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Abstract: Although Portland cement is the most widely used binder in the 12 

stabilisation/solidification (S/S) processes, slag-based binders have gained significant 13 

attention recently due to their economic and environmental merits. In the present study, a 14 

novel binder, reactive MgO activated slag, is compared with hydrated lime activated slag in 15 

the immobilisation of lead and zinc. A series of lead or zinc-doped pastes and mortars were 16 

prepared with metal to binder ratio from 0.25% to 1%. The hydration products and 17 

microstructure were studied by X-ray diffraction, thermogravimetric analysis and scanning 18 

electron microscopy. The major hydration products were calcium silicate hydrate and 19 

hydrotalcite-like phases. The unconfined compressive strength was measured up to 160 d. 20 

Findings show that lead had a slight influence on the strength of MgO-slag paste while zinc 21 

reduced the strength significantly as its concentration increased. Leachate results using the 22 

TCLP tests revealed that the immobilisation degree was dependent on the pH and reactive 23 

MgO activated slag showed an increased pH buffering capacity, and thus improved the 24 

immobilisation efficiency compared to lime activated slag. It was proposed that zinc was 25 

mainly immobilised within the structure of the hydrotalcite-like phases or in the form of 26 

calcium zincate, while lead was primarily precipitated as the hydroxide. It is concluded, 27 

therefore, that reactive MgO activated slag can serve as clinker-free alternative binder in the 28 

S/S process. 29 

Keywords: hydrated lime, reactive MgO, slag, hydrotalcite-like phases, lead/zinc 30 

immobilisation 31 
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1. Introduction 33 

Stabilisation/Solidification (S/S) is a commonly used treatment method for heavy 34 

metal contamination which aims to improve the physical characteristics and to prevent the 35 

transport of the contaminants (Harbottle et al., 2007). These processes are based on various 36 

cementitious materials such as Portland cement (PC) and lime (Roy et al., 1991; Husillos 37 

Rodríguez et al., 2011). The hydration products of these binders not only physically 38 

encapsulate the waste material containing the heavy metals but also chemically react with the 39 

heavy metals to form complex compounds or simply precipitate them due to the high pH of 40 

the system (Spence and Shi, 2004). However, the production of PC is associated with 41 

intensive energy use and is reported to account for 5-8% of anthropogenic carbon emission 42 

(Scrivener and Kirkpatrick, 2008). Therefore, by-products such as ground granulated blast-43 

furnace slag (GGBS) from iron production, or fly ash from coal-fired power stations, are 44 

commonly utilised to partially replace PC in the treatment process. 45 

As a latent hydraulic cement, GGBS is often activated with PC, lime or other caustic 46 

alkalis. Numerous studies have focused on the performance of PC-slag or alkali-activated 47 

slag in the presence of lead or zinc, which are commonly encountered heavy metals in the 48 

contaminated soils and other wastes. In terms of strength development, Qian et al. (2003a, 49 

2003b) studied zinc-doped waterglass activated slag (zinc/binder = 0.5 wt% and 2 wt%) and 50 

found that zinc decreased the strength significantly and this influence was dependent on the 51 

zinc concentration, which is consistent with Deja (2002), who studied the immobilisation of 52 

lead and zinc using waterglass activated slag and found zinc reduced the unconfined 53 

compressive strength (UCS) of the mortar by 20% (zinc/binder = 0.5% and 1%) while lead 54 

exhibited no observable influence on the strength after 2 yr (lead/binder = 1 wt% and 2 wt%). 55 

Hekal et al. (2012) found that lead retarded the early hydration of PC-slag due to the coating 56 

of calcium plumbate (CaPbO3•xH2O) on the cement particles, which is supported by Rha et al. 57 
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(2000). Nevertheless, Rha et al. (2000) also observed that after 7 d of curing, the strength of 58 

lead doped samples increased sharply and exceeded that of the control in the long term. As to 59 

the interference of heavy metals on the hydration process of PC or alkali activated slag, Hekal 60 

et al. (2012) found no formation of any new phases from XRD in the lead-doped PC-slag 61 

matrix. This is in agreement with Deja (2002) who detected no difference in terms of 62 

microstructure between control and contaminated (Zn or Pb) cement paste samples. Based on 63 

the analyses of hydration products, Qian et al. (2003a, 2003b) proposed three main fixation 64 

mechanisms for Zn in alkali-activated slag binder: (i) the formation of insoluble calcium 65 

zincate (CaZn2(OH)6•2H2O) precipitate; (ii) the formation of insoluble zinc silicate gel; and (iii) 66 

the incorporation of zinc within the lattice of calcium silicate hydrates (C-S-H), the main 67 

hydration product of PC. They also stated that the latter two mechanisms are preferable at 68 

low zinc concentration (< 0.5% by mass of slag) while excess zinc (2% by mass of slag) will 69 

precipitate as calcium zincate. 70 

There is scarce research on the application of lime-slag binder for heavy metal 71 

immobilisation. Kogbara et al. (2011) investigated lime-slag binder used in soil stabilisation 72 

for various heavy metals such as Pb, Zn, Ni and Cd. They found that lime-slag and PC-slag 73 

binders could effectively reduce the leachability of the contaminants. In addition, the 74 

characteristics (e.g., strength, pH) of the cement-soil matrix were dependent on many 75 

variables such as water content, and binder dosage. However, no mineralogical or 76 

microstructure analysis was conducted regarding the hydration process of lime-slag in the 77 

presence of the heavy metals.  78 

Reactive magnesia is usually calcined from magnesite/dolomite at a the temperature 79 

of ~1000 °C (compared to ~1450 °C for PC) and mainly contains MgO and minor levels of 80 

lime (CaO), quartz (SiO2), magnesite (MgCO3), dolomite (MgCa(CO3)2), and calcite 81 

(CaCO3). Recently, reactive MgO emerged as an effective activator for slag (Yi et al., 2013; 82 
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Jin et al., 2013), the price of which is only slightly higher than that of lime or Ca(OH)2, and 83 

similar to or cheaper than that of other alkaline reagents (Rötting et al., 2008). In addition, 84 

reactive MgO is a mild earth alkali, which is much easier to handle and transport, and has 85 

much less environmental impact compared to the caustic alkalis such as NaOH or waterglass. 86 

Yi et al. (2013) found that 10-20% MgO activated slag outperformed hydrated lime-activated 87 

slag paste in terms of long-term strength. Mineralogical analysis showed the main hydration 88 

products of reactive MgO and slag were C-S-H and hydrotalcite-like phases (Ht) (Yi et al., 89 

2013; Jin et al., 2013). According to Hosni (2011), Ht has a general formula of [M1-x
2+ 

90 

Mx
3+

(OH)2][Ax/n
n-

•mH2O], where M
2+

 represents a divalent metal, e.g., Mg, Mn, Fe, Co, Ni, 91 

Cu and Zn, M
3+

 represents a trivalent metal such as Al, Cr, and Fe and A is the interlayer 92 

anion, e.g., CO3
2-

, Cl
-
, NO3

-
. The effectiveness of Ht as adsorbents for metals has been 93 

extensively investigated due to their natural anion exchange properties (Liang et al., 2013). It 94 

has been proved to be effectively removed lead and zinc in water (Rojas, 2013; Bankauskaite 95 

and Baltakys, 2014). In addition, the pore solution pH of reactive MgO-slag blends is in the 96 

range of 11-12.5 (Jin et al., 2013), which is much lower than the PC or alkali-activated slag (> 97 

13) and this relative low pH could make it easier to form precipitates of metal hydroxides. All 98 

of the above mentioned characteristics render reactive MgO-slag cement as a potential 99 

sustainable and economical binder for heavy metal remediation. However, nothing is 100 

available in the literature on the performance of reactive MgO-slag cement in the 101 

immobilisation of heavy metals.  102 

Hence, there are four objectives in the current study focussing on a comparison 103 

between  reactive MgO and Ca(OH)2 activated slag when doped with lead and zinc solutions 104 

in terms of: (i) strength; (ii) immobilisation efficiency; (iii) immobilisation mechanisms; and 105 

(iv) influence of the lead and zinc concentrations on the strength and hydration properties of 106 

the two binders. The hydration products were thoroughly characterised by various techniques 107 
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including thermogravimetric analysis (TGA), XRD and scanning electron microscopy (SEM). 108 

The immobilisation efficiency was evaluated by TCLP and the metal concentration was 109 

measured by inductively coupled plasma optical emission spectrometry (ICP-OES).  110 

2. Materials and Methods 111 

2.1. Binder materials and contaminants 112 

Reactive MgO (M), obtained from Richard Baker Harrison, UK, and hydrated lime, 113 

i.e., Ca(OH)2 (C) from Tarmac and Buxton Lime and Cement, UK, were used as the 114 

activators for a GGBS (G), obtained from Hanson, UK. The sharp sand, for use to produce a 115 

mortar, with D50 of 0.8 mm and coefficient of uniformity of 4.3, was obtained from Ridgeons, 116 

Cambridge, UK. The reactivity of the MgO is 100 s, measured by acetic acid test proposed in 117 

(Shand, 2006), classifying the MgO as of moderate reactivity (Jin and Al-Tabbaa, 2013). 118 

Table 1 presents the physico-chemical properties of the activators and GGBS used in the 119 

binder and the XRD patterns for the raw GGBS and reactive MgO are shown in Fig. 1. It can 120 

be seen that GGBS is featured by a broad peak around 25-35° assigned to the CaO-Al2O3-121 

MgO-SiO2 glass structure, while reactive MgO has characteristic peaks at 36.9, 38.4,42.9 and 122 

44.4°. In addition, magnesite was not fully decomposed as manifested by the peak at ~32.6°, 123 

thought its content is < 5% as calculated from loss on ignition (Table 1). The lead and zinc 124 

were used as nitrate salts, obtained from Fisher Scientific, UK, and prepared as solutions 125 

using deionised water in the range of 0.25% to 1% by the weight of the binder.  126 

2.2. Preparation of samples 127 

A series of paste samples were prepared for the mineralogical, microstructural 128 

analysis and the leaching test while the corresponding mortar samples were used for 129 

determination of the UCS. The water to binder ratio was set as 0.4 for all the paste and mortar 130 

samples and the binder to sand ratio was 1:3 in the mortar samples. The quantity of the 131 
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activators (reactive MgO or Ca(OH)2) used was 15% replacement of GGBS. To investigate 132 

the effect of lead and zinc on the hydration process of Ca(OH)2/MgO-activated slag, the 133 

metal to binder ratio was varied from 0.25% to 1%. Table 2 presents the details of the mixes 134 

prepared. 135 

Prior to mixing, the zinc nitrate and lead nitrate solutions were used as the mixing 136 

water to prepare the paste and mortar samples. The dry cement materials were firstly mixed 137 

in a bench-top food mixer to achieve homogeneity and the contaminated water was then 138 

added to the mix for a further mixing and homogenisation. The paste samples were cast into 139 

Ø 30×60 mm cylinders and the mortar samples were moulded into larger Ø 50×100 mm 140 

cylinders. After 24 h of curing in the moulds, the samples were demoulded and transferred 141 

into sealed plastic bags and cured at the temperature of 20±1 °C and relative humidity > 95% 142 

until ready for testing. 143 

2.3. Testing methods 144 

UCS of the mortar samples, was determined, in triplicate according to BS EN 196-1 145 

(2005) at ages of 7, 28, 90 and 160 d. The paste samples were crushed to pass through the 1 146 

mm sieve and TCLP leaching test (USEPA, 1992) was conducted in duplicate on samples 147 

cured for 7 and 28 d. In this procedure, 10 g of the specimen was weighed into a 250 mL 148 

polypropylene plastic bottle containing 200 mL dilute acetic acid with a pH of 2.88. The 149 

mixture was rotated for 24 h at a speed of 30 rpm and then filtered using a 0.45 µm 150 

membrane syringe filter after the pH measurement. The metal concentration in the filtered 151 

liquid was determined by Perkin Elmer 7000 ICP-OES instrument.  The remaining specimen 152 

was stored in acetone to arrest the hydration and vacuum dried for at least 7 d to eliminate the 153 

acetone. Once dried, the specimen was ground to pass through a 75 µm sieve. TGA was 154 

conducted on PerkinElmer STA6000 equipment from 40 to 800 °C with the heating rate of 155 
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10 °C min
-1

. XRD was carried out on the Siemens D5000 X-ray diffractometer using a 156 

scanning range from 5 to 60 (2θ), with a resolution of 0.05° per step and retention time of 1 s 157 

per step. SEM in combination with energy dispersive X-ray spectroscopy (EDS) was 158 

performed on the JEOL 5800LV machine.  159 

3. Results and Discussion 160 

3.1. Hydration products  161 

3.1.1. XRD results 162 

The XRD patterns of CG and MG series’ pastes cured for 28 d are shown in Fig. 2. 163 

For both reference samples (CG and MG), poorly crystalline C-S-H was identified at 2θ ≈ 164 

23.0, 26.6, 29.5, 31.3, and 49.8°. In addition, the characteristic peak of hydrotalcite-like 165 

phases (Ht) at 2θ ≈ 11.5° was also detected for all the mixes, which agrees well the findings 166 

of others on alkali-activated slags (Wang and Scrivener, 1995). Unreacted Ca(OH)2 and MgO 167 

were identified suggesting that the slag hydration did not fully consume either activator at 28 168 

d. It should be noted that no brucite was detected in MG series indicating that the 169 

consumption of brucite by slag hydration was faster than the MgO hydration rate, which is 170 

consistent with previous studies (Jin et al., 2013). In general, the presence of Pb or Zn did not 171 

significantly change the hydration phases in either system. Trace peaks for lead hydroxide 172 

and lead carbonated hydroxide hydrate were identified for pastes containing 1% Pb addition, 173 

indicating Pb was mainly precipitated as hydroxide and carbonated to some extent due to the 174 

exposure to air. On the other hand, Zn more easily reacted with Ca, as suggested in Qian et al. 175 

(2003b), so peaks for calcium zincate were detected. Note that peaks for lead hydroxide and 176 

calcium zincate overlap with those for C-S-H around 2θ ≈ 30°, hence, obscuring the 177 

identification of those phases by XRD.  178 
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The most remarkable difference between the contaminated samples and the reference 179 

is reflected at 2θ ≈ 10-12°. Numerous peaks were found due to the varying d-spacing of the 180 

Ht, which were attributed to the incorporation of anions between the layers such as CO3
2-

 and 181 

NO3
- 
from the salts used. For the MG series, low Zn (0.25%) contaminated samples appeared 182 

to have no effect on the phases formed (Fig. 2b). When Zn concentration increased to 1%, it 183 

was clear that the Ht peak totally shifted to a lower angle (larger d-spacing) suggesting more 184 

anions were fixed between the layers. Due to the similar size of zinc and magnesium atoms, 185 

when zinc nitrate was mixed with Ht, Zn easily substituted Mg in the structure of Ht 186 

(isomorphic substitution) (Liang et al., 2013). On the other hand, Pb is too large to be 187 

incorporated into the Ht structure and was hence mainly fixed by surface adsorption or 188 

precipitation, which was supported by Park et al. (2007) who studied the reaction between Pb 189 

and Mg/Al hydrotalcite.  190 

3.1.2. TG results 191 

The TG/DTG curves of CG and MG series’ pastes cured for 28 d are shown in Fig. 3. 192 

From the TG curves, it was apparent that Zn-doped samples exhibited less total weight loss 193 

compared to the reference samples, indicating the retardation of the slag hydration, while Pb-194 

doped samples showed approximately the same total weight loss.  195 

For CG series samples, DTG curves showed the existence of C-S-H at 128 and 196 

183 °C. Tiny characteristic peaks for Ht at ~350-380 °C were observed, which is consistent 197 

with the XRD results. It should be noted that the decomposition temperature of lead 198 

carbonate is less than 300 °C (Robin, 1996), which overlaps with that of C-S-H, obscuring its 199 

identification. The highest peak at ~440 °C is ascribed to the dehydration of portlandite, 200 

indicating its incomplete consumption during the slag activation process. The peak at 201 

~657 °C is attributed to the emission of CO2 from the calcium carbonate (CC), which was 202 
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resulted from the carbonation of portlandite. On the other hand, MG and MGPb1 pastes 203 

exhibited approximately the same DTG signs, namely, the broad C-S-H peak up to 250 °C, 204 

Ht peaks at around 370-380 °C, and 590 °C and CC peak at ~681 °C. The addition of Zn in 205 

the MG paste caused a significant change as manifested in DTG curve. Firstly, the peak for 206 

C-S-H diminished due to the retardation on the slag hydration. Secondly, the major 207 

decomposition temperature of Ht decreased slightly to around 343 °C and the peak at around 208 

590 °C almost disappeared due to the substitution of Mg by Zn (Frost et al., 2003). Thirdly, it 209 

was observed that the peak intensity for CC decreased, which is ascribed to the retarded slag 210 

hydration and thus less carbonates as well as the incorporation of CO2 into the Ht structure 211 

which released at lower temperature around 343 °C.  212 

Combining the TG and DTG curves, the weight losses between 40 and 250 °C, 213 

denoted as Δm1 (mainly C-S-H), while the weight losses between 250 and 400 (for CG 214 

series), or 500 °C (for MG series), denoted as Δm2 (mainly Ht), were calculated and listed in 215 

Table 3. It can be seen that Zn significantly reduced the C-S-H content, while Pb only 216 

changed it slightly for both binders. Comparing the two binders, CG generated slightly more 217 

C-S-H than MG probably due to its higher pore solution pH and thus higher slag dissolution 218 

degree. The Ht content was significantly lower in CG series’ pastes than in MG series’ pastes 219 

and the effect of the Pb/Zn on the Ht content was marginal.  220 

3.2. Strength development 221 

It can be seen from Fig. 4a that even a small amount of Zn had a significant effect on 222 

the early strength of the mortars. After 28 d, the strength of Zn-doped samples decreased with 223 

the increase of Zn concentration, in which the 0.25% Zn-contained samples gained around 55% 224 

(~4 MPa) strength compared to the reference (CG). At 60 d, the strength of Zn-doped 225 

samples showed approximately the same strength and further curing only slightly increased 226 
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the strength, which is ~60% of the reference. The reduction of UCS by addition of Zn in the 227 

lime-slag binder system was higher than that in the alkali-activated slag system as studied by 228 

Deja (2002), which is attributed to the consumption of Ca(OH)2 by the reaction with Zn, 229 

resulting in a lower hydration degree of slag. On the other hand, the contanimation of Pb 230 

caused a slight strength reduction in the short term (7 d), which was consistent with Rha et al. 231 

(2000) and Hekal et al. (2012). After 7 d, the UCS of contaminated samples increased sharply 232 

with curing time and exceeded that of the CG at 28 d when Pb concentration was over 0.5%. 233 

After 160 d, samples with 0.5 and 1% Pb contamination gained approximately the same 234 

strength, which were ~15% higher than the reference. Meanwhile, 0.25% Pb addition resulted 235 

in a 12% reduction.  236 

The MG series’ samples performed quite differently in terms of UCS (Fig. 4b). In the 237 

first two months, the UCS of the Zn-doped samples showed a steady increase although all 238 

values were lower than that of the reference (MG). The reduction was dependent on Zn 239 

concentration, with higher addition resulting in lower strength. After 160 d, the strength of 240 

0.5% Zn-doped sample approached that of the reference while the others gained 241 

approximately 70% and 65% of the control for the 0.25 and 1% Zn addition, respectively. As 242 

for the Pb contamination, 1% Pb addition resulted in a higher strength than the reference in 243 

the first month, while lower concentration exhibited nearly no influence on the UCS. After 60 244 

d of curing, the reference samples showed higher strength than the Pb-doped samples, whose 245 

strength decreased with the Pb concentration. After 160 d, reference samples only exhibited a 246 

slightly higher strength than the Pb-doped samples, which is consistent with Deja (2002) that 247 

lead showed no influence on the strength in the long term. 248 

To compare the strength of both binders in the presence and absence of Pb or Zn, the 249 

relative strength was calculated by dividing the strength values of MG series’ samples by that 250 

of the CG series’ samples in each curing time. From Fig. 5, it was found that although MG 251 
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had lower early strength values, ~20% higher strength was gained after 60 d of curing 252 

compared to CG. This phenomenon was attributed to the lower pH value of MG system when 253 

activating GGBS at the early age, while more voluminous products (e.g., Ht, see Table 3) 254 

were formed to fill the pores during curing, resulting in higher strength in the long term. 255 

For the Zn-doped samples, the significant effectiveness of MG system is illustrated in 256 

Fig. 5a, though this advantage over CG system was mitigated by the curing time. UCS after 7 257 

d for CGZn pastes were approximately nil, which generated notably high relative values. 258 

After 28 d, the relative strength was from 1 to 7, increasing with the Zn concentration, while 259 

after 60 d of curing, the trend inversed, showing 30%~90% higher UCS in the MG system 260 

compared to the CG system, decreasing with Zn concentration. After 160 d, there was still 261 

30%-65% higher UCS of MG series over CG series. The effect of Pb on the relative strength 262 

is shown in Fig. 5b. Samples with 0.25% Pb addition showed a similar trend as the reference 263 

samples, indicating the MG binder was more effective when treating low concentration of Pb 264 

contamination. However, when Pb concentration increased to 0.5 and 1%, the MG system 265 

showed lower UCS, but the difference was reduced with curing time, exhibiting only 5-10% 266 

lower strength than the CG system after 160 d.  267 

3.3. Immobilisation efficiency 268 

The immobilisation degrees were calculated using the immobilised fraction divided 269 

by the initial concentration in the binder. The leaching results and the immobilisation degrees 270 

of Pb and Zn by the CG and MG binders are shown in Table 4. For Zn contamination, MG 271 

binder was significantly more efficient compared to CG binder. After 7 d, the immobilisation 272 

degree decreased significantly for CG system with Zn concentration increased to 1% while 273 

that of MG system only decreased slightly. Increasing the curing time remarkably increased 274 

the immobilisation degree especially for high Zn contamination samples. CG paste achieved 275 
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over 99.95% immobilisation degree, which was only slightly lower than that of MG binder 276 

after 28 d of curing. As for Pb contamination, MG system was more efficient at early age 277 

with approximately all Pb immobilised regardless of Pb concentration. On the other hand, the 278 

immobilisation degree decreased slightly in CG system by increasing the Pb concentration 279 

from 0.25% to 1%. After 28 d, both binders fixed all the Pb. To compare, PC cured for 28 d 280 

was reported to have a Pb retention value of 99.82% and Zn retention value of 99.91% after 281 

leaching with deionised water when the initial metal/binder ratio was 1% (Giergiczny and 282 

Król, 2008). Clearly the binders in this study showed better immobilisation performance than 283 

PC as previously reported. 284 

After leaching, the CG series’ samples cured for 7 d showed pH values between 7.3-285 

10.0. Leaching on the samples cured for 28 d gave pH values at 11.9-12.1. The increase of 286 

pH caused a higher leaching concentration for CGZn0.25 probably due to the re-dissolution 287 

of Zn compounds under high pH. While for CGZn1, the leached metal was significantly 288 

decreased due to a more mature hydration and the incorporation of Zn in the hydration 289 

products.  On the other hand, pH values of MG series’ samples were stable at 9.7-9.9 after 7 d 290 

of curing and slightly decreased to 9.6-9.7 after 28 d. As is known that pH has a significant 291 

effect on the solubility of the heavy metals, and most metal hydroxides have the least 292 

solubility at around pH 8.5-10.5 (Fernández et al., 2003).  MG system proved to have better 293 

buffering capacity than CG system and the final pH value was within the range where most 294 

heavy metals have the minimal solubility, which is attributed to the higher content of Ht 295 

formed, as suggested in Jiang et al. (2007). 296 

3.4. Microstructure 297 

The SEM images for Ca(OH)2-GGBS treated samples with 1% heavy metal addition 298 

cured for 28 d are shown in Fig. 6. The irregular GGBS particles bound by the C-S-H gels 299 
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and Ca(OH)2 flakes were identified (Fig. 6a). The enlarged image (Fig. 6b) confirmed the 300 

presence of fibrous Ht and the EDS analysis showed that the point contained 3.23 wt% of Zn, 301 

which was much more than its overall concentration (1 wt%) indicating that a large portion of 302 

Zn has been incorporated in Ht. The Pb-doped Ca(OH)2-GGBS pastes is shown in Fig. 6c and 303 

d. It appears that Pb-doped CG paste was featured by denser C-S-H gels, which agreed well 304 

with the UCS data. Ca(OH)2 flakes were also detected and fibrous Ht were found  to exist on 305 

the surface of the slag particle by a closer look (Fig. 6d). EDS point was pick on the 306 

agglomerate and showed the presence of Pb (Fig. 6e); however, due to its low content and the 307 

overlapping with Si, the quantification of the Pb content failed. 308 

Significant difference was found between CG and MG samples doped with 1% Zn. 309 

SEM showed the prevalence of Ht in the matrix (Fig. 7a) agreeing well with the XRD and TG 310 

results. EDS analysis showed the point contained 1.36 wt% of Zn, which confirmed that a 311 

large portion of Zn has been incorporated in Ht considering the much larger content of Ht 312 

formed in MG pastes than in CG pasts (Table 3). Similarly, the Pb-doped MG paste showed a 313 

denser microstructure compared to Zn-doped paste (Fig. 7b). In addition, a few needle-like C-314 

S-H was detected and a large amount of disintegrated agglomerates were observed which 315 

could be Pb-contained C-S-H agglomerates. EDS analysis showed the presence of Pb in these 316 

agglomerates although the quantification failed (Fig. 7c).  317 

4. Conclusions 318 

By investigating the hydration properties, strength development and immobilisation 319 

efficiency of slag activated by Ca(OH)2 or reactive MgO in the presence of lead or zinc, the 320 

following conclusions can be drawn:  321 

1. The main hydration products in both systems are C-S-H and hydrotalcite-like 322 

phases (Ht). Findings showed that the Ht played an important role in immobilising zinc 323 
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by incorporating it in its structure, while lead was primarily precipitated as hydroxide. 324 

Exposure to atmospheric CO2 caused some degree of carbonation of the hydration 325 

products.  326 

2. Lead retarded the early hydration of Ca(OH)2 activated slag while the long 327 

term strength exceeded that of the control when lead concentration was over 0.5%. Zinc 328 

reduced the strength significantly by 40% after 160 d of curing regardless of the zinc 329 

concentration.  330 

3. Both lead and zinc reduced the strength of reactive MgO activated slag, the 331 

extent to which depended on the metal concentration. 332 

4. In terms of UCS, reactive MgO activated slag is more effective than Ca(OH)2 333 

activated slag in immobilising zinc regardless of the concentration and curing time. On 334 

the other hand, Ca(OH)2 activated slag is preferable in treating higher level of lead 335 

contamination, though this advantage was mitigated by curing time.  336 

5. The immobilisation degrees of lead and zinc were highly dependent of the pH 337 

and higher values were achieved by reactive MgO activated slag, which had increased 338 

buffering capacity due to the Ht formed and was able to maintain the pH value around 339 

9.6-9.9 after leaching.  340 
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Figure Captions: 422 

Figure 1 XRD diffractograms of the MgO and GGBS used 423 

Figure 2 XRD patterns for samples cured for 28 d (a) CG series; (b) MG series. Notation: C-424 

S-H: calcium silicate hydrate; Ht: hydrotalcite-like phases 425 

Figure 3 TG/DTG curves for samples cured for 28 d (a) CG series; (b) MG series. 426 

Notation: C-S-H: calcium silicate hydrate; Ht: hydrotalcite-like phases; P: portlandite; CC: 427 

calcium carbonate 428 

Figure 4 UCS development for mortar samples of (a) CG series; (b) MG series 429 

Figure 5 Relative strength for references and (a) Zn-doped samples; (b) Pb-doped samples 430 

Figure 6 Microstructural analysis of paste samples curing for 28 d: (a) and (b) SEM images of 431 

CGZn1 paste; (c) and (d) SEM images of CGPb1 paste and (e) EDS spectra of CGPb1paste 432 

Figure 7 Microstructural analysis of paste samples curing for 28 d: (a) SEM images of 433 

MGZn1 paste; (b) SEM images of MgPb1 paste and (c) EDS spectra of MGPb1 paste 434 
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Table 1 Physico-chemical properties of the MgO, Ca(OH)2 and GGBS used 

Material MgO Ca(OH)2 GGBS 

Chemical 

composition 

(wt%) 

MgO 93.2 - 8 

CaO 0.9 - 40 

Ca(OH)2 - 96.9 - 

CaCO3 - 1.4 - 

SiO2 0.9 - 37 

Fe2O3 0.5 - - 

Al2O3 0.22 - 13 

Mg(OH)2 - 0.5 0.4 

Na2O - - 0.3 

K2O - - 0.6 

SO3 - 0.02 2.5 

LOI * (%) 2.6 - 1.4 

Reactivity† (s) 100 - - 

BET surface area (m
2
 kg

-1
) 9005 1529 493 

* Loss on ignition † Measured by acetic acid test [21] 

  

Table
Click here to download Table: Tables (changes marked in red).docx

http://ees.elsevier.com/chem/download.aspx?id=1172725&guid=0a516e29-9373-48e2-8ce9-927f10047c80&scheme=1
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Table 2 Mix design for Ca(OH)2-GGBS and MgO-GGBS samples 

Mix denotation 
Weight percentage in binder (%) Metal (Zn/Pb) to 

binder ratio (%) Ca(OH)2 MgO GGBS 

CG 15 - 85 0 

CGZn0.25 15 - 85 0.25 

CGZn0.5 15 - 85 0.5 

CGZn1 15 - 85 1 

CGPb0.25 15 - 85 0.25 

CGPb0.5 15 - 85 0.5 

CGPb1 15 - 85 1 

MG - 15 85 0 

MGZn0.25 - 15 85 0.25 

MGZn0.5 - 15 85 0.5 

MGZn1 - 15 85 1 

MGPb0.25 - 15 85 0.25 

MGPb0.5 - 15 85 0.5 

MGPb1 - 15 85 1 
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Table 3 Calculated weight losses from TG curves of paste samples cured for 28 days  

Mix denotation Δm1 (%) Δm2 (%) 

CG 5.19 2.26 

CGZn1 4.24 2.36 

CGPb1 4.79 2.62 

MG 4.62 5.74 

MGZn1 3.13 5.36 

MGPb1 4.61 6.00 
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Table 4 TCLP leaching results of the pastes after 7 and 28 days of curing  

Mix 

denotation 

7d 28d 

pH 

Leached 

metal 

(mg L
-1

) 

Immobilisation 

degree (%) 
pH 

Leached 

metal  

(mg L
-1

) 

Immobilisation 

degree (%) 

CGZn0.25 9.96 0.062 99.95 11.88 0.264 99.79 

CGZn0.5 7.26 0.356 99.89 12.14 0.220 99.91 

CGZn1 8.68 93.67 81.27 11.89 0.178 99.96 

CGPb0.25 9.44 ND * 100 11.66 ND * 100 

CGPb0.5 9.52 ND * 100 11.86 0.072 99.97 

CGPb1 8.82 0.369 99.93 11.86 0.18 99.96 

MGZn0.25 9.72 0.060 99.95 9.58 0.091 99.93 

MGZn0.5 9.70 0.054 99.98 9.55 0.082 99.97 

MGZn1 9.80 0.118 99.98 9.56 0.076 99.98 

MGPb0.25 9.91 0.027 99.98 9.66 0.066 99.95 

MGPb0.5 9.88 ND * 100 9.65 0.062 99.98 

MGPb1 9.83 ND * 100 9.64 0.166 99.97 

* Not detected 
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Figure 1 XRD diffractograms of the MgO and GGBS used 
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Figure 2 XRD patterns for samples cured for 28 d (a) CG series; (b) MG series. Notation: C-

S-H: calcium silicate hydrate; Ht: hydrotalcite-like phases 



 

Figure 3 TG/DTG curves for samples cured for 28 d (a) CG series; (b) MG series. 

Notation: C-S-H: calcium silicate hydrate; Ht: hydrotalcite-like phases; P: portlandite; CC: 

calcium carbonate 



 

Figure 4 UCS development for mortar samples of (a) CG series; (b) MG series 



 

Figure 5 Relative strength for references and (a) Zn-doped samples; (b) Pb-doped samples 
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Figure 6 Microstructural analysis of paste samples curing for 28 d: (a) and (b) SEM images of 

CGZn1 paste; (c) and (d) SEM images of CGPb1 paste and (e) EDS spectra of CGPb1paste 
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(c) 

Figure 7 Microstructural analysis of paste samples curing for 28 d: (a) SEM images of 

MGZn1 paste; (b) SEM images of MgPb1 paste and (c) EDS spectra of MGPb1 paste 

 




