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SUMMARY 

There is growing evidence that Notch pathway activation can result in consequences on cell 

morphogenesis and behaviour, both during embryonic development and cancer progression. 

In general, Notch is proposed to co-ordinate these processes by regulating expression of key 

transcription factors. However, many Notch-regulated genes identified in genome-wide 

studies are involved in fundamental aspects of cell behaviour, suggesting a more direct 

influence on cellular properties. By testing the functions of 25 such genes we confirmed that 

12 are required in developing adult muscles consistent with roles downstream of Notch. 

Focusing on three, Reck, rhea/talin and trio, we verify their expression in adult muscle 

progenitors and identify Notch-regulated enhancers in each. Full activity of these enhancers 

requires functional binding sites for Su(H), the DNA-binding transcription factor in the Notch 

pathway, validating their direct regulation. Thus, besides its well-known roles in regulating 

the expression of cell-fate determining transcription factors, Notch signalling also has the 

potential to directly affect cell morphology/behaviour by modulating expression of genes such 

as Reck, rhea/talin and trio. This sheds new light on functional outputs of Notch activation in 

morphogenetic processes.  
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INTRODUCTION  

Notch signalling is a local cell communication mechanism highly conserved 

throughout the animal kingdom. It is implicated in a variety of developmental and 

physiological processes and aberrant Notch activity is linked to many different diseases, 

including cancers and neurodegenerative disorders (Bolos et al., 2007; Louvi and Artavanis-

Tsakonas, 2012). The Notch family of receptors and the Notch ligands, Delta and Serrate 

(Jagged in vertebrates), are cell-surface type I transmembrane proteins. Upon ligand binding, 

Notch receptors undergo two proteolytic cleavages that lead to the release of the Notch intra-

cellular domain (Nicd). Nicd is the active form of the receptor and acts in the nucleus as a 

transcriptional regulator, in cooperation with the DNA-binding protein CSL (also known as 

Su(H), CBF1 and LAG-1) and its co-activator Mastermind (Bray, 2006). Thus, transduction 

of Notch signalling is relatively simple and primarily results in the regulation of target genes. 

The identification and characterization of Notch target genes is therefore crucial to fully 

understand the function of Notch in developmental processes. 

The best characterized target-genes of Notch encode transcription factors of the 

HES/E(spl) and Hey/Hesr/Herp gene families (Iso et al., 2003) but more recent, genome-wide 

studies have uncovered a broader spectrum of Notch regulated genes (Djiane et al., 2013; 

Hurlbut et al., 2009; Krejci et al., 2009; Mazzone et al., 2010; Terriente-Felix et al., 2013; 

Wang et al., 2011). Amongst these were genes directly involved in cell shape, cell 

organisation and cell behaviour, whose functional relevance downstream of Notch has not 

been explored despite the fact that Notch has been implicated in different morphogenetic 

processes independently of cell fate. These include the formation of boundaries between 

different cell populations, such as during somitogenesis and in the Drosophila wing imaginal 

disc (Becam and Milan, 2008; Major and Irvine, 2006), cell migration (Schober et al., 2005; 

Wang et al., 2007) and axon guidance (although the latter may involve a non canonical 

pathway (Le Gall et al., 2008)). In the majority of contexts, such regulation of morphogenesis 

involves a transcriptional hierarchy, where activation of Notch results in the expression of a 

key transcription factor which in turn co-ordinates the cell behaviours (Niessen et al., 2008; 

Saad et al., 2010; Schober et al., 2005; Wang et al., 2007). However, it remains plausible that, 

in some tissues, Notch activity may have a more direct role in co-ordinating the genes that 

implement cell shape changes, although there is as yet little evidence to support this.  

One context where Notch is required for regulating the behaviour of a specified group 

of cells is in the Adult muscle progenitors (AMPs) in Drosophila. As in mammals, Notch 

activity is required to prevent premature differentiation of the AMPs, which are specified in 

the embryo and ultimately give rise to the adult muscles of the fly. (Anant et al., 1998; Delfini 
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et al., 2000; Hirsinger et al., 2001). During larval stages, these progenitors proliferate to 

expand the pool of myoblasts and remain associated with imaginal discs (Bate et al., 1991). 

Then, at the beginning of metamorphosis the AMPs detach from the epithelium of the 

imaginal discs and migrate as a ‘swarm’ of associated cells (Roy and VijayRaghavan, 1998). 

At the target sites, myoblasts fuse with templates formed either from founder myoblasts or, in 

a few cases, from persistent larval muscles. In doing so, the fusing cells contribute to the 

differentiating muscle so that it achieves the appropriate size and structure. (Fernandes et al., 

1991). Thus adult myogenesis is a complex morphogenetic process, involving proliferation, 

migration, cell fusion and differentiation. As Notch signalling is active both in the 

proliferating AMPs, where it inhibits differentiation, and in the semi-differentiated migrating 

myoblasts (Bernard et al., 2006; Gildor et al., 2012) it could regulate many aspects of this 

morphogenetic process. Indeed, a significant fraction of the genes directly regulated by Notch 

in DmD8 cells encode cytoskeletal regulatory proteins. DmD8 cells are related to AMPs and 

in particular express the transcription factor Twist which has been shown to function as a 

cooperating transcriptional activator for many Notch target genes (Bernard et al., 2010; Krejci 

et al., 2009). This suggested that Notch could have a direct role in co-ordinating genes that 

control cell behaviours in this setting.  

Amongst twenty-five putative Notch-regulated genes encoding cell morphogenesis 

related proteins that were identified through genome-wide studies, (Djiane et al., 2013; Krejci 

and Bray, 2007; Terriente-Felix et al., 2013), we found that twelve are essential for generating 

adult flies capable of flight, consistent with appropriate functions in muscle formation. 

Focusing on three, Reck, talin and trio, we demonstrate that they are expressed in adult 

muscle progenitors and exhibit Notch regulation. Thus, these data support the model that 

Notch activity has the potential to directly regulating genes that co-ordinate cell morphology, 

in addition to its more widely accepted role in regulating such characteristics through cell 

fate-determining transcription factors. 

 

RESULTS 

 

Identification of Notch target genes involved in adult myogenesis. 

We first selected a set of genes with known or inferred function in the control of cell 

shape, organisation and behaviour from genome-wide datasets documenting genes associated 

with Su(H)-bound regions in response to increased Notch signalling in cultured cells and in 

wing imaginal discs (Djiane et al., 2013; Krejci and Bray, 2007; Terriente-Felix et al., 2013). 

Such genes encode different types of proteins including Rho/Rac GTPase Exchange Factors 
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(e.g. trio), cytoskeleton binding proteins, a Netrin receptor implicated in cell migration and 

axon guidance (unc-5; (Keleman and Dickson, 2001)) and the Reck Matrix Metalloprotease 

inhibitor, an inhibitor of cell invasion in cancer (Takahashi et al., 1998)(Table 1). To test their 

function in adult myogenesis, a morphogenetic process where Notch signalling is implicated 

in both cell fate and cell migration (Anant et al., 1998; Gildor et al., 2012), expression of 

RNAi targeting the individual genes was directed to the AMPs (using 1151-Gal4 as a driver). 

Progeny from these crosses were assayed for their ability to fly, as an indication of muscle 

formation/function, and all genes were categorised according to the percentage of flight 

deficient individuals observed for each line (Fig. 1A, Tables 1 and S1). This approach had the 

advantage that gene expression was ablated at all post-embryonic stages of AMP development, 

from their proliferation in the larvae through to the forming muscles in pupae, but was not 

disrupted in the larval muscles nor in their embryonic progenitors (Anant et al., 1998), Finally, 

to avoid false positives from off-target effects or from side effects of RNAi insertions, where 

possible we used lines from different sources that contained different types of RNAi 

constructs.  

In most cases (18 out of 25) the results were consistent between different RNAi lines 

targeting the same gene (Table S1). For example, lines targeting Reck and trio all induced a 

high percentage of flightless flies. However, four genes (ena, GEFmeso, singed and CG6891) 

were classified as “weak-wt” since the results were inconclusive due to variability between 

lines, although overall there was little indication of any requirement in myogenesis. 

Furthermore, for three genes (Klar, wb and cdep) the results were contradictory because one 

RNAi line induced a severe phenotype whereas other lines targeting the same gene had no or 

very little effect. Such differences could be due to differences in the depletion efficiencies or 

to the inhibition of off target genes, but we have not pursued those genes further. 

In total, knock down of twelve genes gave consistent phenotypes suggesting that they 

are required for myogenesis (Fig. 1A, Tables 1 and S1). Three of these (chic, rhea/talin and 

sls) gave lethality at pharate stage when inhibited. This is consistent with a deficiency in the 

adult muscles and fits with previous data showing that rhea/talin and sls have roles in 

myogenesis (Brown et al., 2002; Burkart et al., 2007). Furthermore, in a few instances the 

adults were found half emerged from the pupal case and, very occasionally a viable flightless 

fly eclosed. This suggests that the observed lethality was, at least in part, due to the inability 

to emerge from the puparium rather than to a major developmental defect. In agreement, one 

of the chic lines gave weaker phenotypes, generating adult flies of which 50% were flightless.  

Inhibition of nine other genes, including corn and unc-5, resulted in flight defects with 

variable penetrance. In all cases the degree of flightless-ness amongst the progeny varied, 
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ranging from completely flightless flies to weak fliers. These appeared to represent a 

continuum in the severity of the same phenotype, because flightless flies were only observed 

when the progeny had a high percentage of flight defects, whereas weak fliers were often 

observed along with normal fliers. Nevertheless these included good candidates to mediate 

effects from Notch. For example both corn and unc-5 were shown to be expressed in AMPs 

and unc-5 contains a Notch responsive enhancer (Krejci et al., 2009).  

A previous genome-wide RNAi screen to identify genes with function in muscle 

formation (Schnorrer et al., 2010) differed from our assay by using mef2-Gal4 as the driver, 

which is expressed in the muscle lineage from embryonic stages onward. Despite this 

difference, the results are broadly consistent (Table 1). Only two (NijA and cher) of the ten 

genes with no or little effects in our assay were found to give a muscle phenotype with the 

more widespread depletion used previously. Likewise, among the six genes with a strong 

phenotype in our analysis, five were found to be required for correct muscle formation in the 

previous screen (Schnorrer et al., 2010). Notably, three genes (chic, rhea/talin and sls) whose 

depletion induced lethality at pharate stage in our assay gave embryonic / early larval lethality 

when inhibited from embryonic stage onwards so their role in later development was not 

considered. 

 

Reck,  talin and trio are required in AMP lineages. 

Three genes with a penetrant phenotype obtained with all tested RNAi lines, Reck, 

rhea/talin (hereafter referred to as talin) and trio were selected for further analysis, since they 

had been shown to be associated with Su(H)-bound regions in response to increased Notch 

signalling in the AMP-related DmD8 cells (Table 1). In addition, they are well-conserved 

between Drosophila and vertebrates and have been previously linked to muscle formation: 

Reck, a metalloprotease inhibitor, is expressed in developing muscles in the mouse where its 

expression is regulated by myogenic factors (Echizenya et al., 2005); Talin, a key component 

of intregrin mediated cell adhesion is involved at different stage of myogenesis in Drosophila 

(Brown et al., 2002); Trio, a GTPase exchange factor (GEF) has a role in muscle formation in 

mammals, where it activates Rac1 to promote myoblast fusion (Charrasse et al., 2007; 

O'Brien et al., 2000). 

Because 1151-Gal4 expression is not specifically restricted to AMPs (for example 

expression occurs in the salivary gland and some neural cells (Anant et al., 1998)), it was 

possible that the observed phenotypes were due to Reck, talin and trio inhibition in tissues 

other than AMPs. We thus first confirmed the requirement of these genes during adult muscle 

formation by using two other drivers, E(spl)m6-Gal4 and mef2-Gal4, to direct RNAi 
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expression in AMPs (Fig. S1). While small differences were observed in the penetrance 

obtained with the three drivers (likely due to different expression levels and timing), overall 

the phenotypes observed for all three genes were very similar (Table 2). As expected, one line 

targeting talin induced lethality at embryonic / early larval stage when driven by mef2-Gal4. 

Since mef-2-Gal4 is also expressed in embryonic and larvae muscles, these results are 

consistent with the requirement for talin during embryogenesis (Brown et al., 2002; Schnorrer 

et al., 2010). Similar lethal phenotypes were obtained when Notch-RNAi was expressed under 

the same conditions. Thus, these results confirmed that Reck, talin and trio are required in the 

myogenic lineages.  

Next we sought to determine at what stage the three genes are required. To do so, we 

combined UAS-RNAi lines targeting Reck, talin and trio with the 1151-Gal4 driver in the 

presence of a thermo-sensitive derivative of Gal80 (Gal80ts), the Gal4 inhibitor (McGuire et 

al., 2003). RNAi expression was then induced at different stages by incubating larvae at 

temperatures where Gal80ts was inactivated. As a control, the experiment was first performed 

with an RNAi line targeting the transcription factor twist, which is required in AMPs but is 

down-regulated when myoblasts differentiate (Anant et al., 1998). In agreement, we observed 

a severe phenotype when RNAi expression was initiated two days before pupation but not 

when it was initiated within 12 hours after pupation (Table 3). In contrast, inhibition of Notch 

after pupation resulted in a highly penetrant phenotype (albeit less penetrant/severe than when 

Notch was inhibited prior to pupation), suggesting a longer requirement for Notch compared 

to Twist. With Reck, talin and trio, the consequences were intermediate between the two. 

Severe phenotypes were observed when RNAi expression was induced before pupation but 

the phenotypes were considerably reduced when the animals were shifted within 12 hours 

after pupation. Indeed, with trio-RNAi, ameliorated phenotypes were already evident with 

larvae shifted 1 day prior to pupation and were almost non-existent when shifted after 

pupation. Although it is not possible to distinguish exactly when the gene function will be 

perturbed, as the precise moment depends on the RNA and protein stability, these results 

suggest that the three genes are required for myogenesis at the end of larval stages and the 

beginning of pupation corresponding to the time when the AMPs start to migrate and fuse to 

form muscle fibres (Fernandes et al., 1991).  

In order to visualize AMPs shape, morphology and organisation we used beta-3-

tubulin, which is highly expressed specifically in the AMPs (Fig. 1B). Consistent with the 

requirement for Trio during the larval stages, we found that the AMPs were disorganized and 

had altered morphology when trio expression was inhibited. Indeed, in ~30% of wing discs, 

AMP cells were abnormally dispersed, with evident gaps between cells (Fig. 1B). The same 
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phenotype was observed with two independent RNAi constructs (K18214R-1 and V40138, n= 

5/15 and 6/20 discs respectively), and suggests that Trio is important in sustaining the 

integrity of the AMP layer. No such robust changes were detected when Reck or talin 

expression was perturbed at this stage, although some cells appeared to have lost the 

expression of the myogenic protein beta-tubulin with one Reck RNAi (data not shown). 

Furthermore, although individual flies emerging after inhibition of Reck, talin and trio 

presented a wing posture defect (Fig. 1C and data not shown), using polarized light we did 

not detect any gross morphological abnormality of indirect flight muscles in these surviving 

flightless adults. Thus overall it seems likely that the flightless phenotype itself is due to 

subtler defects in muscle function and that there are also perturbations at earlier 

developmental stages that correlate to lethality before the flies eclose. 

 

Reck, talin and trio are expressed in AMP cells.  

Given the implication that Reck, talin and trio are required in AMPs for normal 

development, we assessed whether they are expressed in these cells, as predicted. Although 

their overall patterns differed, all three genes were expressed in AMPs. Expression of Reck 

was largely restricted to the AMPs (Fig. 2A-B and Fig. S2, for comparison, see expression of 

AMP markers, Cut and Mef2; Fig. 2D and H) where it was present at all stages examined, 

including young third instar (L3) larvae (Fig. 2A) and early pupae (Fig. 2B). Interestingly the 

expression levels of Reck seemed to correlate with their maturation, as higher expression 

levels were detected at the onset of pupation. In addition, Reck was also detected in the 

peripodial margin possibly reflecting a function in disc eversion (Srivastava et al., 2007). In 

contrast, Talin was broadly expressed throughout the wing-disc, with a fairly ubiquitous 

pattern as described previously (Brown et al., 2002). However there was also a clear 

accumulation in the AMPs, making it plausible that there could be specific regulation of talin 

in these cells (Fig. 2C-D, and Fig. S2). Similarly, Trio protein appeared to be expressed 

widely throughout the wing disc, including in the AMPs (Fig. 2E, and Fig. S2). Furthermore, 

in situ hybridizations suggested some differential regulation of trio, with higher expression in 

the notal region / AMPs (Fig. 2F). Similar enrichment in the AMPs was detected using a trio 

‘enhancer trap’ line (corresponding to a P element insertion at the transcription start of the 

longest transcript of trio (Bateman et al., 2000)) and this high level of LacZ reporter 

expression was found to co-localize with the AMP marker Mef2 (Fig2. G-H, and Fig. S2). 

Thus, Reck, talin and trio are all expressed in AMPs, consistent with their proposed function 

in adult myogenesis.  
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Notch regulated enhancers from Reck, talin and trio.  

Reck, talin and trio were identified as putative direct targets regulated by Notch 

signalling in the muscle lineage. To verify this, we first tested whether the regions occupied 

by Su(H) in these three loci can function as Notch responsive enhancers (NREs). DNA 

fragments corresponding to these Su(H)-bound regions (in brown in Fig. 3A-C) were cloned 

upstream of a minimal Luciferase reporter and their ability to respond to the activated form of 

Notch (Nicd) analyzed in co-transfection assays using the DmD8, Twist-expressing, cell line. 

All three enhancers gave increased luciferase expression in the presence of Nicd in DmD8 

cells and this response was compromised when the Su(H) binding motifs were mutated (Fig. 

3D; p<0.001 for trio and p<0.05 for talin and Reck, in each case the two best matches to the 

Su(H) position weight matrix were mutated). Of the three, the NRE from the trio locus gave 

the highest fold change in reporter expression in the presence of Nicd (6.5 for trio NRE 

versus 4.3 and 2.6 for talin and Reck NRE respectively) and also gave the most dramatic 

reduction when the Su(H) motifs were mutated. In contrast, the consequences on Reck NRE 

from mutating two Su(H) motifs was modest, although significant. This suggests that 

additional motifs, with lower Patser scores, may also be important in this NRE.  Nevertheless 

all of the three identified regions behave as NREs consistent with the Su(H) occupancy 

detected in ChIP.  

To further refine the NREs, smaller regions, centred on the Su(H) motifs, were 

assayed in a similar manner (circa 800pb, in green in Fig. 3A-C). The fold of activation 

obtained with the short Reck and talin NREs showed a reduced ability to respond to Notch 

activation compared to their longer counterparts, suggesting that there are important 

regulatory elements in the surrounding region (Fig. 3D). Indeed, shortened Reck NRE was no 

longer responsive to Nicd, suggesting there are relevant Su(H) motifs in the larger fragment 

which would explain the residual activity of the mutated long Reck NRE. Furthermore, all 

three long NREs contain Twist (Twi) binding regions, which are absent from their shorter 

counterparts (see “Twi ChIP”, blue, Fig. 3A-C). Thus, the reduced expression in the short 

Reck and talin NREs is consistent with the model that, in DmD8, Twi functions as a 

cooperating transcriptional activator for many Notch target genes (Bernard et al., 2010). 

Surprisingly, the short trio NRE gave a fold change 50% higher than that of the longer trio 

NRE, even though it lacks the region previously found occupied by Twi. Thus this trio-NRE 

may bind Su(H) independently of Twi. In agreement, Su(H) was found bound to trio NRE not 

only in DmD8 cells but also Kc cells which do not express Twi (Terriente-Felix et al., 2013) 

whereas Reck and talin NRE were only bound to Su(H) in DmD8 cells.  
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Reck and Talin NRE drive Notch dependent GFP expression in AMP cells in vivo. 

To further confirm the relevance of the NREs for Reck, talin and trio expression 

during adult myogenesis, we tested whether they could drive expression of a reporter in the 

AMPs. To do this, the identified NRE sequences were cloned upstream of a minimal GFP 

reporter (Housden et al., 2012) and the resulting expression patterns analysed in wing discs 

from transgenic flies. Both Reck and talin NREs clearly directed expression of GFP in the 

AMPs (Fig. 4 A-D’ and G) although in both cases only in a subset of the AMPs. Interestingly, 

the subsets differed according to the NRE, which could reflect different stages in the 

maturation of these cells or different pre-patterns amongst the progenitors. In contrast the trio-

NRE was not functional in the AMPs, although it did direct some expression in the wing disc 

epithelium (not shown). Therefore despite its ability to function effectively in transient 

transfection assays, this fragment appears to lack features critical for activity in vivo. Finally, 

we tested whether the expression from the Reck and talin NREs were affected when Notch 

signalling was compromised. Inhibition of Notch in AMPs, using Notch-RNAi driven by 

1151-Gal4, caused a clear reduction in the proportion of AMPs expressing the GFP (p<0.01 

for both, Fig. 4 C-F’ and G). Thus the activity of the enhancers appears responsive to Notch 

signalling in vivo, supporting the hypothesis that Reck and talin are direct Notch targets 

during adult myogenesis. We also detected weak and variable reductions in expression from 

the endogenous genes under similar conditions of Notch RNAi (Fig S3). 

 

Notch can induce ectopic expression of Reck, talin and trio. 

As a further test of whether the three genes can be regulated by Notch activity, we 

monitored their response to ectopic Notch activity in the wing disc, with and without the co-

operating factor Twist. Initially, Nicd alone was produced ectopically in a stripe across the 

wing pouch using the patched-Gal4 driver (ptc-Gal4; Fig. 5A-F). However, none of the genes 

showed any marked change in expression under these conditions. Subsequently, as many 

AMP Notch targets require the transcription factor Twist (Twi) to be induced by Notch 

(Bernard et al., 2010), we tested the effect of co-expressing Nicd and Twi together and of Twi 

alone. This combination induced ectopic expression of all three genes within the ptc 

expression domain (Fig. 5J-L) while none was clearly up-regulated when Twi was expressed 

alone (Fig. 5G-I). This was even the case for Trio, suggesting that Twi does cooperate with 

Notch at this target, despite the fact that the NRE binds Su(H) even in cells that lack Twi. 

Together these results suggest that Reck, talin and trio are Notch regulated in vivo when Twi 

is present in the same cells. Although this regulation is likely direct, based on the results from 

the reporters, it remains possible that there are also indirect mechanisms involved.  
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DISCUSSION 

 Notch signalling is widely implicated in the control of cell fate during development 

but also has been shown to influence cell architecture and behaviour in different 

morphogenetic processes. In most cases, Notch is proposed to co-ordinate cell morphogenesis 

by regulating the expression of key transcription factors, rather than by directly regulating the 

effector genes that implement the cell behaviours (Niessen et al., 2008; Saad et al., 2010; 

Schober et al., 2005; Wang et al., 2007). One well-characterized example is epithelial-to-

mesenchymal transition (EMT), a process that can be triggered by Notch signalling 

(sometimes in combination with other pathways such as TGFß (Espinoza and Miele, 2013; 

Wang et al., 2010)) through its regulation of the key transcription factors Snail and Slug 

(Niessen et al., 2008; Saad et al., 2010). Our results suggest however that genes involved in 

implementing cell morphology are also directly regulated by Notch. Building on previous 

genome-wide analyses of Notch regulated genes, which revealed a wide spectrum of 

functional targets, we have found that Reck, talin and trio all have some characteristics of 

direct Notch targets in the muscle progenitors. Genome-wide analysis of CSL binding in 

mouse and human T-lymphoblastic leukemia cells also identified several genes implicated in 

cell architecture regulation, although those differ from the genes analyzed here (Wang et al., 

2011).  Direct control of genes with roles in co-ordinating cell morphology/behaviour may 

thus be a general feature of Notch activity in different morphogenetic processes.  

 Two of the three genes, trio and talin, are very widely expressed. Thus, a large 

proportion of their expression likely occurs independent of Notch. However, our 

identification of Su(H) responsive enhancers associated with each of these genes suggests that 

Notch activity can modulate their expression at specific stages and/or in specific cell types. 

This highlights the existence therefore of different categories of Notch regulated genes. Most 

commonly the focus is on cell-fate determining genes, which are specifically switched on in a 

cell only when Notch activity is present. The regulation of trio and talin suggests that Notch 

activity also augments the expression of genes that are already transcribed, modifying their 

expression rather than initiating it de novo. Such subtle changes of gene expression would not 

have been uncovered by conventional approaches, demonstrating the utility of genome-wide 

studies in uncovering the full spectrum of target genes. In the AMPs, trio is important for 

sustaining the normal cell morphology, and may do so by regulating the interaction of AMPs 

with their niche (Lin et al., 2013) or their transition to a migrating population at the onset of 

pupation (Kashef et al., 2009; Moore et al., 2013). However to distinguish the contribution 

that Notch regulation makes to trio and talin functions it will ultimately be necessary to 

eliminate the NREs from the endogenous genes.  
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In contrast, Reck exhibits a much more restricted expression pattern, being specifically 

up-regulated in the late stage AMPs where Notch is active. The identified NRE directs 

expression in these cells, consistent with Reck expression being controlled by Notch activity 

in AMPs. Intriguingly, in some mammalian cells (e.g. cortical progenitors,) expression of 

RECK has been found to activate Notch signalling, by directly inhibiting ADAM10-

dependent processing of Notch ligands (Muraguchi et al., 2007). As the swarming myoblasts 

appear to undergo bi-directional Notch signalling, it is possible that Reck could be involved in 

subtle fine-tuning of signalling between cells. However, so far there is no evidence to indicate 

that Reck can inhibit Kuzbanian, the Drosophila Adam10 homologue. Instead Reck function 

has been linked to inhibition of the matrix metalloproteinase MMP1, through its ability, in 

conjunction with another metalloprotease inhibitor, to suppress invasion of tumours that had 

up-regulated MMP1 (Srivastava et al., 2007). Similar characteristics are well documented in 

mammals, where RECK functions as a tumour suppressor by inhibiting migration, invasion, 

and angiogenesis (Meng et al., 2008; Nagini, 2012; Noda et al., 2003; Takahashi et al., 1998). 

Although we have not been able to detect any gross defects in the organization of indirect 

flight muscles, suggesting that AMP migration is not severely affected when Reck is knocked-

down, as the RNA is only upregulated in late stage AMPs it is more likely to be involved in 

positively promoting myoblast migration, similar to its role in zebrafish neural crest cells 

(Prendergast et al., 2012), than in suppressing migration.  

Besides the three genes whose regulation we have analysed in some details, at least 

nine others appear to be required in adult myogenesis, based on the phenotypes seen when 

their expression in AMPs is ablated. Two of these, corn and unc-5, were previously shown to 

be expressed in AMPs. For unc-5, the Su(H) bound region has been tested and shown to 

function as an NRE in the AMPs. Thus, the evidence suggests that other putative targets will 

be regulated by Notch activity and will contribute to the functional output in regulating the 

AMPs cell behaviours. The model that emerges is that Notch activity not only regulates 

transcription factors important in conferring cell fate identify but also directly affects the 

expression levels of genes encoding proteins that implement cell fates, such as those with 

roles in regulating cellular architectures and behaviours.  
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MATERIALS AND METHODS� 

 

Drosophila stocks and genetics. 

Fly stocks used for RNAi experiments are from BDSC (Bloomington, Indiana, USA), 

DRGC (Kyoto, Japan) or VDRC (Vienna, Austria). Individual line numbers are indicated in 

table S1. We also used the UAS-twi- RNAi2x line to target twist expression (Wong et al., 

2008). Gene ablation was obtained by crossing UAS-RNAi lines with the following drivers: 

1151-Gal4 (Anant et al., 1998), mef2-Gal4 (Ranganayakulu et al., 1996) and E(Spl)m6-Gal4 

(Gift from Dr. Alexis Lalouette, Université Paris-Denis Diderot, France (unpublished)), 

combined with an UAS-Dcr-2 (BDSC, Bl24650, (Dietzl et al., 2007)) to enhance RNAi effect. 

Crosses were culture at 25°C and progeny was assayed for its ability to fly. In order to limit 

RNAi expression to a defined period of larval and pupal development, the 1151-Gal4 was 

combined with a tub-Gal80ts (McGuire et al., 2003). Crosses were cultured at 19°C and 

individually staged larvae or pupae (see table 3) were shifted to 29°C (non-permissive 

temperature for Gal80ts). Adults were then assayed for their ability to fly.  

To assay AMP cell morphology following knock-down of Reck, talin and trio, wing 

imaginal discs from wandering larvae were dissected and stained for beta3-tubulin expression. 

For the phenotype observed with trio, discs were scored on the basis of whether the AMP 

cells were abnormally dispersed, with gaps evident. 

 For Notch and Twist gain of function experiments the patched[559.1]-Gal4 driver 

combined with tub-Gal80ts (ptc-Gal4-Gal80ts) was used to drive UAS-Ni79.2 (Nicd) and/or 

UAS-Twist expression (Baylies and Bate, 1996). Crosses were cultured at 19°C for 7 days, 

then shifted to 29°C for 48 h before dissection and staining. 

The trio-LacZ reporter line was previously described (Bl 8594)(Bateman et al., 2000). 

 

Flight assay. 

For each RNAi line tested, at least 40 adult flies aged  2-8 days were assayed for their 

ability to fly. For this, flies were dump dropped from their vials at approximately 50 cm from 

the bench and numbers of flies that fell on the bench were scored (i.e. flies that could not fly 

away). This test was repeated twice from independent crosses and the results were averaged. 

Depending on the percentage of flies with flight defect, each gene was categorised as “WT” 

(less than 5%), “weak” (between 5% and 33%), “mild” (between 33% and 66%) and “strong” 

(more than 66%). When lines targeting the same gene were in different categories, the gene 

was assigned to the strongest category if all lines were in categories not different by more 
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than one degree (e.g. “strong” and “mild” or “mild” and “weak”), except with “WT” and 

“weak” in which case the gene was assigned to the “WT-weak “ category. Finally, genes with 

lines giving very different results (e.g. “weak and “strong”) were classified as “uncertain”. 

Muscle preparation 

Adult flies were fixed in 4% paraformaldehyde overnight. Thoraces were cut sagittally, 

mounted in glycerol and viewed under polarized light.  

 

Luciferase experiments and GFP reporters. 

For luciferase assays, putative NRE fragments from Reck, rhea/talin and trio were 

amplified from Drosophila genomic DNA using primers containing restriction enzyme 

sequences and cloned into a luciferase vector containing a minimal promoter from the hsp70 

gene (pGL3::Min). Release 5 coordinates of the cloned fragments were Reck, chr3L : 

15000573-15003206 (long) and 15001662-15002553 (short) ; rhea/talin chr3L : 8542368-

8545156 (long) and 8543963-8544835 (short); trio chr3L :1030426-1033023 (long) and 

1030865-1031821 (short). Matches to Su(H) motifs were identified using Patser (Hertz and 

Stormo, 1999) with the position weight matrix described previously (Krejci et al., 2009). 

Mutated Su(H) binding motifs were : in Reck-NRE, CATGGGAA > CATtGttA (at 

position 15002089) and GTCACACG > GaaAaACG (15002161) ; in rhea/talin-

NRE, CATGGGAA > CATtGttA (8544448) and TGGGAGAA > TGGtAttA (8544370); in trio-

NRE, TTCCCACG > TaaGaACG (1031441) and GTCCCACA > GaaCaACA (1031363). Cell 

culture conditions and transfections were as described previously (Nagel et al., 2005; 

Narasimha et al., 2008). At least three biological replicates were performed in all experiments. 

Significance of differences in luciferase measurements was assayed with unpaired, two-tailed 

Welch’s t-test using R (R Core Team, 2013). 

To produce GFP reporters, long NREs (as defined above) were cloned in the 

pGreenRabbit vector (pGR) (Housden et al., 2012). Flies carrying the pGR transgenes were 

generated by Phi-C31 mediated site-directed integration on the 86Fb platform. To test 

whether GFP expression was dependent on Notch signalling, reporters were combined with 

1151-Gal4 and UAS-Notch-RNAi. Crosses were cultured at 25°C for 4 days, then shifted to 

29°C for 48 h before dissection of wandering third instar larvae and staining. In all, 12-20 

wing imaginal discs obtained from independent crosses were imaged. Areas occupied by cells 

expressing Cut (AMPs marker) or expressing Cut and GFP were measured using ImageJ 

(Rasband, 1997-2012). Significance of differences in measurements was assayed with 

unpaired, two-tailed Welch’s t-test using R. 
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Immunostaining and In Situ Hybridization. 

Antibody staining of wing imaginal discs was performed according to standard 

protocol. The following antibodies from DSHB (Developmental Studies Hybridoma Bank, 

Iow City, Io, USA) were used: rat anti-ECad (DCAD2. 1:20), rat anti-Ci (2A1. 1:20), mouse 

anti-Cut (2B10. 1:20), mouse anti beta-gal (40-1A. 1:20) and mouse anti-Trio (9.4A. 1:20). 

We also used rabbit anti-GFP (1:500, Life Technologies. Carlsbad, CA, USA); rabbit anti-

Talin (1:500, gift from N. Brown. (Brown et al., 2002)); rabbit anti-Mef2 (1:1000, gift of B. 

Patterson (Lilly et al., 1995)); anti-beta3-tubulin (1: 5000, gift from R. Renkawitz-Pohl 

(Rudolf et al., 2012)). Samples were imaged using a Nikon Eclipse C1 confocal miscroscope. 

Images were processed with ImageJ and assembled with Adobe Photoshop.  

Reck and trio expression were analysed by in situ hybridization with RNA probes 

synthesised from PCR amplified DNA fragments (circa 1.2 kb) corresponding to Reck exon 7 

and 8, and trio exon 4 and 5 of the longest isoform. In both cases the two probes gave the 

same pattern. In situ hybridization was performed according to standard protocol. Fluorescent 

in situ hybridization was performed using Tyramide Signal Amplification (Perkin-Elmer, 

Waltham, Massachusetts, USA). Standard colorimetric staining was imaged using a Zeiss 

Axiophot miscroscope. Fluorescent samples were analyzed as above.  

 

Quantitative RT–PCR 

Wing imaginal discs from third instar control (1151-Gal4) and Notch depleted 

(1151>N-RNAi) larvae were dissected (20 discs for each genotype). Dorsal halves 

(corresponding to the notum, where the AMPs are located) were separated from the wing 

pouch and used for RNA extraction using TRIzol (Life Technologies). Genomic DNA was 

eliminated using Ambion’s DNA-free kit. cDNA was synthesized using random hexamers 

(Promega. Madisson, Wi, USA) and M-MLV reverse transcriptase (Promega). cDNA levels 

were quantified by real-time PCR using QuantiTec Sybr Green PCR mix (Qiagen. Valencia, 

CA, USA) and the AbiPrism machine. The calibration curve was constructed from serial 

dilutions of genomic DNA, and values for all genes were normalized to the levels of 

Elongation factor 2 (Ef2). The following primers were used. Ef2: Fwd 

GCCGATCTGCGCTCTAATAC, Rev ACGAGTATCCTGGACGATGG, within exon 5; 

Notch: Fwd TGCGATGTTCAGACGATTTC, Rev CGTATCCCTGGGAGCAGTAG, within 

exon 5; Reck: Fwd TGGACCAAAACTCGACACTG, Rev TACTCCTAGGCGGACAATGC, 

within exon 8; talin: Fwd CAGCAGCAGTGAACTTGGAG, Rev 

CTGGGTCATCGAGGTGAGTC, within exon 15; trio Fwd 
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ACCCATGAAAAGGACGTGAC, Rev CTCTCCTGCTGATCCCTCTG, within exon 4 of 

the longest isoform. 

 

 

Acknowledgments 

We are grateful to Alexis Lalouette for the E(spl)m6-Gal4 line, to Renate Renkawitz-

Pohl for the beta3-tubulin antibody, to Nick Brown for Talin antibody and to Bruce Paterson 

for Mef2 antibody. We also acknowledge the Bloomington Stock Center (BL), Vienna 

Drosophila RNAi Center (VDRC), The Kyoto Stock Center (DGRC) and The Developmental 

Studies Hybridoma Bank (DSHB) for providing Drosophila strains and antibodies. We thank 

members of the Bray lab for valuable discussions. 

 

This work was supported by a programme grant from the Medical Research Council to 

SJB [G0800034], by fellowships to GP from Fondation pour la Recherche Medical and from 

Marie Curie (Intra European Fellowship [PIEF-GA-2009-236426]) and by an EMBO Long 

Term Fellowship to HB [ALTF 325-2013].  

 

 

Author Contributions 

Conceived and designed the experiments: GP, HB, SJB.  

Performed the experiments: GP, HB, KM  

Analysed the data: GP, HB, SJB.  

Contributed reagents/materials/analysis tools: GP, KM.  

Wrote the paper: GP, SJB. 

 



 17

REFERENCES 

 Anant, S., Roy, S. and VijayRaghavan, K. (1998). Twist and Notch negatively 

regulate adult muscle differentiation in Drosophila. Development 125, 1361-9. 

 Bate, M., Rushton, E. and Currie, D. A. (1991). Cells with persistent twist 

expression are the embryonic precursors of adult muscles in Drosophila. Development 113, 

79-89. 

 Bateman, J., Shu, H. and Van Vactor, D. (2000). The guanine nucleotide exchange 

factor trio mediates axonal development in the Drosophila embryo. Neuron 26, 93--106. 

 Baylies, M. K. and Bate, M. (1996). twist: a myogenic switch in Drosophila. Science 

272, 1481-4. 

 Becam, I. and Milan, M. (2008). A permissive role of Notch in maintaining the DV 

affinity boundary of the Drosophila wing. Dev Biol 322, 190--198. 

 Bernard, F., Dutriaux, A., Silber, J. and Lalouette, A. (2006). Notch pathway 

repression by vestigial is required to promote indirect flight muscle differentiation in 

Drosophila melanogaster. Dev Biol 295, 164--177. 

 Bernard, F., Krejci, A., Housden, B., Adryan, B. and Bray, S. J. (2010). 

Specificity of Notch pathway activation: twist controls the transcriptional output in adult 

muscle progenitors. Development 137, 2633-42. 

 Bolos, V., Grego-Bessa, J. and de la Pompa, J. L. (2007). Notch signaling in 

development and cancer. Endocr Rev 28, 339--363. 

 Bray, S. J. (2006). Notch signalling: a simple pathway becomes complex. Nat Rev 

Mol Cell Biol 7, 678--689. 

 Brown, N. H., Gregory, S. L., Rickoll, W. L., Fessler, L. I., Prout, M., White, R. A. 

H. and Fristrom, J. W. (2002). Talin is essential for integrin function in Drosophila. Dev 

Cell 3, 569--579. 

 Burkart, C., Qiu, F., Brendel, S., Benes, V., Hååg, P., Labeit, S., Leonard, K. and 

Bullard, B. (2007). Modular proteins from the Drosophila sallimus (sls) gene and their 

expression in muscles with different extensibility. J Mol Biol 367, 953-69. 

 Charrasse, S., Comunale, F., Fortier, M., Portales-Casamar, E., Debant, A. and 

Gauthier-Rouviere, C. (2007). M-cadherin activates Rac1 GTPase through the Rho-GEF trio 

during myoblast fusion. Mol Biol Cell 18, 1734--1743. 

 Delfini, M. C., Hirsinger, E., Pourquie, O. and Duprez, D. (2000). Delta 1-

activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in 

chick limb myogenesis. Development 127, 5213-24. 



 18

 Dietzl, G., Chen, D., Schnorrer, F., Su, K.-C., Barinova, Y., Fellner, M., Gasser, 

B., Kinsey, K., Oppel, S., Scheiblauer, S. et al. (2007). A genome-wide transgenic RNAi 

library for conditional gene inactivation in Drosophila. Nature 448, 151--156. 

 Djiane, A., Krejci, A., Bernard, F., Fexova, S., Millen, K. and Bray, S. J. (2013). 

Dissecting the mechanisms of Notch induced hyperplasia. EMBO J 32, 60-71. 

 Echizenya, M., Kondo, S., Takahashi, R., Oh, J., Kawashima, S., Kitayama, H., 

Takahashi, C. and Noda, M. (2005). The membrane-anchored MMP-regulator RECK is a 

target of myogenic regulatory factors. Oncogene 24, 5850-7. 

 Espinoza, I. and Miele, L. (2013). Deadly crosstalk: Notch signaling at the 

intersection of EMT and cancer stem cells. Cancer Lett 341, 41-5. 

 Fernandes, J., Bate, M. and Vijayraghavan, K. (1991). Development of the indirect 

flight muscles of Drosophila. Development 113, 67-77. 

 Gildor, B., Schejter, E. D. and Shilo, B.-Z. (2012). Bidirectional Notch activation 

represses fusion competence in swarming adult Drosophila myoblasts. Development 139, 

4040-50. 

 Greene, J. C., Whitworth, A. J., Kuo, I., Andrews, L. A., Feany, M. B. and 

Pallanck, L. J. (2003). Mitochondrial pathology and apoptotic muscle degeneration in 

Drosophila parkin mutants. Proc Natl Acad Sci U S A 100, 4078-83. 

 Hertz, G. Z. and Stormo, G. D. (1999). Identifying DNA and protein patterns with 

statistically significant alignments of multiple sequences. Bioinformatics 15, 563-77. 

 Hirsinger, E., Malapert, P., Dubrulle, J., Delfini, M. C., Duprez, D., Henrique, D., 

Ish-Horowicz, D. and Pourquié, O. (2001). Notch signalling acts in postmitotic avian 

myogenic cells to control MyoD activation. Development 128, 107-16. 

 Housden, B. E., Millen, K. and Bray, S. J. (2012). Drosophila Reporter Vectors 

Compatible with ΦC31 Integrase Transgenesis Techniques and Their Use to Generate New 

Notch Reporter Fly Lines. G3 (Bethesda) 2, 79-82. 

 Hurlbut, G. D., Kankel, M. W. and Artavanis-Tsakonas, S. (2009). Nodal points 

and complexity of Notch-Ras signal integration. Proc Natl Acad Sci U S A 106, 2218-23. 

 Iso, T., Kedes, L. and Hamamori, Y. (2003). HES and HERP families: multiple 

effectors of the Notch signaling pathway. J Cell Physiol 194, 237-55. 

 Kashef, J., Köhler, A., Kuriyama, S., Alfandari, D., Mayor, R. and Wedlich, D. 

(2009). Cadherin-11 regulates protrusive activity in Xenopus cranial neural crest cells 

upstream of Trio and the small GTPases. Genes Dev 23, 1393-8. 

 Keleman, K. and Dickson, B. J. (2001). Short- and long-range repulsion by the 

Drosophila Unc5 netrin receptor. Neuron 32, 605-17. 



 19

 Krejci, A., Bernard, F., Housden, B. E., Collins, S. and Bray, S. J. (2009). Direct 

response to Notch activation: signaling crosstalk and incoherent logic. Sci Signal 2, ra1. 

 Krejci, A. and Bray, S. (2007). Notch activation stimulates transient and selective 

binding of Su(H)/CSL to target enhancers. Genes Dev 21, 1322--1327. 

 Le Gall, M., De Mattei, C. and Giniger, E. (2008). Molecular separation of two 

signaling pathways for the receptor, Notch. Dev Biol 313, 556--567. 

 Lilly, B., Zhao, B., Ranganayakulu, G., Paterson, B. M., Schulz, R. A. and Olson, 

E. N. (1995). Requirement of MADS domain transcription factor D-MEF2 for muscle 

formation in Drosophila. Science 267, 688-93. 

 Lin, G., Zhang, X., Ren, J., Pang, Z., Wang, C., Xu, N. and Xi, R. (2013). Integrin 

signaling is required for maintenance and proliferation of intestinal stem cells in Drosophila. 

Dev Biol 377, 177-87. 

 Louvi, A. and Artavanis-Tsakonas, S. (2012). Notch and disease: a growing field. 

Semin Cell Dev Biol 23, 473-80. 

 Major, R. J. and Irvine, K. D. (2006). Localization and requirement for Myosin II at 

the dorsal-ventral compartment boundary of the Drosophila wing. Dev Dyn 235, 3051--3058. 

 Mazzone, M., Selfors, L. M., Albeck, J., Overholtzer, M., Sale, S., Carroll, D. L., 

Pandya, D., Lu, Y., Mills, G. B., Aster, J. C. et al. (2010). Dose-dependent induction of 

distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proc 

Natl Acad Sci U S A 107, 5012-7. 

 McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K. and Davis, R. L. (2003). 

Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765-8. 

 Meng, N., Li, Y., Zhang, H. and Sun, X.-F. (2008). RECK, a novel matrix 

metalloproteinase regulator. Histol Histopathol 23, 1003--1010. 

 Moore, R., Theveneau, E., Pozzi, S., Alexandre, P., Richardson, J., Merks, A., 

Parsons, M., Kashef, J., Linker, C. and Mayor, R. (2013). Par3 controls neural crest 

migration by promoting microtubule catastrophe during contact inhibition of locomotion. 

Development 140, 4763-75. 

 Muraguchi, T., Takegami, Y., Ohtsuka, T., Kitajima, S., Chandana, E. P. S., 

Omura, A., Miki, T., Takahashi, R., Matsumoto, N., Ludwig, A. et al. (2007). RECK 

modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat 

Neurosci 10, 838--845. 

 Nagel, A. C., Krejci, A., Tenin, G., Bravo-Patino, A., Bray, S., Maier, D. and 

Preiss, A. (2005). Hairless-mediated repression of notch target genes requires the combined 

activity of Groucho and CtBP corepressors. Mol Cell Biol 25, 10433--10441. 



 20

 Nagini, S. (2012). RECKing MMP: relevance of reversion-inducing cysteine-rich 

protein with kazal motifs as a prognostic marker and therapeutic target for cancer (a review). 

Anticancer Agents Med Chem 12, 718-25. 

 Narasimha, M., Uv, A., Krejci, A., Brown, N. H. and Bray, S. J. (2008). Grainy 

head promotes expression of septate junction proteins and influences epithelial 

morphogenesis. J Cell Sci 121, 747-52. 

 Niessen, K., Fu, Y., Chang, L., Hoodless, P. A., McFadden, D. and Karsan, A. 

(2008). Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J 

Cell Biol 182, 315--325. 

 Noda, M., Oh, J., Takahashi, R., Kondo, S., Kitayama, H. and Takahashi, C. 

(2003). RECK: a novel suppressor of malignancy linking oncogenic signaling to extracellular 

matrix remodeling. Cancer Metastasis Rev 22, 167--175. 

 O'Brien, S. P., Seipel, K., Medley, Q. G., Bronson, R., Segal, R. and Streuli, M. 

(2000). Skeletal muscle deformity and neuronal disorder in Trio exchange factor-deficient 

mouse embryos. Proc Natl Acad Sci U S A 97, 12074-8. 

 Prendergast, A., Linbo, T. H., Swarts, T., Ungos, J. M., McGraw, H. F., Krispin, 

S., Weinstein, B. M. and Raible, D. W. (2012). The metalloproteinase inhibitor Reck is 

essential for zebrafish DRG development. Development 139, 1141-52. 

 R Core Team. (2013). R: A Language and Environment for Statistical Computing. 

Vienna, Austria: R Foundation for Statistical Computing. 

 Ranganayakulu, G., Schulz, R. A. and Olson, E. N. (1996). Wingless signaling 

induces nautilus expression in the ventral mesoderm of the Drosophila embryo. Dev Biol 176, 

143-8. 

 Rasband, W. S. (1997-2012). ImageJ. Bethesda, Maryland, USA: U. S. National 

Institutes of Health. 

 Roy, S. and VijayRaghavan, K. (1998). Patterning muscles using organizers: larval 

muscle templates and adult myoblasts actively interact to pattern the dorsal longitudinal flight 

muscles of Drosophila. J Cell Biol 141, 1135-45. 

 Rudolf, A., Buttgereit, D., Rexer, K. H. and Renkawitz-Pohl, R. (2012). The 

syncytial visceral and somatic musculature develops independently of beta3-Tubulin during 

Drosophila embryogenesis, while maternally supplied beta1-Tubulin is stable until the early 

steps of myoblast fusion. Eur J Cell Biol 91, 192-203. 

 Saad, S., Stanners, S. R., Yong, R., Tang, O. and Pollock, C. A. (2010). Notch 

mediated epithelial to mesenchymal transformation is associated with increased expression of 

the Snail transcription factor. Int J Biochem Cell Biol 42, 1115-22. 



 21

 Schnorrer, F., Schönbauer, C., Langer, C. C. H., Dietzl, G., Novatchkova, M., 

Schernhuber, K., Fellner, M., Azaryan, A., Radolf, M., Stark, A. et al. (2010). Systematic 

genetic analysis of muscle morphogenesis and function in Drosophila. Nature 464, 287-91. 

 Schober, M., Rebay, I. and Perrimon, N. (2005). Function of the ETS transcription 

factor Yan in border cell migration. Development 132, 3493--3504. 

 Srivastava, A., Pastor-Pareja, J. C., Igaki, T., Pagliarini, R. and Xu, T. (2007). 

Basement membrane remodeling is essential for Drosophila disc eversion and tumor invasion. 

Proc Natl Acad Sci U S A 104, 2721-6. 

 Takahashi, C., Sheng, Z., Horan, T. P., Kitayama, H., Maki, M., Hitomi, K., 

Kitaura, Y., Takai, S., Sasahara, R. M., Horimoto, A. et al. (1998). Regulation of matrix 

metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein 

RECK. Proc Natl Acad Sci U S A 95, 13221-6. 

 Terriente-Felix, A., Li, J., Collins, S., Mulligan, A., Reekie, I., Bernard, F., Krejci, 

A. and Bray, S. (2013). Notch cooperates with Lozenge/Runx to lock haemocytes into a 

differentiation programme. Development 140, 926-37. 

 Wang, H., Zou, J., Zhao, B., Johannsen, E., Ashworth, T., Wong, H., Pear, W. S., 

Schug, J., Blacklow, S. C., Arnett, K. L. et al. (2011). Genome-wide analysis reveals 

conserved and divergent features of Notch1/RBPJ binding in human and murine T-

lymphoblastic leukemia cells. Proc Natl Acad Sci U S A 108, 14908-13. 

 Wang, X., Adam, J. C. and Montell, D. (2007). Spatially localized Kuzbanian 

required for specific activation of Notch during border cell migration. Dev Biol 301, 532--540. 

 Wang, Z., Li, Y., Kong, D. and Sarkar, F. H. (2010). The role of Notch signaling 

pathway in epithelial-mesenchymal transition (EMT) during development and tumor 

aggressiveness. Curr Drug Targets 11, 745-51. 

 Wong, M. C., Castanon, I. and Baylies, M. K. (2008). Daughterless dictates Twist 

activity in a context-dependent manner during somatic myogenesis. Dev Biol 317, 417-29. 

 Zaffran, S., Astier, M., Gratecos, D. and Sémériva, M. (1997). The held out wings 

(how) Drosophila gene encodes a putative RNA-binding protein involved in the control of 

muscular and cardiac activity. Development 124, 2087-98. 

 

 



 22

 

FIGURE LEGENDS 

 

Figure 1. An RNAi assay identifies genes required for muscle formation. 

(A) Pie chart showing the proportion of genes whose loss of function resulted in the 

different phenotypical classes (See Methods for more details about classes). Note that the 

1151-Gal4 driver is expressed in AMPs but not in the larval muscles to avoid any 

confounding effects from defects in larval musculature (as might occur with mef2-Gal4) 

 (B) AMP organisation in wing imaginal discs from control (1151-Gal4) and trio-

RNAi (1151-Gal4 UAS-trio-RNAi) larve detected with beta-3-tubulin (red).  Cut (green) 

marks nuclei of AMPs, and DAPI (blue) labels all nuclei. Altered cell morphology and 

organization is evident in trio-RNAi compared to control (representative examples of 

intermediate severity are shown). White squares indicate regions shown at higher 

magnification.  

(C) Dorsal view of control (1151-Gal4) and 1151-Gal4 driven Reck-RNAi adult flies. 

The defective position of the wings observed, “held out wings” phenotype, has often been 

associated with flight muscle defects (Greene et al., 2003; Zaffran et al., 1997). 

 

Figure 2. Reck, talin and trio are expressed in AMP cells.  

Expression profiles of Reck, talin and trio in the wing imaginal disc show that all three 

genes are expressed in AMPs.  

(A-B) Reck In situ hybridization in young L3 larvae (A) and P1 pupae (B) 

(C-D) talin expression profile revealed by immunostaining and co-stained with the 

AMP marker cut. (C. 20x and D. 40x, Maximum projections of z-stacks from confocal 

acquisitions are presented). 

 (E-H) trio expression profile shown by immunostaining (E, Maximum projections), 

In situ hybridization (F) and an enhancer-trap reporter line (G. 20x) also co-stained with the 

AMP marker mef2 (H. 40x, Maximum projections). 

 

Figure 3. Su(H) ChIP identifies Notch Responsive Enhancers in Reck, talin and 

trio loci. 

(A - C) Genomic region surrounding Drosophila Reck (A), talin (B) and trio (C) genes. 

Black lines and boxes (exons) represent transcribed regions. Graphs show matches to Su(H) 

PWM (dark red bars; height of bar indicates Patser score 5-9.79), Twi PWM (dark blue bars; 

Patser score 5-9.3), Su(H) (red; enrichment (AvgM log2)) and Twi (blue) ChIP-enriched 
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regions in DmD8 cells (Bernard et al., 2010; Krejci et al., 2009). Brown and green rectangles 

represent long (brown) and short (green) fragments tested for their Notch signalling activation 

sensitivity. Asterisks indicate Su(H) binding sites mutated in subsequent experiments.  

(D) Response of the indicated long (brown) and short (green) fragment to Notch 

signalling activation in transient transfection assays in DmD8 cells. Plain bars represent 

wildtype fragments and striped bars fragments in which Su(H) sites were mutated. E(spl)m3 

which is inducible by Notch in all tested condition (Krejci and Bray, 2007) was used as 

positive control. Errors bars represent s.d. (** indicates p<0.05 and *** indicates p<0.001). 

 

Figure 4. Reck and talin NREs drive Notch dependent GFP expression in AMPs 

in vivo. 

(A-B’) Reck (A and higher magnification in A’) and talin (B and higher magnification 

in B’) L-NREs drive GFP expression in a subset of AMPs as shown by GFP colocalisations 

with the AMP marker Cut. White squares in A and B indicate regions shown at higher 

magnification in A’ and B’. Single optical sections from confocal acquisitions are presented. 

(C-F’) Expression from reporters Reck-L-NRE-GFP (C-C’, E-E’) and talin-L-NRE-

GFP (D-D’, F-F’) in wild type (C-D’) and Notch depleted conditions (E-F’). Cut expression 

was used to mark the AMPs. Green dotted lines in C’, D’, E’ and F’ outline Cut and GFP 

expressing cells. Maximum projections of z-stacks from confocal acquisitions are presented. 

(G) Boxplot representing the percentage of AMPs (Cut expressing cells) expressing 

GFP from Reck-L-NRE-GFP and talin-L-NRE-GFP reporters in wild type (CTRL) and Notch 

depleted (N-RNAi) conditions. The percentage of AMPs expressing GFP was estimated by 

manually measuring areas occupied by cells expressing Cut or Cut and GFP. (*** indicates 

p<0.001). 

 

Figure 5. Notch can induce ectopic expression of Reck, talin and trio in the 

presence of Twist. 

(A-L) ptc-Gal4; Tub-Gal80ts was used to drive expression of Nicd and / or Twist in 

the wing pouch. Expression profile of Reck (A, D, G, J, In situ hybridization), talin (B, E, H, 

K. immunostaing) and trio (C, F, I, L. immunostaining) in a wild type wing pouch (A-C), in 

Nicd expressing discs (D-F), Twist expressing discs (G-I) and Nicd + Twist expressing discs 

(J-L). Note the ectopic expression of Reck (J, black arrows) and the upregulation of talin and 

trio (K, L. white arrows) induced by Notch in the presence of Twist. Ci staining was used to 

indicate the limit between anterior and posterior domains, along which ptc-Gal4 is expressed 

(Indicated with orange lines).  
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Table 1. List of candidate genes selected from genome wide studies. 

 

FBgn ID CG Id Name Function GO TERM Su(H) Phenotype Schnorrer et al.

FBgn0001316 CG17046 klarsicht actin binding GO:0003779 
D8, Su(H), 

Nicd, Kc 
uncertain wt 

FBgn0024277 CG18214 trio 
Rho guanyl-nucleotide 

exchange factor activity 
GO:0005089 

D8, Su(H), 

Nicd, Kc 
strong 

flightless /  

lethal (AP) 

FBgn0014133 CG1822 bifocal actin binding GO:0003779 
D8, Su(H), 

Nicd 
wt nd 

FBgn0011661 CG10701 Moesin 
cytoskeletal protein 

binding 
GO:0008092 

Su(H), Nicd, 

Kc 
weak wt 

FBgn0036101 CG6449 Ninjurin A cell adhesion GO: 0007155 
D8, Su(H), 

Nicd 
wt flightless 

FBgn0013726 CG8705 peanut 
actin binding, microtubule 

binding 

GO:0003779, 

GO:0008017 

D8, Su(H), 

Nicd 
wt nd 

FBgn0035802 CG33275 CG33275 
Rho guanyl-nucleotide 

exchange factor activity 
GO:0005089 Su(H), Nicd wt wt 

FBgn0030955 CG6891 CG6891 actin binding GO:0003779 Su(H), Nicd wt - weak nd 

FBgn0014141 CG3937 cheerio actin binding GO:0003779 Su(H), Nicd weak flightless 

FBgn0000308 CG9553 chickadee actin binding GO:0003779 Su(H), Nicd lethal lethal (E) 

FBgn0259173 CG42278 cornetto microtubule binding GO:0008017 D8, Nicd weak wt 

FBgn0011225 CG5695 jaguar 

actin binding, microtubule 

binding, myosin light 

chain binding 

GO:0003779, 

GO:0008017, 

GO:0032027 

Su(H), Nicd strong lethal (P) 

FBgn0003447 CG32858 singed actin binding GO:0003779 Su(H), Nicd wt - weak wt 

FBgn0034013 CG8166 unc-5 netrin receptor activity GO:0005042 D8, Su(H) mild wt 

FBgn0000083 CG5730 Annexin B9 actin binding GO:0003779 Su(H) wt wt 

FBgn0051536 CG31536 Cdep* 
Rho guanyl-nucleotide 

exchange factor activity 
GO:0005089 Su(H) uncertain locomotion 

FBgn0011202 CG1768 diaphanous 
actin binding, Rho 

GTPase binding 

GO:0003779, 

GO:0017048 
Su(H) mild wt 

FBgn0260866 CG12489 
defense 

repressor 1 
zinc ion binding GO:0008270 D8 wt wt 

FBgn0000578 CG15112 enabled actin binding GO:0003779 Su(H) wt - weak wt 
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FBgn0050115 CG30115 GEFmeso 
Rho guanyl-nucleotide 

exchange factor activity 
GO:0005089 Nicd wt - weak nd 

FBgn0036463 CG5392 Reck* 
serine-type endopeptidase 

inhibitor activity 
GO:0004867 D8 strong nd 

FBgn0260442 CG6831 rhea / talin 
actin binding, structural 

constituent of cytoskeleton 

GO:0003779, 

GO:0005200 
D8 lethal lethal (L) 

FBgn0086906 CG1915 sallimus 
myosin light chain kinase 

activity, actin binding 

GO:0004687, 

GO:0003779 
Su(H) lethal lethal (E) 

FBgn0051352 CG31352 Unc-115a actin binding GO:0003779 Su(H) weak wt 

FBgn0261563 CG42677 wing blister 

receptor binding, 

regulation of cell 

adhesion, cell migration 

GO:0005102, 

GO:0030155, 

GO:0030334 

Su(H) uncertain wt 

 

 

Cdep*: Chondrocyte-derived ezrin-like domain containing protein.  

Reck*: Reversion-inducing-cysteine-rich protein with kazal motifs. 

 

Candidates are sorted by the number of datasets in which Su(H) was found bound to their loci. 

(Su(H) column: D8: DmD8 cells (Krejci et al., 2009); Su(H) and Nicd: Wing imaginal discs 

overexpressing Su(H) and Nicd respectively (Djiane et al., 2013); Kc: Kc cells (Terriente-

Felix et al., 2013).  

The phenotypical category obtained in our assay and the phenotype observed by Schnorrer et 

al. (Schnorrer et al., 2010) are indicated (AP: Adult-pharate, E: Embryonic, L: Larval, P: 

Pharate). 
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Table 2. Percentage of flight defects obtained with three muscle drivers. 

 

   1151-Gal4  mef2-Gal4  E(spl)m6-Gal4 

gene line  % s.d.  % s.d.  % s.d. 

Reck 52427 (Vi)  94.22 1.65  95.12 1.67  82.04 2.26 

 5392-R2 (Ky)  81.56 1.12  80.69 2.83  67.29 1.89 

talin 40399 (Vi)  lethal na  lethal (E) na  lethal na 

 6831-R2 (Vi)  lethal na  lethal na  lethal na 

trio 40138 (Vi)  93.89 0.48  97.60 0.77  89.53 1.21 

 18314-R1 (Ky)  82.49 1.88  lethal na  82.13 4.65 

Notch 7078 (Bl)  94.96 1.99  lethal (E) na  95.31 6.63 

control w/o RNAi yw  4.85 0.33  3.42 0.61  3.70 0.74 

 

(E) lethality was observed at embryonic or early larval stages.  

 

 

 

Table 3. Percentage of flight defects (or lethality) resulting from the induction of RNAi 
transcription at different stages. 

 

   L3a (3 dpf.)  L3b (4 dpf)  P1-P3  always at 18°C 

gene line    % s.d.  % s.d.  % s.d.  % s.d. 

Reck  52427 (Vi)    100 na  100 na  34.25 4.93  19.71 2.42 

talin  40399 (Vi) lethal  100 na  100 na  57.75 7.37  0 na 

  flightless  0   0   42.25   4.94 1.85 

trio  40138 (Vi)    100 na  64.55 16.86  19.46 5.76  20.38 0.53 

Notch  7078 (Bl)    100 na  100 na  86.3 1.32  20.73 1.54 

twist ref.*    100 na  nd nd  4.26 0.25  4.13 0.3 

control w/o RNAi yw    3.3 1.22  6.64 1.08  2.89 1.14  2.85 1.51 

 

Larvae combining UAS-RNAi, 1151-Gal4 and tub-Gal80ts were raised at 18°C and shifted to 
29°C (allowing RNAi expression) at the indicated stage. The observed percentage (%) of 
adults with flight defect (or lethality) and standard deviation (s.d.) are indicated. Dpf: days 
post fertilisation. L3a: Early third instar larval stage. L3b : Late third instar larval stage 
(wandering larvae). P1-P3 : Pupal stage 1 to 3 (0-6 hours after puparium formation). Ref.* : 
(Wong et al., 2008). 

 












