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Short Note: Ultrafast electron diffraction pattern simulations using GPU technology. Applications to lattice vibrations
A. S. Eggeman, A. London and P. A. Midgley
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Graphical processing units (GPUs) offer a cost-effective and powerful means to enhance the processing power of computers. Here we show how GPUs can greatly increase the speed of electron diffraction pattern simulations by the implementation of a novel method to generate the phase grating used in multislice calculations. The increase in speed is especially apparent when using large supercell arrays and we illustrate the benefits of fast encoding the transmission function representing the atomic potentials through the simulation of thermal diffuse scattering in silicon brought about by specific vibrational modes.
1. Introduction

The strength of the Coulombic interaction between the electron beam and the crystal potential ensures that, in general, the effects of dynamical (multiple) scattering must be taken into account when interpreting electron micrographs and diffraction patterns. In electron crystallography, the intensity of a reflection is no longer proportional to the square of its structure factor (the kinematical approximation) but is instead dependent upon a complex function of all of the structure factors that represent the Fourier components of the crystal potential as ‘seen’ by the electron. In some cases (e.g. very thin crystals, light elements, precession geometry) the diffracted intensities can be used in a kinematical fashion and structures solved using statistical means, so called Direct Methods [1], or more non-conventional approaches such as maximum entropy [2] or charge flipping [3]. However if the basic crystal structure is known, dynamical intensities can be used to refine the atomic positions to a remarkable accuracy. For example experimental convergent beam electron diffraction (CBED) patterns have been matched to simulations using Bloch wave or multislice methods to allow bonding charge densities to be recovered [5,6].
The multislice approach [7] in particular is highly adaptable and has been used to describe accurately precession electron diffraction, CBED and large-angle CBED (LACBED) with a high degree of accuracy [8,9], full dynamical refinement of a metal oxide structure [10] and is particularly well-suited to the study of disordered and non-periodic objects [11,12]. 
2. Computational Approach
2.1 The Multislice Operation on a GPU
The multislice operation was first developed by Cowley and Moodie [7] and was developed for fast computation by Ishizuka [13] and Rez [14]. Multislice calculations follow a relatively simple procedure summarised (in the terminology used by Kirkland [15]) by:
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Equation (1) can be described as follows: the electron wave (
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) entering a slice, n, of material of thickness 
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 is first multiplied in real space by a transmission function (
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). This function represents the complex projected potential contained within the slice of material and is often referred to as the ‘phase grating’ because the relatively small potential in the slice creates a complex function comprised almost entirely of a projected phase component. The modified wave is then Fourier-transformed to reciprocal space where it is multiplied by a propagation function (
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) that is equivalent to the Fresnel diffraction over the thickness, 
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. Finally the wave is Fourier-transformed back to real space to undergo the same process in the (n+1)th slice of material, or leave the material as the exit wave.
The 2D Fourier transforms and array multiplications used in this operation can all be optimised through parallel processing methods. Given the relatively small array size one very cost-effective way to do this is to use a graphical processing unit (GPU) [16], which can offer several hundred parallel cores for the calculation [17,18]. Each dimension of the arrays for 
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 are typically powers of two in size (for optimal Fourier transformation). In parallel processing each array element is treated as a single computational thread and a small group of threads (or ‘thread-block’) can be allocated to each of the parallel cores in the GPU allowing the large array to be processed as a number of smaller arrays. Electron microscopy simulations are often performed using 
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 arrays, which can be run as 1024 parallel thread-blocks of 
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 elements. This approach is not uncommon and has been used to improve the speed of simulations in previous work. [19].
Through these approaches and the optimised CUDA FFT routines a complete multislice operation (as described in equation 1) on a 
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 px electron wave propagating parallel to the <110> zone axis of silicon takes 72.3 ms on a conventional Intel i7 CPU processor using the TEMSim package developed by Kirkland [15] and takes 2.01 ms on an Nvidia GeForce GTX 285 GPU with 240 cores using code adapted from TEMSim by the authors. This particular CPU and GPU will be compared throughout this paper
2.2 GPU phase-grating production

The transmission function (tn) is the real space representation of the electrostatic potential in each slice that scatters the electron wave. This can be created directly in real space by summing the contribution of each atomic potential in the structure, or by calculating the structure factors to produce a reciprocal scattering function (Tn) and then performing an inverse Fourier Transform. The real-space approach has been used extensively for supercells [11,20] because, as the atomic potential is highly localised in the phase grating array, only a small number of array elements are altered by any particular atom. As a result, the transmission function associated with the large number of atoms in a supercell can be calculated quite efficiently.

In this work however, the reciprocal space approach is used because it can be adapted readily to make use of the parallel processing capabilities of the GPU. The scattering contribution (Tv) of an atom, v, located at rv, to a specific scattering vector K is:
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where f is the electron atomic scattering factor and is calculated using the parameterization described by Kirkland [15]. Thread-blocks representing scattering into a small number of scattering vectors can be calculated in parallel using the GPU. Since the atomic coordinates and the atomic scattering factor parameters can be stored on the shared memory of the card, this represents an efficient method for populating the reciprocal space array, Tn, before the GPU FFT is used to produce the real space phase grating, tn. This allowed the calculation time for the phase grating of a single unit cell of silicon to be reduced from 130 ms to 0.22 ms.
This process offers the possibility of extremely fast simulations of large supercell arrays to study the diffuse scattering arising from disorder in the atomic lattice. In the case of lattice vibrations and phonon scattering we adopt the ‘frozen phonon’ approach [cite] in which the scattering is modelled by an incoherent sum of diffraction patterns, each of which is calculated as a time-independent quasi-elastic process from a crystal with a different lattice configuration; this ensemble of lattice configurations then represents the lattice vibration seen experimentally. A large supercell is essential because the increased real-space dimension of the cell allows a finer sampling of reciprocal-space and thus a more accurate simulation of the diffuse scattering in the diffraction pattern.  

The increase in calculation speed can be illustrated by considering a 2 x 2 supercell of a primitive cubic material with one atom in the subcell (at rv) and random thermal displacements (as shown in Figure 1). This cell could be described by converting the atom position in the subcell into positions in the supercell and then writing the phase grating using the process described above. Equally, the structure can be described as the initial subcell displaced by three real space vectors to produce the contents of the supercell. This is advantageous because a real space displacement is equivalent to a phase change in reciprocal space. This can be seen for an atom displaced by r because:
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To describe the entire supercell phase grating it is necessary only to produce the reciprocal space scattering function of the subcell and then produce a list of the vector displacements needed to convert this array into the scattering functions representing the other sub-cells in the complete structure. These reciprocal space functions can then be summed to produce the complete scattering function of the supercell, which can then be converted to the real space phase grating by an inverse Fourier Transform. All calculations (the phase shift of each sub-cell scattering function, summation and inverse Fourier Transform) can be performed using the same parallel approaches described in this and the previous section. This approach is well optimised and has the benefit of minimising the data transferred between device and host for the calculation of each slice (which is bandwidth limited and is a common bottleneck in GPU calculations).

An important consideration for the study of incoherent phonon scattering is that the displacement vectors r, used to translate the contents of one cell to another sub-cell need not be lattice vectors to produce the ideal structure (indicated by the dotted lines in Figure 1) but can include random or correlated thermal displacements (as shown by the solid circles in Figure 1) to describe lattice vibration. The creation of a displacement vector list adds only a small time penalty to the calculation.
3. Simulations of Thermal Diffuse Scattering in silicon
To illustrate the speed of the new approach we consider the thermal diffuse scattering (TDS) seen in electron diffraction patterns that arise from lattice vibrations in silicon, shown schematically in Figure 2. Experimentally, TDS is readily seen as continuous diffuse streaks in the <100> electron diffraction pattern of silicon, as seen in Figure 3(a). The streaks, parallel to the <hh0>* directions have been studied previously by both X-ray [21-22] and electron diffraction [20, 23-25] and serve here as a familiar test case to judge the performance of the GPU approach.
To begin with, it is informative to compare the performance of the CPU and GPU for various supercell dimensions for a silicon crystal one unit cell (5.43 Å) thick. In Table 1 we show the time (averaged over 10 simulations) required to produce a 512 x 512 phase grating from a single slice of an N
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N cell superlattice array (shown schematically in Figure 2), containing 
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	Supercell dimension
	CPU time (s)
	GPU time (s)

	1 x 1
	0.13
	0.00022

	2 x 2
	0.28
	0.00082

	4 x 4
	2.16
	0.00287

	8 x 8
	18.0
	0.01096

	16 x 16
	146
	0.439

	32 x 32
	-
	1.92

	64 x 64
	-
	5.74


Table 1. Comparison of preparation times for supercell arrays incorporating frozen phonon offsets for CPU and GPU based software. Note that the large arrays on CPU took too long to be conveniently calculated so no time is listed.

From this it is clear that the GPU offers a speed increase of 2-3 orders of magnitude over a CPU.

Previous studies of the phonon modes in silicon [11,20] indicate that the lowest frequency, and therefore dominant, lattice vibration is a transverse acoustic (TA) mode involving correlated displacement of nearest neighbour silicon atoms along <110> directions. The coupling between the two nearest neighbour atoms in the cell is required to maintain the point group symmetry and reflects the stiffness of the Si-Si bonds in the structure. These nearest neighbour pairs consist of one at a lattice point (of which there are four in the cubic F-lattice) and one at an appropriate 
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-type position in the unit cell. Each lattice vibration can therefore be thought of as the oscillation of a correlated chain of atoms whose trace lies along the <110> in question. Within each unit cell each chain of atoms consists of four of the silicon atoms (two at lattice points and two at 
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-type positions) that move in a correlated manner. As an example, an oscillation parallel to [011] is shown in Figure 2 where the red atoms are the groups of nearest-neighbour pairs (circled). The remaining 4 atoms in the cell also vibrate as part of chains of correlated atoms along the same [011] direction but are not correlated with the original chain.
Within each 5.43Å slice the displacements in all subcells from the six symmetrically –equivalent <110> vibrational modes were calculated using a frozen phonon method. 50 lattice configurations were used to provide an ensemble with a Gaussian distribution of displacements with standard deviation of 0.025 Å. The supercell size was set at 16x16 unit cells and the crystal thickness chosen to be 200.91 Å (37 unit cells) representing a typical TEM sample. The total time for the calculation (containing greater than 75000 atomic positions) of each configuration was 22s. The simulated diffraction pattern is shown in Figure 3b. Since only a single orientation is used in the calculation, Bragg peaks appear as very bright single pixels and so to improve visibility these have been convolved with a Gaussian function with 5px FWHM to mimic the ‘blooming’ effect seen in the experimental patterns.
Consider the diffuse scattering seen in the simulation of Figure 3b. If we take the zone axis to be [100], then the TDS is comprised of two main features: (i) a set of fine lines parallel to the [011]* and [01
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]* directions and (ii) broad bands of Kikuchi scattering. The fine diffuse lines arise from the correlated lattice vibrations parallel to [011] and [01
[image: image22.wmf]1

] vectors which lie in the (100) plane, the plane of the simulation slice. By contrast the lattice vibrations parallel to [101], [10
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], [110] and [1
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0] are out of the plane of the slice, i.e. not in the (100) plane. This means that there is almost no correlation within any (100) slice and results in rather unstructured broad diffuse scattering, partly condensed into the Kikuchi bands seen in the pattern.
In order to match quantitatively the simulated and experimental patterns, other higher frequency vibrational modes should be taken into account in general. However in some circumstances the TDs is dominated by a single low frequency mode and the good qualitative agreement between simulation and experiment in Figure 3 would indicate the dominance of this single TA phonon mode in silicon.
A demonstration copy of the GPU multislice code is freely available by contacting the authors. 
4. Conclusions

We have shown how, by using the parallel computing capabilities of a GPU, simulations of electron diffraction patterns using multislice code can be performed at much higher speeds than with a conventional CPU. By considering the phase grating of a large supercell in reciprocal space a highly efficient method if found to calculate thermal diffuse scattering. The increased speed of the calculations enables realistic modelling of scattering from low frequency phonon modes and opens up the possibility of calculating patterns using complete phonon spectra, complementing methods used in X-ray and neutron diffraction. The approaches described here is equally applicable to the dynamical refinement of unknown crystal structures and to the simulation of scattering from partially ordered crystals, point or extended defects.
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Figure 1. Schematic of indicating the offsets needed to produce a 2x2 simple cubic supercell from a single atomic vector rv.
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Figure 2. A 2x2 cell projection of the silicon structure along <100>, individual atoms move with a correlated motion along a <011> direction (indicated by arrows). The atom pairs (circled) have additional correlated motion to maintain the point group symmetry of the structure. (Colour online)
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Figure 3. Comparison of a) an experimental electron diffraction patterns recorded parallel to <100> from silicon with b) a simulated pattern incorporating <110> correlated lattice vibrations in a 16x16x37 supercell of silicon. Note the lack of streaking through the origin of the pattern indicating a transverse motion of the silicon atoms.
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