts (e.g. Spurr, 1926; 199 

Leroy et al., 2000). This indicates formation by growth into open spaces. The crystallisation 200 

pressure hypothesis can therefore be dismissed on textural grounds. 201 

 202 

4.3. Fluid suspension hypothesis 203 

Two distinct cases require separate consideration: a) involvement of a highly viscous and dense 204 

(drilling fluid-like) fluid agitated by fault movement (shear fluidisation) and b) involvement of a 205 

low viscosity fluid at high flow speeds. 206 

If indeed highly viscous drilling-fluid like suspensions were involved in the formation of 207 

cockade breccias (as proposed by Dill and Weber, 2010), large amounts of fine-grained sediment 208 

should be associated with the cockades – at least 20 vol.%. Although Dill and Weber (2010) do 209 

report the occurrence of argillaceous material in normal breccia units, they fail to show its 210 

association with the cockade material. Virtually all other occurrences of cockade breccias reported 211 

in the literature show no association to fine-grained material, and the spaces between clasts are 212 

usually filled by cement (e.g. Spurr, 1926; Buerger and Maury, 1927). Another reason to reject this 213 

model is based on its implication that clasts remain suspended in the fluid for the entire duration of 214 

cement growth. This is an unrealistic scenario, since the seismic agitation required to sustain the 215 

drilling-fluid like suspension is intermittent and clasts should settle during interseismic periods. 216 

Compaction and cementation would likely follow and result in a material difficult or impossible to 217 

resuspend. Therefore, the drilling-fluid model is neither strongly supported by field evidence, nor 218 

by general considerations of fault dynamics.  219 

To evaluate rapidly ascending, low-viscosity aqueous fluids,  analysis is needed of the 220 

hydrodynamic conditions required to suspend cockades of typical sizes, as well as the physical 221 
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constraints on maximum flow rates in hydrothermal systems. As an example, we will consider an 222 

aqueous fluid at 150°C with a salinity of 20 wt.% NaCl (3.4 mol/kg). This salinity is fairly high 223 

(Roedder, 1984; Shepherd et al., 1985), resulting in comparatively high density and viscosity. Based 224 

on the relations presented by Haas (1970), Kestin et al. (1978) and Mao and Duan (2009), this fluid 225 

would have a density of 1.0 g/cm3, and a viscosity of 4.0 mPas. The flow threshold for fluidisation 226 

of a loosely packed granular aggregate (voidage = 0.5) of quartz or calcite (ρ = 2.7 g/cm3) pebbles 227 

with an equivalent hydraulic diameter of 5 cm (a fairly typical size for cockades, e.g. Leroy et al., 228 

2000), can be estimated from the relations given by Eichhubl and Boles (2000) to be 0.24 m/s. This 229 

velocity value is reasonably robust against changes in salinity or temperature of the fluid, and 230 

represents the absolute minimum for fluidisation to occur.  231 

On the other hand, the minimum flow speeds needed for suspension of clasts in the fluid are 232 

equal to their terminal settling velocity. The relevant relations for cube-shaped particles are given by 233 

Gaskell (1992) and Pettyjohn and Christiansen (1948), and the result for the case described above is 234 

0.88 m/s. Minimum fluid ascent velocities on the order of 10-1 to 100 m/s are therefore necessary, if 235 

the formation of cockade breccias is to be explained by bed fluidisation or suspension.  236 

The critical question is now whether such high flow velocities can be attained and also sustained 237 

in fault-related hydrothermal systems. Unfortunately, there is virtually no data on fluid flow 238 

velocities in terrestrial systems and no easy way to infer them from field evidence. Eichhubl and 239 

Boles (2000) used fluid inclusion thermometry and oxygen isotope data to assess the temperature 240 

anomaly associated with a carbonate vein along a strike-slip fault in California, which in turn 241 

yielded an estimate of upward fluid flow velocities in the fault. Due to parameter uncertainties, they 242 

arrived at a wide range of 10-4 to 100 m/s for the velocity of pulses of hot fluid moving up the fault 243 

(Eichhubl and Boles, 2000). This just includes the required minimum velocities calculated above, 244 

but represents episodic and not sustained flow. Fluid flow in natural fault-related hydrothermal 245 

systems is probably intermittent, due to the operation of seal-fracture and fault-valve processes 246 

linked to seismic activity (Sibson, 1981; Cathles and Smith, 1983; Sibson et al., 1988; Boullier and 247 

Robert, 1992; Eichhubl and Boles, 2000). Release of fluids from over-pressured reservoirs is 248 

thought to be triggered when fluid pressures approach lithostatic pressure (Sibson, 1990). Thus the 249 

maximum pressure gradient along a fault discharging fluids will be given by the difference between 250 

the lithostatic and hydrostatic pressure gradients. If the shape of the fault conduit and the fluid 251 

properties are known, the maximum (transient) flow velocity can be estimated. Approximating a 252 

typical cockade-bearing fault cavity by a conduit with a rectangular cross section 100 m long and 253 

0.5 m wide, using the same fluid as above (aqueous solution of NaCl, 20 wt.%, at 150°C), and 254 

assuming the relative roughness of the fault walls to be on the order of 0.1 (i.e. that the short-255 

wavelength deviations of the fault walls from flat surfaces amount to about 10% of the total width 256 
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of the conduit), we arrive at a maximum velocity of ~20 m/s using the Darcy-Weisbach equation 257 

(assuming an average rock density of 3.0 g/cm3; De Nevers, 1970). This value is well above the 258 

minimum requirement for clast fluidisation or suspension derived above. Consequently, this 259 

mechanism cannot be ruled out as the driver for cockade rotation. However, it will probably only 260 

occur for short periods of time when flow velocities peak due to the release of over-pressured fluids 261 

during seismic events. The calculation of maximum flow rate assumes that the fault is fed by a 262 

reservoir with no internal flow resistance, and discharges into a similar reservoir. Actual maximum 263 

flow rates will probably be lower because the fluid reservoirs in natural systems are typically 264 

porous rocks with a much lower permeability than large open fractures. Another consequence is that 265 

high flow rates are probably not sustainable over extended periods of time. Measurements of natural 266 

fluid flow velocities have been made at black smokers, where fluids have steady state exit velocities 267 

of 0.5 – 5 m/s (RISE, 1980; Macdonald et al., 1980; Converse et al., 1984; Hekinian et al., 1983, 268 

1984). However, these high velocities are probably due to highly focussed flow at the exiting point 269 

(cf. Strens and Cann, 1986), with each black smoker field fed by a large fracture network (Strens 270 

and Cann, 1986). The high thermal gradients present around the centres of mid-ocean ridges may 271 

also contribute to these high flow velocities. Additionally, mass flow rates of black smoker fields 272 

are typically small compared to the expected discharge rate of the fault zone in our model 273 

calculation. For fluid velocities of 0.2 to 0.9 m/s, a fault fracture 100 m long and 0.5 m wide would 274 

discharge 10 to 45 m3/s, while a black smoker field typically only discharges 150 kg/s of fluid 275 

(Hekinian et al., 1984). Consequently, steady-state fluid flow velocities in the fracture system 276 

associated with a black smoker field must be much smaller than the discharge velocities cited 277 

above. Another argument for low steady-state flow velocities is the significantly smaller pressure 278 

gradient resulting from temperature induced density differences, compared to the maximum 279 

pressure gradient assumed above.  280 

It is clear from the foregoing discussion that intermittent fluidisation and cementation of clasts 281 

cannot be ruled out as a mechanism for the formation of cockade breccias. However, the 282 

calculations indicate that sustained suspension of cockades over extended periods of time is highly 283 

unlikely: the required flow velocities and volume flow rates would be too large. Sustained 284 

suspension (or fluidisation) and simultaneous cementation in a rapidly ascending low-viscosity 285 

aqueous fluid can therefore be discounted as a realistic formation mechanism for cockade breccias.  286 

 287 

4.4. Rotation-accretion hypothesis 288 

Intermittent fluidisation or suspension and subsequent partial cementation essentially describe the 289 

rotation-accretion mechanism (6). The hypothesis specifies no specific mechanism for the re-290 

fracturing of the partially cemented breccia and the subsequent rotation of clasts. However, the re-291 
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fracturing that would have to precede re-suspension or re-fluidisation can probably only be 292 

achieved by the mechanical action of moving fault walls and not the moving fluid alone. 293 

Cementation is expected to occur mostly in interseismic periods (cf. Eichhubl and Boles, 2000), and 294 

significantly higher flow rates would be required to dislodge partially cemented clasts than to 295 

fluidise or suspend non-cemented ones. 296 

Identification of the primary driver for clast agitation might be possible from textural 297 

relationships, specifically grading relations. While a cockade breccia unit formed from fluidisation 298 

of individual cockades would be expected to show normal grading of cockade sizes, due to the 299 

faster settling velocities of larger particles, one formed primarily through the action of fault wall 300 

movement and associated agitation (shaking) without fluidisation should show reverse grading 301 

because of the Brazil-nut effect, that is, the tendency of larger particles in an agitated self-302 

supporting mass of non-equigranular particles to migrate towards the top (Möbius et al., 2001). The 303 

frustrating result this effect can have on the distribution of nuts and dried fruit in packages of 304 

breakfast cereal should be familiar to most readers. In the only case of cockades where grading 305 

relationships have actually been reported, reverse grading is observed (Genna et al., 1996), 306 

indicating the dominance of seismic shaking or fault shear for the re-fracturing and rotation of the 307 

breccia unit. 308 

 309 

4.5. Other hypotheses 310 

Replacement processes (4) will result in their own characteristic set of textures which are easily 311 

distinguishable from the space-filling growth of minerals (Bastin, 1950), while the infall of clasts 312 

during cementation (5) would not yield cement crusts completely enclosing the fragments and 313 

would result in a distinctive asymmetric overall texture (Fig. 1e) which is not usually observed.  314 

Considering the evidence available from the literature, the rotation-accretion mechanism of 315 

formation (6), the textural implications of which are discussed in section 5, may be regarded as 316 

being the most likely to explain all of the observed features, although different mechanisms might 317 

be responsible for the necessary re-fracturing and rotation. Replacement processes might contribute 318 

to the formation of some cockade-like textures. 319 

 320 

5. Textural evidence for the rotation-accretion mechanism of cockade breccia formation 321 

 322 

If repeated rotation and accretion is the most likely mechanism for the formation of cockade 323 

breccias, the following textures would be expected on the macro- to microscale: 324 

 325 

1) Open space-filling cement textures, e.g. colloform or columnar growths, well-developed 326 
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crystal faces; 327 

2) Lack of contact-points between clasts in 3D; 328 

3) Lack of extensive replacements; 329 

4) Points of breakage or missing sections in the cement layers where clasts formerly touched 330 

each other and thus hindered the development of complete encrustations; 331 

5) Rotated geopetal ('way up') indicators, such as sediment deposited on and around the clasts. 332 

 333 

In addition to these essential textures, the following are expected to be developed depending on the 334 

primary driver for breccia re-fracturing and clast rotation: 335 

 336 

6) Reverse grading of cockades within individual breccia units – resulting from the Brazil Nut 337 

or Muesli Effect in an agitated non-equigranular material (Möbius et al., 2001), which might 338 

be accompanied by an upward-increasing cement to clasts ratio. This will result if seismic 339 

shaking is the dominant mechanism for re-fracturing of the breccia and rotation of clasts.  340 

7) Normal grading of cockades within individual breccia units – resulting from the faster 341 

settling velocities of larger clasts, if intermittent fluidisation or suspension is the dominant 342 

mechanism for re-fracturing and rotation of clasts. 343 

 344 

The most thorough study of rotation-accretion cockade breccias (Genna et al., 1996) detailed 345 

only the reverse grading of cockades (6) and mentioned their mechanical attrition (4). Van Alstine 346 

(1944) described evidence that clasts do not touch in 3D (2). Neither study involved detailed 347 

microscopic analyses of the textures. The necessity for a more comprehensive study of well-348 

exposed cockade breccias is indicated by this lack of published data. Material found by the authors 349 

during an investigation of low-temperature, near-surface veins on the Gower peninsula, South 350 

Wales, will serve to illustrate a few more of the textural aspects described above. 351 

 352 

6. Geological setting of Gower veins, Gower peninsula, Wales 353 

 354 

Abundant calcite-haematite veins outcrop within the Pembroke Limestone Group (Mississippian, 355 

lower Carboniferous) along the southern coast of the Gower Peninsula, South Wales (Fig. 2a). They 356 

occur along dilational strike-slip faults active late in the tectonic history of the Gower (George, 357 

1940; Roberts, 1979), towards the end of the Variscan orogeny (Wright et al. 2009) and probably 358 

during Mesozoic rifting of the Bristol Channel Basin (Woodcock et al., in press; Ault, personal 359 

communication). Wright et al. (2009) documented a range of syndeformational open-void filling 360 

textures including the occurrence of cockade breccias. Formerly economic haematite mineralisation 361 
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is present in some veins and might be related to the iron deposits of the Taff’s Well/Llanharry ore 362 

field east of Swansea. The general nature of the fills, their simple mineralogy, and similarity to other 363 

deposits for which reasonable temperature constraints can be given (Dunham, 1984; Rankin and 364 

Criddle, 1985) indicates that formation probably occurred below 150°C.  365 

Material for the present study was collected from the central part of the eastern vein at Oxwich 366 

(Fig. 8a of Wright et al., 2009). Cockades only make up a small part of the East Oxwich vein, 367 

occurring as the latest fill in a 20 to 50 cm wide zone cutting across the boundaries of all previous 368 

fills (Fig. 2b). They range from about 2 – 10 cm in diameter and consist almost entirely of several 369 

generations of columnar ferroan calcite cement, overgrowing clasts of previous calcite vein fills or 370 

of limestone. Later alteration processes including the partial leaching of ferrous iron from the 371 

calcite, oxidation and precipitation of finely disseminated ferric hydroxide caused the orange-brown 372 

colour of the haematite-free calcite now observed in the outcrop.  373 

 374 

7. Textural evidence from the Gower cockades 375 

 376 

While much of the cockade breccia unit is massive, some parts still show remnant porosity (Fig. 377 

3). Sampling was from one of these parts, and was aided by the fact that individual cockades tended 378 

to break off along the sutures between the last generation of cement growing on adjacent clasts. 379 

This also demonstrated the lack of contact-points between clasts – individual fragments were found 380 

to be completely and evenly surrounded by cement on all sides. This was confirmed by the 381 

preparation of serial horizontal sections cut from several cockades. Figures 4 and 5 show detailed 382 

line drawings and the corresponding photographs of three parallel sections through one of the larger 383 

examples. The central sparry calcite clast is evidently not supported by other clasts on its lower 384 

side, parts of which would be expected to be seen in the last section.  385 

The cement itself is exclusively columnar to blocky, with most individual crystals showing well-386 

developed growth faces. These are picked out by layers of fine-grained haematite inclusions which 387 

appear to have coated the cockade at irregular intervals during its formation. The haematitic 388 

material probably originated from the comminution of massive haematite during fault movements 389 

within higher parts of the vein or as a direct precipitate from the solutions, and behaves as an 390 

internal sediment. This behaviour is illustrated by its tendency to coat individual calcite crystals 391 

only on their upward pointing faces in other parts of the vein system (Fig. 6a), as well as forming 392 

characteristic drapings which are thinnest at the tips of the crystals and become thicker in the spaces 393 

between crystals (Fig 6b). Such differences in thickness are only expected from sedimentation. A 394 

third characteristic illustrating the primarily sedimentary nature of the haematite coatings is the 395 

embedding of some larger fragments (up to a few millimetres in size) in these layers (Fig. 6c). 396 
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Finally, similar material present in other parts of the vein shows normal grading (Fig. 6d). Notably, 397 

the thickest layers of the haematitic sediment occur towards different sides of the cockades within 398 

different cement generations, and sometimes even on what is now the lower surface of the central 399 

clast (Figs. 4 and 5). It can also be seen from Fig. 4 that breakage points are occasionally present 400 

within the haematite and cement layers. Similar textures are present in all of the material collected.  401 

The five essential textural characteristics expected for cockades formed by the rotation-accretion 402 

mechanism (see above) are therefore met by the Gower material. Unfortunately, the extent of the 403 

cockade breccia unit and the nature of the exposure (horizontal section) did not allow for the 404 

observation of any grading relationships and the dominant agitation mechanism could therefore not 405 

be assessed. The sedimentary behaviour of the very fine-grained haematitic material indicates that 406 

maximum fluid velocities must have been very low during the formation and subsequent 407 

cementation of the haematitic layers. Obviously, a fluid velocity in which material with an average 408 

grain size of < 100 µm can settle is much too low to fluidise much coarser material (cm-sized 409 

cockades), though the intermittent occurrence of high-flow events cannot be ruled out. Intervals 410 

evidently occurred in which no sedimentation of haematitic material took place (Figs. 4 and 5). If 411 

high-velocity flow did occur, it must have alternated with periods of low-velocity flow. It is difficult 412 

to assess the exact number of rotation and accretion cycles which occurred during the formation of 413 

the Gower cockades, since this would require the identification of all or most breakage points in the 414 

cement layers surrounding the cockades. However, from the points identifiable in the sections 415 

shown, there must have been at least two events after the initial formation of the central clast. If the 416 

occurrence of the thick layers of haematitic sediment is related to individual slip events, then at 417 

least four such events can be counted.  418 

In conclusion, the evidence from the Gower strongly supports the rotation-accretion mechanism 419 

for cockade breccia formation as envisaged by Van Alstine (1944) and to an extent Genna et al. 420 

(1996). Although the dominant agitation mechanism (fault wall movement or high-flow events) 421 

could not be assessed, the above description considerably complements their observations.  422 

 423 

8. Cockade breccias as indicators for relative cementation rates 424 

 425 

Persistent void space between cockades throughout their formation is evidenced by a) the rarity 426 

of contact points, b) the abundance of nicely developed calcite crystal terminations (Fig. 4), and c) 427 

the incomplete infill between cockades at the present outcrop (Fig. 3). Similar observations were 428 

made by Genna et al. (1996) on the cockade breccias in the Cirotan gold mine, Indonesia. 429 

Incomplete cementation between bursts of tectonic activity is probably one of the key requirements 430 

for the formation of cockade textures, since it allows for relatively easy breakage along the 431 
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cemented sutures between adjacent cockades. Such fracture sites in turn ensure that individual 432 

cockades remain mostly intact through each fracturing event and can slowly accumulate their 433 

successive cement coatings (Fig. 7a). This tendency to break between rather than across clasts was 434 

observed during sampling, particularly in the poorly cemented parts of the unit, supporting the 435 

notion that it also occurred during fault displacement. If cementation had been complete before 436 

every fault-slip episode, specific points of weakness would have been lacking. Fracture would have 437 

occurred across clasts, resulting in different generations of cross-cutting fracture fills (Fig. 7b). 438 

Since fracturing by either movement of the fault walls or rapidly ascending fluids will always be 439 

related to fault slip (as discussed earlier) it is proposed that cockade breccias form along dilational 440 

faults where the rate of hydrothermal cementation is slow compared to the rate of fault slip. An 441 

abundance of cockades relative to other kinds of breccia vein fills therefore provides a proxy for 442 

either low cementation rate or high fault slip rate. In Gower, the abundance of cockade breccias is 443 

relatively low compared to other types of breccia, while in the Cirotan gold-mine it appears to be 444 

relatively high (Genna et al., 1996). However, calibrating absolute rates of either cementation or 445 

fault-slip on ancient faults remains problematic. 446 

 447 

9. Random packing of granular materials and (cockade) breccia classification 448 

 449 

There is a nomenclatural problem with many cockade breccias: the ratio of original clasts to 450 

crystalline cement is generally so low (< 30 %, cf. Table 2) that they would be classified as ‘vein 451 

fills’ rather than ‘breccia’ on the scheme of Woodcock and Mort (2008, Fig. 5b). This section 452 

addresses this issue. 453 

Random packing of similarly sized grains of different shapes results in maximum porosities of 454 

about 50 % (Wyllie and Gregory, 1953). Random packing of non-equigranular materials results in 455 

lower porosity, because spaces between the larger grains are filled by some of the smaller grains. 456 

Therefore, in a cement-rich breccia resulting from a single fracturing event followed by 457 

cementation, the percentage of clasts should not be less than 50 %, well above the 30% threshold 458 

chosen by Woodcock and Mort (2008). However, where fragmentation results in a high proportion 459 

of small clasts (< 2 mm, Woodcock and Mort, 2008) and matrix (< 0.1 mm), the proportion of large 460 

clasts in fault rocks is commonly lower than 30 %, beyond which threshold the rocks are classified 461 

as cataclasites or mylonites (Woodcock and Mort, 2008, Fig. 5b).  462 

Table 2 shows the proportion of cement (and minor matrix) present in photographs of seven 463 

published occurrences of cockade breccias. These examples mostly have negligible fine-grained 464 

matrix but an average of over 70 % cement. Clearly, clasts in these breccias cannot and do not form 465 

a self-supporting framework. It also means that many cockade breccias are not strictly breccias 466 
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according to Figure 5b of Woodcock and Mort (2008). They have less than 30 % large clasts, and 467 

therefore classify as vein-fills.  468 

The genetic explanation for the difficulty in classifying cockade breccias lies in their formation 469 

by repeated fracturing and cementation events. Mechanically, the ‘clasts’ produced by later 470 

fracturing events are composites of the original clasts and the early cement. Having recognised this 471 

nomenclatural difficulty, we do not propose to pursue it. There are many geometric problems in 472 

classifying the spectrum from vein-fills to cement-rich breccias, which lie beyond the scope of this 473 

paper. Whilst the purist may want to use the term cockade texture for examples with a low clast 474 

percentage, we suggest that cockade breccia is a pragmatic choice unlikely to be misunderstood. 475 

 476 

10. Correct identification of cockade breccias 477 

 478 

Criteria are listed below to help in the correct identification of proper cockade breccias, 479 

particularly in the field. The following five criteria should be observable in any cockade breccia 480 

(also see Fig. 8): 481 

 482 

1) Concentric banding around clasts, 483 

2) Columnar cement and, or, other space-filling textures; 484 

3) Sharp boundaries between clasts and the first cement generation (i.e. no evidence for 485 

replacement, although this might not be detectable on the macro-scale);  486 

4) Volume proportion of cement significantly higher than 50%; 487 

5) Clasts not touching. This might be demonstrated either by extracting single cockades from 488 

the outcrop (such as was done for this work) or by serial sectioning of samples containing at 489 

least one or two whole clasts.  490 

 491 

Two further criteria might be evident from lab-based investigations: 492 

 493 

6) Points of breakage in cement layers where cockades were previously touching each other; 494 

7) Rotated geopetal indicators (such as the haematitic sediment in the present case). 495 

 496 

Of particular significance, especially for the distinction between cockade breccias and single-497 

phase breccias cemented by multiple cement generations are criteria (4) to (7). The volume 498 

proportion (4) provides the strongest clue, and should be observable in the field. It should also be 499 

preserved if later overprinting or alteration of the breccia has removed some or most of the other 500 

textural evidence such as columnar cement textures (2) or clast/cement contacts (3).  501 
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Two different mechanisms are expected to contribute to the mechanical agitation necessary for 502 

cockade formation: fault wall movement and fault slip-induced rapid fluid flow. If cockade breccia 503 

units are of a sufficient size to show grading relationships, the dominant agitation mechanism might 504 

be identified. In particular, reverse grading is expected if fault wall movement was dominant, while 505 

normal grading is expected if a rapidly ascending fluid was dominant.  506 

It will be noted that the criteria given above specifically limit the definition of the term cockade 507 

breccia to those structures formed by the rotation-accretion mechanism. For the superficially similar 508 

structures formed by partial metasomatic replacement of clast minerals, a different term should be 509 

used. The genetic implications of their occurrence are quite different to that of cockade breccias.  510 

 511 

11. Conclusions 512 

 513 

• Cockade textures have been recognised in mineral veins since 1836, with the term cockade 514 

being used since 1859 for concentric banding of mineral cements around breccia clasts. 515 

• A review of 106 published descriptions of cockade breccias shows that about half of the 516 

examples come from epithermal Au-(Ag, Cu) veins, a quarter from mainly epithermal Pb-517 

Zn-(Cu, Ag, Sn) veins, and the remainder from other parageneses. 518 

• At least six mechanisms have been proposed for the formation of cockade breccia-like 519 

textures, but only two – repeated rotation-accretion, and partial metasomatic replacement of 520 

clast minerals – have been supported by detailed evidence. 521 

• A new example of cockade breccia, from the East Oxwich fault on the Gower Peninsula 522 

(South Wales), shows clear evidence for the rotation-accretion mechanism, particularly 523 

overgrown breakage points in cement layers, where cockades were previously touching each 524 

other, and rotated geopetal infills of hematitic sediment. 525 

• Cockade textures probably result from low rates of cement growth compared to high rates of 526 

dilational fault slip. Seven criteria are given for the correct identification of cockade breccia. 527 

• Grading relationships can be used to identify the driver mechanism for re-fracturing and 528 

cockade rotation. This is relevant since such cases where rapid fluid flow can be 529 

demonstrated to have been the dominant driver mechanism might be used to constrain 530 

maximum fluid flow velocities.  531 

• Due to their different genetic implications, cockade breccia-like textures resulting from 532 

partial metasomatic replacement of clast minerals should not be called cockade breccias. 533 

The criteria defined above may be used to distinguish them from cockade breccias sensu 534 

stricto. 535 

 536 
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Figure Captions 767 

 768 

Fig. 1: Illustrations of the six main hypotheses for the formation of cockade breccias: (a) cut-effect, 769 

(b) crystallisation pressure, (c) suspension in fluid, (d) partial metasomatic replacement of clast 770 

minerals, (e) infall of clasts during cementation and (f) repeated rotation and accretion. For detailed 771 

explanations see main text.  772 

 773 

Fig. 2: Maps showing the exact location of the cockade breccia occurrence on the Gower peninsula: 774 

(a) Regional geological overview, with the Oxwich faults marked in; (b) map of the East Oxwich 775 

fault as it outcrops on the foreshore. The sequence of the major fill generations is: (1) white calcite, 776 

(2) breccia with red matrix, (3) breccia with orange matrix, (4) cockade breccia. Note that the term 777 

'matrix' in this case is used to refer to all the material between individual clasts, since the distinction 778 

between cement and fine-grained material is difficult in the field. Coordinates provided on (a) refer 779 

to the UK ordnance survey grid. Ovals with radiating lines towards the eastern side of the vein 780 

represent wall rock fragments overgrown by the first cement generation.  781 

 782 

Fig. 3: Field photographs showing the cockade breccia unit: (a) sampling location, with sample 783 

material still in place (the arrow marks the cockade shown in detail in Fig. 4), and (b) view to the 784 

right of (a), showing the continuity of the unit. Hammer for scale. Red bands correspond to 785 

haematite inclusion-rich zones. 786 

 787 

Fig. 4: Line drawings of horizontal, serial sections through one cockade, taken at vertical distances 788 

of c. 1 cm, with (a) being on top, and (c) at the bottom. All black lines and areas mark zones rich in 789 

haematite inclusions. Sections are shown in the same orientation as the cockade was found, seen 790 

from above (cf. Fig. 3a).  The subdivision into cement generations I to IV followed the occurrence 791 

of pronounced zones of inclusion-rich material. Shading does not reflect real variations in colour. 792 

Arrows indicate small breaks in the cement layers. The photographs corresponding to these 793 

drawings are shown in Fig. 5.  794 

 795 

Fig. 5: Photographs corresponding to the line drawings in Fig. 4; (d) shows a schematic sketch of 796 

the exact locations of the sections within the original cockade, seen from the side.  797 

 798 

Fig. 6: Sedimentary nature of fine-grained haematitic material: (a) preferential coating of upward 799 

directed crystal faces of cement on fault walls, (b) varying thickness across crystal tips which were 800 

probably coated from above, due to sediment slumping (detail of Fig. 5b), (c) larger fragments of 801 
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various vein fills embedded in haematitic sediment, (d) normal grading of fragments in haematitic 802 

sediment. All samples shown were taken from the East Oxwich fault, except for the one shown in 803 

(a) which was taken at Limeslade Bay. Similar textures occur ubiquitously throughout the Gower 804 

veins. 805 

 806 

Fig. 7: Illustration of the two textural end-members resulting from multiple refracturing and 807 

recementation events of a breccia body depending on the relative speed of cementation: (a) 808 

formation of a cockade breccia at low relative cementation speed where fracturing of clasts is 809 

mostly along cement sutures between clasts, and (b) formation of a multiphase crackle breccia, 810 

where relative cementation speed is fast, resulting in the complete cementation of the clasts between 811 

fracturing events. The apparent proportion of cement in the lower two thirds of the two breccia 812 

bodies at stage III are 58.3% and 63.2 % for the cockade and crackle breccias, respectively. 813 

 814 

Fig. 8: Schematic illustrations of eight criteria for the correct identification of cockade breccias 815 

sensu stricto, (a) identifiable on outcrop scale, (b) identifiable on hand-specimen scale. Verification 816 

of some criteria might necessitate microscopic examination. For details see main text. 817 
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Table 1 – Occurrence of cockade breccias 

Type No. of well documented 
occurrences1 

Total no. of reported 
occurrences 

Main references (well documented 
occurrences) 

Epithermal Au-
(Ag,Cu) veins 

5 52 Gibson et al., 1990; Jobson et al., 1994; Genna 
et al., 1996; Leroy et al., 2000; Grancea et al., 
2002; Squires, 2005 

(Epithermal) Pb-
Zn-(Cu,Ag,Sn) 
veins 

11 25 Weissenbach, 1836; Spurr, 1926; Buerger and 
Maury, 1927; Ingham, 1940; Watson, 1943; 
Kutina and Sedlackova, 1961; Rieder, 1969; 
Sperling, 1973; Laznicka, 1988; Munoz et al., 
1994, 1999; Bélissont et al., 2014 

Fluorite-(Baryte) 
veins 

1 10 Van Alstine, 1944 

Low-T Calcite 
veins 

1 2 Wright et al., 2009 

Mesothermal veins 
(various) 

- 2 - 

Other - 15 - 
1Containing at least either pictures of proper cockade breccias or an accurate and detailed description. 
Note: A complete list of all occurrences and the references used for the compilation of this table may be found in 
Appendix A, in the online supplementary material. 
 
 
 
Table 2 – Cement proportion of (true) cockade breccias 

Locality Type Clasts touching 
in section?  

Apparent 
porosity1 

No. of clasts in sections 
(No. of figures) 

Reference(s) 

Chocaya, Bolivia Sn-Ag veins No 0.71 12 (1) Buerger and 
Maury, 1927 

Grund mine, 
Germany 

Pb-Zn-Ag 
veins 

No 0.65 – 0.78 
(0.71) 

29 (2) Sperling 1973 

Lebong Tandai 
mine, Indonesia 

Epithermal 
Au veins 

No 0.72 16 (1) Jobson et al., 1994 

Pribram, Czech 
Republic 

Pn-Zn-Ag 
veins 

No 0.75 – 0.85 
(0.80) 

44 (2) Kutina and 
Sedlackova, 1961 

Alacrán Mine, 
Mexico 

Ag-Pb-Zn 
vein 

No 0.72 – 0.85 
(0.80) 

18 (3) 
  

Spurr, 1926 

Akshiiryak deposit, 
Kirghizia 

Pb-Zn veins No 0.81 16 (1) 
 

Laznicka, 1988 

Cirotan, Indonesia Epithermal 
Au veins 

No 0.57 – 0.89 
(0.79)  

88 (6) Genna et al., 1996; 
Leroy et al., 2000 

1Ranges are given, where several figures were analysed. The number in parantheses below the range gives the average 
apparent porosity of all figures. 
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Appendix A – Occurrences of cockade breccias

Table A1 – Well documented occurrences
Type Locality Reference(s)

Epithermal Au-
(Ag,Cu) veins

Calera, Oropampa district, Peru Gibson et al., 1990

Baia Mare, Romania Grancea et al., 2002

Exploits subzone and Gander zone, 
Newfoundland

Squires, 2005

Cirotan mine, Indonesia Genna et al., 1996; Leroy et al., 2000

Lebong Tandai mine, Indonesia Jobson et al., 1994

Epithermal Pb-Zn-
(Cu,Ag,Au,Sn) veins

Saint-Salvy/Noailhac deposit, France Munoz et al., 1994; Bélissont et al., 2013

Peyrebrunne, France Munoz et al., 1997

Chocaya, Bolivia Buerger and Maury, 1927

Shawangunk Mts., New York State, 
USA

Ingham, 1940; Sims and Hotz, 1951; Wilbur et al., 
1990; Friedman et al., 1994

Pribram, Czech Republic Kutina and Sedlackova, 1961

Bad Grund, Harz Mts., Germany Lang, 1973

Akshiiryak, Khirgizia Laznicka, 1988

Bianska Stavnica, Slovakia Rieder, 1969

Alacran mines, Mexico Spurr, 1926

Port au Port Peninsula, Newfoundland,
Canada

Watson, 1943

Erzgebirge Mts., Germany Weissenbach, 1836

Fluorite-Baryte veins St. Lawrence, Newfoundland, Canada Van Alstine, 1944

Low-T calcite veins Gower Peninsula, Wales Wright et al., 2009

Table A2 – Reported occurrences
Type Locality Reference(s)

Epithermal Au-
(Ag,Cu) veins

Efemcukuru, Izmir, Turkey Baba and Güngör, 2002; Oyman et al., 2003

Golden Cross, New Zealand Bebgie et al., 2007

Pajingo, Queensland, Australia Bobis et al., 1995

Waihi, New Zealand Braithwaite and Fauré, 2002

Shila Cordillera, Peru Cassard et al., 2000; Chauvet et al., 2006

South Korea Choi et al., 2005a,b

Hauraki goldfield, New Zealand Christie and Robinson, 1992

Acupan, Baguio District, Philippines Cooke and Bloom, 1990

Cracow vein system, Queensland, 
Australia

Dong and Morrison, 1995; Dong and Zhou, 1996

Eastern Dunnage zone, Newfoundland,
Canada

Evans, 1993

Qaleh-Zari deposit, Iran Hassan-Nezhad and Moore, 2006

Yatani deposit, Japan Hattori, 1975

Tonopah mine, Nevada, USA Henley and Berger, 2000
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Type Locality Reference(s)

Comstock district, Nevada, USA Hudson, 2003

Ikuno mine, Japan Jensen, 1957

Lalab, Sibutad, Zamboanga del Norte, 
Philippines

Jimenez et al., 2002a,b, 2007

Sunshin, South Korea Kim et al., 2012

Haenam-Jindo area, South Korea Kim and Choi, 2009

Ducat and Lunny orefields, Russia Konstantinov et al., 1993

Chah Zar deposit, Iran Kouhestani et al., 2012, 2013

Ozernovskoe and Praslovskoe deposits,
Kuril, Kamchatka, Russia

Kovalenker and Plotinskaya, 2005

Jinxi-Yelmand, Tianshan, Xinjiang, 
China

Long et al., 2005

Guanajuato, Mexico Mango et al., 2013

Steep Nap prospect, Newfoundland, 
Canada

Mills et al., 1999

Kiena Mine, Val D'Or, Quebec, Canada Morasse et al., 1995

Don Sixto deposit, Mendoza, Argentina Mugas Lobos and Marques Zavalia, 2013

Ohio and Mt. Baldy districts, Piute 
Cty., Utah, USA

Nuelle et al., 1985

Holyrood Horst, Newfoundland, 
Canada

O'Brien, 2002

Bahia Laura, Deseado Massif, 
Argentina

Paez et al., 2010

Taebaeksan district, Korea Pak et al., 2004

El Dorado district, El Salvador Richer et al., 2009

Victoria deposit, Mankayan district, 
Luzon, Philippines

Sajona et al., 2002

Tuvatu deposit, Fiji Scherbarth and Spry, 2006

Tongyoung deposits, Korea Shelton et al., 1990

Seigoshi district, Izu Peninsula, Japan Shikazono, 1985

Koryu mine, Hokkaido, Japan Shimizu et al., 1998

Mt. Muro Prospect, Borneo, Indonesia Simmons and Browne, 1990

Sierras Pampeanas, Argentina Skirrow et al., 2000

Esquel deposit, Argentina Soechting et al., 2008

Major's Creek, New South Wales, 
Australia

Wake and Taylor, 1988

Hurd Peninsula, South Shetlands Willan, 1992, 1994; Willan and Spiro, 1996

Wadi Abu Khuhsayba, Jordan Al-Hwaiti et al., 2010

Gunung Pongkor deposit, West Java, 
Indonesia

Basuki et al., 1994

Chahnali prospect, Baman volcano, 
Iran

Daliran et al., 2005

Caylloma district, Peru Echavarria et al., 2006

Tombulilato district, North Sulawesi, 
Indonesia

Perello, 1994
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Type Locality Reference(s)

Promezhutochnoe deposit, Central 
Chukchi, Russia

Volkov and Prokofev, 2011

Epithermal Pb-Zn-
(Cu,Ag,Au,Sn) veins

Milos Island, Greece Alfieris et al., 2013

Santo Nino Vein, Fresnillo Distr., 
Zacatecas, Mexico

Simmons et al., 1988; Gemmell et al., 1989

Yatanideposit, Japan Hattori, 1975

Pingüino vein system, Deseado Massif,
Patagonia, Argentina

Jovic et al., 2011a,b,c

Nigadoo vein deposit, New Brunswick,
Canada

Kalliokoski, 1961

Dunbrack deposit, Musquodoboit 
batholith, southern Nova Scotia

Kontak et al., 1999

Hiendelencina district, Guadalajara, 
Spain 

Martinez Frias, 1992

Alcudia valley, Eastern Sierra Morena, 
Spain 

Palero-Fernandez et al., 2003; Palero Fernandez and 
Martin Izard, 2005

San Vicente, Peru Schütfort, 2001

Sambo deposit, Korea So et al., 1984

Plaka Ore-System, Lavrion, Greece Voudouris et al., 2008

Castrovirreyana District, Central Peru Wise, 2005

Minas Capillitas Marquez Zavalia, 2002; Putz et al., 2006; Paar et al., 
2008; Putz et al., 2009

 Kolyma-Verkhoyansk fold belt, Russia Anikina et al., 2003

 Assif El Mal, High Atlas, Morocco Bouabdellah et al., 2009

Fluorite-Baryte veins Cerro Aspero, Cordoba prov. , 
Argentina

Coniglio et al., 2000

Nabburg-Wölsendorf district, SE 
Germany

Dill and Weber, 2010; Dill et al., 2011

Regensburg, SE Germany Dill et al., 2012

Speewah, Kimberley, Australia Gwalani et al., 2010

Southeastern Alps, Europe Hein et al., 1990

Southwestern Massif Central, 
Albigeois, France

Munoz et al., 1999

Valle de Tena, Pyrenees, Spain Subias et al., 1998

La Azul deposit, Taxco district, Mexico Tritlla and Levresse, 2006

Santa Catarina State, Brazil Jelinek et al., 1999

Low-T calcite veins Southern Arizona Davis et al., 1979

Mesothermal veins 
(various)

Salsigne deposit, France Demange et al., 2006

Bilimoia, Kainantu region, Papua New 
Guinea

Espi et al., 2007

Orogenic/Epizonal 
gold deposits

Red-Lake/Campbell mine, Canada Penczak and Mason, 1997; Tarnocai et al., 1998; 
Penczak and Mason, 1999; Dubé et al., 2004; Chi et 
al., 2009

Donlin Creek, Alaska, USA Goldfarb et al., 2004
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Yilgarn Craton, Western Australia Groves, 1993; Groves et al., 1998; Bateman and 
Hagemann, 2004

Wiluna, Western Australia Hagemann and Lüders, 2003

Kalgoorlie district, Western Australia Mueller et al., 1988, 2013

MVT Zawar, India Mookherjee, 1964

County Tipperary, Ireland Wilkinson and Lee, 2003

Southwestern Sardinia, Italy Boni and Malafronte, 1983; Boni, 1986; Boni et al., 
1988

Howell, Jefferson County, USA Ludlum, 1955

Bleiberg Schroll et al., 1983

IOCG Oak Dam East, Galwer Craton, 
Australia

Davidson et al., 2007

Contact Lake Belt, Northwestern 
Territories, Canada

Mumin et al., 2007

Calcite cemented 
calamine breccia

High Atlas, Morocco Choulet et al., 2014

U-Ni-Co-As-Ag/Bi 
veins

Zalesi deposit, Czech Republic Dolnicek et al., 2009

Low-T quartz-
fluorite-pyrite-
chlorite-siderite veins

South Crofty mine, Cornwall, UK Dominy et al., 1994

Cassiterite veins Rosevale Mine, Zennor, West Cornwall Dominy et al., 1995

Karst collapse 
breccias

Egypt El-Aref et al., 1986; El-Sharkawi et al., 1990

Hydrothermal Mn/Fe-
Mn deposits

Baft, Kerman, Iran Heshmatbehzadi and Shahabpour, 2010

Quartz veins in 
granite

Southwest Avalon zone, 
Newfoundland, Canada 

O'Driscoll and Strong, 1979

Phreatic breccias Southern Alps, Italy Servida et al., 2010

-  Tamas and Milesi, 2003

Au-Sb veins Loddiswell, Devon, UK Stanley et al., 1990

Unmineralised 
epithermal veins

Ixtacamaxtitlan, Puebla State, Mexico Tritlla et al., 2004

Note: Occurrences in italics were not included with the counts in Table 1, since it was thought that they did likely not 
represent proper cockade breccias. 
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