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Abstract Analysis within the field of Multidisciplinary
Design Optimization (MDO) generally falls under the
headings of architecture proofs and sensitivity infor-
mation manipulation. We propose a differential geom-
etry (DG) framework for further analyzing MDO sys-
tems, and here, we outline the theory undergirding that
framework: general DG, Riemannian geometry for use
in MDO, and the translation of MDO into the language
of DG. Calculating the necessary quantities requires
only basic sensitivity information (typically from the
state equations) and the use of the implicit function the-
orem. The presence of extra or non-differentiable con-
straints may limit the use of the framework, however.
Ultimately, the language and concepts of DG give us
new tools for understanding, evaluating, and develop-
ing MDO methods; in Part I, we discuss the use of these
tools and in Part II, we provide a specific application.

Keywords Multidisciplinary Design Optimization ·
Differential Geometry · Design Analysis

1 Introduction

Multidisciplinary Design Optimization (MDO) is con-
cerned with the optimization of systems that have cou-
pled subsystems or disciplines. These systems typically
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have several disciplines, each with design variables spe-
cific to that discipline; state variables that represent
the outputs of their respective disciplines; and design
variables common to more than one discipline – local
design, state, and global design variables, respectively.
MDO applies various decomposition strategies, known
as architectures, to these systems to make them more
amenable to optimization. These strategies include An-
alytical Target Cascading (ATC) (Kim 2001), Simul-
taneous Analysis and Design (SAND) (Haftka 1985),
Quasiseparable Decomposition (QSD) (Haftka andWat-
son 2005), Multidisciplinary Feasible (MDF) (Cramer
et al. 1994), Collaborative Optimization (CO) (Braun
and Kroo 1997), Bi-Level Integrated System Synthesis
(BLISS) (Sobieszczanski-Sobieski et al. 1998), Concur-
rent Subspace Optimization (CSSO) (Bloebaum et al.
1992), and Individual Discipline Feasible (IDF) (Cramer
et al. 1994); naming variations exist within the litera-
ture, but these are the most commonly used appella-
tions. Theoretical MDO work has focused on architec-
ture equivalence or convergence proofs and the determi-
nation of design sensitivities for MDO, but few architec-
tures have these proofs; most decomposition methods
that have such proofs require special problem structures
not typically found in MDO (Haftka and Watson 2006).
In this paper, we develop a differential geometry (DG)
framework for facilitating the analysis and evaluation
of MDO methods: Part I details the underlying theory,
and Part II uses that theory to investigate QSD.

2 Review of MDO analysis

In light of the extensive analytical work we are about to
undertake, beginning with this paper, it is appropriate
to review the analysis which has previously been done
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within the field. This work falls broadly under two cat-
egories: architecture proofs and the manipulation and
analysis of sensitivity information.

2.1 Architecture convergence and equivalence

There are not many convergence or equivalence proofs
for the various architectures in the MDO literature.
Convergence is a fairly self-explanatory concept, but
it should be noted that, in the context of MDO, equiv-
alence refers to the correspondence between (optimal)
solutions of the decomposed problem and (optimal) so-
lutions of the original problem.

Most of the extant MDO analysis has been focused
around ATC. ATC was developed by Kim (2001), and
he conjectured that ATC was convergent based on its
similarity to Hierarchical Overlapping Coordination, a
decomposition-based optimization method with proven
convergence. Michelena et al. (2003) later proved this
conjecture correct given a hierarchical problem struc-
ture and certain coordination schemes.

Considerable effort has also been put into the in-
vestigation of penalty functions and their weightings
within an ATC context, as these can strongly affect
convergence performance and efficiency. Han and Pa-
palambros (2010) proved the existence of convergent
weights with L∞ norms (though not how to find such
weights); however, it seems that most of the literature in
this area has focused on Augmented Lagrangian coor-
dination (Kim et al. 2006; Tosserams et al. 2006, 2009).

Work in solution equivalence has been done with
QSD. With convexity assumptions and the quasisep-
arable problem structure, Haftka and Watson (2005)
proved the equivalence of optimal solutions (both global
and local) between the original and decomposed prob-
lems while also showing that feasible points in one prob-
lem corresponded to feasible points in the other.

Conversely, convergence issues for CO in both the-
ory and practice have been highlighted; the problem
arises because the penalty functions used lead to either
nondifferentiability or vanishing Lagrange multipliers
at optimal points (Alexandrov and Lewis 2002). Some
solutions have been proposed to keep the concept un-
derlying the CO architecture while overcoming these is-
sues: Modified Collaborative Optimization (MCO) from
DeMiguel and Murray (2000) and Enhanced Collabora-
tive Optimization (ECO) from Roth and Kroo (2008).
DeMiguel and Murray (2001; 2006) provided equiva-
lence and convergence proofs for their proposal, but it
is interesting to note how similar their formulation ends
up being to that of ATC. This is meant not as a dispar-
agement of their work but rather as an observation that

certain solution methods (i.e. a combination of objec-
tive and penalty functions at each level of a multi-level
hierarchical optimization problem) seem to lend them-
selves more easily to convergence proofs than others.

2.2 Sensitivity calculations

Some work has been done to translate sensitivity infor-
mation between architectures (Alexandrov and Lewis
2000, 2003), but so far, this has only been done between
the monolithic architectures (MDF, IDF, and SAND).
Decomposition in the distributed architectures seems
to be a significant obstacle to such translation.

Using the implicit function theorem, Sobieszczanski-
Sobieski (1990a) developed the Global Sensitivity Equa-
tions (GSE) to calculate cross-disciplinary sensitivities
without needing costly multidisciplinary analyses; he
then extended the method for the calculation of higher-
order sensitivities (Sobieszczanski-Sobieski 1990b). Al-
though this did not completely eliminate the costs in-
volved in sensitivity analysis, it did make substantial
reductions possible: for architectures that require this
information for their decomposition procedures (e.g.
BLISS and CSSO), a mechanism like the GSE is neces-
sary for good performance on coupled systems.

Optimum Sensitivity Analysis (OSA) is used to cal-
culate the derivatives of an optimal solution with re-
spect to problem parameters (i.e. quantities that were
held constant during the optimization) (Barthelemy and
Sobieszczanski-Sobieski 1983a,b). These calculations en-
able perturbation analyses to be done on the solution
without needing costly re-optimizations each time. This
is particularly useful for distributed or multi-level MDO
architectures because OSA can then be used to obtain
derivatives cheaply from the lower level problem for use
in the upper level problem (or vice versa).

All of this is mainly concerned with the use of basic
sensitivity information to gain further knowledge about
the system – it does not consider how sensitivity infor-
mation is calculated in the first place. The calculation
of that basic information is an important area of re-
search in its own right. See van Keulen et al. (2005) for
a review thereof. Martins and Hwang (2012) also pro-
vide a review of the different methods available for cal-
culating derivatives in multidisciplinary systems; they
include methods for obtaining basic sensitivity informa-
tion and for obtaining cross-disciplinary sensitivities.

3 Differential geometry theory

The basic idea behind our framework is that MDO con-
sists of optimization done on manifolds – which are es-
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sentially higher-dimensional versions of surfaces – and
that the language of DG can thus be used to describe
the relevant processes and quantities; the constrained
optimizations in Euclidean spaces are reconceptualized
as unconstrained optimizations on Riemannian mani-
folds embedded in those Euclidean spaces. We do this
translation in Section 4, but first, we give the theory un-
derlying that translation. The explanation given in this
section is not meant to be exhaustive – it merely gives
the context and background necessary to make later
derivations comprehensible. More detailed treatments
are available elsewhere. The material for this introduc-
tion is mainly drawn from Boothby (1986) and others
are cited where pertinent.

3.1 Basic concepts in differential geometry

Differential geometry is concerned with doing mathe-
matics (such as calculus) on generally non-Euclidean
spaces. In Euclidean geometry, the basic structures of
space are linear: lines, planes, and their analogues in
higher dimensions; DG, on the other hand, deals with
manifolds (which may be Euclidean but often are not).
Manifolds are abstract mathematical spaces which lo-
cally resemble the spaces described by Euclidean geom-
etry but may have a more complicated global structure.
They can also be considered extrinsically or intrinsi-
cally: an extrinsic view of a manifold considers it as be-
ing embedded in a higher-dimensional Euclidean space
whereas the intrinsic view considers the manifold more
abstractly without any need for a surrounding space
(Ivancevic and Ivancevic 2007).

In the context of our reconceptualization of MDO
as discussed earlier, this means that we could consider
the constraint manifolds extrinsically, as being embed-
ded in the total design space (which would be a higher-
dimensional Euclidean space), or intrinsically, without
reference to the total design space in which it is em-
bedded. The extrinsic view would see the manifold as
a set of points in !n, but, as we will show in this
section, manifolds have additional mathematical struc-
tures which do not apply to sets of points in general.

Consider a manifold M of dimension n (denoted as
an n-manifold). About any point p ∈ M , there exists
a coordinate neighbourhood, also known as a chart,
consisting of a neighbourhood U of p and a mapping
ϕ : U → Ũ , where Ũ is an open subset of !n. If M is a
manifold with a boundary ∂M , and p ∈ ∂M , then

Ũ ⊂ Hn, Hn =
{(

x1, x2, . . . , xn
)
∈ !n|xn ≥ 0

}
(1)

Note that ∂M is itself a manifold of dimension n−1.
The mapping ϕ need not be unique, however; Fig. 1

shows an example of these charts. This mapping is what
allows us to take the familiar analyses done in (flat)
Euclidean space and apply them to (curved) manifolds.
Ultimately, the chart is what makes it possible to define
things like coordinate reference frames and derivatives.

Fig. 1 Overlapping charts on a 2-manifold in 3-space
(Boothby 1986, used with permission)

Differentiable manifolds are simply manifolds such
that ϕ is differentiable at every p ∈ M . For the purposes
of this discussion, we assume that all the manifolds we
encounter are sufficiently differentiable that questions
of discontinuities or singularities do not arise.

Given any two manifolds M and N (and !n is a
manifold, albeit a globally Euclidean one), it is possi-
ble to construct a product manifold M ×N with struc-
ture inherited from M and N . Conversely, a subman-
ifold N of a manifold M is a subset of points in M
such that N itself is also a manifold, and submani-
folds inherit certain properties from the manifolds in
which they are embedded. Identifying product mani-
fold or submanifold structures is valuable because it
can simplify calculations done on such manifolds and
help to show the relationships between different mani-
folds. Figure 2 gives an example of some submanifolds:
the black curve is a submanifold of the surface in which
it is embedded, which is in turn a submanifold of the
surrounding Euclidean space !3. For more on product
manifolds, submanifolds, and the properties of both, see
Boothby (1986) or Yano and Kon (1984).

The tangent space at p is the vector space consisting
of all vectors tangent to M at p, and it is denoted by
Tp (M). It is itself an n-manifold. The tangent bundle
T (M) consists of the union of the tangent spaces at
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Fig. 2 A 1-D submanifold of a 2-D manifold in !3

each point p ∈ M , and it is a 2n-manifold. Vector fields
on the manifold “live” in the tangent bundle. The tan-
gent spaces and the tangent bundle also have duals – the
cotangent spaces T ∗

p (M) and cotangent bundle T ∗ (M),
respectively, where covector fields “live” (Ivancevic and
Ivancevic 2007); the dual of a vector space is the space
of linear functionals such that the product of a member
of a vector space with a member from the dual space re-
turns a scalar. These tangent and cotangent spaces are
important for defining higher-order tensors, too, and
they play a role in derivative calculations as well as the
determination of angles and lengths on the manifold.

Let F : M → N be a smooth mapping between
manifolds. Given F , which maps between points of the
two manifolds, we can induce transformations of other
mathematical objects between the two manifolds, de-
noting such inductions with a correctly placed ∗. For
example, F∗ : Tp (M) → TF (p) (N). A subscript ∗ indi-
cates that the induced mapping goes in the same “di-
rection” as the original mapping, whereas a superscript
indicates that the induced mapping goes in the oppo-
site “direction” as the original mapping; see Chapter
Four of Boothby (1986) for further explanation.

This idea of induced mappings allows us to develop
coordinate bases for the tangent and cotangent spaces,
using the mapping ϕ, at p. Consider ϕ∗ : Tp (M) →
Tϕ(p) (!n). In keeping with typical DG notation, we
define the basis vectors of Tϕ(p) (!n) as

∂

∂xi
, i = 1, 2, . . . , n (2)

We can then define the basis vectors of Tp (M) as

Ei = ϕ−1
∗

(
∂

∂xi

)
, i = 1, 2, . . . , n (3)

The Ei’s thus form a basis for Tp (M), and an anal-
ogous procedure can be performed for the cotangent
basis vectors (represented as dxi in T ∗

ϕ(p) (!n) and Ei

in T ∗
p (M)). Figure 3 shows how the grid in Euclidean

space (with its associated basis vectors in the direc-
tions of the coordinate axes) are mapped back to the
manifold with the basis vectors correspondingly trans-
formed. This shows the connection, mentioned earlier,
between the manifold’s chart and its coordinates.

Fig. 3 Grid with basis vectors on a manifold (Boothby 1986,
used with permission)

Moreover, although there are an infinite number of
possible bases that could be chosen for each space, for
each set of basis vectors Ei, there exists a unique set
of dual basis vectors Ei such that Ei (Ej) = δij , where
δij is the Kronecker delta, and the basis vectors as just
defined form such a pairing. Keep in mind, however,
that since ϕ, in general, varies across the manifold, the
tangent and cotangent basis vectors will also vary from
point to point. Figure 4 shows a set of orthonormal
basis vectors varying over the manifold.

Fig. 4 A field of basis vectors on a manifold (Boothby 1986,
used with permission)
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We will use the notation

Ei =
∂

∂wi
, Ei = dwi (4)

The significance of the subscript and superscript in-
dices is explained in Section 3.2. Given this notation, a
vector X on the manifold can be expressed as

X = X1 ∂

∂w1
+X2 ∂

∂w2
+ . . .+Xn ∂

∂wn
(5)

and a covector ω would be expressed as

ω = ω1dw
1 + ω2dw

2 + . . .+ ωndw
n (6)

Consider now a scalar function f . Its differential df
and directional derivative in the direction X are given,
respectively, by

df =
∑

i

∂f

∂wi
dwi (7)

Xf =
∑

i

Xi ∂f

∂wi
(8)

3.2 Tensors and tensor notation

A tensor is a geometrical object that behaves a certain
way under coordinate transformations; a tensor repre-
sentation independent of the chosen basis is unneces-
sarily abstract for our purposes, so we will use index
notation. Tensors come in three basic types: contravari-
ant, covariant, and mixed. These types are denoted by
indices: contravariant indices are superscripted, covari-
ant indices are subscripted, and the order of the tensor
is determined by the number of indices. For example, a
first-order contravariant tensor (i.e. a vector) would be
denoted by vi, and a first-order covariant tensor (i.e. a
covector) would be vi. It is understood that the tensor
has a distinct value for each i = 1, 2, . . . , n, where n is
the dimension of the space under consideration. Con-
tinuing on, tij , tij , and tij would be second-order con-
travariant, covariant, and mixed tensors, respectively.
The tensor Ri

jkl would be a fourth-order mixed tensor
with one contravariant index and three covariant in-
dices (Ivancevic and Ivancevic 2007). To link back to
the discussion of tangent and cotangent spaces, the co-
variant indices of tensors “live” in the tangent space and
products thereof whereas the contravariant indices live
in the cotangent space and products thereof. This mat-
ters because covariant and contravariant indices behave
differently under covariant differentiation (as shown in

Section 3.3) and coordinate transformations. We also
mention the Einstein summation convention. The con-
vention is that repeated indices are summed over:

aibi =
∑

i

aibi (9)

Index notation with the summation convention will
be used throughout this paper unless otherwise noted.

3.3 Riemannian geometry

A Riemannian manifold is a differentiable manifold with
a symmetric, positive definite bilinear form (known as
the metric tensor). The metric tensor is an important
tool for doing calculations on the manifold. Given a Rie-
mannian manifold M , the metric tensor gij defines an
inner product on Tp (M) and this makes it possible to
perform a number of different mathematical operations
on the manifold. In general, gij is defined by

gij = Ei ·Ej (10)

where Ei and Ej are as previously defined. For example,
for Cartesian coordinates in !n, this is just

gij = Ei ·Ej = δij (11)

where δij is the Kronecker delta. The inner product for
a pair of vectors is then defined as

〈u,v〉 = giju
ivj (12)

Lengths on the manifold are calculated with gij :

ds2 = gijdw
idwj (13)

The metric tensor is one of the properties inherited
by submanifolds and product manifolds – the subman-
ifold and product manifold structures are reflected in
the forms of their respective metric tensors. Christoffel
symbols and curvature tensors can also be derived from
gij . If gij is known at a point on M , it is possible to
calculate the Christoffel symbols and the curvature of
the manifold at that point:

Γ i
kl =

1

2
gim

(
∂gmk

∂wl
+

∂gml

∂wk
− ∂gkl

∂wm

)
(14)

Ri
jkl =

∂Γ i
jl

∂wk
−

∂Γ i
jk

∂wl
+ Γm

jl Γ
i
mk − Γm

jkΓ
i
ml (15)

Rij = Rl
ilj , R = gijRij (16)
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where Γ i
kl is a Christoffel symbol, Ri

jkl is the Riemann
curvature tensor, Rij is the Ricci curvature tensor, R
is the scalar curvature, gij is the inverse of gij , n is the

manifold dimension, and w =
{
w1, . . . , wn

}T
are the

domain variables (i.e. the manifold coordinates). We
mention also the Weyl curvature tensor, Cijkl; though
a relevant quantity, its formula is too long to show con-
veniently here. If gij exists, then it is positive definite,
and thus its inverse also exists (and is positive definite).
The Christoffel symbols measure how the basis vectors
change along the manifold

∇EiEj = Γ k
ijEk (17)

and they show up in two important places: the covariant
derivative and the geodesic equation; Γ i

jk are essentially
intermediate quantities – they are typically used for
calculating other pieces of information. The geodesic
equation is

ẅi + Γ i
jkẇ

jẇk = 0 (18)

Solutions of the geodesic equation are the paths that
particles moving along the manifold would take if they
were not subjected to any external forces (Ivancevic
and Ivancevic 2007). They are to curved spaces what
straight lines are to flat spaces: great circles on a sphere
are a familiar example. Minimal geodesics are also used
to define distances between points on a manifold.

The covariant derivative, denoted with a subscript
semi-colon, does two things: it projects the derivative
onto the tangent space (Boothby 1986), and it main-
tains the tensorial character of whatever it derivates
(Ivancevic and Ivancevic 2007). The first few formulae
for the covariant derivative are

vi;k = vi,k + Γ i
jkv

j (19)

vi;k = vi,k − Γ j
ikvj (20)

tikl;q = tikl,q + Γ i
qst

s
kl − Γ s

kqt
i
sl − Γ s

lqt
i
ks (21)

where a subscript comma denotes an ordinary partial
derivative (i.e. vi,j = ∂vi

∂wj ). Notice how covariant and
contravariant indices are differentiated differently; also,
gij;k = 0 (Szekeres 2004). In the rest of this paper,
where total derivatives need to be distinguished from
regular partial derivatives, d will be used instead of ∂,
but ∂ will generally be used to indicate the multivariate
nature of the derivatives being taken.

The Riemann curvature tensor is somewhat more
difficult to interpret: it measures the “acceleration” be-
tween geodesics (Szekeres 2004); Rij describes how a

neighborhood, as the points in the neighborhood move
along geodesics, changes in volume, and Cijkl describes
how that neighborhood changes in shape. These two
tensors capture the information contained in Ri

jkl (Pen-
rose 1989). Each of these curvature tensors shows, in its
own way, the nature and extent to which the manifold
deviates from flat space.

4 Translating MDO into differential geometry

With the requisite background in DG, we can now trans-
late the mathematical form of an MDO problem into
the relevant geometric terminology; we will use a gen-
eral MDO formulation so as to make our translation,
and thus work done with the framework, similarly gen-
eral and widely applicable within MDO.

4.1 Mathematical definition of MDO

Consider a generic MDO problem as

min f(x,y, z) (22)

g(x,y, z) ≤ 0 (23)

h(x,y, z) = 0 (24)

where x is the vector of local design variables, y is the
vector of state variables, z is the vector of global design
variables, g is the vector of inequality constraints, and
h is the vector equation that defines the state variables;
(24) is just a rearrangement of the state equations

yi = ψi(x(i), ỹ(i), z), i = 1, 2, . . . (25)

where x(i) is the set of local variables for discipline i and
ỹ(i) is the set of all state variables excluding yi. For the
purposes of this paper, we will only focus on the equal-
ity constraints. We recognize, though, that the inequal-
ity constraints will eventually have to be considered (see
Section 6.1). The variables can be further simplified by
lumping them together: w = {x z} and v = {w y}

Defining the MDO problem this way raises some
questions. Firstly, there is the question of notation:
there are several different notations in the MDO lit-
erature (Cramer et al. 1994; Martins and Lambe 2013).
This particular notation was used for the clarity and
simplicity which it would lend to our later derivations.
Secondly, there is the question of terminology: what
we have labeled as state variables have been variously
described as state, coupling, or linking variables, each
with slightly different roles in the overall optimization.
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For the purposes of this work, we consider state vari-
ables to be outputs of their respective disciplines; these
variables would then, typically, be inputs to other dis-
ciplines, but they could be used only within other state
equations belonging to their discipline. The key point is
that state variables are not seen as directly controllable
by the designer: lift and drag, for example, would be
state variables from an aerodynamics discipline in air-
craft design. This has been done to mirror real-world
design problems and for ease of derivation later on.

Manifolds are useful for MDO because the state
equations, which describe the interactions between the
different disciplines and state variables, implicitly de-
fine a manifold. This is the feasible design manifold –
the space of all feasible designs. Let Mfeas be the man-
ifold defined by (24).

4.2 Tangent vectors

Fig. 5 A 2-manifold in 3-space with tangent vectors

Consider a 2-manifold embedded in 3-space as in
Fig. 5. The tangent vectors t1 and t2 can be given as

t1 =






1
0
∂y
∂x1




 , t2 =






0
1
∂y
∂x2




 (26)

It is possible to generalize these formulae to a mani-
fold of arbitrary dimension and co-dimension. Consider
the manifold defined by (24) and assume that the mani-
fold is an n-dimensional manifold embedded in m-space
(co-dimension m− n). The tangent vectors are then

ti =
∂v

∂wi
=

{
∂v1

∂wi
, . . . ,

∂vm

∂wi

}T

(27)

=

{
0, . . . , 0, 1, 0, . . . , 0,

∂y1

∂wi
, . . . ,

∂ym−n

∂wi

}T

for i = 1, 2, . . . , n where the 1 is in the i-th slot and
the necessary derivatives are calculated from (24) using
the implicit function theorem (with y as an implicit
function of w).

It is straightforward to show that the tangent vec-
tors are all linearly independent (though not all mutu-
ally orthogonal or of unit length). As such, the ti’s form
a basis for the tangent space of the manifold, and so we
can define them as the basis vectors that will be used
throughout the rest of the paper: Ei = ti =

∂
∂wi .

It is interesting to note some characteristics of this
choice of tangent vectors. Each tangent vector corre-
sponds directly to a design variable. The disciplinary
subspaces of the tangent space are therefore just the lin-
ear combinations of the tangent vectors corresponding
to the discipline’s design variables. This also simplifies
the derivation of later geometric quantities in terms of
the pertinent partial derivatives. Defining the tangent
vectors gives us our coordinate reference frame and thus
our metric tensor (which is critical for future quantita-
tive analysis). We do not use this information in Part
II, but we highlight its use elsewhere in Section 5.

4.3 Derivation of geometric quantities

Assuming sufficient differentiability, and given the def-
inition of (10), gij is defined by

gij =
∂vk

∂wi

∂vk

∂wj
= δij +

∂yk

∂wi

∂yk

∂wj
(28)

The same results could be obtained by using sub-
manifold theory and the metric induced from the em-
bedding space (!m), but this way is more geometrically
intuitive. The Christoffel symbols are then

Γ i
kl = gim

∂ys

∂wm

∂2ys

∂wk∂wl
(29)

and the derivatives of Γ i
jk are

∂Γ i
kl

∂wj
=

∂gim

∂wj

∂ys

∂wm

∂2ys

∂wk∂wl

+ gim
∂2ys

∂wm∂wj

∂2ys

∂wk∂wl
+ gim

∂ys

∂wm

∂3ys

∂wk∂wl∂wj
(30)

where
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∂gim

∂wj
= −gin

(
∂2ys

∂wj∂wn

∂ys

∂wp
+

∂ys

∂wn

∂2ys

∂wj∂wp

)
gpm

(31)

Finally, Ri
jkl, Rij , and R can be calculated from

(15) and (16); the explicit formulae have been omitted
due to their length. Fortunately for the sake of prac-
tical calculation, the third implicit derivatives in Γ i

kl,j

cancel out in the determination of the Riemann curva-
ture tensor, so it and the other curvature tensors only
depend on the second implicit derivatives.

The particular structure of MDO problems thus sim-
plifies the calculations so that the relevant quantities
can be computed from the implicit derivatives of the
state variables with respect to the design variables. Im-
plicit derivatives can be calculated from the basic sensi-
tivity information using the implicit function theorem.

4.4 The objective function and its derivatives

It is now necessary to see how the original MDO objec-
tive function is affected by this translation. The sim-
plest way forward is to define the objective function
η (w) = f (w,y (w)) and proceed from there. For a
scalar function, the covariant derivative is identical to
the regular derivative:

η;i = η,i =
∂η

∂wi
=

∂f

∂wi
+

∂f

∂yk
∂yk

∂wi
(32)

This is just the reduced gradient of f . However, tak-
ing the covariant derivative again does not result in the
reduced Hessian. The reduced Hessian and the second
covariant derivative of η are, respectively,

η,ij =
∂2f

∂wi∂wj
+

∂2f

∂wi∂yk
∂yk

∂wj
+

∂2f

∂wj∂yk
∂yk

∂wi

+
∂2f

∂ym∂yk
∂yk

∂wi

∂ym

∂wj
+

∂f

∂yk
∂2yk

∂wi∂wj
(33)

η;ij = η,ij − Γ l
ijη,l (34)

This should not affect the optimality conditions, as
η,l = 0 at an optimum point. Calculating the objective
function derivatives like this demonstrates the use of
the covariant derivative, which we introduced in Sec-
tion 3.3, and we use these objective function covariant
derivatives in research described in Section 5.

5 Use of the differential geometry framework
elsewhere

We give here an overview of how the framework has
been, is being, and may be utilized. In Sections 3 and
4, we provided more theory than is necessary for our ap-
plication in Part II, and we did this with the intention
that the theory outlined here be the foundation for the
future evaluation and development of MDO methods.
Our goal is to develop a framework for a wide range of
MDO analysis. As such, we wish to outline the other
work related to this theory, mention which parts of our
framework that research is drawing from, and show how
that work interacts with identified needs within MDO.
The results detailed in Part II provide a concrete exam-
ple, valuable in its own right, of the kind of work this
framework can enable. Part II, with the rest of Section
5, serves as incentive for the effort of putting together
Sections 3 and 4.

5.1 Foundational work

Certain pieces of work laid the foundation and provided
the motivation for our framework. A notable item was
the development of a coupling metric for MDO prob-
lems (Bakker et al. 2013a). This coupling metric ad-
dresses the desire expressed by Agte et al. (2010) for
a unified coupling measure; our metric measures both
coupling bandwidth and coupling strength but can be
reduced to a single scalar value. We have also shown
that our coupling measure extends to Multi-Objective
Optimization (MOO) problems. This is a step towards
connecting MDO and MOO as desired by Tolson and
Sobieszczanski-Sobieski (1985) and Lewis and Mistree
(1998). Our coupling metric was developed using gij .

Secondly, we used our framework to give a geomet-
ric interpretation of several common MDO architec-
tures (Bakker et al. 2012). From this, we made some
qualitative observations about architecture behaviour –
a step towards the analysis desired by Sobieszczanski-
Sobieski and Haftka (1997) while being valuable for our
own work. Having defined the architecture manifolds,
we need only to substitute them into our future results.
In other words, the analysis we do with our framework
can be generalized to those architectures. Our work here
used some submanifold concepts as well as gij .

Thirdly, we have analytically linked optimization al-
gorithm behaviour in MDO to manifold properties by
combining theory from Ordinary Differential Equations
with differential geometry (Bakker et al. 2013b). We
connected algorithm stability with manifold curvature
which in turn relates to our coupling metric. This can
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show how different architectures (and thus the architec-
tures’ manifolds) affect algorithm stability on a given
problem. Our work here addresses both the interest in
convergence expressed by Sobieszczanski-Sobieski and
Haftka (1997) and the desire of Agte et al. (2010) to use
coupling information to guide decomposition decisions.
These results drew on covariant derivatives (including
but not limited to the objective function), the geodesic
equation, and the curvature tensors.

5.2 Current applications and research directions

Following up on work already accomplished, we are
currently working on using our coupling metric to de-
velop coupling suspension techniques for MDO prob-
lems and to further investigate architecture characteris-
tics and performance. We are also continuing to pursue
the link we have established between MDO and MOO:
we can combine our coupling metric with current MOO
techniques and numerical solution methods for Partial
Differential Equations to generate smart Pareto fronts
(Bakker and Parks 2014); a smart Pareto front has solu-
tion points concentrated in areas of high interest (Matt-
son et al. 2004). This further serves our intention of
making connections between MOO and MDO. Similar
methods may also be used improve data sampling tech-
niques in metamodelling. All of this uses gij .

In a new area, we are looking at applying Rieman-
nian optimization algorithms to MDO problems; the
mathematical structure provided by our framework now
makes it possible to implement these algorithms com-
putationally. Given that they have been derived for op-
timization on curved spaces, they may be more effective
than their Euclidean counterparts on MDO manifolds.
These Riemannian algorithms require using covariant
differentiation (and thus Γ i

jk).

5.3 Areas for future research

Researchers have identified three other related areas of
optimization which they would also like to incorporate
into MDO: optimal control (Allison and Herber 2013;
Giesing and Barthelemy 1998), uncertainty quantifica-
tion and propagation (Collopy et al. 2012; Lewis and
Mistree 1998; Simpson and Martins 2011; Tolson and
Sobieszczanski-Sobieski 1985), and topology optimiza-
tion (Allison and Herber 2013; Simpson and Martins
2011). We believe that DG has the capability to provide
a solid theoretical foundation for making these incor-
porations. The relevant mathematical theory already
exists; it is simply a question of translating and apply-
ing that theory. Such work would likely require more

DG than has been described here, but those additions
would build upon our work here, not replace it.

6 Present framework limitations

Having touched on some of our framework’s capabil-
ities, we now consider its limitations under two main
categories: constraint management and the calculation
and differentiation of the relevant quantities.

6.1 Constraints

Constraint-related concerns can, at this point, come un-
der two headings: inequality constraints and additional
(non-state) equality constraints.

Inequality constraints define the boundary ofMfeas,
notMfeas itself, but they tend to play an important role
in constrained optimization because optimal solutions
often lie on the boundary of the feasible set. We have
not yet explicitly taken them into account, however.
One option for handling them would be to turn each
inequality into an equality through the use of a slack
variable and then consider the slack variables as artifi-
cial state variables. This seems less than ideal, however,
for two reasons. Firstly, it is not effective at handling ex-
plicit bounds on variables: for example, if the slack vari-
ables s were implemented as g (w,y)+ s = 0, all of the
slack variables would still be required to satisfy s ≥ 0,
and in any case, explicit bounds on the existing state
and design variables would be left untouched. These
variables’ bounds define a manifold boundary just as
much as the inequality constraints, albeit in a simpler
way, so it seems that little is gained by this approach.

Secondly, although there may be relatively few state
equations in a given design problem, there are often
many more inequality constraints, so handling those
constraints in this way would turn a low-dimensional
feasible design manifold into a very high-dimensional
manifold composed mainly of slack variables. Increas-
ing the dimension of the design space in this way is
counterproductive to the whole endeavor of seeking a
simplifying analysis tool. Another option would be to
just consider the active set as equalities (thereby defin-
ing a pertinent submanifold of ∂Mfeas). However, the
active set would be changing throughout the process
of optimization, and changes in the active set would
change the nature and properties of the submanifold
of ∂Mfeas in question, thus changing the analysis tools
like gij , so this may not be helpful.

We have also not considered equality constraints be-
yond the state equations, but it is possible to have addi-
tional equality constraints which do not correspond to
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a disciplinary output. The solutions to these additional
constraints, assuming that the state equations were sat-
isfied as well, would define a submanifold of the mani-
fold defined by the state equations. It would be possible
to define a metric (with the requisite derivatives) for
this submanifold using implicit function and submani-
fold theorems, but then which design variables should
be considered as dependent variables for the additional
equations? The state equations naturally have the state
variables as dependent variables, but now a decision
has to be made. A designer could take a set of design
variables (presumably but not necessarily global design
variables) and redefine them to be dependent variables,
but then those variables would effectively be state vari-
ables, and the situation would just revert to the orig-
inally defined design problem with the only equality
constraints being state equations; this would be effec-
tively the same as re-labeling some of the wi’s as yi’s.
In this case, there is no loss in generality to simply as-
sume that there are no equality constraints other than
the state equations. It is difficult to see how else the
equality constraints might be profitably dealt with.

The application of Value-Driven Design (VDD) to
MDO may be worth considering here (Collopy et al.
2012). VDD removes design emphasis from constraints
and places it on the objective function: “While it is
recognized that in some industries a complete elimi-
nation of constraints is not possible, VDD’s goal is to
eliminate as many as possible, incorporating those pref-
erences communicated through the requirements into
the value function.” (Mesmer et al. 2013, p.10) If VDD
is as valuable an addition to MDO as its proponents
claim, and if VDD were to gain traction in MDO circles,
then the additional constraints discussed above would
become less important or even non-existent, and thus
the issues identified in this section would become cor-
respondingly less important or non-existent.

There is a connection here to the optimization prob-
lem’s Lagrangian as well. Given the reconceptualization
of the constrained optimization problem as an uncon-
strained problem on a Riemannian manifold (see the
beginning of Section 3), the resulting Lagrangian (on
the Riemannian manifold) could have inequality con-
straint terms, but it would not have equality terms cor-
responding to the state equations because those con-
straints would have already been “absorbed”, for lack
of a better term, into the Riemannian manifold and its
structure; the additional non-state equality constraints
mentioned earlier could show up in the Lagrangian,
though. We reiterate, though, that part of the point
of this framework is to facilitate seeing MDO as uncon-
strained optimization (or at least optimization without

equality constraints) on Riemannian manifolds rather
than simply as constrained optimization.

6.2 Calculability and differentiability

Throughout this analysis, we have tacitly assumed that
for a given w there is a unique solution y to h (w,y) =
0. That is to say, there exists a point-to-point mapping

hy (w) = {y|h (w,y) = 0} (35)

This need not be the case, however, and it is an is-
sue that has been addressed in the similar context of
Bilevel Programming Problems (Bard 1991). If (35) is
in fact a point-to-set mapping, it may have differentia-
bility problems; if each y is locally unique, that should
not be a problem – all of the tensor quantities calcu-
lated so far are strictly local – but if not, it is uncertain
what would happen. It effectively hinges on ∂h

∂y being
invertible: we require it to be invertible in order to cal-
culate the quantities described in Section 4.

The previous analysis has also assumed that the
manifolds are sufficiently smooth to allow all of the op-
erations that have been performed on them, and, more-
over, that the Riemannian structure can be imposed
on such a sufficiently smooth manifold. Every smooth
manifold admits a Riemannian metric (Boothby 1986),
but there are real-world design problems that are not
smooth. The use of metamodelling in MDO becomes
pertinent at this point: the metamodels often used to
approximate those problems during optimization tend
to smooth out the design space in the process of approx-
imation (Sobieszczanski-Sobieski and Haftka 1997).

Furthermore, according to the Weierstrass theorem,
any continuous function can be approximated to arbi-
trary precision by a smooth function (Boothby 1986).
For our purposes, this means that even though we are
only considering smooth design manifolds, those mani-
folds can be considered as arbitrarily good approxima-
tions to all continuous design manifolds. Thus the re-
striction is less severe than might be otherwise thought.
Since, as previously noted, the tensor quantities being
calculated are all local, the smoothness required of any
point on the manifold would only have to be local, not
global, too. If there are discontinuities in the manifold,
however, those discontinuities could cause problems in
ways similar to local non-uniqueness as discussed above.

7 Conclusions

The mathematics behind DG can initially appear some-
what intimidating, but once given concrete form in their
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application to MDO, they actually prove to be quite
tractable. The index notation, in particular, simplifies
the bookkeeping involved, and the resulting calcula-
tions end up being less intimidating combinations of
calculus and algebra. Visualizing high-dimensional man-
ifolds is also notoriously difficult, but the mathematics
here make it possible to work without needing direct
geometric intuition into a given problem. We have else-
where already used some of the tools provided by our
framework; in Part II we will provide an example of
how some of those tools can be used to investigate and
improve the performance of QSD.
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