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Optimising node selection probabilities in
multi-hop M/D/1 queuing networks to reduce
the latency of Tor

S. J. Herbert, S. J. Murdoch and E. Punskaya

In this paper the expected cell latency for multi-hop M/D/1 queuing
networks, where users choose nodes randomly according to some
distribution, is derived. It is shown that the resulting optimisation surface
is convex, and thus gradient based methods can be used to find the optimal
node assignment probabilities. This is applied to a typical snapshot of the
Tor anonymity network at 50% usage, and leads to a reduction in expected
cell latency from 11.7 ms using the original method of assigning node
selection probabilities to 1.3 ms. It is also shown that even if the usage is
not known exactly, the proposed method still leads to an improvement.

Introduction: Tor is an anonymity service which routes users traffic
through a three-hop network before accessing the Internet [1]. Originally
users select a path at random where nodes are chosen with probability
proportional to their bandwidth for each hop. This, however, has been
shown not to be optimal, apart as the usage tends to 100% [2].

In Tor each cell (packet) is the same size (512 bytes), and treating
expected cell latency as a suitable metric.1 Dingledine and Murdoch have
found a method of optimal node assignment using queuing theory, for a
one-hop network [3]. The purpose of this work is to generalise this result
to the full three-hop representation of Tor.

To achieve this, a general N hop network is optimised. Furthermore
arbitrary constraints on which hops a given node may serve are allowed. In
Tor there are three types of node: Guard nodes which can serve hops 1 and
2; Normal nodes which can only serve hop 2; and Exit nodes which can
serve hops 2 and 3.2

Modelling assumptions: In order to formulate the problem
mathematically, it is necessary to make some modelling assumptions.

1 Each node has a queuing policy M/D/1/∞/FIFO, according to
Kendall’s notation [4] (in reality nodes will have finite size queue
buffers).

2 The latency is dominated by one direction (the download direction), it
is therefore valid to model the network as uni-directional.

3 Each cell is free to probabilistically choose its own path (in reality a
user will send all their cells by the same path, however if the number
of users is large compared to the number of nodes, which is usually the
case in Tor, then the node queues will have behave as if each cell has
chosen its path independently).

4 The network status, i.e., nodes online and percentage usage, varies
slowly (compared to the time taken for equilibrium queues to be
reached) and is well known at all times.

5 Any given cell can be served by the same node for more than one hop
(this is not true, but for a network such as Tor with many more nodes
than hops it will make a negligible difference to the overall solution).

Optimising node selection probabilities: As previously [3], minimising
expected cell latency is deemed a suitable optimisation metric. Let there
be n nodes and N hops, the ith node has service rate µi and arrival rate
λi,j for the jth hop. The total usage is Λ, and the waiting time (i.e., the
total waiting time including queuing and service) for the kth hop is Wk.
The problem can thus be expressed as a function optimisation.

Minimise: E (W0 +W1 + ...+WN−1)

=E(W0) + E(W1) + ...+ E(WN−1), (1)

1 It may in fact be more useful to use cell latency variance or the
expected extreme value of latency of a given number of cells as a user
will require multiple cells to arrive before a requested piece of data has
arrived

2 It is now possible for nodes to be both Guard and Exit, and thus
serve all three hops, however this was not the case when the snapshot
of Tor used in this paper was taken

Subject to:
n−1∑
i=0

λ(i,j) = Λ all j, (2)

N−1∑
j=0

λ(i,j) =Ki <µi all i, (3)

λ(i,j) = 0 selected (i, j), (4)

where E(.) denotes expectation, Λ is the total usage and Ki is defined
to simplify the notation. (2) states that at each hop, the total arrival rate
must equal the usage; (3) states that no node may have a total arrival rate
(i.e., for all hops) greater than its service rate; and (4) allows arbitrary
constraints on which hops each node may serve.

The Pollaczek-Khinchine formula [5] gives the expected waiting time
for a cell at the ith node:

E (Wi) =
1

µi
+

Ki

2µ2i − 2µiKi
. (5)

Which can in turn be used to find the expected waiting time for the jth hop
(note that the probability of the ith node being selected for the jth hop is
λi,j/Λ):

E(Wj) =

n−1∑
i=0

P (nodei)E (Wi) ,

=

n−1∑
i=0

λ(i,j)

Λ

(
1

µi
+

Ki

2µ2i − 2µiKi

)
. (6)

The shape of the optimisation surface is very important, for convex
surfaces a gradient based optimisation algorithm can be used to approach a
global maximum. The optimisation surface of

∑
E (Wj) is indeed convex,

and this can be shown by demonstrating that the Hessian matrix is positive
semi-definite. First the vector of arrival rates is defined:

λ =
[
λ0,0, λ0,1, · · · , λ0,N−1, λ1,0, λ1,1, · · · ,

λ1,N−1, · · · , λn−1,0, λn−1,1, · · · , λn−1,N−1

]T (7)

The Hessian, H of
∑

E (Wj) will have the form:

H =


H′0 0 0 . . .

0 H′1 0 . . .

0 0 H′2
...

...
. . .

 , (8)

for H′0 to H′n−1, each of size N ×N .

A necessary and sufficient condition for H to be positive semi-definite,
is for H′i to be positive semi-definite for all i. Noting that differentiation is
a linear operator, H′i is split up into the Hessian for each hop, according to
(1), these are named H′i,j :

H′i =

N−1∑
j=0

H′i,j , (9)

thus:

H′i,j(a, b) =
(µi −Ki)

2 + (λi,j +Ki)(µi −Ki) + λi,jKi

Λµi(µi −Ki)3

where a= b= j, (10)

H′i,j(a, b) =
0.5(µi −Ki)

2 + (λi,j + 0.5Ki)(µi −Ki) + λi,jKi

Λµi(µi −Ki)3

where a 6= b= j||b 6= a= j, (11)

H′i,j(a, b) =
λi,j(µi −Ki) + λi,jKi

Λµi(µi −Ki)3

where a, b 6= j, (12)

Further splitting H′i,j into the sum of two matrices:

H′i,j =H′′i,j +H′′′i,j , (13)
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where:

H′′i,j(a, b) =
λi,j(µi −Ki) + λi,jKi

Λµi(µi −Ki)3
all a, b, (14)

which is positive semi-definite, because each element is the same and
positive in the region µi >Ki. Also:

H′′′i,j(a, b) =
(µi −Ki)

2 +Ki(µi −Ki)

Λµi(µi −Ki)3
a= b= j,

(15)

H′′′i,j(a, b) =
0.5(µi −Ki)

2 + 0.5Ki(µi −Ki)

Λµi(µi −Ki)3
a 6= b= j||b 6= a= j,

(16)

H′′′i,j(a, b) =0 a, b 6= j,

(17)

The matrix H′′′i is defined by summing H′′′i,j over all j:

H′′′i =

N−1∑
j=0

H′′′(i,j) (18)

Noting that each term on the leading diagonal will equal (15) for exactly
one of the matrices H′′′i,j and 0 for all the others, and that all terms not on
the leading diagonal will equal (16) for two of the matrices H′′′i,j and 0 for
all the others:

H′′′i (a, b) =
(µi −Ki)

2 +Ki(µi −Ki)

Λµi(µi −Ki)3
all a, b, (19)

which is positive semi-definite because each element is the same and
positive in the region µi >Ki. Finally, expressing the matrix Hi as the
sum of the matrix H′′′i and the matrices H′′

(i,j)
i.e., by using (9), (14) and

(19):

H′i =

N−1∑
j=0

H′i,j ,

=

N−1∑
j=0

H′′i,j +

N−1∑
j=0

H′′′i,j ,

=

N−1∑
j=0

H′′i,j +H′′′i , (20)

which is positive semi-definite, because it is the sum of positive semi-
definite matrices, as shown in (14) and (19). Note that the inclusion of
the linear equality constraints (2) and (4) does not affect this property.

Numerical example for Tor: The theory is applied to a snapshot of the
Tor network. Usage is assumed to be 50%, as is the typical loading
of Tor [3]. Fig. 1 shows the optimal node arrival rates for each node
type: Guard (G); Normal (N); and Exit (E) for each of the three hops.
This leads to an expected cell latency of 1.3 ms compared to 11.7 ms
using the original node probability weightings. Notice that many of the
lower bandwidth nodes have zero arrival rate (i.e., zero probability of
being chosen). Intuitively this can be understood by considering that the
minimum waiting time at these nodes (i.e., the service time) is greater than
the expected waiting time for the remainder of the node population. Note
that the plots in Fig. 1 have a similar shape to that of the one-hop network
[3 Fig. 1], providing further evidence that this is likely to be the global
minimum.

As well as demonstrating that the proposed method for assigning node
selection probabilities significantly outperforms the current method, it is
also necessary to consider how robust the proposed method is. This can
be achieved by evaluating the expected cell latency for varying usages,
given that the selection assignment probabilities have been optimised for
50% (i.e., to mimic the situation where the network status varies and the
assignment probabilities haven’t been updated accordingly). This leads to
the result that the proposed method optimised for 50% usage outperforms
the current method between 0 and 60% usage, however for usages greater
than approximately 62% the arrival rate exceeds the service rate for some
nodes, and thus the expected cell latency tends to infinity.
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Fig. 1. Optimal arrival rates for snapshot of Tor nodes at 50% usage

Conclusion: A general solution to minimising expected cell latency in
multi-hop M/D/1 queuing networks has been derived, and it has been
shown that the optimisation surface is convex. This has been applied to
the Tor anonymity network at 50% usage, and it has been shown that
the expected cell latency can be reduced from 11.7 ms with the original
node selection probability method (i.e., the node selection probability
is proportional to its bandwidth) to 1.3 ms with the proposed method.
Furthermore it has been shown that the proposed method and leads to a
reduced latency even if the usage is not known exactly.

The derivation has assumed that nodes have infinite queue capacity,
which is not the case in reality. Therefore it would be interesting to run
a network simulation with nodes with finite buffer queues to verify that
the proposed method would actually lead to improved results in an actual
network.

S. J. Herbert, S. J. Murdoch and E. Punskaya ( University of Cambridge,
UK)
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