Towards Exploratory Faceted Search Systems

Alex Ksikes

Darwin College

University of Cambridge

Supervisor:
Prof. Zoubin Ghahramani

A thesis submitted for the degree of
Doctor of Philosophy, University of Cambridge

2013

I, Alex Ksikes, confirm that this dissertation is the result of my own work and includes
nothing which is the outcome of work done in collaboration except where specifically
indicated in the text. I also confirm that this thesis is below 65,000 words and contains
less than 150 figures, in fulfillment of the requirements set by the degree committee for

the Department of Engineering at the University of Cambridge.

Abstract

Towards Exploratory Faceted Search Systems
Alex Ksikes

In this thesis, we cover what we believe would be the main ingredients of an exploratory
search system (ESS). In a nutshell, these are textual queries, facets, visual results, social
search and query-by-example. The goal of the thesis is to show how all of these elements
could readily be integrated into a typical faceted search system that users are already
accustomed to. In this respect, we propose that the future of exploratory search might
be a traditional faceted search system, but with the added ingredients of information
visualizations and query-by-example.

To illustrate our ideas we have built two freely available web applications. The
first one, Biomed Search, has been positively received by the community and offers
some novel characteristics. First, in order to improve on both precision and recall,
Biomed Search indexes not only the text caption but also the text that refers to the
image. Second, the interface uses a common pattern of zooming in on a particular
search result in order to display more information. User feedback on Biomed Search
has hinted towards faceted search, visual search results and query-by-example.

The second system, Cloud Mining, is an attempt at implementing the vision set
forth in this thesis. The system is a framework used to instantiate ESSs. It offers the
novel characteristics of facet views as well as multiple-item based searches combined
with textual queries. Cloud Mining paves the way to a completely pluggable search
framework, in which every component would be driven by a community of users. The
system was tested on large publicly available datasets and all its software components
are available under an open source license.

The main contributions of this thesis come as lessons learned, suggestions or rec-
ommendations as to how to extend the current paradigm of faceted search into the one
of exploratory search. The search results and facets should be extended with different
views. Query by example should be integrated with Bayesian Sets as it reduces the
handling of complex content based searches to choosing the right plugin. Finally, the
system should be thought as a framework to instantiate ESSs, in which every one of its
component is a community driven plugin. These customized tailored tools, when ap-
plied to a dataset of interest, could offer a collective intelligence approach to information

overload.

Acknowledgments

I would like to thank my supervisor, Prof. Zoubin Ghahramani, for his support and

guidance throughout this work. I have been extremely fortunate.
Wil de Guyenne for his inspiration and encouragement.
To my parents and family for their love.

To the authors behind the software which have greatly facilitated the writing of this
thesis. These include: Markdown, LaTeX, Pandoc, Etherpad, IA Writer, OmniGraffle,
PDF Expert, FireShot, Git, Dropbox, iTalk and Sublime Text.

Finally, I would like to thank the open source community without whom the making of
software such as Cloud Mining would never have been possible. Especially, I would like
to thank all the passionate coders behind wonderful software such as Lucene, Sphinx,

Linux, Python, NumPy, SciPy and webpy.

Contents

List of Figures

Introduction

1 Notions of Information Retrieval

3

1.1
1.2
1.3
1.4
1.5

Defining Relevance oo oo
Precision and Recall
Set Retrieval
Ranked Retrieval
Conclusion

Search User Interfaces

2.1

2.2

2.3

2.4

Designing Search Interfaces
2.1.1 The Process of Designing
2.1.2 Some Key Design Guidelines
2.1.3 Small Details and Aesthetic Design
Evaluation of Search Interfaces
2.2.1 Informal Usability Testing
2.2.2 Formal Studies and Controlled Experiments
2.2.3 Large Scale and Longitudinal Studies
Presenting the Search Results
2.3.1 Document Surrogateso
2.3.2 Summarieso
2.3.3 Highlighting of Query Terms
2.3.4 Additional Features L.
2.3.5 Importance of Sorting L.
Conclusion

Biomed Search

3.1
3.2
3.3
3.4
3.5

Motivations and Overview
Features and Novel Approaches
Implementation and Technology Used
Similar Services L
Conclusions and Future Work

15
15
16
17
20
21
21
22
23
23
23
25
26
26
28
29

i

4 Faceted Search Systems 45
4.1 Directory navigation L0 46
4.2 Parametric Search Lo 47
4.3 Faceted Navigation 48
4.4 Faceted Search 50
4.5 Back-end Concerns 51

4.5.1 Information overload 51
4.5.2 Computational Cost 52
4.5.3 The Vocabulary Problem 54
4.5.4 Availability of Metadata 54
4.6 Front-end Concerns %)
4.6.1 Presenting the Facets 56
4.6.2 Organizing the Facets 58
4.6.3 Handling the Search Box 59
4.6.4 Multiple Selections L 60
4.7 Examples 61
471 Endeca. 62
4.7.2 Flamenco 63
473 Parallax 64
4.74 mSpace 64
4.7.5 Carsabi 65
4.8 Conclusion L 66

5 Information Visualization for Search 69

5.1 Interacting with Query Terms 70
5.1.1 Representing Query Terms 70
5.1.2 Dynamic Queries oL 71

5.2 Representing the Search Results 73
5.2.1 Principles and Motivation 73
5.2.2 Examples of Visual Search Results 75

5.3 Visualization on the Facets 79
5.3.1 Visualizing Frequency 79
5.3.2 Fitting the Data Type 81

5.4 Plenty More Visualizations 84
5.4.1 The Docuburst 84
5.4.2 World Globe Pathways 85
5.4.3 Treemap Like Views: Newsmap 86
5.4.4 Pictograms: We Feel Fine 87
5.4.5 Tag Cloud like Visualizations 87
5.4.6 Quantifying Data with Bubbles 89

5.5 Putting Everything Together 90

5.6 Conclusion 98

6 Similarity and Multimedia Search 99
6.1 Content Based Search oL 100
6.2 Features 101

6.2.1 Bag-of-words 102

6.2.2 Color Histograms 103

il

6.2.3 Texture Histograms 104
6.2.4 Other Feature Types 105
6.3 Search in Metric Space 106
6.3.1 Distances 107
6.3.2 Curse of Dimensionality 108
6.3.3 Efficient Nearest Neighbor Search 108
6.3.4 Fingerprintso 109
6.4 Learning to Rank o oo 111
6.5 Bayesian Sets 113
6.5.1 Overall Algorithm 114
6.5.2 Sparse Binary Data 0L 115
6.5.3 Analysis of the Query Vector 117
6.5.4 Results. 117
6.6 Examples 118
6.6.1 UCI'sChemDB 118
6.6.2 Google Imageo 119
6.6.3 Xyggy Patent Search 0. 121
6.6.4 Airtime 122
6.7 Conclusion 123
Cloud Mining 125
7.1 Datasets and Instances Built 0000 127
7.1.1 DBLP with CiteSeerX 127
7.1.2 IMDb ... 129
7.1.3 MEDLINE with PubMed Central 132
7.1.4 Other Datasets 133
7.2 A Framework and Technology Used 135
7.2.1 User Interaction L 136
7.2.2 Architecture 138
7.2.3 Software Engineering 140
7.2.4 How Instances are Built 0. 141
7.3 Faceted Search 143
7.3.1 Front-end in Cloud Mining 143
7.3.2 Back-end implementation with fSphinx 148
7.4 Exploratory Visual Search 151
7.4.1 Facet Visualization L. 152
7.4.2 Back-end Implementation and Rendering 155
7.5 Ttem Based search L 157
7.5.1 Why Bayesian Sets? oL 158
7.5.2 Front-end in Cloud Mining 159
7.5.3 Back-end implementation with SimSearch 169
7.5.4 Scaling Bayesian Sets 172
7.6 Example of Instance Building 174
7.6.1 Scraping Data o 175
7.6.2 Setting up the Back-end 00 178
7.6.3 Creating the Instance L. 180
7.7 Conclusion 181

v

Conclusion

A fSphinx Tutorial

A.1 Setting up and Indexing Data

A.2 Setting up the Facets
A.3 Playing with Facets

A.4 Performance, Caching and Multiple Facets
A.5 Playing With Multi Field Queries

A.6 Retrieving Results

A.7 How about item based search?

A.8 Putting Everything Together

A.9 Playing With Configuration Files

A.10 Additional Tools

A.11 Cool, Now I'd like an Interface
A.12 1 don’t even have data, how do I start?

B SimSearch Tutorial
B.1 Loading the Data
B.2 Creating the Index
B.3 Querying the Index
B.4 Combining Full Text Search

C Cloud Mining Tutorial

183

187
187
188
189
191
192
194
196
196
197
197
198
198

199
199
199
201
203

207

List of Figures

0.1
0.2

1.1
1.2
1.3
1.4

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Bates’ lookup-based model L. 2
Ingredients of an exploratory faceted search system 3
Vannevar Bush’s vision of the memex 7
Precision and recall 9
The boolean search interface of PubMed 11
PageRanks of a simple network of websites 13
User-centered design approach 16
Immediate feedback with Google instant search 18
Undoing “send” at Gmail L. 19
Transparent personalization at Google News 19
Reducing user short-term memory load 20
Heatmap of a search engine result page (SERP) 22
Google’s SERPo 24
Infinite scrolling at DuckDuckGo 27
Quick view pane at Bingo oL 27
Blending search results from different verticals at Google 28
Snippet of the results obtained for the query “foot pressure” 34
Fields indexed by Biomed Search 35
Interaction flow in Biomed Search 36
The different features of Biomed Search 37
Grid view in Biomed Search 0L 38
Going from raw data to the index ready for retrieval 40
Biomed Search web server architecture 41
Directory navigation at Yahoo! 46
A typical parametric search interface 48
Faceted Navigation at Soap.com 50
Faceted search at Amazon.com 51
Linkedin choice of facet layout 56
Facets presented at top at YouTube 57
Disjunctive facet selection at YoYo.com 61
Endeca taylor made search interface 62
Flamenco’s hierarchical faceted navigation interface 63
Browsing through Nobel Prize winners with Parallax 64
Browsing through an online newsfilm archive with mSpace 65

vi

4.12

5.1
5.2
2.3
0.4
2.5
2.6
5.7
2.8
2.9
5.10
5.11
5.12
5.13
0.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
2.22
0.23

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Carsabi simple yet effective faceted search interface 66
Query term cloud at Quintura 71
Filmfinder dynamic queries 72
Mashing up apartment rentals on a map with Housing Maps 75
Songza song interface L 76
Search results represented as cars at Volkswagen 7
The color of death across the world with Chromotive. 78
Visualizing blog posts with a time-line at Viewzi. 78
Visualizing frequency with the Relation Browser 79
FacetLens represents facets as circle of different sizes 80
Check boxes to represent disjunctive facets at Ebay 81
Histogram like range sliders at the Molecular’s Wine Store 82
A color palette facet at the website Art Rising.. 83
The DocuBurst of a document 84
World globe pathways o 85
Treemap like view at Newsmap 86
Pictograms at WeFeelF'ine 0. 88
The famous Wordle visualization 88
Quantifying data with bubbles 0. 89
Crowd sourcing the making of an ESS 91
Many different possible facet widgets 93
A pluggable search interface o0 94
Classic SUI built with the repository of widgets 95
A Biomed Search like grid view featuring social actions. 97
Pixel intensities histogram features 100
Querying within a feature space L. 101
Live color histogram of the movie Shrek 104
Creating the fingerprint of an audio file with Shazam 110
Basic architecture of a machine-learned search engine 112
Full text search versus item based search 113
Molecules with “similar” functional groups in ChemDB 119
Search by uploaded image with Google Image 120
Similarity search with Google Image 121
Multiple item search with Xyggy 122
Matching similar people with Airtime 123
Front page of three different instances 126
Look and feel of the DBLP instance 129
Look and feel of the IMDDb instance 131
Look and feel of the MEDLINE instance 134
Cloud Mining applied to the Nobelprize.org dataset 135
User Interface Flow 137
Different instances running from the same code base 139
Cloud Mining software application stack 141

Look and feel of a Cloud Mining instance before (top) and after (bottom)
customization. o Lo 142

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.29

vii

Cloud Mining front page 144
Cloud Mining faceted search page 146
Cloud Mining faceted search page 2 147
fSphinx simplified UML diagram 150
[Mustrating the tag cloud view. 153
Mlustrating tag cloud view 2. L. 154
Cloud Mining simplified UML diagram 156
Items mixed with query terms 161
Items as a facet refinement 163
Similarity search on the DBLP instance 165
Similarity search on the IMDb instance 167
Similarity search on the IMDb instance 2 168
Indexing to querying with SimSearch 169
SimSearch simplified UML diagram 171
Simsearch live distributed indexing 173
Simsearch distributed search 173
Building a Cloud Mining instance from scratch 174
Retrieve, extract, populate with Mass Scraping 176
A typical DB schema oo 179

The future of search 185

viil

Introduction

The only real voyage of discovery consists not in seeing new landscapes, but in having new
eyes, in seeing the universe with the eyes of another, of hundreds of others, in seeing the

hundreds of universes that each of them sees.
Marcel Proust, La Prisonniére

Vannevar Bush, J.C.R. Licklider and Douglas Engelbart envisioned the future of infor-
mation technology. The core idea of their research was to invent innovative technologies
in order to augment the human intellect. The end result would be emergence of an ”en-
lightened society” (Engelbart, 1962) in which mankind would be able to undertake the
resolution of important fundamental problems. For example, Bush (1945) proposed the
memex or “memory extender”, an electromechanical device used to read large research
libraries. Licklider (1960) suggested a human-computer symbiosis to free the mind from
mundane tasks, and as such would focus on providing insights as well as help humans
make better decisions. And Engelbart (1995) envisioned the enhancement of the human
intellect by "harnessing the collective human intellect of all the people contributing to
effective solutions”.

At the time of their conceptions, these revolutionary ideas were infeasible to im-
plement. However, with the invention of the transistor, the personal computer and
the Internet, these visions have come closer to reality. The World Wide Web together
with large commercial search engines such as Google are already a close incarnation
of those ideas. However, with the advancement of computing technology also came a
growing issue known as information overload (Toffler, 1984). Although human beings
are informavores in nature (Miller, 1983), we can only process and make sense of a
small amount of information at any given time. Furthermore, information overload is
growing at an explosive exponential rate. In fact, it has been estimated that the amount

of new information, either created or replicated, will increase from less than 1 zettabyte

2 INTRODUCTION

in 2009 to 35 zettabytes by the year 2020 (The Economist, 2011). One zettabyte is one
trillion gigabytes, which is enough to store the equivalent of 250 billion DVDs.
Current commercial search engines use a process known as the “query and response”.
The user issues a query, and receives, as a response, a set of potentially relevant doc-
uments. The process has been formalized by Bates (1989) in the lookup-based model.
As shown in Figure 0.1, the model is comprised of four main elements. On the left
hand side, the documents are processed in a summarized form understandable by the
user, known as the document surrogates. On the right hand side, the user’s underlying
information need is reduced to a query statement. This later usually takes the form of
a set of keywords together with boolean operators. A match occurs when the document
surrogates “fit” in the user’s query. The user then investigates the surrogates, and if
appropriate, delves into the documents of interest. The process may repeat itself, with

the user attempting to find the right query which will yield the right set of documents.

documents » documents — query A information
surrogates need

Figure 0.1: The Lookup-based model according to Bates, 1989.

The lookup-based model has been identified as best suited for question answering
tasks and fact finding (Marchionini, 2006). In fact, the process must start with a
carefully specified query, and should end with precise results. But the results returned,
together with their potential relationships, are not intended to be further analyzed with
more scrutiny. In the look-up based model, the answer is assumed to be found in the
matched documents, not necessarily in the search results themselves. The query repre-
sents a one shot summary of the user’s underlying information need. However, given
today’s reality of information overload, the lookup-based model appears to fall short in
adequately answering the user’s insatiable thirst for new information and knowledge.
This has led researchers to go beyond this paradigm, and look into a new class of

information seeking, known as exploratory search (White and Roth, 2009).

INTRODUCTION 3

In an exploratory search system (ESS), the user may have a vague information
need (Marchionini and White, 2009). His goals are not necessarily well defined, neither
are his the means to achieve them in the first place. Instead, the role of the system
is to provide a discovery type of experience by helping users learn from exposure to
information found in the document collection. Thus, as White and Roth (2009) so nicely
put it, exploratory search is “as much about the journey through the information space
as the destination”. In this setting, the lookup-based model employed by traditional
search engines, becomes a necessary but not sufficient condition to exploratory search.
There is a need to go beyond that paradigm to provide functionalities meant to help
users get a more throughout grasp and understanding of the document collection, while

at the same time push towards non-linear search and exploration.

[[Taxonomy/Ontology]] [[Parametric Search]] [[F{anked Retrieval }] [[Set Retrieval J]
N |I = /
\\\\ ‘ \\ //f/
N ‘ \ /
u N | N/
\\ \ Y.

v
(Faceted Navigation | [Full Text Search ||

v
[[Social Search]]

[[ng:y by Example]]

e
2

A

Exploratory
Search

Figure 0.2: Ingredients of an exploratory faceted search system, showing how one paradigm

leads to the next.

In this thesis, we suggest a natural way of extending the current paradigm employed
by traditional search systems, into the one of exploratory search. Since there isn’t

one system for every exploratory application, the end goal of the thesis is to provide

4 INTRODUCTION

a framework or a platform extensible with plugins, and with instances tunable to a
particular document collection of choice. It is important to note that our approach
consists of attempting to naturally extend the current consensus around traditional
search. In this respect, we seek to build a system in which there should be no loss in
moving from one paradigm to the next. What could be performed in the older setting
must still hold in the new setting.

In order to do so we can list what we believe would be the main natural ingredients
to exploratory search. These include, but are not limited to: facets, information visu-
alization, query-by-example and social search. Figure 0.2 depicts how each paradigm
naturally extends to the next. For example, exploratory search is achieved by extend-
ing faceted search, but with the added functionalities of visualization, query-by-example
and social search. And faceted search itself, is achieved by combining faceted navigation
with full text search. In this figure, the more plain an arrow is, the more direct is the
implication from one paradigm to the next.

Another core approach taken by the thesis is to design real software in order to
illustrate our ideas and motivate new ones. In this respect, we have developed two
software. The first one, Biomed Search, is a large scale biomedical image search engine
indexing over 1M documents. The system features some novel characteristics and has
motivated many of the ideas found in this thesis. The second one, Cloud Mining, is
a framework to instantiate scalable ESSs with ease. The system is architectured in a
modular manner in order to accommodate for pluggable search. It features the novel
characteristics of facet views as well as multiple-item based searches combined with
textual queries. Cloud Mining was designed as a framework that embodies most of the
ideas described in this thesis.

Consequently, our journey begins by covering some basic notions of information re-
trieval (chapter 1). Since the user’s mental model representation of a system is largely
determined by his interaction with the interface, the next chapter will provide a neces-
sary review of search user interfaces (chapter 2). Next, we will be presenting, Biomed
Search, as a case study application of the two preceding chapters, and as a motivating
example for the next coming chapters (chapter 3). An exploratory search experience
must provide suggestions for refinements and present the information in well chosen

groups or categories rather than in a single result set. This is achieved with faceted

INTRODUCTION 3

search (chapter 4). However, an ESS must also provide different representations of the
document collection in order to help the user attain new insights. In order to do so we
will extend faceted search to the visualization of the search results, whether they are
presented as a list of document surrogates or grouped in chunks as facet values. This
will be the subject of the chapter on information visualization for search (chapter 5).
Exploratory search must also encourage document discovery and serendipitous activity.
This will lead us to go beyond text, and embrace queries made of whole items. This will
be the subject of the following chapter on multimedia and similarity search (chapter
6). However, another important activity of exploratory search consists of managing,
enriching, and sharing the retrieved information. We broadly characterize this activity
as social search, and the subject will be touched upon throughout this thesis, but more
particularly at the end of the chapter 5. Finally, we will be discussing Cloud Mining as
embodying all the concepts previously exposed of search, facets, visualization, query-
by-example and social search (chapter 7), and as a natural extension to traditional
faceted search systems.

The grander vision here is to provide a fully scalable pluggable solution in which
every exploratory search function is part of an ecosystem, where datasets, search com-
ponents and instances are shared and enriched by a community of users. A designer
would then be able to build customized tailored interfaces for different applications.
Given these tools, users would then subsequently enrich the dataset, which could then
be reused for yet another application. This process, in a way, would provide a collective
intelligence solution to information overload. In this respect, we are hopeful that this
work will inspire others and will add another building block towards the “enlightened

society” that Bush, Licklider, Engelbart and others had envisioned.

INTRODUCTION

Chapter 1

Notions of Information Retrieval

The very first ingredient of an ESS is the search system itself. Therefore in this chapter
we will cover the basic concepts and notions of information retrieval. Information
retrieval (IR) is a very active field of research which spans over six decades. The first
description of a search system is probably due to Vannevar Bush with the memex
(Bush, 1945) (Figure 1.1). Using the the memex, users would be able to store all
their books, films and communications. The content could then be be consulted with
"exceeding speed and flexibility”. As the name suggests, the memex was designed to be
an ”enlarged intimate supplement to one’s memory”. Nowadays we have much advanced
on that vision. The World Wide Web (Berners-Lee et al., 1994) and its primary mean

of access; search engines such as Google or Bing, have become ubiquitous.

dual screens which helps
in cross referencing (hypertext)

make new associations, hyperlinks,
bookmarks, automatic search
and export content to other
memex machines.

record notes and comments

using a stylus. 9

personal user's library
¢ stored on micro-film in the form
of text / image compaositions

mechanized system used p
to consult and retrieve documents &
at "exceeding speed and flexibility"

Figure 1.1: Vannevar Bush’s vision of the memex

As information retrieval is such a broad field, this chapter makes no attempt at

8 CHAPTER 1. NOTIONS OF INFORMATION RETRIEVAL

being an exhaustive review. Instead, the most fundamental and necessary concepts of
IR will be provided. First, the notion of relevance i.e. what it means for the information
retrieved to be relevant, will be broadly characterized. Then, we will look into measures
of relevance such as precision and recall. The trade-offs between precision and recall
will also be addressed. Finally, we will cover text search with special emphasis placed
on the review of the Boolean set model and the ranked retrieval model. As noted, this
will be a basic introduction of IR. For in depth coverage, the interested reader may

consult (Singhal, 2001) and (Manning et al., 2008).

1.1 Defining Relevance

Probably the first notion to be defined is the notion of relevance of an IR system. That
is what it means for a search engine to retrieve documents that are relevant to the user
(Rocchio, 1971). The notion of relevance itself has been the source of intense debates
amongst researchers often disagreeing on how to measure it (Mizzaro, 1997; Saracevic,
2007). However, the general consensus has been to characterize relevance either through
a purely cognitive point of view or solely through a benchmarking approach. The former,
which will be addressed in the next chapter 2, naturally leads to the design of search
user interfaces and to evaluation methods that favors user studies. The later leads to
the back-end design of search systems and to evaluation methods that only take into
consideration the documents retrieved relative to a query. In this setting, precision and

recall provide a natural metric of relevance, which is now going to be discussed.

1.2 Precision and Recall

Precision and recall are two common measures of the performance of a search engine.
For a given query, the system returns or retrieves a set of documents from which some
of them are actually relevant to the user query. As in Figure 1.2, precision is defined

as the fraction of retrieved documents which are relevant to the query.

[{relevant documents} N {retrieved documents}|

precision = [{retrieved documents}|

1.2. PRECISION AND RECALL 9

where {-} and | -| denotes set definition and cardinality of a set respectively. Recall, on
the other hand, is defined as the fraction of relevant documents that are successfully

retrieved.

|{relevant documents} N {retrieved documents}|

Il =
reea |{relevant documents}|

Note that it is trivial to achieve 100% recall by always returning all the documents in
the corpus regardless of any query. Therefore, in order to assess on the performance
of search engine, computing recall alone is not enough. One should also compute a

measure such as precision which accounts for non relevant documents.

relevant documents

document corpus

relevant retrieved
documents

retrieved documents

Figure 1.2: Precision and recall

Ideally an IR system would optimize on both precision and recall. However, there is
a trade-off between high precision and high recall. In fact if one achieves high precision
it usually is at the expense of high recall. And optimizing for high recall, conversely, will
usually lead to poor precision. We will see this trade-off occurring frequently throughout
this text while presenting IR systems. System designers characteristically have to favor
one over the other.

As an example to illustrate the trade-offs between precision and recall, suppose we
have a collection of biomedical articles and we’d like to find all the articles with images
of a network pathway. We can achieve high precision by searching for the sentence

“network pathway”. Although most of the images will be relevant (high precision), we

10 CHAPTER 1. NOTIONS OF INFORMATION RETRIEVAL

would probably be missing a lot of them (low recall). Alternatively, we can achieve
high recall by searching for “genetics”. We would probably be getting all the articles
with an image of a network pathway (high recall) but also a lot of the other irrelevant
documents (low precision).

This issue particularly expresses itself in the Boolean set retrieval model. In that
model, the user enters a Boolean query and the system retrieves documents accordingly.
Trading off between precision and recall is achieved with difficulty through cumbersome

long queries, as we will discuss next.

1.3 Set Retrieval

In a Boolean set retrieval model (Singhal, 2001), a user enters a query made up of
Boolean operators such as AND, NOT, OR and gets documents that match that query.
The documents are returned in an unordered set and the precision, and/or recall, de-
pends on the user’s ability to write complex Boolean queries. Boolean search systems
could additionally be extended with field operators to search within specific fields of
the document collection. For example, a user can find terms within the title, text body,
author, and other areas of the documents of interest.

There has been excellent documentation of the difficulty the general public has with
using Boolean search models (Wolfram et al., 2001). In practice, set retrieval suffers
from a clear trade-off between high precision and high recall. Because the documents
returned lacked any ordering, a user can either achieve very high precision by formulat-
ing a very restrictive query, or, high recall by choosing a very loose one. Users usually
have to be experts in formulating complex Boolean queries in order to retrieve the most
relevant set. It is important to note, however, that if the ranking of documents returned
is not required due to the nature of those documents, and when the domain of interest
is reserved to experts, set retrieval could be a fine approach for search. For exam-
ple, PubMed from the United States National Library of Medicine, offers an advanced
search feature to help users build queries made of Boolean expressions. The user is
able to create complex queries restricted to specific fields and made of AND, OR, NOT
operators (see Figure 1.3). This advanced search feature is helpful to non-expert users,

considering that PubMed ranks the articles found by dates only.

1.4. RANKED RETRIEVAL 11

& NCBI Resources & How To &) Sign in to NCBI
PubMed Home More Resources v | Help
PubMed Advanced Search Builder Youl[E) Tutorial

Use the builder below to create your search

O
o
o

Edit

Builder

All Fields Show index list

1] [E]

AND [=] | All Fields

or Add to history

Show index list

Figure 1.3: The boolean search interface of PubMed

In order to circumvent the difficulties of the Boolean set model, an interesting com-
promise consists of ranking the search results. The query could remain fairly loose but
the results returned could be ranked according to some metric. In that case a user
looking for books may enter some keywords related to the book and have them ordered
by popularity, price or location. In the following section we will cover these IR systems

also called ranked retrieval models.

1.4 Ranked Retrieval

Information retrieval researchers sought alternatives to the difficulties related to the
use of set retrieval systems. In an approach that freed users from algebraic queries
(formally structured), researchers developed approaches based upon free-text, unstruc-
tured methods. The chief resulting success was the development of an approach that
sought even wider results, but combined with a means of ranking the results based upon
relevance. Because this method ranks the results matching a query, it also eliminates
the user requirement to develop clearly-defined Boolean logic filters. In this context,
documents at the top of the search rankings have a greater relevance than those found
further down the results listing.

There were two major contributions that made ranked retrieval a viable alternative
to set retrieval systems. The first one is the vector space model approach developed

by Salton et al. (1975). In the vector space model, each document is represented by

12 CHAPTER 1. NOTIONS OF INFORMATION RETRIEVAL

a vector. Each index in the vector corresponds to a word (or term) found in the
document collection. Each component of the vector is a numerical value which reflects
the importance or the weight of the term in the document. The query becomes a vector
which is then compared to all the other vectors (documents) in the set. A similarity
measure, usually the cosine angle between vectors, is used to match the query against
the documents. The results are then ranked according to how close they are to the user’s
query. However, the question of properly weighting each term within the document and
the collection still remains.

Another major contribution to ranked retrieval and to the vector space model is
the work on tf-idf by Spérck Jones (1972). tf-idf stands for term frequency multiply
by inverse document frequency. Let us assume we have a document collection D of
documents d; each containing terms ¢;. The term frequency tf(¢, d) of a term ¢ within a
document d is the number of times ¢ appears in d divided by the total number of terms

in d.
|d|

where {-} and | - | denotes set definition and cardinality of a set respectively. A high

t(t, d) = |

(1.1)

term frequency indicates that a term is more representative of the document content.
On the other hand, we can define the document frequency df(¢, D) of a term ¢ within a
document collection D as the number of documents d; € D containing ¢, divided by the
total number of documents. The inverse document frequency is the logged reciprocal
of this expression.

D]

idf(t, D) = log(df(t, D)™) = log 1oy

(1.2)

The inverse document frequency emphasizes rare terms over common ones. The tf-idf(¢, d, D)
of a term ¢t within a document d in the collection D is the term frequency multiply by

the inverse document frequency.
tf-idf(¢, d, D) = tf(¢t, d) x idf(¢, D) (1.3)

Intuitively, a term with high tf-idf is a term which is representative of the document
content while not being too popular on the whole corpus. This measure will then favor

frequent but rare terms in the document (specific terms). The terms in the vector space

1.4. RANKED RETRIEVAL 13

model can now be weighted by tf-idf and a similarity measure can then be used in order
to rank each document according to the user’s query.

The vector space model and tf-idf proved to be highly successful for ranking results
in a set of documents which had no explicit connections with respect to each other.
However, with the advent of the World Wide Web and hypertext collections, researchers
started to develop ranking methods based on a notion of document authority. For
example, a hypertext collection could be modeled as a graph with links as edges and
documents as nodes. That graph can then be harnessed in order to rank documents
based on a certain notion of authority, and independently of the user’s query. In
this respect Jon Kleinberg’s HITS algorithm (1999) and Larry Page and Sergey Brin’s
PageRank (1998) were the two most notable measures of authority (Figure 1.4). The

latter measure was at the basis of Google’s search engine.

gadgets.com

videoreviews.org

bestech.com

Figure 1.4: PageRanks of a simple network of websites. Intuitively, a website has a high
PageRank if there are many pages pointing to it, or if it is being pointed by possibly fewer
websites but with a high PageRank.

Today the ranking algorithms are much more complex, and PageRank, for example,
is just one more signal amongst many others used. Numerous other measures of docu-
ment relevance should also be noted such as F-score, Mean Average Precision (MAP)
or Normalized Discounted Cumulative Gain (NDCG) (Jérvelin and Kekéldinen, 2002).
As we will discuss in chapter 6, machine learning techniques could be used to train
different rankers optimized on a given performance measure. The ranking models pro-

duced could even be combined or ensembled in order to achieve greater performance

14 CHAPTER 1. NOTIONS OF INFORMATION RETRIEVAL

(Caruana et al., 2004). Furthermore, with the advent of the social web, search is now

sought to be personalized to a specific user’s need and profile.

1.5 Conclusion

A number of key points should be highlighted from the discussion presented above.
First, while set retrieval models to date allowed users to more clearly specify their search
requirements, Boolean logic queries have been difficult for users to utilize effectively.
Second, this issue has prompted the development of ranked retrieval but did so at the
price of losing the clear filtering abilities of set retrieval. As we will see in chapter
4, faceted search provides a best of both worlds in which the results are ranked while
still providing filtering abilities. Third, modern search engines use the structure of the
document collection itself in order to pre-order the search results independently of the
user’s query.

Other techniques can be used to improve relevance. Biomed Search, a full text web
search engine for biomedical images developed at the University of Cambridge (Ksikes,
2006), achieves greater precision by indexing only a few tidbits of important text data;
image captions and referring text to images. Biomed Search will be covered in a chapter
3 of this thesis as a case study.

In this introduction to IR, we have attempted to cover the notion of relevance by
looking into different models such as set and ranked retrievals. However, we have yet
to focus on improving relevance from a cognitive perspective. How should the results
be presented to the user in order to improve relevance? That is the focus of the next

chapter on search user interfaces.

15

Chapter 2

Search User Interfaces

So far we have been interested in improving relevance solely quantitatively. However,
that is not the only area to which improvements can be made that also generate sig-
nificant gains in relevance. The role of a search system is to enable users to articulate
formed expressions of their informational needs, and then to foster understanding of the
results returned. In this chapter we will see how careful attention to the interface can
ultimately enhance the relevance of the search. Initially we will discuss general guide-
lines for designing the user interface. Then we will provide a review of some common
procedures to evaluate the interface. This will be followed by a careful examination of
some characteristics of a typical search user interface. This chapter is meant to be a
necessary overview of the field while covering exploratory search systems. For a more
in depth coverage of search user interface design, the interested reader may consult
(Hearst, 2009; Wilson, 2011). This introduction is focused on classical search user

interfaces, the inclusion of faceted search is left to chapter 4.

2.1 Designing Search Interfaces

Nielsen (2003) describes five usability goals of the user interface: learnability, efficiency,
memorability, errors and satisfaction. Learnability relates to the facility with which
first-time users are able to successfully complete initial jobs using the interface. Ef-
ficiency pertains to the rapidity with which users are able to accomplish their tasks
once the initial interface functions are understood. Memorability relates to the user’s

ability to return to proficiency following a period of non-use. Errors are important to

16 CHAPTER 2. SEARCH USER INTERFACES

understand from the user interface perspective. We want to know what kinds of errors
are made, how many, and whether or not the user was able to surmount them and ulti-
mately be successful while using the interface. Naturally, errors and the aforementioned
other interface aspects affect user satisfaction. We need to clearly understand the ways
in which the users are satisfied (or not) and to what degree. Keeping in mind these
five usability principles, we can now proceed to explain in greater details the process of

designing an interface.

2.1.1 The Process of Designing

Today web interfaces follow a user-centered approach to design. This process involves
a series of steps (see Figure 2.1) in which the user is constantly solicited (Shneiderman

and Plaisant, 2005).

assesment of usability}

task analysis } = prototype J~ -

N

Figure 2.1: User-centered design approach

user needs assesmentJ~ =

The first step usually consists of developing a user need assessment. This may
involve repeated interviews with a variety of users in order to fully understand who
they are and what goals they have.

In the second step, the designer must understand what tasks are necessary for the
user to achieve its goal. This step is called task analysis (Kuniavsky, 2003) and involves
that a designer choose the user goals and tasks which will be supported by the interface.
These later could take the form of working scenarios that typify the anticipated tasks.

The third step involves the creation of a prototype which will then be informally
tested by a set of target users. That step is repeated by revising the prototype until
the designer and its users meet the desirable usability goals. The process can be time

consuming and costly and therefore the designer may choose as few user participants as

2.1. DESIGNING SEARCH INTERFACES 17

reasonably possible. This later principle is sometimes referred to as discount usability
testing (Nielsen, 1994a).

Once reasonably assured that the prototype product is sufficiently ready, plans for
more formal testing are then possible. These include controlled experiments using a
variety of methods or large scale longitudinal studies. We will be touching on this
subject in a subsequent section.

This approach to design was at the crux of the making Biomed Search and Cloud
Mining. We followed these steps in order to refine our prototypes, detect possible flaws
and meet our desirable usability goals. In what follows we will present some tips and

key principles to great interface design.

2.1.2 Some Key Design Guidelines

Shneiderman and Plaisant (2005) describe eight “golden rules” or design principles
applicable to most interacting systems. In a seminal paper, Shneiderman, Byrd, et al.
(1997) further apply those rules to the design of textual search database systems. We
are now going to review those guidelines in the context of web search user interface
design. We have followed those guidelines while designing Cloud Mining, which will be
presented in the last chapter (chapter 7) of this thesis.

The first and foremost design principle consists of striving for consistency. Providing
the user with an interface that is consistent in its appearance and features is very
important. Although not always achievable, aiming towards consistency throughout
the search interface provides the user with a more positive, less frustrating, and easier
to learn and repeat experience. This has the consequence of reinforcing the user’s trust
in the system, as all the interacting elements are where they are expected to be.

The second design guideline consists of providing shortcuts and query prompts for
users based upon skill level. For the less experienced user, providing a query prompt
response for clarifications can expedite attainment of the desired results. However, an
expert user can more precisely specify his query using advanced operators right at the
beginning.

The third design guideline consists of offering informative feedback to the user.

For example, providing immediate search results can assist the user in deciding if the

18 CHAPTER 2. SEARCH USER INTERFACES

search is headed in the right direction (see Figure 2.2). Even a limited number of results
can significantly help the user (Hutchinson et al., 2006). Another example consists of
highlighting the query terms within each summary of the search results (White, Jose,
et al., 2003).

GO (’gle ‘ faceted| - ‘ .
faceted search
faceted

Search faceted search examples
faceted search lucene

Everything Faceted search - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Faceted_search
Images Faceted search. also called faceted navigation or faceted browsing, is a technigue for
Maps accessing information organized according to a faceted classification ...
-+ Development - Projects - Mass market use - Online retail
Videos
Designing for Faceted Search
News : o . ;
www_uie.com/articles/faceted_search/
Shopping Apr 28, 2009 — Faceted search, or guided na\-'igati_on. has be;ome the de facto
standard for e-commerce and product-related websites, from big box stores to ...
Rnnks

Figure 2.2: Google instant search not only suggests possible search queries but also dynam-

ically updates the search results.

The fourth guideline, related to providing informative feedback in the context of
search interfaces, consists of designing for closure. The idea is to provide the user with
a clear statement that his intended action has been completed. For example, the search
page should not only list the results but also the query performed together with a count
of the total number of results returned. This provides a sense of satisfaction and relief,
and prepare the user for the next actions to undertake.

The fifth principle consists of reducing user’s errors. The most frequently encoun-
tered errors are spelling and typographical. In addition, there may also be vocabulary
issues that make queries unsuccessful (Furnas et al., 1987). Another error handling
issue relates to the generation of an empty result set. In order to reduce the likelihood
of an empty set search result, the user interface can be designed to provide estimations
of results for variant queries.

The sixth design guideline consists of permitting easy reversal of actions. This leads
to making sure that no action is final and that there is always a way of undoing previous
actions. Not necessarily in the context of search but as an interesting illustrating

example, Google’s Gmail has recently released from its labs a mean of undoing “send”.

2.1. DESIGNING SEARCH INTERFACES 19

After hitting the send button, the user has a few seconds to undo this action which

consequently prevents the email from being sent (Figure 2.3).

Google Ey - x 48

Your message has been sent. Undo View message

Gmail ~ c More
~ Important and unread
| * me test
Inbox (48)
Starred % me i
Sent Mail * me OpenCV-Python: Histograms - 3 : 2D Histograms - |

Figure 2.3: With a Gmail lab plugin, the user has a few seconds to stop his email from

being sent.

Seventh, the designer should always be taking into consideration the trade-off be-
tween an opaque and a transparent functionality. The balance is one of choosing the
extent to which the system anticipates a user’s needs (opaque operations), versus ones
which supply more user controls over the behavior of the interface (transparent op-
eration). For example, Google News provides a good balance between opaque and
transparent operations of its underlying personalization algorithm. With a set of slid-
ers, the user can specify the degree to which a topic of interest weights in the main

news feed. By default each topic has equal weights (see Figure 2.4).

News U.5. edition * Modern ~ o

Top Stories Q=D STIEE ELEE Personalize Google News
Stanford: open-source software can help find the right N

News near you space for offshore wind ... Facebook

Facebook A Stanford economist pitches open-source software for evaluating potential e
Open Source Software offshore wind turbine sites for optimal energy production and minimal disruption of Golar Power
other marine industry.
Solar Power Social Networking
Datacratic Launches RTBkit an Open Source Software
Social Networking Development Framework ... World
World e . u.s

A technology preview of the source code is now available at http://github.com

us. JRTBkit underthe_Apache License N N pache Business
Software Foundation. personalized section
SciTech

Business Linaro extends Linux ARMTo networking gear
SciTech nfoiivorld - Feb 20, 20 :_) Entertainment
HTMLS - Microsoft Windows - Networking - Open Source Software - Storage - See

Entertainment all Technologies. Sports

Sports Call to promote free and open-source software Health

Health W 3ke'&= Nuscat: The first Free and Open Source Software Conference More Top Stories
(FOSSC-Oman’ 2013). jointly organised by the Communication &)

Spotlight Times of Information Research Centre (CIRC) at Sultan Qaboos University TEEITEIY
(5QUY) and the Information Technology Authority {ITA), came to a ... Science

Recommended Crimdarlamed Cmmm Malia A Cénmd Mé COC MManéimea

Figure 2.4: Google News lets the user modify the degree to which a particular topic affects

the main user’s personalized feed. By default each topic weights equally.

The eight and last design guideline consists of reducing the user short-term memory

20 CHAPTER 2. SEARCH USER INTERFACES

load. Teevan et al. (2006) found, over the course of a year, that 40% of a user’s search
views were on pages previously searched. Some 71% were employing the exact same
query string as previously used. This would hint towards providing a history mechanism
as well as favorite shortcuts. Nowadays most browsers provide a way of searching and

managing a search history (see Figure 2.5).

‘ recent websites or shortcuts I

alexksikes@gmail.com

Gmail Cloud Mining - IMDb Google Scholar Le Monde.fr - Actualité 4 la Une
4D g P - i < =R
“ -
ey 5 - =
C : :

° = 3] g

Cloud Mining - DBLP YouTube Dwolla Mt.Gox - Bitcoin Exchange

G Chrome Most visited Other devices Recently dlosed Web Store g,
Figure 2.5: On a new open tab, Google Chrome shows your most recently visited websites.

Those can be further managed or included as favorite shortcuts.

2.1.3 Small Details and Aesthetic Design

The design guidelines presented above are useful. However, attention to small details
can make a great difference between a successful and a failed interface. For example, the
amount of space visually presented to the user in a query box can ultimately influence
the length of the query. Users seeing a wider entry area would be encouraged to type
longer queries (Franzen and Karlgren, 2000).

Aesthetics has also an important role to play in the user interface experience. The
impression generated by the appearance of the design tends to correlate with the user’s
impressions about its quality and user satisfaction (Hassenzahl, 2004). However, it has
been shown that the more aesthetic designs, while giving the user a positive impression
about relevance, may actually be less useful than comparable more basic ones (Ben-
Bassat et al., 2006).

Hotchkiss et al. (2007) interviewed a Google vice president and reported that an

2.2. EVALUATION OF SEARCH INTERFACES 21

extensive list of details is carefully taken into consideration with the design of the
search result page. In the upper left corner, also known as the “sweet spot”, Google
makes sure that the ads placed there are not only relevant but visually merge nicely

within the results.

2.2 Evaluation of Search Interfaces

Having looked at the process of designing and at some key design guidelines, we can
now delve into the the actual evaluation of the interface. Specifically, in this section we

will examine informal studies, controlled experiments, and large-scale log-based testing.

2.2.1 Informal Usability Testing

As described elsewhere in this thesis, the interface design process is an iterative one.
Prospective users need to be interviewed and observed doing certain tasks using the
interface. The designer first creates an initial prototype interface, and then tests its
ability to meet user satisfaction and the principles previously discussed.

Early stage design may require the use of paper mock-ups depicting various interface
designs and scenarios. Here the focus is on the the interaction between the major design
elements of the interface. This practice is referred to as “low-fi” testing and costs little
money. Studies have shown that they can reveal similar types of usability flows as a
more finished design (Virzi et al., 1996).

After the low-fi design, a more refined interface with a greater level of interaction
can be conceived. However, as we have previously discussed, the interface could still
be tested using discount usability principles. In fact Nielsen (2000) suggested that only
five participants may be required to find 85% of usability problems.

Another form of discount usability and informal testing consists of submitting the
interface to a group of experts. These experts will critique the interface by following a
set of usability guidelines and heuristics. Heuristic evaluations combined with informal
usability testing have been shown to work well in the early stages of the design (Nielsen,

1994b).

22 CHAPTER 2. SEARCH USER INTERFACES

2.2.2 Formal Studies and Controlled Experiments

Biomed Search and Cloud Mining have been tested using informal usability testings.
However, for exhaustiveness, what follows is a brief presentation of more formal studies.
The interested reader may consult (Keppel et al., 1992; Kohavi, Henne, et al., 2007;
Kohavi, Longbotham, et al., 2009) and (Hearst, 2009) for a more detailed treatment of

formal usability testing.

Web Images Videos Maps Mews Shopping Gmail more ¥ Web History | Search settings | Sign in
GO L)Sle mobile phone deals Search

About 83,100,000 results (0.20 seconds) dvanced search
*J Everything Mobile Phones | Coniract Phones | Cheap Mobile Phone Deals & SiMs #

Cheap Contract mobile phone deals & Broadband deals. & Large range of laptops. Compare

¥ More
mobile phones on any mobile '\hcne nelwork at Carphone Warehouse
wwecarphonewarehouse com/ - Cached - Similar
The web l
Pages from the @ 02| The UK's | eading Provider of Mobile Phones, Broadband & SiMs #
Any time
Fastizdays 02 is the UK’s leading provider of mobile phones and broadband. offering the best mobile
Standard view phone, sim only, and broadband deals. Save maney by buying direct!
Fewer shopping sites VW.0l.co.U HEIE o

Mare shopping sites v

Mobile Phone Deals - Best Contract Mobile Phone Offers in UK 8¢

¥ More search tools Mobile Phone Deals - find latest mobile phone deals from uk best mobiles deal provider
orange, o2, vodafon ile and three find best deals on contract, ...

Mobile Phones | Compare over 600000 Mobile Phone Deals ... #
As the technology develops. you may need to switch providers to bag the best maobile phone
tariffs. You can compare mobile phone deals on these pages and, .

Pay As You Go - Apple iPhone 4 16GB black - Compare tariffs

WWW. Mo ipermarket.com/mobile-phones/ - Cached - Similar

Mobile Phone Deals Compare Best Phone deals and Cheap Phones o
Mobile Phone Deals - Get best mobile phone deals free gifts on Eheap mobile phone
deals comparnson from mobile phones network orange, o2, vodafone, .

P NN .. Vv v sslif Porbned Ciomiles

Figure 2.6: A heatmap showing that most of the user attention is to the top of the search

engine result page. (courtesy of buetc.com)

The idea behind formal usability testing is to understand the mental process that
participants are going through while using the interface. In order to achieve this,
participants behavior is observed and recorded using a variety of methods. These may
include audio and video recording, blind written observation, remote observations or
even eye-tracking (Nielsen and Pernice, 2010) (see Figure 2.6). These experiments
are especially useful in order to isolate a particular feature within the interface. The
combination of the data collected together with satisfaction surveys is then processed

to assess on the usability of the interface or of the particular feature of interest.

2.3. PRESENTING THE SEARCH RESULTS 23

2.2.3 Large Scale and Longitudinal Studies

Large scale usability testing takes advantage of a large number of users. This is espe-
cially applicable to websites that receive many visitors on a daily basis. One approach,
called bucket testing (Kohavi, Henne, et al., 2007) or A/B testing, consists of creating a
variation of a design and to randomly split user traffic into two segments. One portion
of the user sees the new design whereas the rest are directed to the usual interface.
The user behaviors are then recorded in log files. The study is usually completed in a
few days for sites with a lot of traffic. Bucket testing has been shown to be a highly
effective method in order to resolve disputes about design decisions (Sinha, 2005).
Longitudinal studies are those conducted over an extended period of time (Shnei-
derman and Plaisant, 2006). Because they occur in a more relaxed environment, longi-
tudinal studies can capture more variations in usage behavior. In fact the user usually
has more time and as such may not be acting in a task oriented manner. A typical
study is described by Dumais et al. (2003) in which most users while browsing personal
information, given a sufficient amount of time, eventually always switch to sorting by

dates instead of using the defaults.

2.3 Presenting the Search Results

The typical search engine result page (SERP) is a list of information summarizing the
retrieved documents (see Figure 2.7). Each result usually contains the title of the
document and a set of important metadata. This collection of information is often

called the document surrogate.

2.3.1 Document Surrogates

The surrogate should genuinely reflect the content of the document. Research suggests
that the query terms should appear within the document surrogate (Clarke et al.,
2007). The relationship of the query terms within the document retrieved should also
be stressed. If the query terms appear in the title then they do not need need to appear
in the summary. According to the study, the source (URL) should be succinct and

stress the relationship with the user’s query.

24 CHAPTER 2. SEARCH USER INTERFACES

Web Images Maps Shopping MNews Maore Search tools a

SafeSearch ~ el

20 personal results. 212,0 0 other results

sponsored results g Ad related to miami fl @

Appartements Miami Beach - FeelMiami.com
woww feelmiami com/ Doral
Location Appartements de Vacances. En Bord de Mer. Réservez en Ligne!

114 people +1'd or follow LocalNomad HLER
‘amiami

450 Appartements de Vacances Condas & Apparthatels
Séjour 2 la Plage

Sunset
©2013 Google Mgp!ft 82013 Google
Miami - Wikipedia, the free encyclopedia . .
en wikipedia_orghwiki/Miami Miami

| document surrogate +.anntnwn Miami and South Florida are home ta the largest concentration of
international banks in the United States, and is home to many large companies both ..

Miami is a city located on the Atlantic
Climate - Miami Beach, Florida - History of Mizmi - Miami metropolitan area comst in southeastern Florida and the

document title City of Miami - Official Website

\
\
www.ci.miami fl.us/ \
Maintained by the City of Miami, Information Technology Departmant Area: 55.27 sq miles (143.1 km?)
Weather: 25°C, Wind E at 24 km/h, 76% |

county seat of Miami-Dade County.

Miami, Florida vacation and tourism information, hotels, things to do ... Humidity /
URL www visitflorida com/Miami Local time: Friday 9:43 AM
Miami, Florida is a must-see if youve never visited. Replete with history, culture, and of Population: 408,750 (2011)

course, nightlife and beaches along with Art Deco architecture and South ...

Hotels & Places To Stay - Family - Miami Beach - Link B
Upcoming events

Greater Miami and the Beaches

Rizinstar Tour Feat. Travis Porter, Ca...

A www miamiandbeaches com/ Feb 23 - James L Knight Center
snippet or € Wiami and Beaches: Visit the Official Miami Tourism Guide and discover Where to L
summary Stay, Things ... South Miami Rotary Art Fastival ... Homestead/Florida City Area ... Walk for the Animals

Feb 23 - Bayfront Park
News for miami fl Tobacco Road La Tomatina-Tomate S...

Feb 23 - Tobacco Road
Reggie Johnson breaks tie with late layup. lifts No_2 Miami past Virginia

ESPN - 2 days ago
B NCAA Men's Basketball Recap: Final statistics from the Virginia Cavaliers Points of interest
vs. Miami (FL) Hurricanes game played on February 19, 2013

Kenny Kadji's late 3 helps No. 3 Miami fend off Clemson
ESPN (blog) - 4 days ago

Miami American Jungle

Miami. Florida Vacations, Tourism, Guides, Hotels, Things to Do ... Seaquarium ﬁlr\m% Island
rena

travel.yahoo.com » Travel Guides » United States » Florida
Miami, Florida vacations: Find the best Miami, Florida hotels, attractions, maps,

pictures. weather, airport information, travel advice and more on Yahoo! Travel. Feedback /Hore infe

Miami - Rivals com - Yahoo!
rivals yahoo com/ncaa/baskatballiteams/may See results about
Comprehensive coverage of Miami (FL) Hurricanes College Basketball including news,

Miami Hurricanes football
scores, schedule, stats.

The Miami Hurricanes
football team represents
the ...

Miami (FL) - Rivals.com - Yahoo!

rivals.yahoo.com/ncaa/footballiteams/mmi

Comprehensive and up-to-date Miami (FL) Hurricanes news, scares, schedule, stats
and roster.

www.miami_com/
“Your guide to Miami and South Flerida - Nightlife, Restaurants, Atractions, Events.
Hotels_ Write your own reviews and rate ours. Browse or search thousands of ...

Miami events. things to do. nightlife. dining | miami.com

= Images for miami fl - Report images

Miami (FL) Football - Hurricanes News, Scores, Videos - College ...

espn.go. g [} fl-hurricanes
keyword-in-context Miami (FL) Hurricanes foatball scores. news, schedule, players, stats, photos, rumors,

and videa highlights on ESPN com

Miami Tourism and Vacations: 277 Things to Do in Miami. FL ...
waww.tripadvisor.com» ... » Florida (FL)

Jun 15, 2009

5 Miami Tourism: TripAdvisor has 58939 reviews of Miami Hotels,
IEET] Attractions, and Restaurants making it your ...

Mare videos for miami fl »

Searches related to miami fl
things to do in miamifi miami fl map

related searches *—. south beach miami fi miami fi hotels
miami f miami f airport
miami fi weather miami beach fl

S GOU (U\)\)gle >

123456738910 Next

Figure 2.7: Google’s search engine result page (SERP). Each document surrogate is made

of a title, source URL and summary with keyword-in-context (KWIC).

2.3. PRESENTING THE SEARCH RESULTS 25

All of these factors and elements impact the likelihood that the user will select the
retrieved document for further exploration. We now delve into summaries which are

included within the document surrogate.

2.3.2 Summaries

The document summaries used by traditional search engines are not like those used
in the abstract of a research paper. Usually they are not intended to inform the user
about the main topics of the document. Rather, they are meant to display fragment of
sentences showing how the query terms are used within the document, and how they
appear in respect to each other. As such, the query keywords are often referred to as
keyword-in-context (KWIC) and the summaries as query-based summaries. Tombros
and Sanderson (1998) showed that search engines with query-based summaries are
more effective than systems which would simply offer the first sentences of the retrieved
document. The study also showed that participants opened fewer full text articles with
query-based summaries than without, effectively disregarding the less relevant ones.

In another study about summaries, Paek et al. (2004) found that given three choices
for how to view summaries, there was a definite preference for an instant view, in
which clicking expanded the document summary to present additional information.
The majority of participants generated faster and more accurate results with instant
view.

As to the length of the summary, Kaisser et al. (2008) determined that it is usually
query dependent. If the query is about getting the answer to some known facts, then
a one sentence summary is preferred. However for queries which are more exploratory
in nature, a paragraph is usually preferred even if this means that the user will have to
do further scrolling down the page.

In Biomed Search, the grid view shows a grid style view of images with summary
information. Clicking on an image shows more information and clicking again shows
the full information in a paragraph style format. This type of interface provided a
nice trade-off in summary size. On the other hand, Cloud Mining simply shows the
full metadata as collapsible or expandable. It is then up to the designer to further

customize the summary information.

26 CHAPTER 2. SEARCH USER INTERFACES

2.3.3 Highlighting of Query Terms

Highlighting query terms is meant to draw the user attention to the parts of the docu-
ment that are most likely relevant to the query. It also helps the user to see how close
each query term is with respect to each other. In fact the proximity of query terms is a
strong indicator of relevance (Clarke et al., 2007). The use of query term highlighting
either within summaries or within the whole retrieved document has been shown to be
a useful feature (Marchionini, 1997).

Cloud Mining uses a form of highlighting in which each facet is assigned to a different
color. This creates a logical link between the facet values and the associated metadata
found in the document surrogates. The system also supports a more traditional kind
of highlighting of query terms. This later feature is turned off by default in order not
to bloat the interface. Biomed Search supports traditional highlighting in which the

referred text is bold faced.

2.3.4 Additional Features

Aside from the document surrogates themselves are a number of additional features
which have been found useful in search engine listings. These include infinite scrolling,
possible previews of document content, blending of results from different verticals, and
shortcuts.

There is no standard number of results to be displayed per page. Traditional web
search engines typically show between ten to thirty results per page. Recently search
engines such as DuckDuckGo (Weinberg, 2006) are featuring infinite scrolling (see Fig-
ure 2.8). This provides a nice trade-off between showing few results and yet more, if
the user is interested, by scrolling down the page.

There are a few approaches to show a preview of a document within the results
page. The usual approach consists of allowing the user to click on the document title
or an adjacent icon to see more information. This approach has been employed by the
Bing (Microsoft, 2009) search engine (see Figure 2.9).

When the query is ambiguous, the general approach, employed by most mainstream
web search engines, is to provide a diversity of results. A particularly efficient approach

consists of prompting the user to further refine his query in a similar fashion to Google’s

2.3. PRESENTING THE SEARCH RESULTS 27

camper shoes

Waomen Its color and fantasy. o
artbracket.com/profiles/blogs/camper-shoes-in-all-over... More from artbracket.com » .

Add to Browser

@ Give feedback
[Tags: camping - Toe Shoes, Barefoot or Minimalist Shoes, and Vibram...
James on Rogue Soft Star Shoes Review. James on Getting Married in Primal Professional Shoes. Toe
Shoes, "Barefoot Shoes," and Minimalist Footwear Fan Site.
birthdayshoes.com/camping: More from birthdayshoes.com »

Search suggestions:
industrial

shoes -> place

Camper Shoes Twins Women S Camper Twins Shoes Size 41 Usa 10 New prices
$220 camper twins - leather ladies shoes - size 38 new with box. Brand Mew Camper Twins women purple accessories
flat ballet shoes size 33 39 7 8. shopping
camper-shoes-twins.fashiondelivery.com More from camper-shoes-twins.fashiondelivery.coms
WOMmEens
® Camper Waterproof Walking Shoes / Camper® Waterproof Slip-On seareh
Walkers...
Ultrasaft and completely waterproof, these genuine leather walking shoes from Camper are built for
unbeatable comfort on high-mileage days.
orvis.comystore/product-aspx?pf_id=5cSk More from ervis.com »
= From Mallorca with love: interview with Camper shoes | SCHMOOZY FOX
Miguel Fluxa from Camper. Camper shoes was one of the first funky brands featured on this blog back in
2008, When Camper opened its shop in Brussels... . E
schmoozyfox.com/2010,/06,29,from-mallorca-with-love-inte... Scr0||lng down the page loads more results +—'(-

Figure 2.8: Scrolling down the page on DuckDuckGo shows more results.

Shopping Maps

More | MSN | Windows Live

raspberry recipes [7]

AlLL RE-E‘IILTS ALL RESULTS 1-10 of 3,670,000 results - advanced Sponsored sites
raspberry | raspberry recipes | raspberries | berry recipes Raspberry Tea

RELATED SEARCHES raspberry recipes from our online berry recipe collection, including our raspberry recipes index. Gourmet tea with the sweet ar
www_razzledazzlerecipes com/berrylane/rasprec_htm - cached page taste of fresh raspberry.

Fresh Raspberry Recipes _ _
quick preview pane [F9°om
&

E:gi‘:ﬁ"" Dessert Raspberry - All Recipes T

Looking for raspberry recipes? Allrecipes has more than 370 trusted raspberry recipes complete aspoerry [ea
Fresh Raspberry Bar with ratings, reviews and serving tips. Buy Raspberry tea. You may
Recipes off with PayPal if eligible.

allrecipes.com/Recipes/Fruits-and-Vegetables/Fruits/Raspberries/Main.aspx - cached page
P P g v s www.eBay.com

Raspberry Cake 4] Bing cashback

Black Raspberry Recipes Raspberry Recipes

17 Free Raspberry Recipes including, Raspberry Pie, Cheesecake, lce Cream, and mare, all in " Plaase sign in to add this recipe

Raspberry Cobbler Meal-Master text format, for easy import to your recipes data base. " to your Recipe Box.
Raspberry Pie Recipe www.garvick.com/recipesmm/raspberry_recipes.htm - cached page
i Ingredients For the crust: For the

Raspberry Bar Recipes . .

poerm g Just Berry Recipes - 754 Raspberry recipes for you to browse. filling: For the topping: Directions

Extensive collection of unique berry recipes. Each recipe has an ingredient listing. preparation
SEARCH HISTORY instructions and a printer-friendly version. To make the crust, combine the
raspberry recipes www_justberryrecipes.com/inxras.html - cached page graham CfaCkerS,_ sugar, and
melted butter until moistened.

Lana Clarkson Pour into a 9-inch springform pan.

Raspberry Cheesecake Recipe : Ina Garten : Food Network With vour hands. ress the
1 hr 30 min; Intermediate; 1 1/2 cups graham cracker crumbs (10 crackers), 1 tablespoon sugar, 6 crumgs into the I,thttom of the pan
cannon beach tablespoons (3/4 stick) unsalted butter, melted % and about 1-inch up the sides.

Ulenr eabimes BI6 . Bae Barafnnt Cantaces Eamili Qhola o 1009 o -

carpal tunnel symptoms

Figure 2.9: When clicking next to the document surrogate, Bing shows more information

about the website in a quick preview pane.

28 CHAPTER 2. SEARCH USER INTERFACES

popular “did you mean?” feature. This could be especially helpful when a query has
several commonly understood, but quite different, definitions.

Blending query search results and media types has been a fairly recent trend with
search engine providers. The idea is to mix the results obtained from other vertical
search engines within the search engine page. The query “Star Trek” in Google, at the
time of this writing, leads to a media rich page with information from Google News,

Google Images, Wikipedia and IMDDb (see Figure 2.10).

Star Trek: The Original Series

Mews for Star Trek: The Original Series
] Star Trek: The Original Series’ doodle best experienced on Google

Star Trek is an American science fiction television
- series created by Gene Roddenberry that follows
om - 4 hours ago

R the adventures of the starship USS Enterprise and
MNew Delhi- Google doodles are fun, more so when they are interactive THE "R[e e e
such as Saturday’s “Star Trek: The Original Series’ doodle, posted to ... L ts crew, 'edi by Laptain James SRS TR

Google News
Star Trek: Original Series Villains Showing Up In Star Trek 27 - -
Latinos Post - 7 hours ago First episode: September 8, 1966 Wikipedia

Flashback: The hottest women of "Star Trek: The Original Series’ Final episode: June 3. 1969

e com - 29 minutes ago
BhiLivecam - 28 minutes aga Theme song: Theme from Star Trek
The Original Series - StarTrek com Hetwork: 15

www.startrek. deos/star-trek-the-original Program creator: Gene Roddenberry
Full Episode (53:58). Star Trek: The Original Series - Where No Man Has Gone

Before. Season 1 Ep. 3. Full Episode (50-60). Star Trek: The Original Series - The ... Cast

Star Trek Videos - Previews - Videos

Star Trek: The Original Series - Wikipedia, the free encyclopedia

en wikipedia org/wiki/Star_Trek_The_Original_Series 2
Although this television series had the title of Star Trek, it later acquired the retronym of William DeForest Hichelle

Star Trek: The Original Series (Star Trek: TOS or TOS) to distinguish the ... Shatner KE”%‘{ Nichols

James T. Ki

List of Star Trek- The Qriginal - The Cage - The Doomsday Machine - Mirror, Mirror

List of Star Trek: The Original Series episodes - Wikipedia, the free .., L L B
en.wikipedia.org/.../List_of_Star_Trek:_The_Original_Series_.

Created by Gene Roddenberry. the science fiction television series Star Trek (which
eventually acquired the retronym Star Trek: The Original Series) starred ...

Star Trek (TV Series 1966-1969) - IMDb
www.imdb.com/title/tt0060028/

)
Rating: 8.4/10 - 20653 votes Star Trek: Star Trek: Star Trek:
Capt. Kirk and the crew of the Starship Enterprise explore space and defend the United The Next Deep Enterprise

Federation of Planets.
Starring William Shatner, Leonard Nimoy, DeFarest Kelley.

Generation

Images for Star Trek: The Original Series - Report images t

s o % r_xm‘ e ‘ similar user search queries |

Figure 2.10: Google’s search page for the query “Star Trek” showing blended results from

different verticals such as news, images, Wikipedia, IMDb and similar user search queries.

Shortcuts or one boxes are direct answers to user queries. Typing something like
“What time is it in Cambridge, England” in Google will generate a one box view at
the top of the page with the current time at Cambridge. Naturally, the listing of other

possibly relevant results will also be returned.

2.3.5 Importance of Sorting

Search results are often sorted according to highly tested and closely guarded algo-
rithms. As an alternative, they may also be sorted by clearly defined metadata fields.
As it has been previously noted, users tend to look at the first results and rarely look
beyond the first page (Granka et al., 2004). In an interesting twist on this user char-
acteristic, Guan and Cutrell (2007) reversed the order of the listing. The participants

2.4. CONCLUSION 29

became aware of the reversal and began to spend more time looking at the bottom of
the page. This could suggest that users will spend a brief amount of time scanning the
relevance of the results. Once aware of the relevance ranking pattern employed by the
search engine, users will work the system out to get the results of interest.

Biomed Search uses a standard ordering by relevance. Cloud Mining, by default,
order the results by relevance but also let the designer create its own sorting functions.
In this case, the user can then select between these different sorting functions at the

interface level.

2.4 Conclusion

The user interface of a search engine forms the first and last impressions made on a
user. The interface remains the critical focal point through which all users experience
every stage of the search. It is through the interface that the queries are formed and
converted into informative answers. By following the recommendations of this chapter,
the designer can create an interface that fosters improvements to all aspects and stages
of the user search. Better interface designs will assist the users in articulating better
queries, help them understand the results and facilitate query modifications if necessary.

In the next chapter we will see how most of the principles shown in this chapter
were applied to Biomed Search (chapter 3). Throughout the thesis we will also be able
to note that certain specific elements of the user interface will re-emerge. This will
especially be important when discussing faceted search (chapter 4) and Cloud Mining

(chapter 7).

30

CHAPTER 2. SEARCH USER INTERFACES

31

Chapter 3

Biomed Search

We have broadly covered ”search systems” from a back-end and front-end perspec-
tive. In this chapter we present a system that we have developed called Biomed Search
(Ksikes, 2006) as a case study of the concepts previously discussed in this thesis. Biomed
Search is a freely available web application that helps biologists locate interesting im-
ages, and thereby interesting scientific articles, in a new unconventional manner. The
underlying intuition behind Biomed Search is that a picture is worth a thousand words,
and as such much of the information of a bioscience article may have been summarized
and conceptualized in the images it contains.

The main contribution of this chapter towards the thesis is twofold. First of all by
building a system such as Biomed Search, we were able to identify some of the users
future intended exploratory search needs presented later in this thesis. In essence users
were indirectly asking for faceted search, more ways of visualizing the search results
and looking up similar or related images. Secondly Biomed Search provides some novel
features on its own. The system not only searches within the text caption of an image,
but also in the text that refers to an image. The interface makes use of common pattern,
but applied to the bioscience domain, which consists of letting the user switch between
a list view and a grid view. In grid view the user can zoom in on an image to display
more information. Finally, the scale of Biomed Search is large with over 1M images

indexed from sources such as Highwire Press (1995) and Pubmed Central (NCBI, 2005).

32 CHAPTER 3. BIOMED SEARCH

3.1 Motivations and Overview

Biomed Search is based on the observation that, when reading a bioscience article,
researchers tend to focus much of their attention on the title, abstract, conclusion and
figures of a document. If researchers spend most of their time on these sections, it must
be that they are rich of information and should therefore be indexed and presented to
the user first. The precision of the search system is therefore greatly increased because
only the information of importance is indexed.

Biomed Search focuses solely on the figures and on the captions of the articles.
Abstracts and conclusions are left for a later implementation. The figures are colorful
and engaging and can be nicely arranged within the interface. They can also be searched
across a document corpus regardless of the actual document to which they belong. Not
only do we index the caption but also any sentences that refer to a figure. The later
provides some additional meta information which improves both recall and precision.

The typical search process in Biomed Search consists of typing some keywords in
the search box. A list of images associated with that text is then rendered. The
user can decide to switch to a grid view to see more images. He can also ask for any
picture associated with an article. After having scanned through the images, the user
can select a particular article of interest. The search process is different than with a
typical search engine. Here the user searches for important pieces information such as
figures and only after that does he decide to go ahead and read the full article. Note
that there is a potentially interesting underlying principle at work, which would consist
of finding relevant documents by searching for interesting parts of documents such as
figures, captions, paragraphs or sentences.

It is to be noted that search over captions of bioscience images has been attempted
before but on a much smaller scale. The 2002 KDD competition is the prominent
example showing that figure captions are useful at locating important information (Yeh
et al., 2003). The FigSearch project (Liu et al., 2004) was a classification system for
figures and full text of biological papers. However, that project is no longer available
online and is of a much smaller scale as it only featured 50,000 images.

Biomed Search regroups many notions seen in the first and second chapter. It at-

tempts to improve on both recall and precision by focusing on figure captions. The

3.2. FEATURES AND NOVEL APPROACHES 33

search interface features some interesting patterns in order to improve the user expe-
rience too. Perhaps a unique feature is the fact that referred text to images is also
indexed. At the time of its conception, Biomed Search was the largest biomedical im-
age search engine with over 1M figures indexed. In the next sections we will explain
the different features of Biomed Search in more detail as well as its implementation.

We will also expand about future directions of the project.

3.2 Features and Novel Approaches

What are the important parts of a bioscience article? What are the parts that re-
searchers scan through before deciding to go ahead and read the full article? The main
idea of Biomed Search is to build a search engine that is focused on indexing and dis-
playing these important parts to the user. Figure 3.1 shows a snippet of the results
obtained for the query “foot pressure”. We first see a large image together with its
caption. Located at the top is the title, journal and authors associated with the article
to which this image belongs. Beneath the caption, at the bottom, we see the different
sentences that referred to the image. The highlighted text shows where each part was
taken from within the article (see Figure 3.2).

The interaction within the Biomed Search interface is summarized in Figure 3.3. The
interface makes use of two known design patterns. The first one consists of switching
between a list view and grid view (1). The second one occurs in grid view and consists
of zooming on an image to reveal more information (2). More precisely, the list view
shows all the information associated with an image at the expense of screen real estate,
while the grid view shows up to nine images per screen real estate but less detailed
information. However, in grid view the user can click on an image to zoom it in. In
this case the image appears bigger and shows more information. The user can then
save that image in its own window and continue to search (3). He can also ask to see
the image in list view to list even more information. The user can also ask to list all
images that belong to a particular article. After having browsed through a couple of
images either in full view or in grid view, the user can then jump to the article itself
and decide whether or not to read it (4).

Let’s take an example to explain most of the features of Biomed Search. As seen

34

CHAPTER 3. BIOMED SEARCH

Full Wiew | Grid Wiew

BioMed Search [foot pressure search|

Results 09 of about 64 for foot pressure in 0.035 sec.

Foot pressure distribution during walking in young and old adults &

BMC Geriatrics
Hessert MU, Wyas M, Leach J, Hu K, Lipsitz LA, Novak %

2005 May

Foot pressure distribution. A Maximum pressure distribution on all sensors during stance for one subject. B. The
nine anatomical masks superimposed on the insole (MC = medial calcaneus, LC = lateral calcaneus, MA = medial
arch, LA = lateral arch, MT1 = first metatarse, 3 = second and third metatarse, 4 = fourth and fith metatarse, H =

hallux, and T = toes).

* Figure 1A shows distribution of maximum pressure for one step far all sensars.
* Time-series pressure measurements for all sensars were grouped into nine anatomical masks [5,13,14] (Figure 18).

Figure 3.1: Snippet of the results obtained for the query “foot pressure”

3.2. FEATURES AND NOVEL APPROACHES 35

eSS lfeh el Highly accessed BMC Geriatris

Foot pressure distribution during walking Toumes

in young and old adults Viewing optic
Mary Josephine Hessert &, Mitul ¥yas <, Jason Leach 24, Kun Hu B, Lewis A Lipsitz & and Yera Novak =4 « Full text
Division of Gerontology, Beth Israel Deaconess Medical Center Harvard Medical School, Boston 02215 MA, USA = PDF (792KB
& author email % corresponding author email Associated m
= Readers’ col
BMC Geristrics 2005, 58 doii10.1166/1471-2318-5-8 » Pre-publicat
k 3 S . » PubMed rect
The electronic version of this article is the complete one and can be found online at:
http:/fwww . biomedeentral.com/1471-2318/5/8 Related liter:
« Articles citin
Received: 13 November 2004 on Google £
Accepted: 19 May 2005 on PubMed
Published: 19 May 2005 + Other article
© 2008 Jo Hessert et al; licensee BioMed Central Ltd. 82: g‘;‘;‘;:
This is an Open Access article distributed under the terms of the Creative Commans Attribution License a (Relzted arti
(http: o/licenses/by/2.0), which permits use, , and repr in any hcais
medium, provided the original work is properly cited. e
on PubMed
Abstract
Toals:
« Download re
Background = Download X
s _—) x : . Ito a fi
Measurement of foot pressure distribution (FPD) is clinically useful for evaluation of foot and gait pathologies. = gr:fe‘,tfe:ri;
The effects of healthy aging on FPD during walking are not well known. This study evaluated FPD during = Post a comn
normal walking in healthy young and elderly subjects. = Sign up for .

Data analysis
All data were visually inspected prior to analysis to assure high quality of data acquisition.

Figure 18 shows distribution of maximum pressure for one step for al sensors, Time-series pressure measurements for all sensors were
grouped into nine anatomicsl masks [5,13,14] (Figure 18). These masks corrasponded to the following anatomical aress: medial calcaneus,
Iateral calcaneus, medial arch, lateral arch, first metatarsal, metatarsals two and three, metatarsals four and five, hallux, and toes. The
following 5 variables were calculstad for the sach mask: maximum pressure, maximum force, mean pressure, maan forcs, and relative load,
4ll variables were caloulsted for each step and then averaged over the 50 steps for each foot. Maximum pressure was defined a5 the
Greatest pressure any single sensor in each mask measured in & single step, and these values were averaged separately for each mask
over S0 steps. Mean pressure ws defined 35 the average of all activated sensors in 3 mask for a single step, To eslculste maximum and
mean forces, the pressure time-series data were converted to force by multiplying each pressure value with the cross-sectional area of the
carrespanding sensar. All sensors in & defined mask were added together for each time frame to give the summed time-series for force,
which was the total force for ach mask, The makimum force was defined as the greatest force exerted for each mask in a single step, The
mean forca was defined as the average force exerted in each mask for 2 single step. Bady weight was signiicantly different between men
and women (p < 0.0001). All varisbles wers narmalized by body weight (BW) and the area of sach mask, to account for these factors.
Relative 10ad was definad as the Fatio of the total foree in a speciic mask to the total foree of all masks combined, expressed as a
percentage (5]

a Eiqure 1. Foot i on on all sensors during stance for one
- subject. B. The ma: v i Me ral
% gl calcaneus, MA = medial arch, LA = lateral arch, MT1 = first metatarse, 3 = second and third metatarse, 4 = fourth

« and fifth metatarse, H = hallux, and T = taes)

Statistical analysis
The maximum and mean pressure and force were compared batween the groups for all masks. In addition, we compared the mean and

Figure 3.2: Fields indexed by Biomed Search

on Figure 3.4, a search for “motor neurons” restricted to the journal “BMC Genomics”
is being conducted (1). In full view our screen only shows one image. The title of the
article is displayed at the top of the image (2). Clicking on the title leads to the article
which contains that particular image. Under the title is shown the journal name and
the authors of the article. There is a link called “caption source” which leads to the
figure within the source article. In this case, the user is taken to the exact place where
the image is located within the document. The caption text is displayed under the
image (3). And under the caption, by clicking on “View text citing this image”, are
shown the sentences that referred to the image (4). All the images of the article could
be listed (5). In this case a search over the PubMed ID (PMID) is simply conducted.
The image could also be seen in an extra large / poster version (6). Finally the result
could be saved to its own window for future reference (7).

Figure 3.5 shows the grid view search. In that view the images could be zoomed
in/out. When zoomed in, more detailed information about the figure is being shown.
To see all available information, the user can click on “More in full view” and switch

from grid to full view. The grid view with zoom in/out pattern has been used in several

36 CHAPTER 3. BIOMED SEARCH

| search

articles O

A

L JC1 I

)

picture
with caption

—_—

 —

1 2N
f
|

saved images

|
switching between list
and grid view
|

|
|
|
|
|
|
1

I 0 ewin P

r caption

® -

zooming in~

pic

[

Figure 3.3: Interaction flow in Biomed Search

3.2. FEATURES AND NOVEL APPROACHES 37

Full View | Grid View

BioMed Search . .
°| motor neurons journal: BMC Genomics Search|
Results 08 of about 8 for motor neurons journal: BMC Genomics in 0.043 sec.
° A gene expression fingerprint of C. elegans embryonic motor neurons & o
BMC Genomics

Fox RM, %on SSE, Barlowy SJ, Shatffer C, Olzzeweski KL, Moore JH, Dupuy D, Yidal M, Miller DM 2005 Mar =Caption sources

Extra large & ‘

? e cotn?

L K channets
=g) 2 |
i

(G2

2! l o I
m:,. lu : ACh Release o) S
ey RACHR h- X Racmpion melecubes
: | 7\
s

-~ T T other calin?

Abbreviations and Definitions

nACHR - nicatinic scetylcholine receptor GPCR - G-pratein coupled receptor
nlp - neuropoptido-like peptide Wg - WntWingless

ins - insulindike peptide DEG/ENAC - Doganerin/Epithelial sodium channel
fip - FRMFamide-like peplide Innaxin « invertcbrate gap junction protein

o Signaling compaonents detected in unc-4::GFP motor neurons.

More: “iew text citing this image

* The picture emerging from these data is of a motor neuron festooned with multiple G-protein linked receptors each
responding to a different class of neurotranamitter or peptidergic signal Fig &),

* The microarray data also reveal multiple additional classes of receptors and ion channels through which the
differentiation and function of unc-4:GFF motor neurons could be modulated by extracellular signals (Fig &),

Al figures from this article

A gene expression fingerprint of C. elegans embryonic motor heurons &

Figure 3.4: The different features of Biomed Search: full Lucene query syntax and switch
between list and grid view (1), article title with “caption source” (2), actual text caption
(3), sentences referring to the image (4), list all the figures from the article (5), extra large
poster size version of the image (6), and save the image in its own browser window for future

reference (7)

38 CHAPTER 3. BIOMED SEARCH

other image search engines. For example, the latest iteration of Google’s image search
features a similar zoom in/out to show more or less information. Perhaps the most novel
feature of Biomed Search is the fact that the referred text to images is also indexed.
Biomed Search is also one of the largest image search engine in the biomedical domain
with over 1M images from 500,000 articles and 200 journals. The full corpus of images
of all sizes occupies over 100GB.

Full View | Grid View

BioMed Search [genetics mutations Search|

Results 0-9 of about 198 for genetics mutations in 0.041 sec.

(a) All phenotypes (b) Aniridia (€) Nen-aniridia

= e
Distribution of different mutation types in the PAXE Allelic Variant Database. (a) All

disease-associated mutations in the database; (b) mutations causing aniridia; (c)
causing o Mutation are given in Table 1

sence of nonsense mutations atthe 3'end

R31TX (16)

PAXE mutations: genotype-phenotype co
BMC Genetics
Tzoulaki 1, ¥White M, Hanson M - 2005 May

R203X (15)
20X 21)
e R261X (B)

& 9 10 11 12 13
@ Mm@ (€] @

PB LNK HB PST
o] AR
3 RN EREA
5
spt x Box A Box B
&
numk
&4 ibution of CpG dinucleotides in the PAXG open reading frame. The PAXG cONA is
. i ted as a horizontal rectangle with the different coding regions indicated: PB,
Spectrum of RBT mutations by exon. The number of entries for each tyee of mutation is Kl
distributed by exon and adjacent 5'and 3'Intronic SeqUENCEs d hox, LNK, linker regian, HB, homeobaox, PST, proling/serinefthreonine-rich region
boundaries are indicated by vertical black lines. Exon numbers are shown beneath

REB1 gene mutation up-date, & meta-analysis based on 932 reported PRl o numbergicacsinprac ez iAo

mutatlon_s available in @ searchable database L it A G e IR
BMC Genetics
Walverde JR, Alonso J, Pal |, Pestafia & - 2005 Genetics
uerle T Alanst f Fearioel Peetaan & - e laiki 1, White IM, Hanson M - 2005 May
= e —
IMANE T T 0 1

Figure 3.5: Grid view in Biomed Search

3.3 Implementation and Technology Used

The articles which Biomed Search indexes are found on Highwire Press (1995) and on
Biomed Central (2000). Currently Highwire Press has over 2M free articles, while
Biomed Central has about 100,000 articles. Highwire Press and PubMed Central
(NCBI, 2005) are the largest repositories of free biomedical articles. PubMed Cen-
tral also has the largest repository of open access articles. Open access articles can
be re-used and are under are a public domain license. Biomed Central is a subset of
PubMed Central with a different interface. Highwire provides the articles for free to

consult but images may have a specific license depending on the journal and article

3.3. IMPLEMENTATION AND TECHNOLOGY USED 39

from which they belong. Biomed Search indexes a selection of about 500,000 articles
from Highwire Press. These are mostly the HTML documents since many of the old
articles are in PDF format. From Biomed Central about 60,000 articles were indexed.

Figure 3.6 outlines the different steps required to go from the raw data to the
index ready for retrieval. A simple crawler was used in order to gather all the URLs
from Highwire Press and Biomed Central (1). Then a program called Mass Scraping
(Ksikes, 2010) was used to massively download the HTML from each URL (2). The
HTML goes in a zipped and hashed named directory structure called a “repository”.
A repository is a directory structure used to efficiently store and retrieve data given
the MD5 hash name of a file. An example of a file in this directory structure would be
Jdata/02.zip/028e2fae37944162df896e43b3c¢d80 and the directory /data holds all zz.zip
for each MD5 hash named file. Several levels of directories could be chosen for very
large datasets. Caption texts, referring texts and image URLs are then parsed from the
repository (3). A program called “extract”, which is part of the Mass Scraping package,
takes regular expressions and transforms the output. Mass Scraping was developed at
the University of Cambridge and is available under a GPL license (Ksikes, 2010). This
program was later used on Cloud Mining in order to download, parse and populate
various datasets such as data from the Internet Movie Database (IMDb). The images
are also mass downloaded (4) and re-sampled in a small and large format in order to fit
within the interface (5). We also query MEDLINE to get additional information such
as PMIDs, author names or journal titles (6). The parsed data is then fed to a Lucene
index for retrieval (7). For tokenization, the standard Lucene settings are used. Words
are split at punctuation characters and hyphens, stop words are removed and a simple
stemming is applied. MySQL is used for logs and other stored information. All the
tools were written in Python.

The web application is programmed in Python using web.py (Swartz, 2006). Lucene
(Cutting, 1999) is simply a retrieval engine and does not support a server to process
many queries per second. To circumvent this problem and to allow a programmatic
interface in any language the common architecture on Figure 3.7 was chosen. The web
interface makes a query in the form of a url with parameters (REST query) (1). The
query is then handled by a search server whose role is to query the Lucene index (2).

Lucene retrieves the results and passes them on to the search server (3). The results

CHAPTER 3. BIOMED SEARCH

Highwire Press Journals L
crawl T
T list of article
_ 7______,_,._-——-———""‘ urls
Biomed Central Journals | ——" crawl
Pubmed
mass download
extracted /’_‘ '\
captions, ©
| \‘-——.—.———/
v referreq text, -~
pmid
parse _

title, year, “—___|| repository of

author _—|| compressed

names, _ parse article html

abstract b
list of images
urls
N~
RO,
mass download @
@ \]
f i

\A re—se;mple@)

repository of
images small / large
|

- —
N~

|
etrs:d N, | |
i

lucene index

\\.“-:‘*/_//

Figure 3.6: Going from raw data to the index ready for retrieval

3.4. SIMILAR SERVICES 41

web interface url (REST queries) || small web server searcher _
or |l > AR | S »(| Lucene index
. (middleware)
other clients
" Y
formatted ouput retrieved hits
(XML or json) @

Figure 3.7: Biomed Search web server architecture

are then returned in XML or JSON to the web interface (4). The web interface that
initiated the query renders the results.

The interface was built with the usability principles described in chapter 2. Variants
of the interface were tested on a small group of candidates before settling for the current
one. The JavaScript library Highslide.js was used to perform the effect of zooming in
and out of a search result while in grid view. We also tested the efficiency of retrieval
with and without referring caption text. This was performed by comparing the results
returned with standard caption search against the results returned with the additional
referred caption texts indexed. We noticed an overall increase in recall and precision.
This should not be surprising because the referred texts tend to provide additional

specific keywords, not found in the caption, which further describe the image.

3.4 Similar Services

A couple of similar services were developed at about the same time Biomed Search was
released. The BioText search engine (Hearst, Divoli, et al., 2007) indexes 80,000 figures
and their captions !. In addition abstracts are also shown and searched. The interface
allows to switch between an abstract view, a caption view and a grid view. However,

BioText does not yet search within the referred text to a figure caption. One important

T was one of the authors of the BioText search engine.

42 CHAPTER 3. BIOMED SEARCH

difference with Biomed Search is that all images in BioText are taken from open access
articles letting researchers re-use the images at will.

Another service built after BioText is the Yale Image Finder (YIF) (S. Xu et al.,
2008). YIF uses the same source of articles as BioText but is more up to date. At the
time of this writing, there are currently over 140,000 images indexed. YIF is a more
modern search engine as it also features content based search, a functionality we will
be describing in greater details in chapter 6. Using standard OCR techniques, YIF is
able to search for the text inside an image. The system also has a related image search
feature. As previously noted, the search is conducted on the text caption and the text
recognized inside the image. The interface seems to be plain but effective. After the
user provides a few keywords, the most relevant images are retrieved and presented in
the form of a thumbnail view. Clicking on an image of interest shows a higher resolution
image. Related images are shown on the right hand side.

Another system similar to Biomed Search was biomedimages.com. It was released
in 2004 before Biomed Search. Unfortunately the system is no longer online. The
interface was similar to Google Image with the caption text under each figure. The

source dataset was PubMed Central. At the time only 30,000 images were indexed.

3.5 Conclusions and Future Work

Biomed Search is a free tool to help biologists find interesting scientific articles. The
main idea behind Biomed Search is to index and display the most important information
of an article to researchers. This led us to build an image only search engine with a
couple of interesting characteristics. First, the interface makes use of a common design
pattern which consists of switching between a list and a grid view. In grid view, the
user can have more information displayed by zooming on an image of interest. Second,
the text referring to a caption is also indexed improving both on recall and precision.
Third, at the time of its conception Biomed Search was the largest biomedical image
search engines indexing over 1M images.

Many new features could be added. For example, a user could refine his search by a
specific topic such as “cancer research” or “medicine”. He could also sort by date or by

relevance. Some glitches could also be fixed such as collapsing very long captions. Per-

3.5. CONCLUSIONS AND FUTURE WORK 43

haps one very useful feature would consist of letting the user select between diagrams,
tables or pictures. Such a feature could be implemented with a simple heuristic on the
content of the image. Otherwise a classifier could be built which would use caption
text as labels and the content of the image as features. We could also try to recognize
topical features such as genes/proteins, organisms or diseases (MeSH terms) in order
to improve search.

It would also be useful to go further than Lucene’s default statistical ranking. One
very simple case is being able to weight different fields differently. For example, full
text would have much lower weight than higher informative fields such as caption and
referred text. Obviously, we would need to fully control the ranking function if we
decide to provide personalization and content based search. It is important to note
that Biomed Search is only text based and does not provide any search on the content
of the images. This limitation will be addressed in chapter 6.

As previously discussed, Biomed Search indexes “free” and open access articles. The
“free” articles are free to be browsed but not free to be re-used. However, the open
access articles are free to be re-used in any manner as long as the copyright of the article
is preserved. Free articles on Biomed Search cannot technically be re-used beyond fair
use policy. On the other hand the open access articles is consistently growing reaching
over 130,000 articles on Pubmed Central. Therefore there are also plans to entirely
move Biomed Search to open access articles.

Biomed Search was released by the end of December 2006. The service was very
well received across specialized sites and blogs (Chordash, 2006). The web referencing
drove significant traffic to the site. We were then able to watch our users and listen to
their feedback. The number one requested feature was the ability to refine by a topic
of interest. In essence users were asking for faceted search. Many users also requested
finding similar images, essentially asking for item based search. Last but not least,
the zoom in/out sparked a lot of ideas on how to visualize search results. Eventually
users were asking for an exploratory search system which would embody components
of faceted search, item based search and data visualization. Those components will be
the topic of the next chapters (chapters 4, 5, 6 respectively) and will culminate with
the presentation of Cloud Mining (chapter 7).

44

CHAPTER 3. BIOMED SEARCH

45

Chapter 4

Faceted Search Systems

We have given a general overview of information retrieval and the challenges of building
and evaluating a search user interface. We have looked into a case study, Biomed Search,
which provided a good example of an information retrieval system with a great user
interface. However, we have concluded that Biomed Search would probably be more
powerful if the user would be able to refine his query as he searches. Such a solution is
provided by faceted search, which is the subject of this chapter.

As we have already discussed one important aspect of an ESS is to provide the users
with different view points of the data being explored. It is therefore necessary towards
the thesis to provide some background material about faceted search. This material will
also help the reader transition towards chapter 5 in which different visualizations could
be employed on top of the facets in order to provide greater insights and analysis of the
data collection. The contribution towards the thesis of this chapter is one of exhaus-
tiveness while covering exploratory search, but it provides no novelty or advancement
in the field per se.

This chapter follows a similar treatment of the field as Tunkelang (2009). First, we
will go through the evolution of faceted search from a simple directory navigation to a
fully featured system. Then, we will focus our attention to some of the back-end and
front-end concerns. Finally, several applications that incorporate interesting features
of faceted search will be presented. As this chapter is meant to be an overview, the
interested reader is encouraged to consult the books from Hearst (2009) and Tunkelang

(2009) for a more detailed treatment of the field.

46 CHAPTER 4. FACETED SEARCH SYSTEMS

4.1 Directory navigation

One of the simplest ways of organizing a document collection is through the use of
a hierarchy of categories. Such an organization of the space is usually referred as a
taxonomy. Using this kind of organization, the user can more easily access and find
the documents of interest. One of the key benefits of a taxonomy over full text search
is that it provides guidance towards potentially interesting subsets of the document
collection. For example, in the early days of the web, Yahoo! successfully organized
web pages into a pertinent taxonomy. The service still exists nowadays and has been
re-branded as Yahoo! Directory (see Figure 4.1). Another example includes The Open
Directory Project, also known as DMOZ (Netscape, 1998), which uses volunteer editors
in order to build “the largest human-edited directory of the web”. These services offer
broad categories of informational topics in which the diverse web population might be

interested.

YAHOO! DIRECTORY 2

Computers and Internet

Directory > Computers and Internet

nri Computer Tech & IT School
Research.Allcolleges.org 2012 Local & Online College Class.

CATEGORIES (Whats This?)

Top Categories

« Communications and Networking (1253} « Multimedia (495)

+ Data Formats (439) + News and Media {492)

+ Graphics (259) + Programming and Development (353}
+ Hardware (1748)Mew « Security and Encryption (567)

+ Internet (4074)Mew + Software (3231)

Additional Categories

« Business to Business@ « Information Technology@
+ Chats and Forums@ + Issues (11)

« Computer Generated Art@ « Macintosh (390)

+ Computer Generated Music@ + Magazines@

+ Computer Science@ « Mobile Computing (52)

+ Computers and Technology Blogs@ + Operating Systems(@

« Consumer Products and Services@ « Organizations (69)

+ Contests (15) + People (137)

Figure 4.1: Directory navigation after the category “Computers and Internet” has been

selected.

However, it is important to note that users characteristically begin searches with
a predetermined notion of what they are interested in finding. A critical issue arises
when the user does not have the same conception of the ordered information path as

the taxonomist. This issue has first been quantitatively studied by Furnas et al. (1987)

4.2. PARAMETRIC SEARCH 47

in a paper on the “vocabulary problem” also referred as vocabulary mismatch. As
an example of the vocabulary problem, in Yahoo! Directory, a user looking for online
tutorials on programming may wrongly start browsing under the “Education” category,
leading to a list of schools and universities, when he should probably have started
with the “Computers & Internet” category followed by the next available category of
“Programming & Development”.

Unfortunately the vocabulary problem does occur frequently (Furnas et al., 1987).
In fact, it is nearly impossible to ask users to have a preconceived concept of the infor-
mation relationship path that parallels that of the taxonomist in order to ultimately
arrive at the same information endpoint. Although there have been efforts at circum-
venting this problem (Perugini, 2008), directory navigation suffers from the fundamental
limitation in which the user must discover and follow the same mental model as the
taxonomist. We now turn our attention to parametric search, also known as “advanced

search” | as a means to help the user specify his query.

4.2 Parametric Search

In most search scenarios, the user can search through a set of specific fields of the
document collection. In a parametric search interface, these fields are presented as
choices usually rendered as a drop down menu. For example, a collection of products
may have different fields such as the geographical location of each product, its price,
brand or even color. The user can then pre-select these choices before any search has
actually taken place (see Figure 4.2). On the back-end, the query is specified as a set of
keywords and Boolean operators. The search is then performed in a similar manner to
set retrieval, previously discussed in chapter 1. Unlike directory navigation, no further
categories are proposed after the search has been performed. The user has to come
back to the search interface and then specify a different set of values for each search
field.

Unfortunately parametric search suffers from the same limitation as set retrieval.
The users struggle with the limitations of their own conceptual awareness of the space
of query possibilities. With this approach, the users must contend with the frustration

of formulating queries that may produce seemingly endless results, or, none at all. It

48 CHAPTER 4. FACETED SEARCH SYSTEMS

‘ search / go button l

LED (Light Emitting Dicdes) - Parametric Search

number of results of previous search *:n re<ii: 533
Search criteria: Selection:
Lead (Pb) Free Product - s
RoHS Compliant = Lead (Pb) Free Praduct - RoHS [+]
Color of Emission: e
= green (40) E[
Package Colour: @ . specify values for each field
black package=diorlesscled? color of emission, wavelength,
technology ...
Wavelength typ.: ./ >= 459 nm
Technology:
GaAIP (6) [=]
Optical efficiency (typ.) EJ
ScilE B

Figure 4.2: A parametric search interface for light emitting diodes. (courtesy of osram-

o0s.com)

assumes that the user would take one attempt to gather information successfully across
all search possibilities.

Although parametric search does offer expressivity, it provides little guidance through
the space of possible queries. What has been gained with directory navigation has been
lost for better expressivity of the search query. Next we will see a solution, faceted

navigation, which provides the best of both worlds.

4.3 Faceted Navigation

Using multiple directories, each being a taxonomy of a particular concept usually related
to a search field, leads to faceted navigation. Let’s take an example to illustrate this.
Suppose the document collection is a set of products. The user can select a price range,
a brand or the location of the product in each respective directory. The user can then
see the results after having made a particular selection. The directories are also updated
to reflect the set of choices pertaining to the current search. He can then subsequently
refine his query by these other possible choices. The object in which the user refines his
query is called a facet (Ranganathan, 1950). The name comes from the fact that the
search results are in essence filtered through a particular viewpoint, in our example by
prices, brands or locations. It provides a view or facet of the document collection for

the particular concept being refined by.

4.3. FACETED NAVIGATION 49

Figure 4.3 provides an example of faceted navigation at play. The collection is a set
of product essentials featured by the website SOAP.com. The first facet called “TYPE”
and located on the mid left corner, allows the user to refine by various types of products.
Under it, the second facet called “BRAND”, unsurprisingly allows the user to refine by
various brand names. In this example the user has already selected the brand “Dove”
in which there are 148 products. Note that the “T'YPE” facet has changed accordingly
after this selection was made. The facet “TYPE” now only shows the refinements for
the brand “Dove”. These include types of products made by Dove such as “Bar Soaps”,
“Body Lotions” or “Body Washes”. The results are shown to the right and dynamically
adapt according to the user’s faceted selections.

This approach enables the user to progressively refine his search by seeing how the
selection within a particular facet manifests the availability of choices in alternative
facets. For example, the user could have selected another brand and see what types of
product choices would be offered to him. Or he could have selected only some product
types and see what brands would be offering these types of products. Note that many
more kinds of facets are possible. In fact, not shown in Figure 4.3 are facets for color,
product features, user ratings and price range. This approach resolves the problem of
“all or nothing” results encountered with parametric search. The query has also gained
on expressibility by providing guidance through the space of possible queries. Unlike
the simple directory navigation approach, the user can now browse by not one but
multiple possibly orthogonal taxonomies.

Faceted navigation, like parametric search and directory navigation, does not take
into consideration the unstructured data of the document collection. By unstructured,
we mean that the data has not been clearly identified, and as such is not part of any
field. For example, the body text of an article is unstructured, while the author name, if
identified, is structured information which can lay into an author field. Faceted search
provides a mean of accessing unstructured data, while still keeping the refining ability

of faceted navigation.

50 CHAPTER 4. FACETED SEARCH SYSTEMS

s B3 Free 2-Day Delivery or fastey | SHFFINGTO:

.CAnC ON FIRST ORDER $25+ | (fa us your ship-ozin :\i@m .

L
HOUSEHOLD PERSONAL HAIR BATH& SKIN MAKEUP & MEDICINE VITAMINS & SEXUAL DIET & GROCER}‘ NATURAL &
PRODUCTS CARE CARE BODY CARE FRAGRANCE CABINET SUPPLEMENTS WELLNESS FITNESS ORGAHNIC

m center B rySfaves: Fylists
Home > Bath & Body
148 Results 162 34 T 0 View 200 per page Sort By: Relevance v
Filters: . .. @ ‘—,+ the brand dove is selected "Dove” |
CLEAR ALL (X s
CLEAR ALL
b i =i} = =
I E o 8 rj{ —~
)L{’i :
Bar Soaps @Ol"f,’ [1 } 'Z)()'Mg E a .
= S > § & Doe | Dove
Body Lotions - o » -
Body Sponges & Poofs oG * i I’ o -
-) = =
Body Washes
Dove Dove Dove Dove
Exfoliators & Scrubs Beauty Bar, Sensitive Skin, 8 Moisturizing Beauty Bar, Moisturizing Beauty Bar, Deep Moisture Body Wash, 24
- ct White, 19.02 oz, 6 ct White, 8 ct o0z, 2 Pack
- Iﬁ $11.99 $8.99 $11.99 $17.49
| e

Olay

Figure 4.3: Faceted navigation at Soap.com where the brand “Dove” has been selected from
the “BRAND” facet. Note how the “TYPE” facet has changed to only provide choices of
the types of products made by Dove. Not shown in this figure are facets for color, product

features, user ratings or price range.

4.4 Faceted Search

A combination of faceted navigation and full text search leads to faceted search (as
in Figure 4.4). The structured information, or metadata, is browsed using a faceted
navigation interface. The remaining unstructured data or full text is accessed by a
simple search box. After a search has been performed, the user can immediately see
into which facets the results fell in. This provides further guidance for subsequent
searches and refinements.

As in faceted navigation, faceted search provides guidance through the space of
possible queries and their results. However, these facets usually always portray the
same look and feel. They are in fact usually represented as a hierarchical directory of
choices. Rare are interfaces which attempt at representing the facet and their values
with a more proper look and feel. For example, the user may want to see the location
of a product on a map rather than as a list of countries or cities. The user may also be
interested to relate the different facets in order to draw insights from the data. As we

will see in chapter 5, one of the thesis contributions will be to go beyond faceted search

4.5. BACK-END CONCERNS o1

access unsiructured data with
full text search
a

kindle fire 1o
amazpn e ‘Your Amazon.com TGday‘sDealng\ﬂCards Help from

v
e —H2)
by Hello. Sign in Join 0 Wish
refine biﬁgﬁggrm data partment~ Search 41~ video games Your Account~ Prime = -\.-.,cartv List ~
video game systems, bdeo Games Xpox360 PS3 Wi PSVita 3DS ConsoleGuide Digta i lers Pre-orders Trade-h o
release dates o brands. ; select d\ﬁerenlsearch views r order the search resuits

DEDartment Video Games
Video Games Show results for keywords “ideo games” in All Departments Y
PS4 e O et
Showing 1- 1207 186,491 Results | M perajl | 3% image Sort by New and Popular -
gy, Plavsiation 3 (10,032 s [mag
jfpox 360 (10 ! AmazonBasics High-Speed HDMI Cable (6.5 Feet/2.0 Meters) - Supperts Ethernet,

3D, and Audio Return [Newest Standard...
Buy new: $5.79

i Get it by Monday, Feb 25 if you order in the next 10 hours and choose one-day shipping
ool [+ (2,969)
Eligible for FREE Super Saver Shipping.

See more choices

Nintendo DS (17,785
Nintendo 3DS (2,
PlayStation Vita
Sony PSP (1

4 More Systems (2
Digital Games (4,524

Dead Space 3 by Electronic Arts - Xbox 360 (ESRB Rating: Mature)

Platforms Price. New Used
Release Date

Last 30 days (122

&y Menday, Feb 25.

Last 90 days (34 $58.99 $39.99 537.99 §3550
Coming Soon (105
\ International Shipping wihsts sz _—
\ (What's this?) Monday, Fab 25 _
AmazonGlobal Eligible $58.89 539.99 $39.98 $37.50
'vmppmg Option (Whars wis?)
Free Super Saver Shipping &
by Monday, Feb 25 R
oo 85060 539.99 53500 §11.99

Brand
AmazonBasics (1
Electronic Arts (2 954

Figure 4.4: Faceted search at Amazon.com for the query “video games”

by providing different visualizations on the facets. However for now, let us focus on
faceted search and present some of the back-end and front-end concerns. The review
that follows is important towards the thesis as faceted search should be implemented

with a clear understanding of the potential issues and challenges that may arise.

4.5 Back-end Concerns

Back-end developers of applications for faceted search are confronted with numerous
concerns, including information overload, computational cost, the vocabulary problem,
and the availability of metadata. These issues, when addressed initially, can make the

user experience significantly more successful. We are now ready to cover each of these

1ssues.

4.5.1 Information overload

As we have previously encountered in the introduction of this thesis, information over-
load is a serious matter pertaining to modern society in general, and to current search
users in particular. Rarely are we faced with a paucity of available information. There
are mainly two concerns as to how faceted search systems may be generating informa-

tion overload. First, too many facets may be displayed at a given time. Second, a facet

52 CHAPTER 4. FACETED SEARCH SYSTEMS

may provide too many selection choices.

In theory there is an unlimited number of facet categories in which a document
may be classified. In fact, there are as many facets as there are different taxonomies.
In order to limit the number of facets, the common practice consists of favoring facets
with values which can be assigned to all the documents in the collection over those with
values that are assigned to only a small subset. Also Tunkelang (2009) recommends
favoring facets with high entropy distribution of values. For example, a facet whose
values are evenly spread across the collection is preferable over those whose values
are highly concentrated. Another possible solution commonly employed, consists of
consolidating facets with common concepts. For example, directors, developers, script
writers of a video game may be consolidated within a single author facet.

The second concern arises when a facet generates too many values. In this case,
the common practice consists of showing only the values with the highest frequency.
Another heuristic consists of clustering the facet values based on a measure of similarity.
The most obvious procedure consists of performing stemming of the facet values and
clustering those with common stems. Another way of preventing information overload
of facet values could consist of creating predefined hierarchies within each facet (Yee
et al., 2003). The values then fall within one or many hierarchical categories. In this
case the facet organization may no longer be automatically generated. For example,
the values of a location facet may be organized in a hierarchy starting with country,

region, and city.

4.5.2 Computational Cost

Another source of concern is the computational cost associated with faceted search. The
initial set retrieval can be computed efficiently with standard inverted index techniques
(Strohman, 2008). However, the facet computation and their associated counts can be
much more expensive, specifically if the counts are sequentially dependent (Smith et al.,
2007). There are two general approaches commonly employed to computing the facet
values. We list them here for completeness towards the thesis.

The first method is a top-down approach in which the inverted index is leveraged in

order to compute the intersection of the documents assigned to a facet value with the

4.5. BACK-END CONCERNS 93

documents in the result set. The top-down approach can be summarized by the pseudo
code below. The algorithm iterates over the facet values of each facet. A search is then
performed for each facet value and the previous query. The number of results returned

is then stored within each facet.

results = {}
for facet in facets:
for value in facet.get_all_values():
documents = client.search(query AND (@facet.name value))
results[facet.name] [value] = len(documents)
return results

The pseudo code above makes use of the field operator @field value which restricts
retrieval to a particular value in specified index field. Also note that len(results) should
be thought as not iterating over all the documents but instead as returning an estimate
of the count.

The other approach consists of computing the facets bottom-up. In this case the
algorithm would consist of iterating over the documents in the result set first and then
on the facet values assigned to each document. Each facet value is then accumulated

for each document. Below is the pseudo code describing the bottom-up approach.

results = {}
for document in client.search(query):
for facet_name, value in document.get_facet_values():
results[facet_name] [value]++
return results

The two approaches are computationally expensive. The top-down approach re-
quires computing a large number of intersections over all possible facet values. Because
the facet values are expected, this approach could make use of locality on disk. On the
other hand, the bottom-up approach requires iterating over all the documents. Because
the user query is unexpected, the set of returned documents are more likely to be scat-
tered across the disk. However, there are a couple of ways to make the bottom-down
approach more efficient. First, we can restrict the number of results returned either by
fixing a hard limit or by sampling. Second, the facet values can be accumulated during

the scoring phase of each document with the facet value ids pre-loaded in memory.

54 CHAPTER 4. FACETED SEARCH SYSTEMS

We now turn our attention to an issue we have previously encountered but which
resurfaces while implementing faceted search systems. This is the well known vocabu-

lary problem.

4.5.3 The Vocabulary Problem

The vocabulary problem (Furnas et al., 1987) naturally arises in faceted search, either
during full text search query or when presenting the facet values to the user. In order
to circumvent this issue during full text search, the query could be expanded with
synonyms found in the index (J. Xu and Croft, 1996). However, many other solutions
have been proposed and as the issue pertains to full text search and information retrieval
in general the interested reader is encouraged to consult the book on IR by Manning
et al. (2008) for a more detailed treatment.

The vocabulary problem also arises while presenting the facet values. In this case,
the facet value selection could lead to an unintended result set. As a solution to this
problem, the common practice consists of providing a preview of the results returned
for a given facet value selection. This technique is usually referred to as providing
“information scent”: that is cues that indicate the value, cost of access and location of
available information content (Chi et al., 2001). In faceted search, this could consist of
simply providing a count associated with each facet. The count displays the number
of results returned if the facet value were to be selected. Another solution consists of
letting the user directly see how the search results change with each selection. This is

usually achieved by letting the user toggle the selection on or off to see what happens.

4.5.4 Availability of Metadata

A document collection can have various degrees of structure to it. As previously dis-
cussed, a document has some structure when it has some meta information which
describes it. For example, a document about a product may have a price, whether it is
in stock, a description and perhaps some further labels describing it. As we have seen,
faceted search crucially needs metadata information in order to provide them as facet
choices. However, most document collections may be at best semi-structured or could

even be completely unstructured. In this case, the developer of the system may have

4.6. FRONT-END CONCERNS 55

to use several text mining techniques in order to extract metadata from the document
collection. In what follows, we will outline just a few text mining techniques. The
interested reader may consult (Weiss, 2005) for a broader covering of text mining.

The first thing one can note is that many document collections have some latent
metadata ready to be exploited. These can include the length, creation date, type
and so on for each document within the collection. For example, photos may embed
metadata such as the manufacturer, model, orientation, and software use of the camera.
Other metadata may include the time the photo was taken or even the geographical
location. This information comes for free and could be used in order to design the facets
of the system.

Beyond the exploitation of latent metadata, the developer may use more involved
text mining techniques such as terminology extraction. This could involve the creation
of controlled dictionaries for each subject of interest. The dictionaries can be created
from the same document collection or from a different but related collection. The
dictionaries are then used to pick up the keywords which will become the values of each
facet for each subject of interest. Terminology extraction techniques can also be used
to extract more precise concepts such as people names, places, or dates.

Another approach consists of using statistical categorization in order to place docu-
ments in predetermined categories so that multiple independent categorizations produce
entirely different useful facets. Of particular interest is the technique called topic mod-
eling for discovering the abstract “topics” that occur in a collection of documents (Blei
and Lafferty, 2006).

In any case having good metadata is crucial to faceted search. This process may be
automated but will most certainly always require some human intervention. To that
end it is always possible to use crowd-sourcing techniques such as Amazon’s Mechanical
Turk (2005) in order to provide cleansing and reorganization of the facet values. To put

it succinctly, facets design may always require a human in the loop (Hearst, 2006b).

4.6 Front-end Concerns

Turning from planning for the back-end of the search refinement and results we now

examine concerns related to the front-end. The concerns may reduce to how to present

56 CHAPTER 4. FACETED SEARCH SYSTEMS

facets, how to organize those facets and their values, how should the search box behave
and how should multiple selections be performed from the user’s point of view. Those
are user interface design concerns and the discussion and treatment presented here
cannot hope to be exhaustive. Instead we will provide with the most feasible and

generally accepted solutions.

4.6.1 Presenting the Facets

The initial consideration is the layout of where the facets should be. There is usually no
optimum place to locate the facets as those will vary by the type of application involved.
However, one possible layout consists of having the facets in a panel left of the search
results. This is appealing because the user sees both the facets and the results at the
same time. This layout may also emphasize the results since they are in the middle of
the visual real estate. However, in some circumstances, the user may get confused and
wrongly think that the facets are results. Yet this is one of the most common layout

employed in the industry. Figure 4.5 shows the use of this layout at LinkedIn.
Li“kedﬁa Account Type: Basic | Upgrade

Home Profle Contacts Groups Jobs Inbox El Companies News More ; People * machine learning

machine leaming a 67,974 results Sort by: Relevance =

¥ More N Matthew Jalayer (Znd)
| matthew@sharustar.com Machine Learning. Big Data,
@] All Companies | HTMLA, i05 & Android at Sharustar
Cam F nCisr v Ara .

| Microsoft (1005) San Francisco Bay Area - Internet

B w . Similar

[[] Google (805)
O] 1BM (382) Gordon Rios 4% (Znd)
[Amazon (312) i t Principal Scientist at Pandora

. San Francisco Bay Area - Internet
Carnegie Mellon... (291) i i
FEN e * 1 shared connection - Similar

Show more...
Parshu Kulkarni (Znd)
Director, Search & Ad Technology at Simply Hired
San Francisco Bay Area - Internet

All Linkedin Members = » 2 shared connections - Similar

1st Connections (18)

ond Connections (1804) (o Ariel Faigon (Znd)
e aih @ Software & Analytics Architect at Coupons Inc.
Group Members (255) San Francisco Bay Area - Internet

B charnd rannactinne « Qimilare

[

Figure 4.5: Faceted search at LinkedIn showing the usual facet to the left layout

Another layout choice is to place the facets to the top of the search results (as
in Figure 4.6). This area of prime real estate emphasizes the facets over the results.

This may have the positive aspect of forcing the user to refine his query into a more

4.6. FRONT-END CONCERNS o7

comprehensive one before or after the initial search. The drawback of this layout is

that the results are not initially seen as the user may have to scroll down the page to

display them.

(1 Tube]

alexksikes
Watch Later
Watch History

Playlists.

What to watch

My subscriptions

Social

SUBSCRIPTIONS

u Andrew D Mackay

. nptelhrd

Browse channels

raspberry pi Q Upload =~
Fiters ~ About 185,000 resufts
Upload Date Result Type Duration Features Sort by
Last hour Video Sheort (~4 minutes) HD (high definition) Relevance
Today Channel Long (20~ minutes) CC (clozed caption) Upload date
This week Playlist Creative commons View count
This menth Movie 30 Rating
This year Show Live

The $35 Computer Raspberry Pi Unboxing, SD Card Setup &
1st Boot

by Mike Levin + 10 months ago « 502,597 views
This is a $35 computer unboxing & 1st boot. I'm happy to answer all
questions.

HD

Know How... 31: Make a Raspberry Pi Media Center with

XBMC
by knowhow + 1 month ago « 13 768 views

Manage subscriptions

Figure 4.6: Facets presented at top at YouTube

Another location is to place the facets at the bottom of the page. This positioning
is often used to present the user with additional refinements or options. Frequently this
area will be used to suggest to the user additional choices for exploration. Because the
facets are not immediately seen, this type of layout is characteristically intended for
more experienced users. In fact, the average user may never see the suggestions placed
there.

Obviously many other options could be tried. One could consist of having the facets
in separate tabs. Each tab would then be used to perform the refinements. Another
very commonly used option consists of having the facets to the right. Although this may
seem unintuitive at first, this type of layout could provide easy access to the facets while
putting all the emphasize on the search results. Cloud Mining is using that particular
facet to the right design layout by default.

Sometimes it may be useful to be able hide facets and only provide them as an
advanced search options. One important design choice could consist of hiding the used
facet values. This has the consequence of prioritizing space within the interface and

of encouraging exploration and comparison of the remaining facet values. At times

58 CHAPTER 4. FACETED SEARCH SYSTEMS

it may be important to disambiguate the user’s query in order to know which facets
are relevant to the search. In this case, the user may be prompted to disambiguate
his query through the use of a dialog box, for example. However, trying to anticipate
what users mean is a guessing game. People regularly use different words or expressions
to mean quite varying things. Moreover, individuals themselves are not consistent in

terminology use and understanding.

4.6.2 Organizing the Facets

We now turn our attention as where to organize the facets and their respective values.
Again we merely list common practices and recommendations, but by no mean can we
hope to be exhaustive. The first organization of facets simply consists of keeping their
location constant throughout the use of the interface. This organization is called static
ordering and has the advantage of reinforcing the user’s mental model of the interface.
Simply by keeping each feature of the interface static or constant, the user always know
where to expect these features of the interface. The drawback with respect to faceted
search is that some facets may not be relevant to the user’s query and therefore may
not be useful when shown.

In contrast to static ordering of facets, dynamic ordering places facets in a specified
order based upon ranking algorithms that estimate the utility function of facets with
respect to the user’s query. This approach is particularly useful when there is a poten-
tially large number of facets. It is therefore advantageous when only a few and most
relevant facets would apply to the user’s query.

Another design option consists of grouping related facets based upon some notion
of similarity. A simple example relates to academic journal searches. We might wish to
search according to authors, reviewers, name of institution, adviser, etc ... We could
create an individual facet for each of these but alternatively, we could simply group
them into a facet called “people”. From there we can organize by sub-facets composed
of the elements previously noted. This is a useful means of adding a lot of facets in
a manner that sensibly facilitate the user’s query development and refinement while
preserving a static ordering.

The same solution choices for presenting facets (static, dynamic and grouping) are

4.6. FRONT-END CONCERNS 99

applicable to choices related to selection of which facet values to display. A great way of
achieving static ordering while simultaneously ranking the facet is to create a hierarchy.
Hierarchical facet values can be used in grouping even for those that initially lack them.
For example, a tree could be formed that displays where the facet values are located.
The designer can create and enforce any number of hierarchical values deemed useful.
However, as with all hierarchies, the designer would have to create a taxonomy with

the potential vocabulary problem as previously discussed.

4.6.3 Handling the Search Box

It is with the inclusion of a search box that faceted search is developed from navigation.
Without a search box, what we would have is merely faceted navigation, through which
the user could only browse the text corpus. However, the search box comes with its
own set of design challenges and deciding how it will behave from the stand point of the
user interface design is critical. Tunkelang (2009) outlines several design challenges and
provides some first hand solutions. These challenges include the behavior of the query
filters, the fields being searched by default, whether to use query expansion, multi-word
queries and whether to use multiple search boxes. We are now going to cover some of
these issues in a bit more details.

The first question to consider is with respect to selected query filters. After a search
has been performed, should subsequent searches adhere to the existing query filters or
should it reset them all? The most commonly used pattern consists of always clearing
up the current facet selections after each search. In this case, the search is always a
new one. Another approach is simply to provide the user with the choice of selecting
whether the search is performed within the current results or if a new search must be
performed. Another option consists of providing two buttons, one to do a new search
and another one to search within results. This later approach was chosen for Cloud
Mining.

The second consideration is with respect to the fields being searched. Do we want
to search within all fields or only within specific fields? In traditional search engines the
search is usually performed against all the fields and ranking is used to push the most

relevant results to the top of the results. However, this approach may undermine the

60 CHAPTER 4. FACETED SEARCH SYSTEMS

effectiveness of faceted search. In fact, searching in all fields may return high recall and
low precision results with a negative impact on the facet refinements. These later will
also be counting results and providing refinements which are more likely to be irrelevant
to the query. As a first hand solution to this problem, we could generate the facets
favoring a high precision query, while keeping the high recall of the initial search query
to retrieve the search results. For example, the facets may be generated by performing
a search only in the title of the documents, while the results would be generated with
a search against all fields.

The other user interface choices as to how to handle the search box all pertain to
information retrieval overall. These include query expansion, multi-word queries and as
to whether to integrate multiple search boxes within the interface. For faceted search,
the common practice here consists of sticking with the what users are most commonly
already used of with full text search. So for query expansion it is recommended, at the
very least, the single or plural form of a noun to return the same results. Further query
expansion such as the use of a thesaurus to obtain additional matches could also be of
interest. However, too aggressive query expansions may degrade retrieval performance
(Voorhees, 1994). Multi-word queries should probably be performed as conjunctions of
query terms instead of disjunctions. Concerning whether to integrate multiple search
boxes within the interface. For example, a search box for query terms that only matches
a specific field of interest. The overall design guideline here is again to stick with the
defaults, that is only one query box and the use of advanced field operators if searching

within a field.

4.6.4 Multiple Selections

There are at least two possible choices from which the user could select multiple values
from the same facet. The first one is simply to treat multiple selection as a disjunctive
(OR) selection of facet values. The other one is to perform a conjunctive (AND)
selection. The difficulty is to convey to the user whether a conjunction or a disjunction
will be performed. It is then important to design an interface that adheres to well
know conventions and design patterns (Morville and Callender, 2010). Check boxes for

example, convey the idea of performing a disjunction whereas links are better suited

4.7. EXAMPLES 61

for conjunctions (as in Figure 4.7).

scanun v N s e

AGE v CATEGORY v CHARACTER v BRAND v SALE YOYO PICKS

% BUNNY BOOKS

YoYo.com = Bricks, Blocks & Building

BRICKS, BLOCKS &

BUILDING -_ BE READY FOR BIRTHDAYS
-5 ofr- v YOUYO
PW Youn Resutts '-._ ne ; 01\57 use code: YOYO30 ©
cLEAR ALL D : e rS{ c,vde
Sl Restrictions apply. See Yoyo.com/familyhood for details
age
B onrs. Bl 280 282 Results 1234 12 © View 200 per page Sorthy Relevance B
El 1 51y E o-10 118 ;55 P
B2 B 11-12 89 CLEAR ALLEY

] 3-4 (225) [13+ 2z

Bl 56 @74

gender

7

\: Boy (178) 2 1|B§.‘~ -
~ o) |

{) Girl{145) pe

- & &
@ See Both (282)

Bloco Toys LEGO Super Herces LEGO Star Wars LEGO Star Wars
Marines Creatures (235 pcs) Batmobile and the Two-Face AT-RT 75002 The Malevolence 9515 (1101
budget $0 - overR $100 Chase 6864 pcs)

Figure 4.7: At YoYo.com, age is singly assigned and therefore shown as a disjunctive query

refinement

Tunkelang (2009) notes that facets which can be assigned multiple times to docu-
ments should usually lead to a conjunctive selection. Whereas facets which are singly
assigned naturally leads to a disjunctive selection. For example, if the document col-
lection is a set of books, facets such as authors, categories, departments could have
multiple facet values assigned to each document. Whereas book format such as paper-
back, hardcover or audio naturally leads to disjunctive facet value selection. Tunkelang
(2009) further notes that it is generally not a good design idea to provide the option of
letting the user select whether a disjunction or a conjunction is performed within the
same facet. These kinds of complicated user interactions are better handled by letting

the user specify complex queries within the search box.

4.7 Examples

We will now turn our attention to some interesting faceted search research projects and
industry products. These include Endeca (Oracle, 1999), Flamenco (2006), Parallax
(Huynh and Karger, 2009), mSpace (schraefel et al., 2006) and more recently Carsabi

62 CHAPTER 4. FACETED SEARCH SYSTEMS

(2012). It is important to note that faceted search has become ubiquitous and we
present these projects either because they are introducing a novel approach or because
there are canonical of what faceted search is all about. Other systems that provide a
more visual approach to faceted search, such as the Relation Browser (Marchionini and

Brunk, 2003), will be covered in the next chapter.

4.7.1 Endeca

ENODECA

Guldad Navigation
B3 lesirs Tirrss Ti: Fss Part Family: Couplings = Threaded &

-._2‘.'=- . Gieoe Lat 52,74 Long 5.68 = radius 425 Km @

“": Inner Diameter: 86 mm &

. Sk “rarire™ @
& L

e Showing Parts 1-6of &

X

“fémmer PART I | DESCRETION ACTIVE
B 5o TEGT + Klein Series B0 threaded coupling [

Al Rk Tuling conakrhoa ad sakiry ¥ES

6 | ! | marire b down oirill]

Kl Cmriar 3) reeaded couplin .
SRS ‘et cing i e YES salinity field testing

B Mol 3h LS g Jnd i

- . _ rustproof 150 5839

oy S) Klein Sedey 810 Seeaded copaling - 5

'": b ier i coated for masine applications B ernironment PUIMPING
:) iy marine B couplin wagracrhe SN helical
Vg i LN e aalliidey b shaaaliiend fov maarhs VES

Y extreme | coph
YN0 extreme torgue coupling -

& Mdinfe VINE3S TeHA5 iFedeli0s
S w LFt

Figure 4.8: FEndeca showing different visualization of the facets while browsing an inventory

of items

Endeca was founded in 1999 with the goal of providing custom made faceted search
solutions to enterprises. The company is well known for having evangelized faceted
search which at the time was branded as “guided navigation”. Endeca now powers many
different types of businesses in industries as varied as financial services, manufacturing
or governments. Figure 4.8 shows a faceted search system powered by Endeca used to
browse through an inventory of items. In many ways Endeca is similar to Cloud Mining.
First the system is framework used generate custom made faceted search systems for all

kinds of applications. Second the Endeca goes beyond classical facet search to provide

4.7. EXAMPLES 63

more proper visual ways of representing the facets. The company was recently acquired

by Oracle, and we were unfortunately unable to fully test the system out.

4.7.2 Flamenco

The approach taken by Flamenco consists of only using hierarchical facets to refine
through the document collection. Figure 4.9 shows the flamenco interface used to
browse a collection of pictures of fine arts. The user has selected “Objects” from the
“MEDIA” facet. Further refinements are provided within a large set of facets in which
values are hierarchically organized.

Powered by Flamenco

Flamenco Fine Arts Search

B s SV el VS N Hiory and Setnge [T R Logout

Legion of Honor and de Young Museums, hitp://www_thinker.org

These terms define your current search. Click the | * | to remove a term

MEDIA: Objects =
@ allitems) in current results
1689 items, grouped by MEDIA (view ungrouped items)
Refine your search within these categories:
LCostume (274}
MEDIA: all = Objects
Costume 274y Sculpture [138)
Domestic Object (47) Tapestry (13
Furniture (82) Toaol or Implement (10}
Kilim 25} Waven Object (234)
Ritual Object 573
LOCATION [group results
Africa (s2) North America (258)
Asia (162) Oceania (g1) Ean Fan, Mother and Ch... Shell bird necklace
Central America (53) Roman Empire (2} circa 18th century circa 1760 200-400
Europe 743 South America (122)
Widdle East (51)
OBJECTS (group results
Clothing (258} Musical Instruments (s8)
Containers (s48) Timepieces {1)
Food and Weals 242) Vehicles (105}
Fuel &) Weapons (78}
Lighting 52; Writing Tools (42) -
Chi wara headdress Gelede Wask of Br Wig Hat Wig hat
BUILT_PLACES (group results) J19th century late 19th century 200-600 400 -600
T § all 274 items...
Bridae m Drwelling (2

Figure 4.9: Flamenco’s hierarchical faceted navigation interface browsing through pictures

fine arts

The software has been open sourced since 2006, with the hope of letting developers
create Flamenco systems for their data of choice. However, note that not all data comes
organized in a rich set of taxonomies. Instead designers willing to try Flamenco may
have to come up with their own hierarchical classifications, which could be a difficult
process. This approach is to be contrasted with Cloud Mining which uses facet with
visualizations as opposed to facet with complicated hierarchies. This makes Cloud

Mining immediately applicable with minimal setup on the developers end.

64 CHAPTER 4. FACETED SEARCH SYSTEMS

4.7.3 Parallax

Developed at MIT, Parallax (Huynh and Karger, 2009) is a collaborative knowledge base
of structured data. The interface extends faceted search in a semantic web approach
by shifting views between related sets of entities. In addition to providing filters based
on facets associated with the results, Parallax utilizes ontologies to yield connections

to related sets, each of which having its own facet.

or ireebase — send comments to David Huynh = get source code debug: sctivste

Nobel Prize Winner (831) Country of nationality

Search within Results Thumbnails ~Map - Show results on: Timeline = more = | connections from the topics on
i this page:
. Population (142294)
Country 75 topics Person (22125)
Filter Results Parent organization (3581)
ion: . ey o Time zone(s) (6848)
more filters » Location: use the topics themselves « or select a property » Contained by (5531)
& Types of Topic Color Markers by unspecified » select properiy »
= more connections »
b~ il Size Markers by: unspecified = select property »
» GDP Images in Markers: unspecified » select property =
settings Render Map embed this map
& Title)
Eiesiiniil 46) (2] . [tap | Satelite [hyorid
Poet Laureate (17 [EFHE) %
Conservative President of Mexico (7 ==
FirstLady (7) 4] @ ‘;
Head coach (2) b
Acting Minister of Oil and Gas (1) leetand Q L
Anti-constitutional President of Mexico (1) Russia o
£ ,
» Nearby airports PR { % y
Kazakhstan =
Aurel Viaicu International Airport (1) 4 vl f
Ben Gurion International Airport (1) i e H No
Bremerhaven Airport (1 North S i chi : Paa‘
Chandigarh International Airpart (1) Ao”:e"a'l_ﬁ o, oy AT Oce

Da Mang Air Base (1)
Ganzhou Airport (1
George F. L. Charles Airport (1

Agera | |pya EQYPL
qer | 3 H
N O paopla '

Figure 4.10: Linking Nobel Prize winners and their country of nationality using Parallax

Mauritania

more choices... - seftings »

Using many of the techniques that promote the success of faceted search, Parallax
has advanced features related to exploratory search and the semantic web. However,
the investment given to providing a far richer set of relationships bears the price of
making the system harder to use. Figure 4.10 shows an application of Parallax to
browse through Nobel Prize winners. The interested reader may simply check out the

website (Parallax, 2009).

4.7.4 mSpace

mSpace (schraefel et al., 2006), developed at the University of Southampton, is a multi-
column faceted navigation system. Each column represents a facet or a “slice” through
the information space and is ordered from left to right by importance in a iTunes like

manner. New columns representing different concepts about the information space can

4.7. EXAMPLES 65

also be added or re-arranged. This lets the user slice and dice through the informa-
tion space in many different ways. For example, a user may choose a set of familiar
concepts in order to browse through a possibly unfamiliar document collection. The
order of the columns, from left to right, implies importance. For example, a user may
order a “price” column to the left of a “quantity” column implying that “price” dices

“quantity” and not the other way around.

m ¢ f 154 I 1524 [1 re] / ! J (Stor t Add Colurnns =

Decade Story Title

1500s Disaster & Accldent a Accldent (General) 17 Day Flight Record L
. [

1510s f Economy, Business & Finamn Act of Terror Aerlal Daredevll 1
1520s Education Addiction The Aerlal Derby
15830s Environmental Issue Aerg & Avlation Sport The Aerlal Pageant
1540s Health Agricultural Research & Tec Alr Force Fllers From Africa
1950s | Human Interest Agriculture Alr Show
1560s Labour Alpine Skling Alr Stunts
1570s Lifestyle & Lelsure Animal Alr Thrills “:
1580s Politics Anlmal Sclence Alan Cobham Returns 1
100N Relininn & Rallaf Anlmatinn Ameriran Alrmen Rreal Wn

Figure 4.11: With mSpace the user can re-order the facets (columns) implying importance

and the gaps, to the left of the selected facet values, are highlighted. (courtesy of mSpace.fm)

However, the facet value choices can still be made in any column. In this case the
gaps, from right to left, are highlighted (Wilson et al., 2008). Figure 4.11 presents the
multicolumn facet design employed by mSpace and the backward highlighting mecha-
nism at play. Here the user has made two selections from the “Theme” and “Subject”
columns. The backward highlighting in the unused left facets reveal that the items
must be from the 1910s to 1950s or from the 1970s.

4.7.5 Carsabi

Carsabi, released in 2012, is a search engine engine for used cars (Figure 4.12). The
system provides a simple yet effective approach to faceted search, which we chose to
cover here because of its choice of filters and visual presentation of the search results.
In a filter the facet values are statically presented. That is the facet values are always
shown regardless of whether a selection has occurred in the same facet or in other facets.
The operations performed in a filter are usually disjunctions, but conjunctions are also
possible but most likely desirable if the set of facet values is small. When the user filters
by body style or car color, a query for related terms is performed. However, the system

does not actually perform any content based search, that is search performed on the

66 CHAPTER 4. FACETED SEARCH SYSTEMS

analyzed content of the document rather than on the metadata such as keywords, tags,

or descriptions, as we will cover in chapter 6.

Car P 386 [l 0 Tweet £ 124 [l7 1 ¥ 159
MAKE: Used Cars
Select Make
Sort by | Best value ¥ | Showing 44829 results
MODEL:
Save this search! Browse results later or receive email updates on new listings
PRICE:
$min | to|$ max 2004 Chevrolet Impala i 2004 Honda Accord

$3,000
Mileage: 142,000 miles
Title: Salvage

| $7,800

Mileage: 61,000 miles
Transmission: Automatic
Title: Salvage

YEAR:
1960 (o 2012

MAX MILEAGE:
—— 200k

TRANSMISSION:
All Auto Manual
@) “ | 1985 Chevrolet Camaro
s 52,600

Mileage: 114,000 miles
Transmission: Automatic
= Title: Salvage

2009 Chevrolet Silverado
A $15,999

Mileage: 111,026 miles
Transmission: Automatic

_| Only Clean Title

LOCATION:
94609 within 100mi

SOURCE:
+ Dealer 1999 Volkswagen Beetle o B &m 2004 Ford Mustang
+ Private Seller $3,200 sl . = $6,150

Figure 4.12: Carsabi uses filters as facets and the results are visually presented

Another feature of Carsabi is to present the documents (the cars) visually, rather
than as a list of text. As we will cover next in chapter 5, this is a desirable exploratory
search feature. Overall Carsabi incorporates many of the functionalities of a modern
search engine and can be thought of a template for future faceted search interfaces for
specific vertical domains. The company was acquired by Facebook and recently in 2013

by the “people search engine” Ark.

4.8 Conclusion

Faceted search combines faceted navigation with full text search. This provides the user
with the opportunity to work successfully with content that is semi-structured. Full
text search is used to attain to those results which do not have structural characteristics.
While on the other hand, faceted navigation provides a mean of browsing and refining
by metadata structured information. This greatly reduces the chance of generating no
results, while still providing refinements when too many results are returned.

This chapter also provided some common practices as to how to build an efficient

faceted search solution. In general information overload could be avoided by reducing

4.8. CONCLUSION 67

the number of facets or facet values, and/or by preferring those with higher coverage
in the set returned. The vocabulary problem could also be an issue if the facets design
is at odds with the user’s expected classification. On the front-end we have looked into
the many ways in which facets could be presented, organized and into which the search
box should be handled.

Finally, five well known applications of faceted search were presented. Endeca, was
designed to provide a wide range of enterprises with faceted search capability. It has
achieved great success making inroads for use in e-commerce, where enterprise clients
can readily search semi-structured catalogs. The second application, Flamenco, has pi-
oneered hierarchical faceted search. Placing the facet values within hierarchies provides
a consistent organization of information throughout the interface. The third applica-
tion, Parallax, developed at MIT, is a collaborative knowledge base with a semantic
web approach. Its interface is noted for its visual appeal and use of ontologies to pro-
duce connections to related sets. The fourth application, mSpace uses a multicolumn
facet designs in which their order implies importance and the gaps in between are high-
lighted. Finally, Carsabi provides an interface which is exemplary of a typical, simple
yet functional faceted search solution. The facets behave as filters and the search results
are visually presented.

Providing an overview of faceted search was necessary towards the thesis. In fact,
the approach taken by the thesis is not the one advancing of faceted search per se,
but rather of seeing how the current status quo could be improved through various
exploratory search features, which in the past have been used more or less separately.
Here we can notice that the summary provided by the facet values, taken as a whole,
give insights about the results retrieved. If we were to provide a way to visualize these
facets, we could probably provide greater insights and better refining abilities, and
therefore, encourage non-linear search and exploration.

Another approach taken by the thesis is to put to practice many of the concepts
exposed of exploratory search into one framework, called Cloud Mining (chapter 7).
Recognizing that a facet look and feel should be a widget within a framework is another
contribution towards the thesis. As such the approach taken in Cloud Mining is different
than for the systems presented above in this chapter. More precisely, we attempt to

abstract many of the notions of exploratory search, in this chapter the concept of a

68 CHAPTER 4. FACETED SEARCH SYSTEMS

facet, so they could fit as extensions or plugins of a well designed framework.
Consequently, the next chapter will focus on information visualization for faceted

search. We will attempt to show how different visualizations on the search results and

on the facets could be applied to different types of data, keeping in mind that those

should be thought of as plugins and not part of a monolithic system.

69

Chapter 5

Information Visualization for Search

Faceted search lets users explore or navigate within the document collection. However,
most mainstream search systems only feature a fixed mode of interaction. For example,
the search results are most often depicted as a list of text with minimal interactions
such as sorting or paging. But in order to obtain new understanding of the data, it
may be necessary to allow for multiple interaction modes. In fact, according to White
and Roth (2009), an ESS should increase user responsibility as well as control. This
should include letting the user select how the data is visualized depending on the task
of interest.

Therefore, in this chapter, we will go beyond traditional faceted search and see how
information visualization could be employed in order to make the user experience more
exploratory. First, we will revisit the query terms themselves. Then, we will cover
several examples of visualizations which can be applied to the search results or to the
facets. Finally, we will present a pipeline in which users and designers can contribute
new datasets, new visualizations or new interfaces. We believe this is an interesting
approach to cope with information overload as it leads to further collective data sense
making and understanding.

The contribution of this chapter towards the thesis is threefold. First, we attempt to
make it clear that several visualizations or views could and should be employed either
on the search results or on the facets. Second, we go beyond this observation and claim
these views should be implemented as plugins of a well designed framework. Third,
we describe the community driven pipeline to ESS previously mentioned. This later

approach to coping with information overload was the raison d’étre of Cloud Mining,

70 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

which will be presented in chapter 7.

5.1 Interacting with Query Terms

The elements of interaction of a faceted search interface are composed of the query
input box and of the facet refining values. In this section we will discuss the query
terms resulting from the user’s interaction with the input search box and/or refining
facet values. More specifically, we will describe the visual depiction of the query terms

and its connection with the search results.

5.1.1 Representing Query Terms

In a typical search scenario, the user inputs a set of query terms, and obtains a set
of matching documents. Usually the query terms remain in the search box. In order
to reformulate the query, the user has to click in the input search box, and manually
add or remove query terms. A different approach consists of letting users more directly
interact with the query terms. These are usually depicted in the form of tags with
actions such as toggling, removing or clearing. The user is then able to more easily
manipulate the query, thereby obtain narrower or broader search results.

Another visual play on the query consists of providing relevant suggestions. Query
suggestions is the product of some extensive research in IR on query expansion (Efthimi-
adis, 1996). The idea behind query suggestion is to offer the user additional keywords
for consideration in order to guide the search towards relevant documents. In its most
simple usage, the suggested query terms simply act as shortcuts to previously typed
queries (Teevan et al., 2007). However, the suggestions may also help the user discover
a set of query terms leading to new documents of interest. Query suggestion has most
commonly been implemented within large commercial search engines by using substan-
tial search logs (R. Jones et al., 2006). For example, at the time of this writing, if a
user were to type the query “the hobbit”, the input by other users may have led to
suggest “movie”. The user may have had been unaware that the movie the Hobbit had
just been released. If the user had been searching for “Tolkien” instead, then the search
engine might more simply have suggested the query term “book”. The suggestions are

most often depicted in the form of a list. However, other search companies have tried

5.1. INTERACTING WITH QUERY TERMS 71

more appealing visualizations with more or less success (see Figure 5.1).

Q‘Uinﬁjﬁa "web technology" training computer
‘ WED
class program
specialize new hardware e
education Software certification
computer training service
web desian jnstitute tutorief exist
academy free resource

Anpekc - 74295

1. Web Technology Talks - Intelligentedu.com Free Computer Training Blogs
Best New Free Computer IT Training Tutorial Resources. Here are some excellent Web Technology Talks, available
at CDATA Zone. These talks cover various web technologies, including web services, XML, PHP, SOAP, SOA, and
digital identity.
http:/fwww.intelligentedu.com/blogs/post/best_new_training

2. Computer Training Institute, Professional IT Training Center in Nepal, Training...
Super Brain Weh Technoloav is nne of the finest Computer Trainina Institute in Kathmandu Nenal It nffers

Figure 5.1: Quintura represents suggested query terms in a more appealing way.

A drawback to query suggestion is that it may induce the users into the most
conventional pathways, and consequently reduce exploration. This is usually referred as
query drifting (White and Marchionini, 2007). In this respect what most people would
be presented with is a much narrower set of the entire web. In this case, the results that
Google retrieves may just as well be coming from its cache. One way to address this
issue is to provide greater feedback between the query and the retrieved results. This
leads to another matter for discussion, which is the tight coupling between the query
terms and the search results in the form of dynamic queries (Ahlberg, Williamson, et

al., 1992).

5.1.2 Dynamic Queries

Dynamic queries are those in which the results are continuously updated as additional
terms are entered. The FilmFinder interface is an early example of the usage of dynamic
queries (Ahlberg and Shneiderman, 1994). On the FilmFinder interface movies are
represented as dots on a x-y axis (as in Figure 5.2). The y-axis measures the popularity
of the film, while the x-axis indicates the year of release. By manipulating sliders,

thereby specifying a query, the user is given immediate feedback on the retrieved results.

72 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

This allows the user to immediately re-formulate the query in order to further explore
the collection. For example, a user might be interested in movies with actors of last
names starting from “A to C” in the years 1994. As the results are retrieved, the user
may increase the year slider, and immediately see more movies falling within the grid
space. FilmFinder was invented in 1994, it remains an early example of the usefulness

of dynamic query search in order to encourage an exploratory type of user behavior.

Popularity
29
8 Indiana Jones & ’rhe Last Crusade Title :
Goldfinger = Name of the Rose, The . Thunderball ﬁ |
4] urder of auf | —]
B 'i-lmﬁ PJ %Eﬁg@iﬂdgmﬂgam ABCDFGHLMNFR S T 'WZ
Highlander Actor : Connery, Sean
. Red Tent, The _ L —
Untouchables’ The AB C DFGHJKELM PRS TW 2
Longest Day, The “Great Train Robbery, The Actress | ALL
|| —]

- ABCDFGHELM PRS TWZ

e | o Murder on the Orient Expre: Director - ALL

Director: Lumet, Sidney Year: 1974. | |:|

Country: USA LanganE: EngIISh AB C DFGHJELM PR S TWZ

Actors: Actresses: 60 e e
Balsam, Martin Bacall, Lauren [

5 Cassel, Jean-Pierre Bergman, Ingrid iant 0 450
Perkins, Anthony Bisset, Jacquelin Ratings W G W PG
Connery, Sean Hiller, Wendy _ W PG-13® R
Gielgud, John Films Shown: 24

4

1960 1965 1970 1975 1980 1985 1990 1995 c

ol |« Year of Production Copyright (£} 1993 HEIL

ALL -- Music | Action | War | Sci-Fi | Wes’rern|

Figure 5.2: Released in 1994, FilmFinder is early example of the power of dynamic queries.

(courtesy useit.com)

Dynamic queries are very good at quickly manipulating data on numbers of dif-
ferent dimensions. This is critically important for hypothesis generation. It provides
immediate feedback on the entered hypothesis, thus enabling the user’s mind to assess
on the validity of the hypothesis, or its re-formulation. It turns out that this approach,
known as the trace tactic, also fosters information need development (Bates, 1979).
That is, when the user may not be initially certain what information is needed, but as
the results appear, may get a clearer understanding of what is actually required. From

this the user can manipulate the query terms in order to generate new documents of

5.2. REPRESENTING THE SEARCH RESULTS 73

interest.

As previously noted in this thesis, users spend most of their time on the top retrieved
documents. Paging is rarely used, instead users prefer to re-formulate their queries
until their information need is satisfied (Joachims et al., 2005). Dynamic queries help
in instantaneously having a look at the results, which in returns encourage users to
explore the collection even further. However, if we could also lay more results on a page
than a simple list of documents, we may also help the user discover new ones. The
next section will address this point by delving into how information visualization can

be used in order to represent the search results.

5.2 Representing the Search Results

We now turn our attention to the visualization of the search results. Shneiderman (1996)
stated that an exploratory interface should allow a user to select a display depending
on the data type and task at hand. When applied to the search results, the user
should be able to select between different views depending on his informational need.
For example, a certain view could provide an overview of the entire collection, while
another one, perhaps using a graph, could be showing intricate relationships between
documents. This paradigm is useful in order to gain greater insights from the data.
The underlying idea remains the same; to improve on the user’s cognitive ability using

the principles of information visualization.

5.2.1 Principles and Motivation

More generally Card et al. (1999) define six basic principles in which information visu-
alization could improve the cognitive ability of the user. The first principle consists of
presenting the results in a manner which expands the human memory. While this may
be obvious, it is a challenge to present the data in a way which favors recollection. For
example, geospatial data could simply be displayed on a map instead of presenting a
list of coordinates. The products in a shopping site should be represented as a visual
depiction of the product rather than as text data.

The second principle is presenting only the relevant information to the user in order

to reduce his search process. For example, the results returned by a search engine should

74 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

show only the important pieces of data so as to help determine the overall relevance
with respect to the query. Mouse hovering over a specific result would then show more
details.

The next principles are all very much related and we state them here for complete-
ness. Third is to present the information in a manner which lets the user identify and
recognize patterns in the data. Fourth is to present the information so that the user
can easily infer relationships from the data that would otherwise be more difficult to
induce. Fifth consists of enabling the user to monitor a large number of events at once.
Finally the sixth principle consists of letting the user directly interact with the data
through a space of parameter values as opposed to accessing a static diagram.

When applied to search results, these principles could provide a guideline as to
how to make patterns emerge, and therefore help humans make better decisions. For
example, using a time-line visualization might show that a recurring stock price drop
occurs closely around September 11. This might offer alternative insights to stock
price drops around the World Trade Center disaster. The point here is that patterns
might emerge that would have otherwise been unnoticed with other data formats. Sales
patterns, crime patterns, etc ... might be obviated with improved data visualization
alternatives. Policing decisions might be improved and resource utilization might be
economized and optimized.

There are a number of companies that have made interesting contributions to infor-
mation visualization in interfaces. Companies such as Sap (1972), Spotfire (1996) and
Palantir (2004) take a massive amount of business intelligence data and create interfaces
that allow analysts to make better business decisions. IBM has a project called Many
Eyes (Viégas, Wattenberg, Van Ham, et al., 2007), which is a large collection of visu-
alizations on which people can collaborate and discuss the data collected. It serves as
a catalyst for discussion and collective insights. How interesting it might have been to
have had these tools when the notorious Enron emails were released. Would the collec-
tive insights of better informed analysts have drawn more accurate conclusions earlier?
How might the outcome have been different (or not)? These kinds of visual tools may
have at least led to more scrutiny and have reduced the loss and suffering of many. To
illustrate our point, let us cover more examples as to how different visualizations could

be applied to the search results.

5.2. REPRESENTING THE SEARCH RESULTS 1)

5.2.2 Examples of Visual Search Results

Housing Maps (Rademacher, 2005) was released in 2005 and is usually referred as the
first mash-up bringing together data from Craigslist on Google Maps (see Figure 5.3).
It lets users visualize apartment rentals on a map, which may be more convenient than
as a list. Indeed a user might not know beforehand the name of the region he might be
interested in, but he might rather recognize the region on a map and its neighborhood.
This approach is interesting as various layers such as crime rates, school education level
or average income could in the future be superimposed on top of the map in order to
help users better find their apartment of choice. This map view was finally integrated

within Craigslist in 2012 using the OpenStreetMap (2004) mapping service.

ForRent ForSale Rooms Sublets Powered by craigslist and Google Maps
. f . New f About | Feedback
City: | San Francisco Price: | < §750 Show Filters"** Refresh Link ——
[map_ | Sateilite | Hyoria |
s 2 o
G S O w Stunningty LarcenLa vout Hardwood &The 2 ;g
Francisco Bay o -
. o
Commodore 4 O g bty Flraglace;Par}lng Patic iz
Gashouse 50 Sparkiing 2 Bedroom Updated kitchen 1zs |E
Cove
Marina Fisherman's w.v O = 1128
Wharf
arna B % O = vely, g 11128
Qh ancisco ence True 5 e ALTI
Experience True 5 Star Services At The Four
3
Marina Bay St o Levi's Plaza O w Seasons Residence! 11728
* O w Grest Studio Near Union Souare Avalable ;o0
st Telegray N 121 2
Lompard Quiet Apartment, Good For Families 1/2 Block
Lombard St w?“mm" O 0 uiet Apartment Good For Families 112 Block 0
o T quare Irom Marina Blvd
CowHollow = ?p acadvay St O » 118
- Financial
g mm«ars‘ ?E District O = 11128
hinatown 5 i S v brit
@ T . Stunning Warina apartment. Sunny. bright o
@ "“""‘” cattoria St 3 . %pam O oo s
u e Gk 9) 4 O = 20726 - Newily in Mission District ~ 11/28
% L H o x Newer lux zba Condo on SfDaly City e
icel Center ef 7 = border ~J '
- Z Hill el d
2 z it Y o N Gorgeous d apt near Duboce Pk, .
a— Fm% 2 : 5 e O Gt e
S s Z st
Bush '% el g_=iee % o) O = See 1-Spnrhardwood"Spacious’sunny'ouiel 11128
Laurel H ‘2 4 101 endey Luxurious corner —2 bed 2 bath ~ -
,pl i coan B Cathecral Hil (167] o Al O w Luury 2bed? .
Gy 81 Permton e Aol O s See@1-5*New Kitchen bath hardwood .
e 5 Tut z goa s floors"Larkin & Pest
w5t [7 o Views.
Turl T = %] @ 47 South O 50 Exclusive Penthouse — Breathtaking Vigw 1128
AL Aamo £ % Besch Bark Greal Floor Plan. ReLISTO
ravereoes oon (D) S Bd %y 1 L) Upper flatin 2 untt building Inner Richmond
CO(le |_|% E 5 O S0 pper flatin 2 unit building Inner Richmond 1114
O8'€ oo m viayes Map data @201 SHGbERTar e i ¥ Disirict

Figure 5.3: Using Housing Maps, apartment rentals may be much more conveniently visu-

alized on a map.

Another service of interest, which was released in 2007, is Songza (2008) (see Figure

4). Although not a strict example of how to apply information visualization to the
search results, the service is nevertheless interesting as it lets the user directly interact
with the results. On Songza the search results is a list of songs found on YouTube.
Instead of clicking on the result and being led to YouTube, the user can directly rate,
add to queue or listen to the song. As such it offers a different interface to interact with

songs found on YouTube.

76 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

paradise by the dashboard light

Figure 5.4: On Songza, playing, rating, or sharing a song on YouTube is just one click away.

Volkswagen (2010) offers an interesting faceted search solution to browse through
its product line of cars (see Figure 5.5). Instead of showing the results as a list of links
or text, the system simply renders them as a visual depiction of a car. As such the user
can immediately see the vehicle of interest, its colors and features. Also of interest are
the facets which make use of pictograms. We will see more of that in the next section.
The interface provided by Volkswagen is remarkable and prescient of the one employed
within a modern exploratory search system. However, the system still lacks the ability
to change search views or to provide recommendations.

Although not necessarily immediately applicable to search engines, Chromotive of-
fers an interesting visualization of the colors humans associate to feelings. On Chromo-
tive (Schmidt, 2010) users take a survey answering questions about their geographical
location and the color they associate the most to a particular feeling. Figure 5.6 shows
the results of conducting this survey for the keyword “death”. As it can be seen, north
Americans and western Europeans associate the color black with death; whereas people
in India associate death with the color white, and brown reddish for many in Africa.

Research into the colors humans associate to feelings can provide great insights. From

5.2. REPRESENTING THE SEARCH RESULTS 77

@ TR o | Gttt e | GRS e § it Al | nise| i Feedback =

Car Range Vans and Campers Coming Soon &% Compare against other manufacurers »

¥ Filter and find your car & Private Customer || Company car driver Reset all filters 1) My Shorilist

Add the madsls you are
Body style Price . Efficiency (MPG) Performance (0-62 mph) Engine Type mhmmd':‘ tojo'ur chortlit to
£BSK batrol | @ Diesel compare their data
& Haichbacks & Coupes £5K =SS D 20 s2c & mind
e —] i
® cbrides @ scoons | e | D ¥ :“rl‘eo:ésee”soelfglt“:m
)) EB5K I Transmission
eates eve ey || D @ ave & Manual
@ suvs e [a5 @ ose S nsc
. Please select a
b Seats and space b Tax & insurance b CO2 & Bluemotion » Spccd & power } Engine & drive madel ta compare

Please select a
madel to compare

i = o \‘ Please select a
a model to compare
upl

p! Golf The new Gaolf Golf GTI/GTD/R
from £7,995 from £16,425 from £16,285 from £24,975
|
Open
Compare now »
Golf Cabriolet Golf Plus Golf Estate The Beetle Beetle Cabriolet
from £20,890 from £18,460 from £15,195 from £18,150

Figure 5.5: The Volkswagen faceted search solution depicts cars as to what they are as

opposed to a textual representation.

a commercial standpoint, it could help marketers choose the most appropriate color
palette for packaging. Furthermore, this visualization offers a view into the human psy-
che; reciprocity in the description of our feelings and our emotions may not be solely
bounded to a nation or to a religion.

Viewzi (2008) was a startup which specialized on visual search. The idea was to pull
up the results from Google and other search providers, and to represent them in a more
appealing way. The user was given the ability to choose between over 16 different views
such as a song view (similar to Songza), a website view or a time-line view. Viewzi
perfectly illustrates our point of letting the user select a view that is more appropriate
at the task at hand. In Figure 5.7, Viewzi lets us visualize blog posts on a time-line.
This is especially useful considering that the notion of date/time is crucial in blogs.
Thanks to Viewzi the search results can be viewed in many different ways depending
on the user’s informational need, and in order to improve on the overall understanding

of the data.

78 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

Figure 5.6: The color of death across the world with Chromotive.

i |- e

TOOAY APRL 13 3007 WEB Wi HTML
Posts from January 3rd, 2008 {show all poats) REFEREMCE LAYOUT
JAVASCRIPT | = WEBKIT

Interesting C553 Fealures
Thea principal raredonmason that ia p
Thap bapnpfit otfarodd by miod

o modulas

o upon in blags
G553 ImTg - AT you ever noed
o know abow G553

&b sites thal hnk horo C553 . com- A compratsansive
CS5T3 rederancd guada

Intreduction to ©353 - WaC

CE53 Roadrmap

Posied on wob on swik - hitp sk o Regults from:

Intreduction to CS5 Backgrounds
G553 will suppon
Prorsbd can s Mirws - iy

by bacigrounds por elpmaent and dymamic resizing

Figure 5.7: Visualizing blog posts with a time-line at Viewzi.

5.3. VISUALIZATION ON THE FACETS 79

5.3 Visualization on the Facets

We now cover how different visualizations which could be applied to the facets them-
selves. We have seen in chapter 4 that faceted search provides a seamless integration
between browsing and searching. The user searches for keywords, gets some results
and then potentially keeps on browsing the corpus through the different facet values.
We have also seen that the facets provide an interesting summary of the search results
with respect to the facet classification. More precisely the facets could reveal patterns
of distribution and occurrence at an aggregate level. However, for those patterns to

emerge, the data must be represented appropriately.

5.3.1 Visualizing Frequency

Much of the success of faceted search is due in fact to the use of query previews (Plaisant
et al., 1997; Tanin et al., 2007). Query previews give the user a hint of what to expect
before he selects a link or issues a query. In a standard faceted search system, the
query preview takes the form of a simple numerical count. Naturally some systems

have attempted to represent this count more graphically.

| £ Applet Viewer: argfunc/idlfra0T/RE0TApplet101/rb0TAppletl01.class [= ===
Applet

Chapter

K-12 science

Higher Ed

Labor force Current Query

i?::lfelﬂﬁ{w | HTML ” Mathematics H sCience

Marketplace

Public attitudes Facet List | Facet Claud

State indicators Chapter (1717} Field of Science (1497} Location {2422) Format (4123) Yeat (2356) Education level (2190) Race (406) Gender (246)

Field of Science K-12 Zomputer United States HTML 1993 Elementary Asian/Pacific Male

Computer Higher Ed Enwironmental Bsia Exicel 1996 Secandary Black. Female

Envitonmental Labar farce Life Europe PDF 1998 Higher Ed. Hispanic

Life: R2D Funds Mathematics Africa Image 2000 Graduate White

;ﬂ:;!iigatits Academic R&0 Phrysical South America Text 2002

Psvehology Marketplace Psychalogy Maorth America Powerpoint 2004

Sodal Public attitudes Social 2006

Engineering State indicators Engineering

Locatian

United States
Asia

Eurape Results List | Results Grid Yiew
Africa

South America
Narth America

Results 1-10 For query. search within the results Search within results
Farmat
HTML S&E Indicators 2006 - Front Matter - About Science and Engineering Indicators H
E;EFEI S&E Indicators 2006 - Front Matter - About Seience and Engineering Indicators Home | PDF | Help
Image hitpAvewree nsf gow/statistics/semd06/ front/about. htm

Text

Figure 5.8: The Relation Browser shows a visual depiction of the count. Different facet and

search views are also possible. (courtesy ieee-tcdl.org)

The Relation Browser (RB) (Marchionini and Brunk, 2003) is one of these early

examples. In RB a bar indicates the relative frequency of the facet terms (Figure 5.8).

80 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

The darker portion of the bar shows the count if the facet term is selected within the
current search space. While the lighter and longer portion of the bar shows the overall
count of the facet term within the entire collection. Another interesting feature of RB is
the ability to switch between views on the search results and on the facets (Capra and
Marchionini, 2008). On the facets a cloud view similar to a tag cloud is provided. RB
also features dynamic queries with an excellent response feedback. However, the system
is client based which limits its scalability. As we will see, Cloud Mining shares many

features with RB but can scale to thousands of users and to millions of documents.

ri 7 Facetlens 3 " — — @@g
Current Filters Items: 3 (Out Of 10431)
[Authors by Paper: Women go with the (optical) flow T Gmmie
[Mﬁﬁaﬁnu }
Carnegie Mellon University,...
(Author Citations @l

Location
usa
i
Papers Authored
Women take a wider view

Waman nn with tha (anticall Ao

3 George Robertson

Affiliation
Microsoft Research & Microsoft..
(Auther Citations

Location
usa
Authors by Location o WA

F‘.‘lpﬂs.ﬂuﬂlﬂl&d

-/

Women go with the (optical) flow
Vienalizina imnlicit aneries far

-

3 Mary Czerwinski

[Microsoft Research & Microsoft... J
Cluﬂmr Citations

& @j I

UsA
—WA

=0

‘Waomen take a wider view

Wiamean nn with tha (anticall flow

Figure 5.9: On FacetLens the items are seen depicted inside circles in each facet ordered by

frequency.

Another system worth mentioning is FacetLens (Lee et al., 2009). The facets on
FacetLens take most of the real estate on the interface. The facet values are ordered by
frequency and depicted as large circles (as in Figure 5.9). These circles depict the actual
search results of interest. According to the authors the interface help users identify and

compare between different trends. Furthermore it offers pivot operations which allow

5.3. VISUALIZATION ON THE FACETS 81

the user to navigate the dataset using relationships between items.

Visualizing frequency (or some other metric) within facets could be interesting in
the discovery experience. The correct visualization always could shift the focus from
finding to more exploratory tasks such as data analysis. However, facets come from
metadata of many different types. For example, dates could be represented textually
or more graphically as a time-line. Locations could be better served by points or by
regions on a map rather than by a list of coordinates. Therefore, a broader set of
visualizations than the ones limited to depicting frequencies is possible. We are now
going to review some of the visualizations possible with respect to the “type” of facet

at play.

5.3.2 Fitting the Data Type

A very simple visualization is the one of check-boxes for multi-select disjunctive facets.
Examples of their use can be found in many websites. The new search interface at
Ebay is solely composed of disjunctive facets represented by a list of check-boxes. In
Figure 5.10 the user filters by (ORs) a couple of brands and visually see the results.
The selection is clearly shown on the facet. The user can also search for more terms to

be added within the facet itself.

Go | Buy My eBay Sell Community Customer Support \ﬁ/ Basket
canind®
9\’94 Shop now = welcome. Sign in or register

CATEGORIES ELECTRONICS FASHION MOTORS DAILY DEALS I eBay Buyer Protection & Find out more »
Women Men Kids Accessories Fashion Gallery
eBay = Fashion = Gallery » Clothes Shoes & Accessories Tell us what yvou think | Share

FASH

b Categories

O N GALLERY Select a Fashion Gallery Store -

»D 317 liems per page: 24 48 %6 192 Sort by Best Match -
iscount

¥ Brand

Search from 547 available brands

55DSL
7 For All Mankind

883 Police =
W Acne // <

Addict
W adidas
W Adio

m.| »

Advocate

AT < e (o] PR

Figure 5.10: Obvious choice of check boxes to represent multi-select disjunctive facets at

Ebay.

82 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

In most of the examples previously presented, the facet values are essentially cat-
egorical. The data is qualitative and can be organized on a nominal or ordinal scale.
However, facets often need to display quantitative data such as product dimensions or
price ranges. In most cases a simple range slider may be better suited for display. Fig-
ure 5.11 shows the use of range sliders at the Molecular’s Wine Store . The counts are
visualized as a simple histogram of records. Using this pattern, the user can visually
refine his search. The histogram provides an overview of the information space which

can help in guiding the search process.

E My Account (7) Help W Shopping Cart

Home Wine | Accessories | Gift Ideas | Wine Basics | Community

Shop Our Wines

Select options:

20,581 Matching Wines Showing 1-20 | Next >

Wine Type: 1997 Riesling Clare Valley Dry $16
Paulett
7
nl L]I vhite " sparsing | + i I user rating | Wil expert score | B5 = =
|
All Graps Vanisties - ﬂ quick look
Region: 1996 Gewurztraminer Alsace Witzenheim $23
_— Zind-Humbrecht
user rating | Wil expert score | B8
Price: $32 or less B quick look
...u......_..... " " | lglalg Original Blend McLaren Vale-Barossa $20
. » Valley
Expert Score: 75 or higher > Wirra Wirra
_____ I ||""|) user rating | Wi expert score | B6
: u quick look
User Rating: 3.3 or higher
1997 Riesling Kabinett Mosel-Saar-Ruwer $18
: | & Dr. Pauly-Bergweiler
Vintage: 1993 - 1999 — user rating | Wrirdriry expert score | 91
F— [T [— B auick look

AN R eI A

Figure 5.11: At the Molecular’s Wine Store facets with quantitative data are depicted with

range sliders with histogram counts. (courtesy isquared.wordpress.com)

Many variants of the range slider are possible. For example, when interested about
a maximum value only, a single ended slider may be used. Discrete data, which can
be fitted on an interval, can use a slider with ticks at each interval. Additionally input
boxes can be used to let the user manually enter values. Sometimes the data should be
divided into bins of different sizes. For example, product prices may be clustered in a
way as to let the user more easily select a specific range. In this case the use of a range

slider might be inappropriate.

5.3. VISUALIZATION ON THE FACETS 83

There are plenty of other visualizations for other types of data. For example, when
refining by a certain color, a color picker may be a good choice. There are various
ways to implement a color picker facet. The website Artist Rising (2007) features a full
palette of colors (see Figure 5.12). However, this kind of display lets the user select
illegal values which could alienate some of the benefits of faceted search. Another

approach could consist of a list of colored labels together with their respective counts.

artist riSing. iy Cart | My Account | Help

8 division of art.com inc. Are you an artist? Sell your work on Artist Rising.

Brovse by
Search 322’777 Works from 57?93; Click on a color in the left-hand box.

Selected Colar:

22244 matches found oo B

flower
Subject Meadium Style
Botanical (12459) Photography (12829) Photorealism (63]
Still Life (2281) Painting (4060) Realism-
Abstract (1430) Digital (1961) ?;QP;:;E"“UD"B'
More Choices ... More Choices ...

Abstract (1995)

More Choices ...

Sort by: BEst.\Iat:hssEl Page 1 of 1351 | 12345 >

%

R g
Yellow Petals 1 Misty light in & ... Elue wild flowers ... Yellow Petals TV
Jan Weiss Ledent Ledent Jan Weiss

Figure 5.12: A color palette facet at the website Art Rising.

Many more displays for facets are possible. One can imagine a map to represent
geographically based metadata as we have seen for search results. What is important
to understand is that the facets can go much beyond textual representation. First, the
count could be more interestingly represented. The idea is to provide a landscape of the
search space at play. Second, the depiction of the facet and its interaction are subject
to the underlying data type. If the data is qualitative or categorical in nature, then a
conventional list of check-boxes could be used. If the data is quantitative, then range

sliders may be preferred. More exotic facet displays, otherwise used in software, may

84 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

also fit well within interface. The point being that there is probably as many facet
views as there are ways of visualizing data. The next section will review many more
visualizations, considering that they could be adapted to visualize the search results

and/or the facet values.

5.4 Plenty More Visualizations

We now cover more visualizations which could be adapted to a faceted search user
interface. The reader should keep in mind that we cannot possibly be exhaustive in
this review. We are merely picking visualizations which we think could be immediately
adapted to a faceted search system such as Cloud Mining. However, there are potentially
many more visualizations for search and the interested reader is encouraged to consult

(Hearst, 2009) for a more complete treatment of the subject.

5.4.1 The Docuburst

Figure 5.13: The DocuBurst of a document showing the occurrences of subconcepts of the

word "idea”. (courtesy Christopher Collins)

The first visualization of interest is the DocuBurst (Collins et al., 2009). The

DocuBurst represents a sort of radial space-filling layout of the hyponyms (IS-A re-

5.4. PLENTY MORE VISUALIZATIONS 85

lation) of a document. The user loads a document and chooses a word (node) at which
to root the visualization. In Figure 5.13, the word “idea” was chosen to root the vi-
sualization. The occurrences of concepts that fall under the word “idea” appear as
wedges in concentric circles. The gold colored nodes indicate words in which the first
two characters match “pl”. A “paragraph browser” could optionally be added to the
side of the visualization. The browser shows which paragraphs in the document contain
a selected node.

Although the DocuBurst works on a single entity, the techniques can be generalized
to multiple documents. This makes it usable to either represent search results or as a
refining facet. As a facet, we could adapt the visualization by re-rooting it after each

selection.

5.4.2 World Globe Pathways

@ Rir France

M united Airlines

M peita Air Lines

M continental Airlines
M us Airvays

M american Airlines

M Air china

M Lufthansa

M china Eastern airlines
M china Southern Airlines
W southwest Airlines

MW casyiet

W aitalia

M Air Berlin

Air France

M sir canada

M 1beria Airlines

B 1AM Brazilian Airlinas
W &ritish Airways

M scandinavian Airlines System

M Al nippon Airvays

W Turkish Aidines

W Alasks Airlines

M saudi Arabian Airlines
M Air 1ndia Limited

M nzinan Airines

Figure 5.14: Visualizing the lights of major airlines on a world globe. (courtesy of Nicolas

Garcia Belmonte)

Another example of visualization, which could be on the facets or on the search
results, is the one of pathways on a world globe. Figure 5.14 shows the pathways of

international airlines (Belmonte, 2011b). The flights of Air France are unsurprisingly

86 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

originating from Paris and to every major cities of the world.

It is easy to imagine how this sort of pathway visualization could be used for other
types of data. For example, we might be interested to explore the major wind currents
of the planet. The user would be able to refine his browsing by facets such average
wind speed or temperature and visualize the results on a globe. In the field of business
intelligence, visualizing the flow of international financial transactions could also be of

interest.

5.4.3 Treemap Like Views: Newsmap

Newsmap (Weskamp, 2004) is an ordered treemap (Shneiderman and Wattenberg, 2001)
visualization on top of the results provided by Google News. Google News aggregates
similar news from various sources with respect to a topic and to a country of interest.
On Newsmap the size of each cell relates to the frequency of appearance of the news.
Whereas the color is linked to a particular topic. Additionally the user can filter news

from specific countries (see Figure 5.15).

REGISTER LOGIH CUSTOMIZE + SELECT ALL

= LK
el searchall... o] O

Iranian minister
denies Syria's Assad
about to fall

GERF MDA ITALN MEHI HETH HEW SPAI

ARGE AUST AUST BRAS

Gun lobby
offers to

CAHF FRAE

UPDATE 1-After
shooting, some US
Republicans more
open to gun controls

Kidnapped journalists
escape during firefight
in Syria - Middle East -
World - The ...

help end

atrocities
- FT.com

Gun lobby offers to help end atrocities - FT.com

White House Floats
Its Ideas on Gun
Control - WSJ.com

FF4 The Mational Rifle Association has broken its silence
= aboutthe Newtown school shootings, releasing a highly
unusual statement saying that the powerful pro-gun lobby

s [JNChained ...
g sl ke

tesinter Sandy Hook shooting: Premiere
for Tarantino's bloody 'Django

Dictator's daughter
faces North Korean
refugees’ son in close
South Korean ...

Russia Sends
Warships Toward
Syria for Possible
Evacuation

Congolese Militia Leader
Acquitted, Ordered Freed

Colin Montgomerie
says European Tour
should name Darren
Clarke and Paul...

European Security
Council members to
condemn Israel's
settlement
construction

Hugo Chavez suffering
from respiratory infection

Iraqi presidency
ban Americans B LT
from adoptin 5]

Russian children

Russia threatens to

YouTube 212 roundup: Py, Srejketvoky
Lucy Spraggan and Nick

Clego all make Top 10... e ek

Suso sormy
for Twitter
comment

Mario Balotelli Olive branch: ~ Harmry Redknapp
lancin < Ralell oA gilghiliv led i e

Figure 5.15: Newsmap “visually reflects the constantly changing landscape of the Google

News aggregator”.

Figure 5.15 was captured immediately after the mass shooting of Sandy Hook El-

ementary School. Following the tragedy, a lot of discussions arose about further gun

5.4. PLENTY MORE VISUALIZATIONS 87

control in the USA. Also of interest is the perpetual coverage of the Syrian war. This
later mater is covered similarly across differently countries. This should not be sur-
prising considering that most international coverage originates from only a few news
organizations. However, this type of visualization makes this observation quite ap-
parent. The same treemap like visualization could surely be applied to search results
(Clarkson, Desai, et al., 2009). For example, it could provide an alternative overview

of clustered documents not limited to the top 10 results.

5.4.4 Pictograms: We Feel Fine

We Feel Fine (Harris and Kamvar, 2006) is a web service to visualize and make sense of
a database of over 12 million human “feelings”. The database was built, over a period
of 3 years, by crawling blogs, looking for phrases such as “I feel” or “I'm feeling”. Of
particular interest are the facets which are represented with respect to what they mean
(Figure 5.16). The gender facet is represented as a pictogram of a woman or man.
The weather is depicted using familiar meteorological icons. After the selection, the

“feelings” are shown on a beautifully colored interface.

5.4.5 Tag Cloud like Visualizations

Tag Clouds were quite popular during the Web 2.0 era. They first appeared in 2005 in
high-profile websites such as the photo sharing site Flickr (2004) or the shared book-
marking site del.icio.us (2003). They provide a visual representation, using different
font size and color, of the term occurrences within a document. They have been shown
to be effective as a signaler of social activity (Hearst and Rosner, 2008). Since then
people have worked on more visually pleasing tag cloud like visualizations such as a
Wordle (Viégas, Wattenberg, and Feinberg, 2009) (as in Figure 5.17).

These clouds visualizations could easily be adapted as facets (Capra and Marchion-
ini, 2007). One could imagine being able to select multiple values within a Wordle. In
this case the invalid choices would be grayed out. Another adaptation could consist
of making a new word cloud for each subsequent refinement. In this case the selected
terms would be removed from the list and a new list would be generated from the

returned search results.

88 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

Weather Location

Please click inside this window to give the applet focus

Figure 5.16: WeFeelFine depicts the facet values for what they mean.

N g
T Hh'nez;
% 5 techaique P B £ o T
= Esgli‘mﬁ Epixel% . . ““b"g%ﬁgé g'Snm E
ig., looking § © f,‘;‘éﬂs""s = g g* Howeverr -
sg5: @ =quene53 e 22 @) bold °% B g
mme-ute htﬁgm d 3@ QE ‘wg L= I example B i—= 2%
approach, @2 =0 |
S algorithm, Eﬁ,’ m u"-'.-."?'u E =2 Inte‘wagedat
: 3 e Similarg) @ Qg =
-3 % dimensionality finirs Q. A i
== EISIH‘IIlaHt}r s b0 el N TS %wgsﬂ
£ msEa 2 0,..2 =
E g U! K ﬂ-g“& ven Q) :
288 ge g2 IR el = number
methods = E‘ CEEI performed E iﬂn =} ﬂg _g_.uSEd % .E ﬁ'mda
i _E‘§ two 3= metricZONE .E‘,EE E'Ecalle_dti :
E-E 4 § ‘g if' cnmu§ %- & g %pom s
" g

Figure 5.17: The Wordle of chapter 6 of this thesis on multimedia search.

5.4. PLENTY MORE VISUALIZATIONS 89

5.4.6 Quantifying Data with Bubbles

Another visualization example comes from the ManyEyes project (Viégas, Wattenberg,
Van Ham, et al., 2007). As we have previously discussed, at ManyEyes users upload
data, choose a visualization and then share it with others for discussion. Figure 5.18
presents a depiction of the human world population by nations. This visualization
quickly clarifies the population size differences between nations. It allows users to
compare the bubbles together in order to easily quantify the data at play. Many other
uses can be imagined such as comparing geographic sizes of nations, income levels,
health, or education levels. This visualization can easily be used as a facet or as an

alternative search result view.

BANGLA...
158 mil

Figure 5.18: A ManyEyes bubble like visualization of the demographic of nations.

As one can imagine, many more possible visualizations can be employed. Although

not necessarily immediately applicable to faceted search, the classic books from Tufte

90 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

(1990) and Tufte and Graves-Morris (1983) provide many more interesting ways of
visualizing information. However, at this point, the real challenge consists of building
a system which would integrate many of these visualizations. In the next section, we
will provide a mean to quickly create such a system while making every component

re-usable by a community of users.

5.5 Putting Everything Together

We have reviewed the relation browser (Capra and Marchionini, 2008) and noted an
interesting feature which lets the user switch between different search views. In fact,
we have reviewed many different views which can be chosen for the search results. We
have also reviewed many views which can be used on the facets. We even covered some
more visualizations and showed that they could easily be adapted to search. Now we
wish to provide a way for the designer to create ESSs which would make use of all
these different visualizations. This is one of the main motivation behind the creation
of a system such as Cloud Mining, which we will be presenting towards the end of this
thesis (chapter 7).

Figure 5.19 presents the main parts of a pluggable search system. The first part
consists of a repository of shared datasets, which can take the form of a social website.
People would upload datasets for the community to comment, vote on the quality or to
further edit. One important aspect is to let users describe the datasets by specifying
the type of each field. This is important because only some visualization can be applied
to some types of data.

The other part takes the form of another social site but in which datasets are
replaced by widgets. These widgets are pluggable elements which are used to build a
search interface as well as its functions. In the previous section we have covered some
of these widgets for the query terms, search results or for the facets. An application
programming interface (API) would be provided to let developers create new ones.
These widgets can then be uploaded to the site for others to use or to socialize on.

The last part takes the form of a web application from which a designer can drag
and drop different widgets to make up the interface. The designer can first choose a

dataset of interest, a layout for the interface (facets on the left, right or top) and then

5.5. PUTTING EVERYTHING TOGETHER 91

users / designers

| N
i N
i. upload / socialize upload / describe* / socialize _i
____________ i I T T LT
| \\
| N
* Say
®ecosystem of search widgets @ shared datasets

choose layout
i look and feel

customed tailored search system

Figure 5.19: A pipeline to build a faceted exploratory search system in which every part is

subject to crowd sourcing.

92 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

populate it with the different widgets. After the designer has created the interface, he
can then submit it to yet another social site (or section of the same site). This can
take the form of a gallery of interfaces created to explore certain parts of the uploaded
datasets.

Figure 5.20 shows the kinds of widgets which would be made available to the de-
signer, however note that many more documented in (Clarkson, Navathe, et al., 2009;
Morville and Callender, 2010) could be adapted. As we have seen in chapter 4 there are
check boxes for disjunctive facet selections. There are also more visual facet types such
as a treemap or a tag cloud. Interestingly, refining by keywords (or searching within
results) could simply be implemented as another facet widget. Although we haven’t
covered item based search yet, we can see that, at the interface level, the functionality
can be implemented as yet another facet. We will see in chapter 6 how this holds at
the back-end as well. There are also other widget types for search views or for query
terms. The whole idea is to let the community create these re-usable elements so they
could be shared amongst users.

The created interface could look like the one shown in figure 5.21. The designer
of this interface has thrown in different search views as well as four refining facets.
The space-time search view shown here lets the user visualize the search results on a
map within a specific time frame. In this figure, the user has selected results that fall
within some period of time after January 2012 but before the end of 2013 in the area
of San Jose, CA. The time line also shows the frequency of results within the selection.
If the data were crimes occurring in the bay area, this interface would be useful to
spot on when and where most crimes occur. Also of interest, again chosen from the
repository of widgets, is the graph view. We can imagine that this view would show the
interconnectedness of the search results. For example, an edge could represent whether
two crimes share some kind commonality. After completion, the interface is once again
submitted to a community driven website. People can now browse (possibly using an
ESS made with the framework) through a plethora of interfaces for various datasets.

Figure 5.22 further illustrates on the idea of this generic pluggable search interface.
We could imagine that this interface could be used to browse through the various
products of a store. The hierarchy widget would let the user select product categories,

while the range facet could be used to set a maximum price. The color picker could

5.5. PUTTING EVERYTHING TOGETHER

[=]selection [=] Tag Cloud
(®) Label o s
O Label |E| Range bu SlneSS

ciies COMpanies
@ Label

e e e electronic

entertainment
finance

games
health . Mortgage
) cor

. |E| Keywords ITIOVIeS
. S :

T ———— —

o]

|E| Choices |
™ Label
O abe [=] File Tree
B vaba ltern 1
[=] Histogram ltem 2
™ e ltern 2.1
—— ftem 3
e ———————— ltem 3.1
m— lten 3.2
R— ltsm 8.2.1
——— tem 5.2.2
ltem 4
ltem 7

Figure 5.20: Different facet widgets to choose from in order to build the interface and the

functions of the system.

94 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

Facet

Facet

[+ Facet

Facet

Figure 5.21: A pluggable search interface featuring different search views such as space/time.

5.5. PUTTING EVERYTHING TOGETHER 95

=ortby x] (2]=]F

=[] ltem 3.2.1
- Item 3.2.2

agriculture autos
companies pecple places
politics science

S p 0 rtS states

technology tv
world

| Selecta date) |

December 2008

s M T W T F &
1 2 3 4 5 6

7 8 8 10 11 12 13
14 15 16 17 18 19 20
21 22

Select Taday \ A

Figure 5.22: A classic interface built using the repository of widgets described in Figure

5.20

96 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

be used to select products of only a specific color. The calendar could set a maximum
delivery estimate date. The interface also has different search views such list, detail, or
thumbnail. This is a conventional interface seen on many existing shopping sites. The
point is that every element of the interface is a re-usable widget.

Figure 5.23 shows the same interface previously presented in grid mode view. This
mode is similar to the Biomed Search grid view. The user sees the results as a grid and
can zoom in to a specific item, thereby showing more details. If the data were crimes,
we could imagine that the main pictures would be the ones taken by the officer at the
scene. The zoomed-in result also features social actions. For example, while exploring,
it would be highly desirable to bookmark or landmark specific items from the search
space. Other actions could include commenting, voting or even wiki-like actions such as
editing the whole item. This interaction is important as it closes the loop of the steps
exposed above. Indeed the shared datasets are now being enriched by the community
of people using the interface. These datasets can now further be re-used for some other
tasks within some other interface. The process can then repeat itself making the shared
datasets more and more rich and complete.

The use of Google Earth (Google, 2004) illustrates fairly well the principle exposed
above. Google Earth was originally created by Keyhole, a Central Intelligence Agency
(CIA) funded company acquired by Google in 2004. Google Earth lets us navigate and
explore a virtual version of the planet. The user can see all kinds of interesting data
onto the globe through the use of layers. These later are created by developers thanks to
a well documented API. With time people have made incredible discoveries on Google
Earth. For example, some unknown mammal fossils (Science Daily, 2009) were found
and the sites of huge lost pyramids may have been uncovered (Google Earth Anomalies,
2012). In fact, Google Earth lets anyone examine the planet for lost treasures, and, in
the process, lets the data be enriched by a community of users. One can imagine many
possible uses of these community driven interfaces. The main idea is to make the whole
process much more explicit while letting designers easily create such systems as well as

all the re-usable components.

Facet

Facet

Facet

=]

5.5. PUTTING EVERYTHING TOGETHER

list] grid

Lo |

Facet
st | grid | spacefime | graph |
= | order by []
Facet . . L .
N -
: The title of the document < .
El e -
Facet P i
' Completely impact multifunctional processes :
: and wireless supply chains. Dynamically '
777 | engage business meta-services for market-)y T
driven data. Collaboratively restore cross-
E| platform users before client-centered
oo manufactured products. ==
Facet ' .E\Gcmwnanrx ‘ 43 ? edit '

Figure 5.23: A Biomed Search like grid view featuring social actions.

97

98 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

5.6 Conclusion

In this chapter we went beyond the traditional faceted search interface. First we looked
into the query terms and their connection to the search results. In order to favor
exploration, the interface should give instant feedback on the user’s potential actions.
We then looked into how the search results and the facets could be represented visually
in order to favor exploration and the emergence of patterns within the data. We have
also given many more examples of visualizations considering that they could be adapted
within a faceted search system.

The central idea, and main thesis contribution of this chapter, is to let designers
easily create a system that would make use of some of these visualizations. To that
end we have proposed a pipeline in which each step would be community driven. The
end results is a plethora of interfaces which, when used by the community, would
subsequently improve on the data. As such, this paradigm could offer a solution to
information overload. In fact the many datasets, through the use of these interfaces,
are processed by the community and made sense of. The datasets and the search widgets
can then be re-used within a subsequent search system and the process repeats itself.
We will get back to this idea while presenting Cloud Mining in last chapter of this thesis
(chapter 7).

So far we have focused our attention on systems that retrieve data through the use of
keywords. However, some data such as images or videos have many more characteristics
than their textual metadata information. An exploratory search system should have a
mean of accessing the very nature of these items. Moreover an ESS should be able to
present sets of similar documents and to discover new ones. This will be the focus of

the next chapter on similarity and multimedia search.

99

Chapter 6

Similarity and Multimedia Search

Previously we have examined text-based information retrieval and the principles for
the design of a good search user interface. Following this discussion we then explored
a case study with Biomed search. Biomed Search is a full text search engine to look
up images in the biomedical domain. Users are able to see the search results in list or
in grid view. In grid view a particular image of interest could be zoomed in to provide
more detailed information.

From Biomed Search we received feedback from users indicating their desire to refine
their search. The grid view also triggered some ideas as to how to visualize the search
results differently. We then covered faceted search, and went beyond this paradigm with
information visualization. By employing the right visualization, either on the search
results or on the facets, the user is then able to make greater sense of the data, making
his experience more exploratory.

However, another function of an exploratory search system is to present similar sets
of results as well as to discover new ones. In order to do so, our system should be
able to retrieve sets of results which are not necessary directly accessible with full text
search. This is even more important that nowadays much data is multimedia in nature,
i.e. images or videos. We therefore turn our attention to retrieval methods which focus
on the whole content of documents.

In this chapter, we first provide a necessary overview of the field of multimedia
search. Then, a new type of algorithm called item based search is presented. Item
based search reduces content based search to feature engineering. This is a desirable

characteristic for an exploratory search framework and recognizing that is the main

100 CHAPTER 6. SIMILARITY AND MULTIMEDIA SEARCH

contribution of this chapter towards the thesis. Finally, we briefly review, especially
focusing on the interface, various services that provide content based type of searches.
This will give us some ideas as to how to incorporate item based search within the

framework presented in chapter 7.

6.1 Content Based Search

In content based search the query is made of documents, rather than of keywords. The
results are a set of “similar” or “related” documents. As the name implies, the search
is performed over the whole content of the documents. One difficulty in matching
documents which are multimedia is that they may have no apparent structure. Also
the number of variables to consider may be very large. For example, images may have
millions of pixels which, taken sequentially, have no obvious underlying pattern. In
order to make sense of this sheer amount of data, the information must be condensed
into meaningful pieces of information. These are called features and many have been
engineering for all types of applications. Figure 6.1 illustrates one very simple type of
features used for images. Here the pixel intensity histogram of the image is taken and
represented as a vector. The images can then be matched using a similarity measure

between their respective feature vectors.

0.50.6 0.7 0.8
0.6 0.5

TO

—

Min: Man: Mean:
0 85535 25586

Filter Channel:
Figure 6.1: The intensity histogram of this image serves as a feature vector in order to

differentiate between different types of yeasts. (courtesy Yeast Resource Center)

6.2. FEATURES 101

In a nutshell, documents are represented as feature vectors and matched using an
appropriate metric. Documents with “close enough” features are then thought to be
similar. The query is thought of as a set of examples taken from an already existing
“cluster” of examples. Figure 6.2 shows this principle of query-by-example and the
two key concepts of features and distance metric. In this figure, the user is looking
for images similar to Cambridge’s King College Chapel. The best result is the same
building but taken at a different angle. The next best result is a picture of the main
gate of St John’s College. This leads us to think that the features have captured the

main lines of the buildings but has disregarded more subtle distinctions.

Feature Space

Figure 6.2: Querying for an image of Cambridge’s King College Chapel within a feature

space.

This brief overview outlines the main ingredients of content based search. First,
the relevant features must be chosen and extracted. Then a metric must be properly
chosen. And finally an algorithm should be crafted to perform the matching efficiently.

We now take a closer look into the making or engineering of features.

6.2 Features

As we have seen, features are engineered in such a way as to capture some aspect or
characteristic of the data. For example, for text, the words and their order within each

document would be of interest. While for images, we might want to consider the color

102 CHAPTER 6. SIMILARITY AND MULTIMEDIA SEARCH

usage, texture composition or shape. In what follows we will first explore the simple
bag-of-words model used for textual documents. Then we will shift our attention to
some commonly employed types of features for images. The interested reader is invited
to consult (Deselaers et al., 2008) for a more complete treatment of multimedia feature

engineering.

6.2.1 Bag-of-words

Perhaps the simplest type of features for textual items is the bag-of-words model. The
bag-of-words model regards text as an unordered collection of words. Note that this
is usually an incorrect assumption for documents written in natural languages such as
English, in which the word order and furthermore its grammar matter. Nevertheless,
the bag-of-words model is commonly used in document classification. In fact, let us
illustrate the use of the bag-of-words model for the task of filtering out unwanted emails.

The method presented below is called Bayesian filtering (Sahami et al., 1998). We
represent an email as a bag-of-words or binary vector w = (wy, ..., w,), where w; = 1
if word 4 is present in the email; otherwise w; = 0. Given the vector w of an email, we
are interested in the probability p(c|w) of the email to be in ¢, where ¢ is either spam
or ham (not spam). Using bayes’ theorem we can write this probability as:

b0 plwlo
PLE) = ==) - pwlR)

ke{S,H}

where S and H denote spam and ham respectively. It would be impractical to directly
estimate the probabilities p(w|c). Instead, we make the "naive” assumption that the
words in w are conditionally independent given the class ¢. Under this assumption we

can write:
ple) - Tz, p(wile)
D) = ==) - T, ()

ke{S,H}

The probabilities p(w;|c) and p(c) can easily be estimated from a training set. The
probability p(w;|c) is estimated as the frequency of the word ¢ given the class (spam
or ham) within the training set. The priors p(S) and p(H) can be estimated as the

number of emails in spam and ham respectively in the training set. We can classify an

6.2. FEATURES 103

email as spam if the following ratio is greater to a chosen threshold:

ple=5w) _
plc= Hlw)

Bayesian filtering has proven itself to be quite successful at filtering out spam. In
fact the method forms the backbone of various commercial spam filtering programs
such as SpamAssassin (Mason, 2002) or DSPAM (Zdziarski, 2004). The method does
have some disadvantages however. For example, a spammer may send emails with an
attached list of legitimate keywords thereby tricking the algorithm. Another trick could

include replacing some letters of highly spammy words or sending the email as an image.

These issues naturally lead us to consider more sophisticated types of features.

6.2.2 Color Histograms

The human eye can perceive three overlapping range of frequencies with peaks falling
into the red, green and blue (RGB) areas of the rainbow spectrum. Therefore one
simple way of modeling the color of an image can consist of computing an histogram
of RGB triplets. This is essentially the same as the intensity histograms previously
discussed only that now RGB triplets have replaced intensity values.

Figure 6.3 shows a snapshot of a real time color histogram of the movie Shrek using
the PhiloGL library (Belmonte, 2011a). The RGB space of the current frame has been
subdivided into 8 x 8 x 8 3D color bins. The proportion of pixels that fall in each bin
is represented by a sphere of a given size and color. On the figure we see a histogram
dominated by the color blue due to the preponderant blue sky of the current frame.

The counts are usually normalized over the total number of pixels. Quantization
may also be necessary for space efficiency. This is typically performed by assigning a

k-bit integer to each histogram bin ¢ as follows:

where n and h; are the number of pixels and counts at each bin respectively. Note that
we have divided by n + 1 instead of n in order to make sure we never reach 2%, which

would be outside the range of the k-bit integer.

104 CHAPTER 6. SIMILARITY AND MULTIMEDIA SEARCH

Choose a Color Scheme:

@ RGE Cube) Chroma Luma Hue ' Chroma Value Hue

RS

Other Options:

Camers:

Grain: @ None © Small @ Large
Background:

Copyright & Maria Luz Caballers and Nicolss Gareis Belmonte.

Figure 6.3: Live color histogram of the movie Shrek using a demo of the PhiloGL library.

6.2.3 Texture Histograms

Tamura et al. (1978) have mathematically defined and studied six basic features that
correspond to the human visual perception of texture. Out of these six features, coarse-
ness was the most fundamental, followed by contrast and directionality. Texture, unlike
color, is a property of a region of pixels. Therefore, in order to compute texture, a
window around each pixel must be taken. The coarseness (C), contrast (N) and direc-
tionality (D) can then be computed within that window. The feature of the image is
then an histogram of the three values C, N and D. This way of computing texture is
known as Tamura texture. In this discussion we will only derive the details of coarse-
ness. The interested reader may consult Howarth and Riiger (2004) for a more complete
treatment of Tamura texture features and their evaluation. Furthermore, we focus on
gray scale images, a similar computation could be carried over to color images.

An image has texture at various different scales. Coarseness attempts to extract
the largest of these scales. First, a moving average at every point (i,7) over a 2% x 2F

window is taken:
i+2k—1_1 j42k—1_1

awli)) = 3 LR

i’:i—?k_l j/:j_Qk—l

6.2. FEATURES 105

where p(i, 7) is the gray level at the point/pixel (i, j). Now we can compute the bigger

of the horizontal and vertical differences of a; at the edge of the window as follows:
Ck(%]) - maX(|ak(i - 2k_17j) - ak(l + 2k_17j)|7
Ja(i,j — 2571) — ax(i, j + 2"71)]))
We then maximize ¢ over k in order to find the largest detected scale 2F(9) at point
(i,7):
k(i. j) = argmazy. e, (i, j)
Finally the coarseness of the whole image is then averaged:

g 250
numbero fpixels

coarseness =

For the pixels at the edges, the computation of a; and ¢; should be adapted in order

not to exceed the original size of the image.

6.2.4 Other Feature Types

There are many kinds of features for different types of objects and applications. In what
follows we show how to build features from statistical moments. Although the presen-
tation is focused on images, these features are interesting because the same principles
could be applied to other types of objects. We will then see an application of spec-
tral features in Cheminformatics. Spectral features are built by noticing and counting
recurring substructures in the objects of interest.

Statistical moments offer an interesting way of summarizing distributions. They
can be used as features as we will see next with images. Let the object be an image
and denote by p(i, j) the intensity of this image at pixel (i,7). The average of pixel

intensities can then be written as follows:

<.
I
—

where w and h is the width and height of the image respectively. More generally, we

can define the central moments of the quantity p for k£ > 1 as:

pe= > S (0l g) -

=1 j=1

106 CHAPTER 6. SIMILARITY AND MULTIMEDIA SEARCH

where po is known as the variance of p, while p3 and p, are defined as skewness and
kurtosis respectively. From statistics, we know that p and of all central moments is
sufficient to re-construct the distribution of p. Therefore, the vector (u,ps,ps, ..., Dk)
could be used as a feature of the distribution p.

Departing from image features, spectral features are used in Cheminformatics in
order to model small molecules. The main idea behind spectral features is to count re-
curring substructures. In Cheminformatics, this approach boils to counting re-occurring
substructure within small molecules represented in 1D, 2D or 3D (Azencott et al., 2007).
For example, a molecule could be represented in 1D as a SMILE string. In this case, the
feature vector of the molecule is made of counts of all substrings of a certain maximum
size. A molecule could also be represented in 2D. In this case, the spectral vector can be
devised as a count of all sub-paths along a molecular carbon chain. Going even further,
the 3D representation of a molecule can be taken into account. In this case, a feature
vector can be built by counting distances between specific atoms of importance.

The features noted above represent only a small sample of the many possibilities.
The interested reader may consult Riiger (2010) for a more complete treatment of
feature engineering. The central premise is always to identify an important aspect of
the object which subsequently can make a sensible use for comparison to other objects

in order to identify similar ones.

6.3 Search in Metric Space

After a feature space has been devised, one may then be tempted to choose a proper
distance measure in order to match the documents. This approach is known as nearest
neighbor search. In this section, we will naturally first cover some simple distance
measures between vectors. However, as we will see, nearest neighbor search becomes
very challenging as the dimension of the space increases. This is referred as the curse of
dimensionality. In order to circumvent this issue, we will be proposing two approaches.
The first one consists of making nearest neighbor search more efficient. The second one

consists of collating the features into textual fingerprints.

6.3. SEARCH IN METRIC SPACE 107

6.3.1 Distances

There are many distance measures for all kinds of different feature spaces. Perhaps the
simplest metric between real value feature vectors of a fixed dimension n are induced
by the Minkowski norm L,:

dy(0,0) = Ly(w —v)

Where v and w are two vectors in R" and L, is the Minkowski norm defined as:

1/p
w = Ly(w) = |wl, = (Z Iwzl”)

Ly is the well known Euclidean distance between between two points. L; is known
as the Manhattan norm. The name relates to the distance a car has to drive in a
rectangular street grid to get from point a to point b. L. is the maximum norm or
Chebyshev norm and corresponds to the maximum of the components.

Note that not all measures of similarity need to be strictly induced by a norm. One
well known example is the cosine similarity. The cosine similarity measures the angle

between two vectors:
v-w
Ly (v) La(w)

Plenty of other measures of similarity exist depending on the nature of the feature

deos(v,w) =1 —

space. For example, if the feature vectors are probability vectors, that is vectors with
non-negative components that add up to one, then the Kullback-Leibler divergence
could be a good measure. The Kullback-Leibler divergence measures the degree of
difference between two probability distributions v and w. More precisely it measures
the expected number of extra bits required to code samples from v when using a code

based on w, rather than using a code based on v.
dir (v, w) Z V; log —

However, note that di L is not a metric as it is not symmetric. Also dg L is not finite as it
tends to infinity as one of the components of w tend to zero. This could be problematic
if the feature vectors have arbitrarily small components. In order to resolve these issues,

the Jensen-Shannon is usually preferred:

dys(v,w) = (dgr(v,m) + dgp(w,m))/2

108 CHAPTER 6. SIMILARITY AND MULTIMEDIA SEARCH

where m = (v +w)/2. The Jensen-Shannon divergence could be thought as the metric
and finite version of the Kullback-Leibler divergence.

After having devised a feature space together with a distance measure, retrieval
could be reduced to matching nearby objects. This approach is referred as nearest
neighbor search. However, as we will see next, this simple approach suffers from a

problem called the curse of dimensionality.

6.3.2 Curse of Dimensionality

The curse of dimensionality refers to the fact that indexing hi-dimensional vectors
efficiently is very challenging (Bellman, 1966). To illustrate, let us suppose we have a
n-dimensional unit hypercube [0, 1] where the data points are uniformly distributed.
If we would like to capture a portion of the data p, the length [in each dimension of
this volume can be written as [= p*/”. Therefore, in order to capture one 1% of the
data in a 10 dimensional unit hypercube, we would have | = ﬁ% ~ 0.63. So enclosing
just 1% of the data in a 10 dimensional space would already require 63% of the range in
each dimension. For a 100 dimensional space, the range becomes 95%. After only 500
dimensions, it becomes 99%. Therefore, most of the volume enclosed in the hypercube
is actually located on its surface!

With a similar argument, Beyer et al. (1999) showed that, as the dimensionality of
the space increases, all the points tend to exhibit the same distance with respect to
each other. This has the ultimate consequence of making the simple nearest neighbor
search approach ill defined. Nevertheless, as we will see next, researchers have been
looking for ways to make nearest neighbor search more practical and efficient in high

dimensions.

6.3.3 Efficient Nearest Neighbor Search

The first observation one can make is that the real feature space, the one used to dis-
criminate between objects, may have a lower dimensionality than the apparent data
space. In this case, the dimension of the data space could be reduced with Principal
Component Analysis (PCA) (Wold et al., 1987). However, PCA still becomes imprac-

tical as the size the dataset increases. Also adding new documents to the index may

6.3. SEARCH IN METRIC SPACE 109

require to re-compute PCA each time on the whole dataset.

A second class of methods consists of partitioning the feature space into a tree
structure. The R-tree is one of these methods (Guttman, 1984), and many variants
have been invented since. However partitioning the feature space may become harder
as the dimensionality increases. This is due to the fact that the data is much more
likely to be sparsely populated. In fact Weber et al. (1998) have shown that after a
certain number of dimensions, R-tree like methods are not more effective than a simple
linear scan of the data.

A third approach, which can be used in combination of the first two, consists of
storing each dimension of the feature space separately. This technique is often referred
as vertical decomposition. Each dimension is treated separately depending on its sig-
nificance. One example of the use of this technique is the IGrid (Aggarwal and Yu,
2000), which computes a similarity score based on the dimensions of the points close to
the query point.

A fourth approach at making nearest neighbor more practical consists of relaxing
the constraint of finding exact matches. This approach, referred as approximate nearest
neighbor search, consists, in its simplest form, of only matching the best neighbors
which are some € away to the query point (Nene and Nayar, 1997). More complicated
procedures have been devised since, and the interested reader is encouraged to try out
Marius Muja’s library of approximate nearest neighbor algorithms (FLANN) (Muja and
Lowe, 2009).

6.3.4 Fingerprints

A more efficient way of comparing documents consists of comparing their respective “fin-
gerprints”. The idea behind fingerprinting is to build a representation of the document
which allows for a fast and reliable retrieval within a database record. A fingerprint
should be small but robust. That is a non humanly perceivable change in the object
does not necessary lead to a change in the fingerprint. It is important to note that
fingerprints attempt to identify documents based on perception and therefore are very
different than hash functions such as Message Digest Algorithm 5 (MD5) or Cyclic Re-
dundancy Check (CRC) in which a change in a single bit lead to completely different

110 CHAPTER 6. SIMILARITY AND MULTIMEDIA SEARCH

documents.

There are a lot of different fingerprint types for all kinds of applications. A popular
example is the use of audio fingerprints by the program Shazam to identify songs play-
ing in a real world environment (Wang, 2003). Figure 6.4, from the Shazam article,
summarizes the method employed. First, a spectrogram of the song is generated (A).
Second, the peaks of intensity of the spectrogram are extracted (B). The peaks of inten-
sity are called the constellation map of the song. It reduces a complicated spectrogram
into a sparse set of coordinates. Third, a target zone for each point (anchored point) in
the constellation map is defined (C). Fourth, each anchored point and their respective
target zone are hashed and indexed (D). Wang reports that that this type of combinato-
rial hashing yields a speed improvement of 10,000 times for only 10 times more storage
with a minimal loss of probability signal detection. The procedure exposed above is
applied to create a large database index of audio files. The search consists of matching

the hashes of the queried audio file with the hashes found in the index.

Target s

=
. aszi 11 :‘T g g g Anehor poinl = —

X L

K x

Tme Tieme:

Fig. | A - Spectrogram Fig. 1C - Combinatorial Hash Generation

L] 4200

1500 L L] r 1500

] 1
] x 4 ¥l
" ¥
% % X 242
g 2 g
g =m 5 r . ¥
x 3 E = il o A =12-11
x
i x
0 .
1 x & L Tam Hash:time = [F1:72:81)50
u
] x
- .
X x
i i T " I Time:
Fig. 1B - Constellation Map Fig. 12 - Hash details

Figure 6.4: Creating the fingerprint of an audio file with Shazam (courtesy of Shazam)

6.4. LEARNING TO RANK 111

Fingerprinting has not only been used for searching exact matches but also to remove
“close” duplicates in a large data corpus. For example, Sinitsyn (2006) has described
how to use audio fingerprints in order to perform background self-cleaning from dupli-
cates in data management middleware. However, what fingerprinting is doing is extract
some features and collate them in a way as to permit efficient retrieval. But when it
comes to supporting exploratory search, retrieving sets of similar items would be more

desirable than just returning near exact matches.

6.4 Learning to Rank

There are mainly two problems with the methods exposed above. First of all there is,
when the data is uniformly distributed, the curse of dimensionality which may prevent
us from precisely differentiating between relevant documents. Secondly, as the size of
the dataset increases, nearest neighbor search may become computationally intensive.
This could lead to slow retrieval and therefore to unhappy users. One approach to
resolve these issues consists of using machine learning techniques in order to produce
ranking models.

The approach taken by most machine learning-ranking algorithms consists of a two
phase scheme, as described in Figure 6.5. In the first phase a chunk of the relevant
documents is identified using a simple retrieval model. The retrieval model could include
the efficient nearest neighbor search previously encountered, but other heuristics are
possible. This phase is called top-k document retrieval because only the top matching
documents are retrieved but not yet sorted. The relevance of each document in the
set is addressed in the second phase, in which a more accurate but computationally
expensive model is used for ranking.

The ranking model is usually learned from training data. The training data consists
of query-document pairs together with a ordinal or boolean score. The scores are usually
determined by human judges who assess on the relevance of each document with respect
to a given query. However, the scores may also be automatically derived by analyzing
click-through logs (Joachims, 2002), query chains (Radlinski and Joachims, 2005) or
by more direct user feedback such as Google +1 or Facebook likes. Machine-learned

ranking (MLR) is a relatively new research area and the interested reader is encouraged

112 CHAPTER 6. SIMILARITY AND MULTIMEDIA SEARCH

documents ||......... indexer -

v

,,,,,,,,,,,, (Copkretieva —

A »

ranking model search results

Figure 6.5: Basic architecture of a machine-learned search engine

to consult Cao et al. (2007) report for a more detailed treatment.

Cao et al., 2007 has categorized MLR algorithms into three groups. The first group
is called the point-wise approach in which, given a query-document pair, the goal is to
predict its ordinal or numerical score. In this case, learning to rank can be approximated
to a regression problem. The second group of MLR algorithms is called the pairwise
approach. In this case, the problem is formulated as repetitively discriminating between
pairs of documents for a given query — given two documents, which one is the most
relevant with respect to the query. Here the problem is reduced to binary classification.
Finally in the list-wise approach the model is trained on an entire list documents for a
given query.

To evaluate the performance of a ranking algorithm or to optimize a model on
the list-wise approach, researchers have come up with many different ranking quality
measures. Discounted cumulative gain (DCG) and normalized DCG (NDCG) are the
evaluation metrics most commonly used in academic research. DCG measures the
overall quality of a list of results for a given query (Jarvelin and Kekéldinen, 2002).
The gain of a document directly depends on its position in the list. The higher a
relevant document is on the list, the more weight or gain it has in the final computation
of the score. In order to compare a search engine’s performance from one query to
another, DCG is normalized by an ideal DCG (IDCG). IDCG is computed by taking
the DCG of the result list sorted by relevance. The normalized DCG (NDCG) can

6.5. BAYESIAN SETS 113

be averaged over all queries in order to obtain the average performance of the ranking

algorithm.

6.5 Bayesian Sets

u W keyword_1: documents pages
keyword_1 phrase query r_ query —* keyword_2: documents rank

full text query

e
index of keywords to documents

ranked list of matched documents to the query

feature

feature_1: items
feature_2: items

query score —|

item based query index of item features to items

cluster of similar items to the query

Figure 6.6: Full text search versus item based search

Nearest neighbor search and MLR models have shown to be quite successful in
the industry. However, these approaches still suffer from a couple of issues. First, a
significant amount of training data may be required for the ranking model. Second,
nearest neighbor search does not address how to perform multiple document queries.
Third, a lot of engineering may take place in choosing and tuning the right method either
for retrieval or for ranking. A different approach consists of taking a probabilistic view of
the data. Bayesian Sets (Ghahramani and Heller, 2005) uses a model-based concept of
a cluster and ranks each item by using a score which represents the marginal probability

of belonging to a cluster containing the query items. The approach allows for multiple

114 CHAPTER 6. SIMILARITY AND MULTIMEDIA SEARCH

item based queries, and, amongst other benefits, reduces the work involved in setting up
a similarity search based solution to feature engineering. To stress these particularities,
the search algorithm is referred as item based as opposed to content based.

Figure 6.6 offers an overview comparison of full text search versus item based search.
In full text search, the query is made of keywords which are then matched against a
back-of-the-book index. In item based search, the query is made of whole items which
are themselves composed of feature values. Here the back-of-the-book index is replaced
by a list of feature values together with their corresponding items. The goal of the
algorithm is to find the set of items which best fits within the cluster defined by the
query items. Bayesian Sets has been chosen for similarity search within Cloud Mining.

In this respect we ought to describe the algorithm in greater detail.

6.5.1 Overall Algorithm

We start by considering a collection of items D. The user provides a query in the form
of a small subset D, C D. The set D, is assumed to be coming from some concept /
class / cluster @). The goal of the algorithm is to find a set of items in @ which best
complements D,. Therefore, the goal of the algorithm is to compute p(x € Q|D,), the
probability that an item x € D belongs to the cluster () given that D, has already
been observed. Note that some items may be more probable than others a priori. For
example, the probability of a string decreases with the number of characters. In order
to suppress these effects, we need to normalize this probability by the prior probability

of x. Therefore the Bayesian criterion becomes:

score(x) = }% (6.1)
Using Bayes rule, we get:
_ p(x, Dy)
SCOTG(X) = m (62)

We assume the data points are generated by some distribution with unknown parame-
ters 6. Each of the three terms of (6.2) above are marginal likelihoods. We can express
these probabilities in integral forms by averaging over all possible values of the model

parameters:

p(x) = / p(x10)p(6)d6 (6.3)

6.5. BAYESIAN SETS 115

where 0 are the parameters of the distribution chosen to model the item feature vectors,
p(0) is the prior over these parameters, and p(x|0) is the likelihood of observing x given

the parameters. Similarly for the query set, we have:

-/ [Hp<xi|0>] p(9)d6 (6.4)

where we have assumed that every item in the query set are drawn i.i.d. Finally the

numerator of equation (6.2) can be expressed in a similar manner:

p(x, /[Hp xzw] (x|0)p(6)do (6.5)

where every item in the query set and the item x to be scored is assumed to be drawn
i.i.d. from our model with unknown, but the same parameters, 6. Given these marginal
likelihoods, equation (6.2) can be interpreted as the ratio of the probability that D,
and x belong to the same model with the same parameters 6, to the probability that
D, and x belong to models with different parameters ¢, and 6,. The larger this score

is, the more likely x belongs to the same cluster as the query set D,.

6.5.2 Sparse Binary Data

In general computing these integrals can be computationally intensive. However, it
turns out that if the data is sparse and binary then the score (6.2) can be computed
efficiently in a single sparse matrix multiplication. Let us define the specific model in
the case of sparse binary data. We assume that each x; € D, is represented by a binary
vector x; = (241,,x;y) where x;; € {0,1}. A natural way of defining a cluster is to
assume that each x; has an independent Bernoulli distribution:

J

p(xil0) = [[677 (1 — ;)" " (6.6)

j=1
The conjugate prior for the parameters of the Bernoulli distribution is the Beta distri-

bution: ;
INE? +ﬁ ._
p(6)a, B H J J -0yt (6.7)

7=1
where o and f are the hyperparameters of the prior and I'(-) denotes the Gamma

function. The hyperpameters are set empirically from the data as o = km and § =

116 CHAPTER 6. SIMILARITY AND MULTIMEDIA SEARCH

k(1 — m), where m is the mean vector of all items in the dataset D, and k is a scaling
factor. For a query D, = {xy,...,xx} consisting of N vectors, it is easy to show that:

B I'(aj + B;) T(ay + Bj)
p(fla, B) = H I'(a;)T(55) F(&j)r(éj)

J

(6.8)

where &; = «a; + Zi\;l zi; and fB; = B; + N — vazl x;;. The other two marginal
likelihoods, p(x) and p(x, D,), can be expressed in a similar manner. Combining all

three marginal likelihoods in equation (6.2) gives:

p(x, Dq)
p(x)p(Dy)
D(oj+B;+N) D@+)T(B+1-z.;) (6.9)
_ H I'(a;+8;+N+1) I'(65)T(85)
‘ Ploy+85) Dloy+a)I'(Bi+1-x;)
J T(aj+B;+1) T(a)T(By)

score(x) =

This rather long expression can be simplified by noting that I'(x) = (z — 1)I'(z — 1) for
x > 1. Also each case z.; = 0 and z.; = 1 can be taken separately. If z.; = 0, then:
a; + 5) s
score(x) = —_— - 6.10
> H(aﬂrﬁﬂr]\f 5 (610
and if z.; = 1, then
_ a; + 5 a
score(x) = H (m) <5) (6.11)
j
Putting these two cases together, we obtain:
) ~\ l—z.;
a; + Bj (d]‘ > g 15}
score(x) = —_—| — - 6.12

Taking the log of this expression, we get a score which is linear in x:

log score(x) = ¢ + Z ¢ (6.13)
J
where
¢ =Y log(a; + f;) —log(a; + B; + N) + log(5;) — log(8;) (6.14)
J
and
¢; = loga,; —loga; —log /Bj + log B; (6.15)

Thus, if we put the entire dataset D into one large matrix X with J columns, the log

scores s of all items can be computed in a single matrix multiplication as:

s=c+ Xq (6.16)

6.5. BAYESIAN SETS 117

For each query D, the algorithm computes q, the scalar ¢ and the expression (6.16)
above, which on sparse binary data, is very efficient. Moreover, we may also omit the
computation of ¢ if we only care about ranking the items. The score of a single vector

item x dependents on q and on whether the features are present in the vector.

6.5.3 Analysis of the Query Vector

In fact, let us analyze the vector q in order to provide some intuition as to how Bayesian
Sets performs behind the hood. This is important because the vector q provides some
indication as to why things have matched, which, in turns, is crucial in order to provide
useful feedback to the user in a system such as Cloud Mining. The expression (6.15)

can be re-written as:

G B
qj=10ga—7—10g5—7
I J (6.17)
T NS 1.
— log (1 + —ng”) ~log (1 + —ﬁZ 33”)
J J

So if the data is sparse then we can expect the first term to dominate this expression.

Therefore, we can approximate the contribution of feature j by:

(6.18)

uerymean ;
q; =~ log (1 + CODStL>

datamean;

Intuitively, a feature which is frequent in the query set but rare in the overall dataset will
have a high weight. However, a feature which is frequent in the dataset but rare or not
present in the query set will have a smaller or zero weight. This is loosely analogous to
tf-idf (Spérck Jones, 1972) under the vector space model (chapter 1) in which the terms
which are frequent in the document but rare in the whole corpus provide the largest
contribution to the scoring function. However, note that in the vector space model the
weights are query independent and the query itself has the sole role of selecting those

weights.

6.5.4 Results

Bayesian Sets has been tested successfully on a number of applications ranging from
searching through a database of images (Heller and Ghahramani, 2006), performing

analogical reasoning with relational data (Silva et al., 2007) or intelligently growing a

118 CHAPTER 6. SIMILARITY AND MULTIMEDIA SEARCH

list of relevant items from a small seed of examples (Letham et al., 2013). Ghahramani
and Heller (2005) report that the quality of the results to be comparable to Google Sets.
This is remarkable considering that Google must have a very large amount of training
data at its disposal. Bayesian Sets directly works on items and as such opens up a new
paradigm for search. After full text search and content based, we now no need to worry
about a metric space, and we can solely focus on the feature engineering of the items
themselves. The algorithm is very efficient and can be scaled to millions of items. In
fact CloudMining, which will be presented at the end of this thesis, uses Bayesian Sets

on millions of documents each with thousands of feature values.

6.6 Examples

In this section we will review some content or item based search systems applied to
document collections as varied as small molecules, multimedia images or U.S. patents.
Since content and item based search is fairly new, not so many interfaces have been
tested. We will therefore pay special attention to the interface patterns employed by
these services. We will also present, if the service is not proprietary, a brief overview of

the technology back-end used and its possible limitations.

6.6.1 UCI’s ChemDB

Small molecules are widely used as synthetic building blocks of drugs. They can also
function as leads for drug discovery and other interesting compounds. Outside their
usage in chemistry, small molecules could operate as probes in system biology. ChemDB
(Chen et al., 2005) offers a service to search nearly 5M small molecules. The search
is content based but the service additionally permits fuzzy full text searches on 656M
annotations. The search could also be performed on a “virtual chemical space”, which is
composed of hypothetical products synthesizable from the building blocks in ChemDB.
Multiple molecule queries are also possible, and could be especially useful when finding
compounds sharing several key functional groups. The features are defined by leveraging
different spectral representations of small molecules (Azencott et al., 2007). As we
have seen, this later consists of counting the occurrences of substructures within small

molecules. This could include counting substrings in SMILES, paths in 2D atom-based

6.6. EXAMPLES 119

graphs or atomic distances in 3D.

The interface lets the user directly input a molecule by drawing it. Various search
filters are also provided. The filters are used to restrict the results by the number of
rotable bonds, predicted XLogP or molecular weight. In Figure 6.7 the user has drawn
two molecules. The right panel shows the results ranked by similarity scores. As noted it
is possible to perform multiple molecule queries. However, it isn’t necessarily clear how
precision is affected if more than two molecules are queried. In fact, we should expect
the “relevant” results to be molecules with the largest number of matched functional

groups regardless of their importance in the full corpus.

B nitpesicdb.ics.uct.edu - e che. [C (5] | Similarity Search Exact Search

(o]] [TR Clcccie Sien8 (camomical) - Bources | /Coo.ocks 4
-l==~a00c0cC00 -t ACROS
| AKOS
:I Similarity subsixcize - RotatsbleBonds - sx< 5 P
| ’ - 09 a XLogP - Lx< 5 ALFA .
v I T |- -|JH 01 Molecular Weight - sx<| 500 Results 10 perpage
: I S Segments - sx< -Senn:h
II Source(s) ?lmwl.wﬂ
. 5
[Praview | [Sstma | [Cioss | SM c1)Nc2nc3cceccdc AMBINTER 54417.0 0,857
8] sgoiet W siae yr— N %&ng&fgﬂﬁ (6.582)
7 : RYAN P_DO356
m i [F)
i, L »
Link fo Souwrce -
{canonical) AMEINTER - D.847
e S S ﬁs;n?;:g;:;cpomz CoX e | (B.492)
.-.%,-,,&Lw CDB Chemical ID 5579125 RYAH |
A Molecular Weight 268 267
) Rotatable Bonds 2
.,I XLogP 285
Result# 3 Link o Sowee
Y :
) esemmonea cooccriconene SN A 0547
A CDEB Chemical ID 6469962
AL Molecular Weight 255 205
| | Rotatable Bonds 2
T XlLogP 381 % »
Result# > Link o Source b

0.00.10.20.20.40.50.60.70.80.91.0

Figure 6.7: Searching for molecules with “similar” functional groups in ChemDB

6.6.2 Google Image

Google Image was released back in 2001 as a purely full text image search engine. The
search was performed like Biomed Search on the title of the image, the anchored text

and the text surrounding it. In April 2009, Google released Similar Image Search from

120 CHAPTER 6. SIMILARITY AND MULTIMEDIA SEARCH

its lab. In 2010, Google acquired the content based product search company like.com
for $100M. Recently Google has been adding new features such as looking up images

by color or by visual similarity to an uploaded image (as in Figure 6.8).

Go 11816

Images

Search by image
Search Google with an image instead of text.

Paste image URL (%) | Upload an image

Search

Figure 6.8: Submitting an image in Google Image for similarity search

We cannot comment on the actual back-end algorithm used due to its proprietary
nature, but we can focus on the interface. The interface portrays an interesting pattern
for similarity based searches. In Figure 6.9, the user has performed a full text search
followed by a selection of an image query. The search is then clearly marked as a search
for “visually similar images”, and the user can switch off that mode by clicking on the
cross. The query image is then shown as an additional refinement on the left. Each
image on the result set can be picked for similarity searches. The user can then further
refine his search by clicking on the various filters.

The results are impressive, but unfortunately multiple image queries are not possible.
Also there seems to be some confusion as to what happens when the user choses a similar
image. Will this add the image to the existing query (a refinement) or will this start
a new query while keeping the full text query? Nevertheless the interface features an
interesting pattern which will be extended in CloudMining to support multiple item

based searches.

6.6. EXAMPLES 121

Go)g[(’, beach @ “ Alex Ksi n + Share ﬂ B
| in similarity search mode |
% cancel similarity search mode
Search ic:.: 463,000,000 results (0.55 seconds a 9 Sﬂfﬁ-‘ﬁﬂ'l

Web Visually similar
Images
Maps
Videos
News

Shapping

Mare

the i |mage is shown as refinement
Custom r; nge

All \mages
s

Figure 6.9: Google Image makes use of a mode to indicate that search has switched to

visually similar images

6.6.3 Xyggy Patent Search

Xyggy is a fairly recent startup which focuses on item based search and content dis-
covery. Xyggy uses Bayesian Sets at its core technology and unsurprisingly features
multiple item based searches. Multiple demos ranging from searching for similar songs,
images and patents used to be available on the website. However, the startup has re-
cently pivoted to become an app discovery engine for the Android marketplace. The
patent demo was especially interesting due its size and the content searched (all U.S.
patents). The features were engineered as bag-of-words from the abstract of each patent.
Multiple patent queries were possible to find commonalities between patents. The in-
terface consisted of drag and dropping the patents into a search box.

The patent search service looked promising, however the interface was probably too
difficult to use for non-experts. First, there was no feedback given to the user as to why
the patents matched the query. This is important because the system needs to convey
some kind of understanding to the user about the underlying matching algorithm. Sec-
ond, in order to retrieve some patents, a full text search was first required. This was
performed using the same search box as the one used to drag and drop the patents.
This would lead to a mixing of items with full text search keywords, thereby making
the actual search difficult to comprehend. Third, there was unfortunately no way of

refining the search results to a specific year or to any other metadata. Nevertheless,

122 CHAPTER 6. SIMILARITY AND MULTIMEDIA SEARCH

XYZEY rucen

™

+ search SEARCH

+ 5819271 Corporate information communication and delivery system and method including ...
Patent Number: 5802518

Title: Information delivery system
and method

Issue Date: September 01, 1988
Inventors: Karaev; Baird; Blazek;
Kitain; Prohorov; Leisy,; Urazowv,

+ RE40683 Process for maintaining ongoing registration for pages on a given search engine

5864871 Information delivery system and method including on-line entitiements

Zucknavich
5802518 Information delivery system and method Assignee: Multex Systems, Inc.
7305360 Electronic sales system US Claaaifcation: 10753
Abstract: The secure electronic
7330830 Distributed commerce system distribution of research documents
6253198 Process for maintaining ongoing registration for pages on a given search engine over the world wide web to

investors who are authorized to
receive said research documents.
7376892 String template pages for generating html document A repository server receives
research documents from
contributors. Also received are
5963923 System and method for trading having a principal market maker corresponding...

7287089 Electronic commerce infrastructure system
6591289 Method of delivering formatted documents over a communications network

5761661 Data management system and method

5870744 Virtual people networking

Figure 6.10: Searching for multiple patent items with Xyggy Patent Search

Xyggy Patent Search was still an interesting fun service to use. The interface would
probably have gained a lot by borrowing the patterns employed by Google’s Image
Search and by applying them specifically to patents.

6.6.4 Airtime

Airtime was launched in June 2012 with the goal of bringing people with similar interests
to meet through live video chat (Airtime, 2012). Although not a search engine, Airtime
uses proprietary technology to find people users would most likely enjoy chatting with.
The service connects with Facebook in order to retrieve the user’s interests. The location
of users is also taken into account, as well as their mutual Facebook friends.

Although the technology is proprietary, we could imagine that Airtime uses the
two phases approach discussed previously. The first phase would consist of crudely
retrieving a set of potential candidates. The second phase would use an MLR model for
each user in order to rank the best recommended candidates. The optimizing metric
of the learning algorithm could be modeled after the expected length of conversation

with the retrieved candidates.

6.7. CONCLUSION 123

alrtime

aPrivate eorr| || @Private LY NEXT |
You are private unt

il you send an add request Report this user

Interests Interests
Freakon

s and Dives || X-Play || Nintendo 64 | Jay Z|| NERD | Gorillaz | The Biltmore Cabaret
orXbox 360 | Penn Jillette | HTML 5 || CopperWire || Office Space | Kickstarter | More v

Videos

Achievements

psnsemes 011970 2 EkIES
nnnal7 ¢ EREGIF9EA

Figure 6.11: Matching people with respect to their interests at Airtime

6.7 Conclusion

In this chapter we have gone beyond full text search to present content based search.
In content based search, retrieval is performed on the whole content of the objects
themselves. In order to do so, the characteristics or features of these objects must
be properly extracted. We have then reviewed a couple of the most simple features
employed in text and in multimedia applications. In order to perform retrieval, we
then covered different distances in feature space and the nearest neighbor approach.
However, we stumbled upon some issues with respect to high dimensionality feature
spaces. This led us to consider MLR techniques, and then a new paradigm for search
called item based search. In this new paradigm, we no longer care about a metric space
but solely focus on the features and/or on the matching algorithm itself.

This later characteristic, with some others described in the next chapter, makes item
based search, implemented with Bayesian Sets, a great fit towards building a frame-
work for exploratory search systems. Recognizing to move towards a generic approach
to similarity and multimedia search, which is up to feature engineering, is our main
contribution of this chapter towards the thesis. This approach reduces the handling

of complex content based searches to choosing the right plugin. These plugins could

124 CHAPTER 6. SIMILARITY AND MULTIMEDIA SEARCH

obviously be provided and/or shared by a community of developers. The framework
is now not only generic but also open ended because completely new data types could
be handled in the future by writing the right feature extractor or plugin. This is a
powerful characteristic made possible thanks to the incorporation of item based search
within the framework.

Being able to search for similar items is a very important part of a user experience
which is sought to be non-linear and exploratory. However, it still remains a challenge
to create an interface to support these kinds of user interactions. Furthermore, it would
be nice if the user could mix items with full text search queries and faceted metadata
selections. Additionally, we would be interested to keep the ideas on information visu-
alization previously presented. In what follows we will be presenting CloudMining, a
framework which attempts at merging all these concepts into one system. We will also
present SimSearch, an item based search engine which implements Bayesian Sets, and
show how it can be distributed to scale to very large datasets of tens of millions or even

billions of items.

125

Chapter 7

Cloud Mining

We are now well equipped to present Cloud Mining. The approach taken in this chapter
is to provide a concrete example that the immediate future for exploratory search
might be a natural extension to traditional faceted search systems, with the added
functionalities of information visualization and query by example or item based search.
Cloud Mining embodies three of what we believe would be the main ingredients of
exploratory search. Again, in a nutshell, these are that the user experience should be
faceted, visual and item based. However, the system must also adapt to the dataset
and task of interest. To this end, Cloud Mining was designed to be a framework, rather
than a particular ESS bounded to one type of application. For example, Figure 7.1
shows the front page of three different systems, instantiated with Cloud Mining, for
data as varied as movies from IMDb to scientific articles found in PubMed.

The contribution of this chapter towards the thesis is threefold. First, we hope that
by building Cloud Mining, we will also show how a traditional faceted search system
(chapter 4) could be extended to accommodate for visualization (chapter 5), and for
item based search (chapter 6). To this end the ESSs, instantiated with Cloud Mining,
feature a couple of novelties such as letting the user select between different facet views
at run time, as well as combine text search with whole items. Second, we would like
to illustrate on the idea that the future is not one monolithic system, but rather a
framework or a platform which hosts its various exploratory search functionalities. To
this end, Cloud Mining has been architectured in a modularized manner where the
facet views are plugins and item based search could employ different feature extractors.

In the long run, the goal is to provide an API for designers to create new plugins,

126

2 o
o
'\o“‘eé\c
v
b
o%
. F“«
e
g’\t\o
o ®°
e
oot
i
\Led\\N\
A S
1
gwe™
N
P\“\«
el

CHAPTER 7.

~ut Feedback IMDb - movies

CLOUD MINING

Search movies from IMDB Note this interface hOVerT 7
Com,
A Puter o Cieng i o,
~ Refing © pup, iy,
= Refine by YEAR: show: ros - by licg < ol {r"‘**-._
ilip s Yo ORS_ Trom, e]
s Refine by KEYWORD: show. ~ Mhomgg o Show: o CMhancey Wity .
Elis - Mang ™o ‘Q@%
Independent Film 3 By, . .
&
Ch Name In Til Chin.gy, 639 et
aracter Name In Title > en Cﬁi‘ﬂg 60 afgon-rh ORDS
i
Based On Movel Ang n 8,
lys;,
605 dafa Sig
Beautiful Woman Vngm B, Mg, €Sign pre,
iy 2 607 May ey,
Murder ! Han 5 nefwo rk -efn;},g i
Sex “hay, ar g i’ g merhod
o"fha
Sday, 518 Sfine p, ‘e g
Female Nudity 51 Y YE .VS
0
Male Female Relationship 2 Sling by 1y N, " mor, 89 Shoy, ;
show m OrR & 139, i
IScag Shoy,: co
= Refine by ACTOR: i, Unts 1955
ERsp,
Mel Blanc 1o &g 32 199 2004
John Wayne 'fCRq iq. 705 19g,
Donald Sutherland Eigsy M, 704 200
Mazx von Sydow Ong ?2_590 ‘55024 0.
John Hurt Cacy .6g4 2006
2p,
Clint Eastwood 645 01
Samuel L. Jackse shOWm f‘5’-4?‘;{ 2002
Ore 20y, 2
Johnny Depp 9.393 N v03

Figure 7.1: Front page of three different instances

7.1. DATASETS AND INSTANCES BUILT 127

and a website ecosystem or a gallery to share them. Third, Cloud Mining and all its
components are freely available under an open source license. The hope here is to let
the community continue on this work and attempt to achieve the vision set forth in this
thesis.

In what follows, we will first cover the datasets used to build three different instances
with Cloud Mining. These were chosen for their scale (millions of documents) and for
their variety of coverage. An overview of the technical characteristics of the framework
will then be provided. Following that is a detailed discussion as to how Cloud Mining
supports faceted, visual and item based search on the back-end and on the front-end,
as described in chapter 4, 5 and 6 respectively. Then, we will show how to build an

instance from scratch and finally conclude with future plans.

7.1 Datasets and Instances Built

In order to test Cloud Mining, we had to acquire several datasets. These are DBLP
covering computer science publications, IMDb for movies, and MEDLINE for biomed-
ical articles. We chose these datasets because they are publicly available, particularly
large, and offer a wide variety of metadata. However, they still required various en-
hancements in order to use them for faceted search. The instances built from these
datasets are available as online demos at the Cloud Mining project page. The datasets
can be recreated by running the scripts found in scraping/ directory. The customized
instances are available in the examples/ directory.

The process in which these instances were built will be described in a subsequent
section. We will also not delve into the details of the interface as the opportunity will
arise in another section. Building these instances was crucial in order to assess on
the genericity and usability of the system. Following is a detailed description of each

dataset and the instance built from it.

7.1.1 DBLP with CiteSeerX

DBLP (Digital Bibliography & Library Project) is a large computer science bibliography
website from the Universitat Trier, Germany (Ley, 2002). The database existed since

1980s and was originally focused on logic programming. Nowadays the scope of the

128 CHAPTER 7. CLOUD MINING

database has been significantly widened to many more fields in computer science. The
database lists over 2.1 million articles from the most important journals and conferences.
The database is publicly accessible in an XML format. Due its accessibility, metadata
available and relatively small size, DBLP is a good candidate for an exploratory faceted
search solution.

One drawback of DBLP is the lack of full text for each article. In fact, and unlike
MEDLINE, even abstracts are not available. Therefore the ordering of the results could
at best be set by decreasing publication dates. A better metric of the importance of a
scientific article is the number of citations it has received. In order to provide such an
ordering, we have enhanced DBLP with citations found from articles in CiteSeerX (Li et
al., 2006). This was performed by scraping CiteSeerX for pages showing the most cited
articles and cross-referencing them with the articles in DBLP. Another small addition
to the original database consisted of letting the user refine by keywords. Because of the
lack of full text, we chose the keywords found in the title of each article, filtering out
stop words. These keywords were also used for similarity search along with some other
metadata.

The total size of the enhanced DBLP database is 2GB. The database is not available
for download but can be re-created by running the scripts found in the scraping/dblp
directory of the Cloud Mining project page. The schema of the database is very simple
with one table for all single value items such as id, title, or year of the article, and
a couple of multi-value tables for each facet such as author names, year, venue and
keywords. The author facet table is the largest and takes up to 1 million distinct
values.

As previously noted, similarity search is performed on the keywords found in the
title, author names, venue names and year. The similarity search matrix is 1.8 million
rows (documents) for 1.4 million columns (features). Most similarity search queries do
not take more than .2 seconds on a standard Linux server. Figure 7.2 shows a fully
customized Cloud Mining instance running of the DBLP data. The sorting function
has been customized to allow ordering by citations (default), relevance or by year (1).
The document surrogate has been given a more DBLP like citation look with links to
full text articles as well as links to CiteSeerX (2). Finally, the default available facets
have been slightly changed with different colors and views (3). Further details of the

7.1. DATASETS AND INSTANCES BUILT 129

interface and its user interaction will be described in a subsequent section.

- About Feedback | DBLP-CompSci |Z|
earch or add keywords ... eywor
cloudminin Search or add keyword: GO | [AddKeyword
; available facet views I
. - results ordered by citations o
Searching for: « zoubin % (found in citeseerX) ;
"% Found 125 results sorted by: number of citations T Pages: 1 2 3 .. 13 © o Refine by AUTHORS: show counts -
David A. Cohn. Zoubin Ghahramani, Michael |. Jordan : Active Leamning with Statistical Models CoRR Zoubin Ghahramani 125
cs Al/9603104(): (1996)))
David L. Wild 18
Read article - 9 Cited 353 times - @ Similar / Add to query
= = ’ Katherine A Haller 11
David A. Cohn, Zoubin Ghahramani. Michael |. Jordan : Active Leamning with Statistical Models. J. Artif. Intell. Michael | Jordan 10
Res. (JAIR) (JAIR) 4():129-145 (1996)
Wei Chu 10
3 Read article - ¥ Cited 353 times - @ Similar / Add to query
Carl Edward Rasmussen 7
David A. Cohn, Zoubin Ghahramani. Michael |. Jordan : Active Leaming with Statistical Models. NIPS 1994 Jiri Matas 7
3 Read article - ¥ Cited 353 times - @ Similar / Add to query Ramin Zahih 7
Zoubin Ghahramani. Michael | Jordan : Facterial Hidden Ma odels. Machine Leaming (ML) show more
2 L
29(2-3):245-273 (1997)
cuslomzedidecumertistarogates o Refine by KEYWORDS' show. tag cloud ~

3 Read article - ¥ Cited 320 times - @ Similar / Add to query
agorithm ~ bayesian eaor
gaussian hidden infinite introduction
learning markor mixwre Model
Kiaojin Zhu, Zoubin Ghahramani, John D. Lafferty : Semi-Supervised Learning Using Gaussian Fields and networks process processes sparse

Zoubin Ghahramani. Michael | Jordan : Factonial Hidden Markov Maodels. MIPS 1995

[Read article - 94 Cited 320 times - € Similar / Add to query

Harmonic Functions. ICML 2003

¢ Cited 270 timg& =N Similar / Add to query = Refine by VENUE: show: counts -
y E. : - -N , - .
Geoffrey E. Hinton - Vanational Learning for Switching State-Space Models. Neural o Refine by YEAR: show. [Tose -
99 tim B Cirilar f A ,o ary z011 1934
customized external actions 2010 1997
oI SN e W TS Propagation Algerithms for Variational Bayesian Learning. MIPS 2000
¢ Cited 84 times - @ Similar / Add to query 2003 7 1993

Naonori Ueda, Ryohei Nakano, Zoubin Ghahramani, Geoffrey E. Hinton : SMEM Algorithm for Mixture Models.

Neural Computation (NECD) 12(9):2109-2128 (2000) 2008 o 2000
¢ Cited 76 times - @ Similar / Add to query

2007 2001
Naonori Ueda, Ryohei Nakano, Zoubin Ghahramani, Geoffrey E. Hinton : SMEM Algorithm for Mixture Models.
NIPS 1998
Ed Read article - ¥ Cited 76 times - @ Similar / Add to query 2008 2002

. 2005 - 2002
Pages: 1 2 3 ... 13 &, 2004

Figure 7.2: Look and feel of the DBLP instance

7.1.2 IMDb

The Internet Movie Database (IMDb) (Amazon, 1990) is a website which gathers in-
formation related to films, television programs, and video games. The project origi-
nated back in the early 1990s as a Usenet posting known as the “rec.arts.movies movie
database”. Later the access to the database was greatly facilitated by the use of freely
available UNIX shell scripts. In 1993 the database had its own website. In a similar

manner to Wikipedia, IMDb greatly benefited from the contributions and passion of

130 CHAPTER 7. CLOUD MINING

Internet users, who would edit or add new entries to the database. By 1998 the web-
site had become mainstream and was later acquired by Amazon. Since then IMDb
has become the premier source for reviews and information about movies and online
entertainment for over 100 million Internet users every month.

The database is exhaustive with over 2.5 million titles and about 5 million person-
alities. The plot keywords associated with each movie are especially rich and specific,
which make them good features for similarity search. One hurdle encountered while
setting up the back-end was the lack of publicly accessible database dump. Unfortu-
nately Amazon only provides the IMDb dataset as a set of plain text files. These files
do not have any movie ID which subsequently makes it hard to know what information
belongs to each movie. At the end we concluded that it was probably harder to create
a database from these files than it was to scrape the entire IMDb website, even if the
process could take weeks. We opted for the later route and our scraping methodology
is described in a subsequent section. In order to keep it focused solely on films, the
database was trimmed by removing records related to video games, TV programs or
related to the movie adult entertainment industry. Fairly recently IMDb changed the
layout of their site, which prevented us from re-scraping and updating our database.
For this reason, we should probably have used the more open TMDb (2008) database,
which seems to have kept the original spirit of IMDb.

The total size of the trimmed out IMDb database is 3GB. There are about 1.2
million movie references. All the files used to create this database is available in the
scraping/dblp directory of the Cloud Mining project page. The database has a very
single schema, similar to DBLP, which consists of one table for single value items and
multiple tables for each facet. The actor facet table is the largest one with over 1.5
million possible distinct values.

As we have noted, similarity search is performed on the plot keywords associated
with each movie. These are specific and well spread out across the most popular movie
titles. For example, the movie WALL-E has over 100 specific plot keywords such as
“Robot”, “Plant”, “Rescue”, “Future” or “Cockroach”. The similarity search matrix is
250,000 rows (movies) for 80,000 columns (plot keywords). The Cloud Mining instance
runs smoothly even under heavy load. Most queries complete in less than .2 seconds on

a standard Linux server. Figure 7.3 shows a fully customized Cloud Mining interface

7.1. DATASETS AND INSTANCES BUILT 131

for IMDb. The results can now be ordered by popularity (default), dates, user ratings
or number of votes (1). The document surrogate has been customized with a more
appealing look and feel with a cover image, user ratings, links to photo galleries or
even links to trailers (2). The choice of available facets and their views has also been
slightly changed from the defaults (3). Again, further details of the interface and its

user interaction will be described in a subsequent section.

D ClOUdmining Search or add keywords __.

1
| results ordered by popularity Q
>

Searching for: '« Romance X

"% Found 29,118 results sorted by: popularity - Pages:1 2 3 .
=== -
Forrest Gump (1994) - 142 min - Rated PG-13 % More of this!
1 Tom -
L Han, [(8.6/10 - 268,229 IMDb votes)
l‘i)fn‘ﬂl Genre: Comedy ! Drama / Romance /' War
)
oM Directed by Robert Zemackis with Tom Hanks, Robin Wright Benn, Gary Sinise

Forrest Gump, while not intelligent, has accidentally been presenfiat many historic moments,

but his true love, Jenny, eludes him. full story on IMDB

2 @
chstomized document surrogate

Eternal Sunshine of the Spotless Mind (2004)- 108 min- Rz
[(8.5/10- 197,756 IMDb votes)

Love / Vietnam / Destiny / Simple Man / Fishing

3 Go to IMDb - Bp See some photos - [Watch atrailer -
@7 More of this!

Genre: Drama / Romance

Directed by Michel Gondry with Jim Carrey, Kate Winglet, Gerry Robert Byrne

A couple undergo a procedure to erase each other from their memories when their
relationship turns sour, but it is only through the process of loss that they discover what they

had to begin with. full story on IMDb
Memary / Train / Crush / Beach / Elephant

(3 Go to IMDb - See some photos - E Watch a trailer - Torrent search

k.l

Titanic (1997)- 194 min - Rated PG-13
[(7.3M0-216 630 IMDb votes)

@&y More ofthis!

Genre: Drama/ Romance

Directed by James Cameron with Leonardo DiCaprio, Kate Winslet, Billy Zane
Fictional romantic tale of a rich ginl and poor boy who meet on the iil-fated voyage of the
‘unsinkable’ ship. full story on IMDb

Titanic / Ship / Love / iceberg / Diamond

[Goto IMDb - See some photos - E Watch a trailer - Torrent search

Le fabuleux destin d'’Amélie Poulain (2001)- 122 min - Rated
[(8.6/10- 163,472 IMDb votes)

@&y More ofthis!

Genre: Comedy / Romance
Directed by Jean-Pierre Jeunet with Audrey Tautou, Mathieu Kassaovitz, Rufus

around her and along the way, discovers love. full story on IMDB

Love / Waitress / Garden Gnome / Happiness / Hypochondriac

3 Go to IMDb - BP See some photos - B Watch a trailer - 5% Torrent search

VMAL L LB (AA0Y 00 mmim Dmbnd O B Mheen ~Fdlint

Amelie, an innecent and naive girl in Paris, with her own sense of justice, decides to help those

IMDb - movies E

; available facet views I
P

About - Feedback

show: rose -

@ Refine by YEAR:

= Refine by GENRE: show: counts -
Romance 29,118
Drama 15,587
Comedy 9,720
Action 2,288
Adventure 1,892
Musical 1,881
Crime 1,749
Thriller 1,319
show moare

® Refine by KEYWORD:

Based On Novel Beautiful Woman
Character Name In Title Father

show: tagcloud -

Dancing
Daughter Relationship
Female Nudity

Father Son Relationship
Husband Wife:
Relationship Love

Male Female Relationship
Murder

Friendship

Independent Film

Marriage Sex

= Refine by DIRECTOR:

show: counts -

Michael Curtiz 46
Alfred Hitchcock 23
John Ford 19
Waoody Allen 19
Howard Hawks 18
William Whyler 18
Stanley Donen 16
Billy Wilder 15
show moare

Figure 7.3: Look and feel of the IMDDb instance

132 CHAPTER 7. CLOUD MINING

7.1.3 MEDLINE with PubMed Central

MEDLINE (Medical Literature Analysis and Retrieval System Online) is a large biblio-
graphic database of life sciences and biomedical articles. It is maintained by the United
States National Library of Medicine (NLM) and is freely available for download. It is
also freely accessible and searchable via NCBI's PubMed (1996) or NLM’s Entrez system
(2003). The database contains over 21 million articles from over 5,500 selected journals
dating back from the 1950s. Each article has all the expected fields of a scientific article
including the title, author names, date of publication and even abstracts. MEDLINE
makes use of MeSH (Medical Subject Headings) terms for classification purposes.

One drawback of MEDLINE is the lack of full text and citation information. As
a result, search systems such as PubMed or Entrez order the search results by dates
only. This could be useful if one is interested about freshly published articles, but could
quickly become cumbersome to spot the most influential articles in a given field. In
order to provide an ordering of the search results by number of citations, we performed
a citation analysis of the articles found in PubMed Central (PMC). The PMC dataset
provides access to the full content of over 2.6 million articles in MEDLINE (NCBI,
2005). The articles on PMC are open access which means that they are free to read
and even, depending on copyrights, free to modify. The citation analysis gave us an
estimate of the number of citations as well as many of the citing articles for each article
found in MEDLINE. Another drawback of MEDLINE is the fact that the author names
are usually in an abridged version. In an author facet, this issue makes many common
names artificially inflated. For example, Chinese names such as Wang or Zhang are
very common and are proposed as first facet choices in our instance. We haven’t found
a solution for this yet.

The total size of the MEDLINE database with citation information is 63GB. We
decided to scrape PubMed instead of loading the full MEDLINE database. The main
reason for this is space efficiency as the standard MEDLINE database contains a lot of
unnecessary information. The total size of PMC data is about 12GB. Our database is
not available for download but can be re-created by running the scripts found in the
scraping/medline directory of the Cloud Mining project page. The database schema is
very similar to the one used for DBLP and IMDb. The author facet table is the largest

7.1. DATASETS AND INSTANCES BUILT 133

and can take up to 5 million distinct values. Some MySQL table such as the one used
to hold MeSH terms can have over 250 million rows.

Due to its size, we did not attempt similarity search on this instance. However,
we added a couple of new features not found on the PubMed website. Besides faceted
search, the first feature, previously noted, is that search is now ordered by number of
citations. Another feature, related to the previous one, is that it is possible to browse
through the citations of any article and continue refining by facet values. Other more
simple features include a link to the PMC article, if available, and the fact that the
search is performed over all fields including abstracts.

As we have noted in chapter 4 faceted search can be an expensive operation. In
order to make the search as fast as possible, we had to implement a couple of tricks.
The first trick consisted of indexing the documents by increasing number of citations,
and then use the natural order of the index to retrieve the results. With this trick no
expensive sorting operation is actually taking place. This made it possible to place a
cutoff to forcibly stop search after 1000 matches is found and processed. For the actual
facet computation, the cutoff was set to 100,000. Another trick consisted of distributing
the search over the 2 cores of our Linux machine.

Figure 7.4 shows the Cloud Mining interface for our MEDLINE dataset. As ex-
pected, the results are ordered by number of citations (1). Each document surrogate is
customized with a full list of MeSH terms as well as links to the full text article, when
available, and to the citing documents (2). Again the details of the interface will be

described in a subsequent section.

7.1.4 Other Datasets

We also tested Cloud Mining on some other datasets. The first one is a list of Nobel
prize winners with metadata such as gender, country of residence, affiliation or the type
of prize won. In order to do so the data was scraped from the Nobelprize.org website
(Nobel Media, 1999). An old Cloud Mining interface applied to this dataset can be
seen in Figure 7.5. We also attempted to make an instance for the WikiLeaks cable
data. Since the metadata wasn’t rich enough, we used a terminology extraction tool in

order to extract people names, places and dates. However, due to the sensitivity of the

134 CHAPTER 7. CLOUD MINING

About Feedback MEDLINE - biomedical E|

Dcloudmining Ep—sT——

results ordered by number of citations

Searching for: « Durbin R % (from in PubMed Central)
abe. s
» Found 175 results Y, Pages: 1 2 3 .. 18 & & Refine by AUTHOR: show counts =
y
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC /imitial sequencing and analysis of the Durbin R 115
human genome. Nature. 409 (6822y860-821 (2001) .~ i
Bimey E 26
3 PMID: 11237011 - 9 Cited 798 time(s) on PMC
Bateman A 15
Bateman A Coin L, Durbin R, Finn RD, Hollich V [£]° The Pfam protein families database Nucleic Hubbard T 15
Acids Res. 32 (Database issue):D138-41 (2004)
Animale Ci i Biology *Datat , Protein more mesh ... Chen Y 4
3 PMID: 14681378 - [0 Free full text - iy Cited 390 time(s) on PMC Ehgen V "
Slater G 11
Finn RD, Mistry J. Schuster-Bockler B, Griffiths-Jones S, Hollich V [+]: Pfam: clans, web tools and =
services. Nucleic Acids Res. 34 (Database issue):D247-51 (2006) Sonnhammer El 11
Computer Graphice *Databases, Protein Internet more mesh .. show more
E3 PMID: 16381856 - [2) Free full text - W Cited 320 time(s) on PMC ‘
= Refine by JOURNAL: show: tagcloud =
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD [+]: The genome sequence of Drosophila
melanogaster. Science. 287 (5461):2185-95 (2000))
Animals Biological Transport / genetics Chromatin / genetics more mesh ® Refine by ME SH: show: tag cloud ~
E2 PMID: 10731132 - i Cited 224 time(s) on PMC @CUS'fom'Zed document surrogate o Refine by YEAR: show rose =
Hubbard TJ, Aken BL, Beal K, Ballester B, Caccamo M [+]: Ensembl 2007. Nucleic Acids Res. 35 2009 1994
(Database issue):D610-7 (2007) 2008 T 1505
Animals Base Sequence *Datab , Nucleic Acid / more mesh ...
EA PMID: 17148474 - [2) Free full text - W Cited 204 time(s) on PMC 2007 1997

Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L [+]: The Pfam protein families database. Nucleic
Acids Res. 30 (1):276-80 (2002) 2006

Animals Binding Sites Computer Graphics more mesh .. y

1398

3 PMID: 11752314 - [Free full text - ¥ Cited 160 time(s) on PMC

2005 1939

Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R [+]: Systematic functional analysis of the
Caenorhabditis elegans genome using RNAI. Nature. 421 (6920):231-7 (2003)

2004 y 2000

E3 PMID: 12529635 - #iy Cited 154 time(s) on PMC I
2003 2001
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ [+: Genome sequence of the =002

Brown Norway rat yields insights into mammalian evolution. Nature. 428 (6982):493-521 (2004)

3 PMID: 15057822 - ¥ Cited 151 time(s) on PMC

(Database issue):D707-14 (2008)

Animals Computer Graphics *Databases, Genetic more mesh ...

Figure 7.4: Look and feel of the MEDLINE instance

7.2. A FRAMEWORK AND TECHNOLOGY USED 135

material, we did not continue on this work.

‘ ‘ Powered by . Cloud Mining on IMDb.

Similarity Search powered by Bayesian Sets.

Search: @ in all items (keeping inactive query terms) () in current results
About | Feedback

Select / remove gquery terms:

v physics 3 ~ United Kingdom ¥

Found 22 results in 0.002 sec. (Time to generate facets: 0.005 sec.) Pages:1 2 3 > = Refine by GENDER: how counts
n Lord Rayleigh (Jehn William Strutt) (1842-1219) male
Gender: Male
Country: United Kingdam = Refine by COUNTRY: P
Affiliation: United Kingdom, London, Royal Institution of Great Britain - -
Prize: Physics ltaly Pakistan Un'ted K|ngd0m

Year: 1900s, 1904
] @ Refine by AFFILIATION: show counts
Biography - Organization History - Nobel Lecture Cambl’idge Department of Scientific and

Joseph John Thomson (1355 - 1240) Industrial Research Edinburgh Edinburgh University

Gender: Male Imperial College Liverpool Liverpool University
Country: United Kingdom London London University Manchester
Affiliation: United Kingd Cambridge, University of Cambridi

TERERILIE DR B SEnIe i b ME AL R sl Marconi Wireless Telegraph Co. Ltd. Royal Institution
Prize: Physics

Year: 1900s, 1906 of Great Britain United Kingdom University of
Cambridge Victoria University

Biography - Organization History - Nobel Lecture

= Refine by PRIZE: show counts
William Lawrence Bragg (1890 - 1971)
Gender: Male physics
Country: United Kingdom
Affiliation: United Kingdom, Manchester, Victoria University = Refine by YEAR: zhow counts
Prize: Physics 1900s 1304 1906 1909 19108 1915 1917
Py Year: 1910s, 1915
; 1920s 1927 1928 1930s 19405 1950s
1970< 1a74

Figure 7.5: Cloud Mining applied to the Nobelprize.org dataset. The metadata associated

with each record such as Gender, Affiliation, Prize or Year is assigned to a specific color.

7.2 A Framework and Technology Used

This section provides an overview of the entire system. In the next sections each aspect
of the framework will be described in greater detail. The goal of Cloud Mining is to
provide a framework to let developers easily build exploratory search systems. The
end product of the framework, called an instance, embodies all the concepts previously
exposed of search, facets, visualization and query by example. Additionally the frame-
work itself is architectured as to allow for pluggable search. The framework is also
composed of software which can be used independently.

In what follows we will describe, with an example, the overall sought user interaction.
Next the pluggable search architecture of Cloud Mining will be outlined. Finally, we
will show how Cloud Mining is made of several different modules, and conclude as to

how instances are built.

136 CHAPTER 7. CLOUD MINING

7.2.1 User Interaction

The instances built with Cloud Mining all share the same kind of user interaction,
regardless of the type of data explored. The features of search, facets, visualization and
query by example are all included. In order to build the interface, we decided to take
a conventional faceted search interface and extend it with exploratory capabilities. In
what follows we will not get into the details of the interface per se but rather focus on
the overall sought user interaction. The details of the interface and its customization
will be covered in the next sections.

Figure 7.6 shows a mock-up of the user flow throughout the interface of a Cloud
Mining instance. The user is greeted with a front page with many facets and their
values to choose from (1). Each type of facet metadata is depicted with a specific color.
For example if the data were movies, the color blue could be assigned to directors. This
provides a logical link between the metadata of the same type throughout the interface.
Suppose the user has selected a specific term from the blue facet. The facet selection
is now shown as a tag or keyword at the top of the search results (2). Following a
conventional layout, the facets are now located to the right of the search results. The
actual facet selection is always marked at the top, but no requirement is set as to
whether they should also appear within the facet. Suppose the user has selected a term
from the red colored facet. The search results are now refined by the terms in the
blue and in the red facet (3). In Cloud Mining all the facet selections are conjunctives.
Item based search is featured by the use of two buttons located at the bottom of each
document surrogate. The first button called “similar” mimics the expected behavior
of returning similar documents only, disregarding all previous text queries and facet
refinements (4). The second button called “add to query” adds the document (or item)
to the current query. In this case, the previous results are re-ranked by how similar
they are to this particular item (5). For simplicity this mock-up shows the item as
being mixed with textual query terms. However, as we will see later, this behavior has
been slightly changed in the current interface. When performing item based searches,
the facet values are also re-weighted by similarity scores. This is because the facet
values are supposed to provide relevant refinements, which may or may not be based

on the frequency of appearance in the document corpus. Different views on the facets

7.2. A FRAMEWORK AND TECHNOLOGY USED

@

I

B0

&2

/B

[EC

Figure 7.6: User Interface Flow

137

138 CHAPTER 7. CLOUD MINING

are possible. In this example, the user has selected a graph view to possibly reveal the
interconnectedness of these facet values within the search results. For example, if the
data were movies, then an edge in this graph could represent whether two actors have
played in the same film. Finally, the user can try out different combinations of query
terms by selecting, adding, removing or toggling them on or off. By doing so, the user
can navigate through the corpus and jump from one place to another or from (1) to (5).
In this example, the user could have jumped from (5) to (4) by removing two query
terms. By default each document surrogate displays all the metadata featured in the
facets. Clicking on a director name here directly selects this query term only, leading

from (4) to (2).

7.2.2 Architecture

There are mainly two different approaches which can be taken while designing a frame-
work such as Cloud Mining. The first approach consists of writing code to generate
code. In this case, Cloud Mining would first generate the code of the instance according
to some instructions. These instructions could be given in a set of configuration files.
Then the designer would be able to take over the instance and customize it at his will by
re-writing or adding some portion of the code. This approach allows for full control over
the instance, but also leads to high maintenance costs. Updates to the Cloud Mining
framework are difficult to propagate to each instance. The designer is usually left with
many instances which are each slightly different depending on their customization. In
order to update an instance, the code has to be generated and the old code, pertaining
to customization, must be merged. This approach becomes impractical in a cloud based
environment where several instances have to be updated at once.

Instead we opted for another approach which consists of having each Cloud Mining
instance run from the same code base. This makes it possible to make every component
of exploration and future modules as easy to install as a pluggable widget. Figure 7.7
depicts such an architecture. At the center, the Cloud Mining framework is responsible
for the default behaviors of each instance. This includes faceted search, similarity search
and the rendering of the interface. Each satellite Cloud Mining instance simply indicates

to the framework how the default behaviors should be overridden. For example, a Cloud

7.2. A FRAMEWORK AND TECHNOLOGY USED 139

k customizh

. overriden |}
fSphinx directo
config css i
templates ...
7

customiz: -L\

{Sphinx n\ferriden
config directory
css
templates ...
 E—
2

Sphinx
config

Cloud Mining

DBLP

\

customiz
overriden
directory
css
templates ...

Cloud Mining

fSphinx
config

customiz
overriden
directory
css
templates ...

fSphinx
config

Figure 7.7: Different instances running from the same code base

140 CHAPTER 7. CLOUD MINING

Mining instance could specify a different set of templates pertaining to the look and
feel of the document surrogate. However, as we will see, every instance must specify
at least a fSphinx configuration file. In this approach, an update to the Cloud Mining
framework gets instantaneously propagated to every instance. For example, we could
create a social module that would let users comment and vote on every document. That
module would then be usable by every instance with minimal configuration required.
This fits perfectly well with our desire to build a pluggable search framework. The
end goal is to let designers create ESSs as simply as drag and dropping different search

widgets.

7.2.3 Software Engineering

From a software perspective, the goal was to decouple the functionalities of Cloud
Mining as much as possible. We opted to make Cloud Mining into a web application
which calls different modules for its different exploratory search tasks. Each of these
modules is a software on their own that can be used completely independently. For
example, fSphinx (Ksikes, 2011a) is used for faceted search, while SimSearch (Ksikes,
2011b) is a solution to perform item based search. Each of these software will be covered
in greater detail in the next sections. The following figure shows how each module is
built on top of existing technologies and how they interact with each other.

Figure 7.8 depicts the main application stack of the Cloud Mining framework. Cloud
Mining is built on top of the Python web framework web.py (Swartz, 2006). It uses
various libraries to help in performing many of its functionalities. For example, Dirmap
replaces the template reader of web.py to allow for overriding. Cloud Mining calls on
fSphinx to perform faceted search. As we will see, fSphinx is built on top of the Sphinx
retrieval engine (Aksyonoff, 2007). Similarity search is performed by SimSearch (Ksikes,
2011b) which, through the use of the SimClient class, is being used by fSphinx in order
to combine items with query terms. In essence Cloud Mining is just a web front-end
to fSphinx with further exploratory task abilities. There is also a caching mechanism

which has now been replaced by Redis (Sanfilippo and Noordhuis, 2011).

7.2. A FRAMEWORK AND TECHNOLOGY USED 141

Expose

‘ SQLCache ‘ ‘ SimSearch ‘

\

caching

WebError

similarity search

/ various libraries

| fSphinx <+— faceted search { CloudMining ‘

‘ Sphinx ‘ webpy ‘

Figure 7.8: Cloud Mining software application stack. Cloud Mining is built on top of webpy
and uses fSphinx and SimSearch for exploratory search. Cloud Mining, fSphinx and SimSearch

are contributions to this thesis.

7.2.4 How Instances are Built

A Cloud Mining instance is a web application which overrides the default behavior
provided by the framework. In order to build an instance, the designer first writes
an fSphinx client for the data of interest. The details as to how this is done is left
to a subsequent section. Then the fSphinx client is registered to the instance. For
item based search, a SimClient can also be registered in a similar manner. Finally, the
application can be run like any other Python web application. Figure 7.9 shows the look
and feel of the interface before and after customization. The generic interface, before
customization, shows the title of each item (1) as well as the available facet metadata
(2). The “similar” and “add to query” buttons are not shown because no SimClient
was registered to this particular instance. The bottom screen shows the interface after
customization. Each document surrogate now has a more appealing look and feel with
user ratings and a description (3). The color palette has been modified (4) as well as the
available facet visualizations (5). The designer also added to the fSphinx client several

different sorting functions which are reflected on the interface (6). This instance was

142

CHAPTER 7. CLOUD MINING

D CIoudmining Search or add keywords ...

Searching for:

"% Found 153 results

The Shawshank Redemption

year. 1994

« Drama X

« Death 3

16 &,

Pages: 1 2 3 ..

o document title

genre: Crime - Drama
keyword: Prison - Murder - Friend - Shawshank

director: Frank Darabont

actor: Tim Robbins -

The Dark Knight

year 2008 p———
genre: Action - Crime - Drama - Thriller -

Margan Freeman - Bob Gunton - William Sadler

keyword: Batman - Joker - Criminal - Gotham - \

director: Christopher Nolan

actor: Christian Bale - Heath Ledger - Aaron Eckhart - Michael Caine "‘-‘__

The Godfather
year: 1972

genre: Crime - Drama - Thriller

keyword: Mafia - Wedding - Violence - Organized Crime
director: Francis Ford Coppola
actor: Marlon Brando - Al Pacino - James Caan - Richard 5. Castellano

e Refine by GENRE:
<

About Feedback Try other instances: |Z|

= Refine by YEAR: show: tag cloud |Z|
1957 1972 1990 1994 1995 1897
1999 2000 2001 2002 2003

2004 2006 2007 2008
[=]

show: counis

Drama 153
Thriller 50
Crime A1
War 34
Action 32
Romance 28
Mystery 265
Adventure 22
show more
@ Refine by KEYWORD: show: tag cloud E|

Based On Novel Blood cigarette

‘ customized instance |

Dcloudmining oy ——

Searching for:

"% Found 153 results sorted by: popularity E £

B3 GotolvDb -

v Drama

ee some photos - E Watch a trailer -

v Death 3 @ customized sort functions I

Pages: 1 2 3 ... 16 &,

The Shawshank Redemption (1994) - 142 min - Rated R
[(9.2/10 - 458 831 IMDb votes)

g5 More ofthis!

Genre: Crime / Drama

Directed by Frank Darabont with Tim Robbins, Morgan Freeman, Bob Gunton
Two imprisoned meh bond over a number of years, finding solace and eventual redemption
through acts of comimon dec&'ffuﬁ-sf_gr_}' on IMDE

@ customized search result

Tarrent search

The Dark Knight (2008) - 152 min - Rated PG-13
[(8.9/10 - 407 902 IMDb votes)
Genre: Action / Crime / Drama / Thriller

&5 More ofthis!

Directed by Christopher Molan with Christian Bale, Heath Ledger, Aaron Eckhart
Batman, Gordon and Harvey Dent are forced to deal with the chaos unleashed by an anarchist
mastermind known only as the Joker, as it drives each of them to their limits. full story on IMDbB

Batman / Joker / Criminal / Gotham / Chaos

(3 Goto IMDb - B See some photos - [l Watch a trailer -

Torrent search

The Godfather (1972)- 175 min- Rated R
19.2110 - 375520 IMDb votes)

g7 More ofthis!

About | Feedback Tryoﬂ'lerinstances:E

4
chstomized facet color palette I

=]

= Refine by YEAR.
1957 1972 1990 1994 1995 1997
1999 2000 2001 2002 2003
2004 2006 2007 2008

show: counis

= Refine by GENRE: showi ﬁagdoud
Drama ‘ 1563
Thiiller 50
Crime m 4
War default and available visualization F4
Action 32
Romance 28
Mystery 25
Adventure 22
show more

@ Refine by KEYWORD: show: counts

Blood

[=]

Based On Novel Cigarette

Figure 7.9: Look and feel of a Cloud Mining instance before (top) and after (bottom)

customization.

7.3. FACETED SEARCH 143

built with just a few lines of code. It involved rewriting one template for the document
surrogate, adding one CSS file for the look and feel, and setting up some options in
the Cloud Mining app. For more detailed instructions, we have provided a complete
example as to how to build an instance towards the end of this chapter.

This ends the overview of the Cloud Mining framework. As mentioned, Cloud
Mining is made of independently usable modules for each of its exploratory search
tasks. The challenge was to provide a default interface for any kind of data, while at
the same time laying the tracks to a pluggable search solution. We will now cover in
greater detail the Cloud Mining front-end as well as the back-end for faceted search,

visualization and item based search.

7.3 Faceted Search

All the systems built with Cloud Mining incorporate faceted search. In chapter 4, we
have reviewed faceted search in details. We have reviewed some of the front-end and
back-end concerns. We have also gone over several systems and compared their inter-
faces and potential novel features. As we have previously discussed, Cloud Mining is
composed of several modules and libraries, each of which performs a certain exploratory
search function. Faceted search in Cloud Mining is handled by fSphinx (Ksikes, 2011a),
a layer on top of Sphinx (Aksyonoff, 2007) which facilitates handling and computation
of the facets. In what follows we will present, with examples, the faceted search user
interface of Cloud Mining. Then the inner working of fSphinx will be covered in greater

detail.

7.3.1 Front-end in Cloud Mining

Recall from chapter 2, that designing a search user interface can be a challenging pro-
cess. There are many elements which must be taken into account. These include the
presentation of good informative document surrogates, highlighting of query terms or
the handling of several sorting scenarios. While designing the interface, we went through
several prototypes and tested them with discount usability. However, due to the generic
nature of the interface, we decided to settle for a conventional layout. More customiz-

ability such as the look and feel of the document surrogate is left to the designer. The

144 CHAPTER 7. CLOUD MINING

About Feedback IMDb - movies ‘ _E
a4

CIOUdmining Qump toa diffe.;entinstance I

Type some keywords. .. sea

%
%,
%
%

Search movies from |M ote this interface was automatically built with Cloud Mining. L Y
2 o 1
selecting genre "animation” | start a new search Q
= Refine by YEAR: show: rose, M = Refine by GENRE: show: counts =
2009 1995 Short 201,147
2008 199 ' Drama 135,568
Comedy 108,221
2007 15957
Documentary 78,354
2006 1992 '.*Jmanc:e 29,118
: 126693| Animation 27,530
2005 1339 Action 24,765
Thriller 20,543
004 =000 show more
2003 - 2001 = Refine by DIRECTOR: show: counts =
200z
Michael Curtiz 165
@ Refine by KEYWORD: show; tagcloud - John Ford 128
Based On Novel Beautiful Alfred Hitchcock 57
Woman Biood Character Name In sidney Lumet a7
Title cutt Faverite Death Father Son Woody Allen 41
Relationship Female Nudlty Friendship S 17
Independent Fl\l,!1m . love Male 35
Female Relationship uraer police p—— 1
Sex
show more
@ Refine by ACTOR: show: counts -

Figure 7.10: Cloud Mining front page greeting users with many different kinds of facets.

7.3. FACETED SEARCH 145

front-end concerns raised in chapter 4 included the organization of the facets and their
values, the behavior of the search box or how to perform multiple selections within
facets. Many of those concerns are best described and addressed with an example of
usage.

Figure 7.10 shows the front page or entry page of a Cloud Mining instance. The
user is greeted with a portal like page which shows a search box, a short description of
the instance, and several facet panels. Note that in this figure the instance has been
slightly customized for the IMDb dataset. But the generic page is very similar, only
some facet views and colors have been changed. As expected, the user can either type
a query in the search box (1) or select a facet value (2). The facets shown on the
interface reflect the facets of the underlying fSphinx client, which will be covered in the
next subsection. Their grouping and ordering are also specified by the fSphinx client.
As we have discussed, a Cloud Mining instance is simply a customizable web interface
to fSphinx. Finally the user can jump to each of the instances we have built so far for
the DBLP, IMDb and MEDLINE dataset (3). This menu stresses the fact that these
instances are all running under the same code base. Hopefully, in the future, this menu
will be extended further with many more instances built by the community.

Suppose the user has selected “animation” from the genre facet. Figure 7.11 shows
the result of such an action. The search results are expectedly shown on the left hand
side. Again note that for this example, the document surrogate has been customized
with a more appealing look and feel. The facet selection “animation” is shown at the
top of the search results (1). Next to the logo, the search box is extended with a
“Add Keyword” button (2). This lets the user add keywords to the current query,
thereby searching within the current results. Different sorting choices are specified by
the underlying fSphinx client and is rendered by a roll down menu (3). Using the
facets on the right hand side, the user can further refine his search (4). At the moment
the interface only supports conjunctive facet metadata selections. A facet can also be
toggled off or back on by clicking on the title (5). Toggling the facet off corresponds
to disabling the facet on the fSphinx client, thereby disregarding its computation. The
facets have different views such as a tag cloud or a histogram count. The user can
specify this view using a roll down menu (6). This later aspect of the interface will be

covered in greater detail in the next section on exploratory visual search.

146 CHAPTER 7. CLOUD MINING

About Feedback IMDb - movies E

Dcloudmining Sesrch or add keywords . GO AddKe@rd

IMDb

) ! 0
Searching for: ~ Animation X Qorder SBEEh ELE l 2

‘ start a new sarch or add query term

™ Found 27,530 resultdorted by: popularity i Pages: 1 2 3 .. & @ Refine by YEAR: show: tagcloud ~

WALL-E (2008) - 98 min - Rated G (& Wore ofthis!) 1986 1995 1997 1998 1999

r ‘: L A _..f 4’ R AR (8.6!1.0—155,028IMDb.vot-es) 2000 2001 2002 2003 2004
;? ,;,. F Genre: Animation / Adventure / Family / Romance / Sci-Fi 200 2006 2007 2008

-j Directed by Andrew Stanton with Ben Burtt, Elissa Knight, Jeff Garlin 4
] i -o' all waste collecting robot inadvertently embarks on a space jourmey refine by facet "musical” I
ide the fate of mankind. full story on IMDb

= Refine by GENRE: show: tagcloud -
Robot/ Plant/ Rescue / Future / Cockroach

(3 Goto IMDb -8 See some photos - [§] Watch a trailer - 4% Torrent search Action Adventure Comedy
Cime Drama I ily Fantasy
Horror Music { Musical Mystery
Romance Sci-Fi Short Thriler

Shrek (2001) - 90 min - Rated PG (& More ofthis!
IO O I T T (8.0/10 - 152,992 IMDb votes)

Genre: Animation / Adventure / Comedy / Family / Fantasy/ Romance

Directed by Andrew Adamson, Vicky Jenson with Mike Myers { Murphy, Cameron Diaz

toggle facet
a princess lo a scheming lord, wishing himself King. full story on IMDD

o~
Ar ogre, in order to regain his swamp, travels along with an a ®

Refine by KEYWORD: show counts v

e

Shrek /Lord f Ogre / Donkey / Fairy Tale ° Refine by DIRECTOR:

(3 Goto IMDb -0 See some photos - ff] Watch a trailer - 5% Torrent search Ll o
5 Friz Freleng

The Incredibles (2004) - 115 min - Rated PG g &7 More of this!

S e e de de e e e (8.4/10 - 142,530 IMDb votes) i

Genre: Animation / Action / Adventure / Comedy / Family Joseph Barbera

Directed by Brad Bird with Craig T. Melson, Holly Hunter, Samuel L. Jackson iliamiEanng 205

A family of undercover superheroes, while trying to live the quiet suburban life, are forced into _

action to save the world. full story on IMDb Robert McKimson 189
Superhero/ Secret / Lawsuit/ Insurance / Baby Tex Avery 131
E3 Goto IMDB -89 See some photos - E Watch a trailer - 5% Torrent search Wilfred Jackson 1

show maore
Toy Story (1995)- 81 min - Rated G (& More ofthis!)
T T I I T (8.1/10 - 130,503 IMDb votes) o Refine by ACTOR: show: counts -

Genre: Animation / Adventure / Comedy { Family / Fantasy

Directed by John Lasseter with Tom Hanks, Tim Allen, Don Rickles

A cowboy toy is profoundly threatened and jealous when a fancy spaceman loy supplants him
as top toy in a boy's room. full story on IMDb

Figure 7.11: Cloud Mining faceted search page showing several features.

7.3. FACETED SEARCH 147

About Feedback | IMDb - movies E

D CIOUdmining Search or add keywords ... [GO] ’ Add Keyword]

Mote the color coding
* purple for year
4 2 * green for genre
Searching for: « Animation 3 « Musical 3 "—+ toggle, select or remove query terms * blue for directors
' * red for actors

?@und 553 results sorted by: popularity - Pages: 1 2 3 ... 56 ' @& Refine by YEAR: // show: tagcloud =
e rd
The Lion King (1934) - 89 min - Rated G &% Wore ofthis! 1937 1951 1967 1986 1989
\ T T (8210 -120,071 IMDb votes) 1991 1092 //1993 1904 1995
\‘Bane: Animation / Adventure / Drama ily f Musical
O o T T 1t Brodenck 1996 1997 1998 1999 2004
Ire hlghllghtqueryterms nathan laylor omas, Matthew Broderice, ’
Jeremy Iy Ty

Tricked into thinking he killed his father, a quilt ridden lion cub flees into exile and ® Refine byfGENRE- show: tagcloud ~

abandons his identity as the future King. full story on IMDB Action Adventure Biography Comedy

King/ Scar/ Prince / Lion / Uncle 1
. Documentary Drama Famlly

Fantasy History ~ Horror Mystery

E3 Goto IMDb - B See some photos - Bl Wateh a trailer - 5% Torrent search

South Park: Biggler Longer & Uncut (1299)- 81 min-Rat| % flore ofthis! Romance Scifi Short Thriller
ririrdr il d oy (7.810 - 75,130 IMDb votes) h r
Genre: Animation / Comedy / Musical » Refine by KEYWORD: show counts -
Directed by Trey Parker with Trey Parker, Matt Stone, Mary Kay Bergman
¥ __ 4 liring Canadians Terrance & PHillip, they = Refine by DIRECTOR: show: counts -
J external actions on movie item .
Dress 5 United States to wage war
: h - Jackson 16
against Canada. full story on IMDb add this movie item to the query
Satan / Hell / Saddam Hussein/ Battle / Friends Who Hate Each Other Ron Clements 5
(8 Goto IMDb -89 See some photos - [B] Watch a frailer - £ Torrent search Clyde Geronimi 4
The Nightmare Before Christmas (1993)-76 min- Rated | <% Wore of this! sl 4
I T (8.0/10 - 69,851 IMDb votes) Don Bluth 4
Genre: Animation { Family / Fantasy / Musical John Musker 4
Directed by Henry Selick with Danny Elfman, Chris Sarandon, Catherine O'Hara
Jack Skellington, king of Halloweentown, discovers Christmas Town, but doesnt guite Gary Goldman 3
understand the concept. full story on IMDB Wg}|fgang Reitherman 3
Chiristmas / Halloween / Pumpkin / Woods / Christmas Tree show maore
Goto IMDD - B0 See some photos - g Watc iler- orrent searc .
(3 Goto IMD En some photos - § atch a trailer Torrent search s Refine by ACTOR: show: counts -
Beauty and the Beast (1991)- 84 min - Rated G 7 More ofthis! Frank Welker 18
U (8,010 - 62,529 IMDb votes)))
o . _ Jim Cummings 13
Genre: Animation / Drama / Family / Fantasy / Musical / Romance
Directed by Gary Trousdale, Kirk Wise with Paige O'Hara, Robby Benson, Richard Mary Kay Bergman]
It David Ogden Stiers 4

Ralle whnsa fathar Mauricre iz imnorizonan v the Reast freallv an anchantend Prinea)

Figure 7.12: Cloud Mining faceted search page showing several other features.

148 CHAPTER 7. CLOUD MINING

Figure 7.12 provides another opportunity to cover more features of the interface.
Here the user has conjunctively refined the results by the facet value “Musical”. If
not apparently evident from the previous example, each facet metadata is assigned to
a specific color (1). This enabled us to save pixels throughout the interface in order
not to have to repeat the facet field before the metadata value. In our test, although
users seemed at first a bit confused, once the color coding was understood, it helped
them to more quickly know what metadata belong to which facet. In order to try out
different combinations of queries, the query terms can be toggled on/off or removed (2).
This feature addressed a common user behavior pattern which consists of re-starting
a new query with some of the same keywords plus some new ones in order to redirect
the search to a different path. A common feature included in the interface consists of
highlighting the query terms within the document surrogates on demand (3). Finally
further actions are left to the designer’s discretion. Here the document surrogates have
been customized to provide actions related to movies for IMDb (4). The similarity
search button has also been customized into one single button (5). The use of this

button will be covered in a subsequent section on item based search.

7.3.2 Back-end implementation with fSphinx

As discussed on several occasions, the underlying back-end which performs search and
the actual facet computation is the Sphinx retrieval engine (Aksyonoff, 2007). Sphinx is
an open source full text search server written in C+-+ which powers many websites such
as Craigslist, Living Social, MetaCafe and Groupon. The main reason why we chose
Sphinx is due to its speed and scalability. Consequently, this makes Cloud Mining
as scalable as Sphinx is. This is to be opposed to systems such as flamenco (Hearst,
2006a; Yee et al., 2003) which are entirely database driven and therefore difficult to
scale beyond hundreds of thousands of documents. However, Sphinx lacks a couple of
features found in other search engines such as Lucene (Cutting, 1999) or Solr (Seeley,
2004). For example, Sphinx does not have a storage engine, neither does it support
aggressive caching. Also the facet computation requires a lot of back-end setup to
function properly and is not necessarily user friendly.

In order to connect to the search server and issue queries, the Sphinx package

7.3. FACETED SEARCH 149

provides client API libraries for popular Web scripting languages such as PHP, Python,
Perl or Ruby. However, many elements of the search experience such as queries or facets
are not abstracted. This makes it difficult to introspect into a Sphinx client in order to
render the search results or the facets. In order to circumvent these issues and fill up
on some of the missing features of Sphinx, we wrote fSphinx (Ksikes, 2011a). This later
extends from the Sphinx Python API library to add an easy way to perform faceted
search. With fSphinx the facets can easily be computed, preloaded or cached. The
query terms can be toggled on/off or the search results can be easily retrieved from a
database. Every element that makes up faceted search are objects, and therefore can be
easily rendered by a web interface. All the boiler plate that makes up a fSphinx client
can be put into a configuration file. Indeed a Cloud Mining instance is simply a web
application that reads this configuration file. This is exactly what we needed in order
to provide pluggable search. In fact a change in this configuration file such as adding
or removing a facet is dynamically reflected on the interface. fSphinx can also be used
independently of Cloud Mining to provide faceted search for other types of systems.
The software has been released open source and is freely available for download at
GitHub. For more information as to how to use fSphinx and its various functionalities,
we have provided a tutorial available online or at the end of this thesis in Appendix A.

Each of the modules of the fSphinx package can be used separately or all combined
within an FSphinxClient object. Figure 7.13 depicts a simplified UML diagram of the
fSphinx package. Faceted search is performed by restricting the search, and therefore
the query, to specific fields corresponding to the different facets of interest. The queries
are abstracted within the MultiFieldQuery object. The query can then be represented
back as a string to be passed to the Sphinx search server or displayed at the command
line or on a web interface. There is also a unique string representation mainly used for
caching, in which the query terms are simply sorted with white spaces trimmed. The
Facet object is used to setup and to carry out the facet computation. By default the
facet values are grouped by counts and ordered alphabetically, but this behavior can be
changed using the various methods of the Facet class. As previously described in chapter
4, facet computation can be expensive. So for efficiency the facets can be contained
into a FacetGroup. This object computes all the facets at once using Sphinx optimized

batched queries. The Cache class is used for aggressive caching of the search results and

150 CHAPTER 7. CLOUD MINING

b

MultiFiedQuery
user_sph_map: dict ~
gts: [_QEe@TeEn] QueryTerm
user str term: str
sphinx: str field: str
unig: str user. str
Parse(guery: str) sphlnx: slr
AddQueryTermigt: QueryTerm) unig: str
RemoveQueryTerm(qgt: QueryTerm) toggled: boolean
ToggleQueryTerm(gt: QueryTerm) Toggle()

Filter(ffilter: function)
ToPrettyUrl(): str

FacetGroup
cl: SphinxClient
cache: Cache Facet
facets: [Facet] ~{ name: str
guery: MultiFiedQuery results: list
AttachSphinxClient(cl: SphinxClient) AttachSphinxClient(cl: SphinxClient)
AttachCache(cache: Cache) SetGroupFunc(group_func: str)
GetFacet(facet_name: str) Compute(guery: MultifieldQuery)

Compute(query: MultiFieldQuery)

? DBFetch

db: MySQLdb
sql: str

: SphinxCiient Fetchisphinx_results: dict): Hits

FSphinxClient
query: MultiFiedQuery .
hits: Hits < __Hits
facets: FacetGroup — matche.s: list
cache: Cache gtatus: int
RunQueries() :'";El’: ﬂtiat
Query(query: MultiFiedQuery) oas It
AttachFacets(facets: FacetGroup) tDtE'l__fD“”d- int
AttachCache(cache: Cache) error. Stf
Clane(): FSphinxClient warning: str
FromConfig(cls. path): FSphinxClient _str__():str

‘ Redis ’<>—

> Cache

c: Redis

expire: float
max_memory: int
Set(key: str, value: Object)
Get{key: str): Object
Dumps(to_file: str)
Loads(from_file: str)
Flush()

Figure 7.13: fSphinx simplified UML diagram. The faceted search is carried by a FSphinx-
Client object which behaves like a normal SphinxClient but with faceted search abilities. The

Facet object is used for setup and computation.

7.4. EXPLORATORY VISUAL SEARCH 151

of the facet computations. As we have discussed the FSphinxClient object regroups all
of these elements into one client and can replace a standard Sphinx client entirely. The
FSphinxClient object returns a Hits object which abstracts the list of results returned
by Sphinx and fetched from the database. The database which holds the documents
is then directly used as a storage engine with the DBFetch object. An FSphinxClient
can also be instantiated from a configuration file. A Cloud Mining instance reads this
configuration file to create a client to perform the search. Then it reads every one of
the client components such as Hits, MultiFieldQuery or Facets in order to render the
interface. There are many other classes and methods in the package and the interested

reader may want to consult the documentation provided.

7.4 Exploratory Visual Search

Another main ingredient of an ESS is its ability to display information in a way which
favors the emergence of patterns and provide new insights. In chapter 5, we have
reviewed many different kinds of visualizations which can be employed on the search
results or on the facets. We also suggested that views should not be imposed, but rather
chosen by the user at run time. We then described an overview of a pluggable search
architecture in which every component of the system such as search views or facet views
could be used within the interface and re-used across other systems.

At the moment Cloud Mining supports three different types of visualizations on
the facets only. Visualization of the search results has not been implemented yet. In
the example that follows, we will see how the tag cloud view could be used in order
infer something new about the document corpus more easily than by just looking at
the counts of the facet values. From a back-end perspective, we will then cover how
new facet visualizations can be created and registered within an instance. As previously
discussed, a Cloud Mining instance is simply a web application which renders the whole
interface with some level of customizability. In order to cover how facets are displayed
within the interface, we therefore also need to cover how Cloud Mining renders the

interface.

152 CHAPTER 7. CLOUD MINING

7.4.1 Facet Visualization

Recall from chapter 4 that facets, beyond their refining ability, provide an interesting
summary of the search results with respect to the facet classification. They could
reveal patterns of distribution and occurrence at an aggregate level. From chapter 5,
we have looked into ways of representing the facet values more graphically. The idea
was that choosing the right visualization could always shift the focus from finding to
more exploratory tasks such as data analysis. At the moment Cloud Mining provides
three different types of views including a tag cloud, a histogram count and a more
exotic rose diagram. However, as we will see, new views can easily be created and
added. These could include an actionable time-line to represent dates or a map view
for geographical coordinates. The use of facet views in Cloud Mining is best described
with the following example.

Figure 7.14 shows the search result page of the DBLP instance after the author
“Zoubin Ghahramani” has been selected. Shown to the right hand side are the facets
with values ordered by frequency. The author and keyword facets are displayed as a
tag cloud (1). The tag cloud view depicts the facet value with a font proportional to its
frequency. However, note that views do not need to be frequency based but could use
any score returned by the facet grouping function. Also note that the terms contained
in the current query, “Zoubin Ghahramani”, are removed from the tag cloud. Using the
tag cloud view, it has become eye popping evident that the most frequent co-authors
of Zoubin Ghahramani are David Wild, Katherine Heller, Michael Jordan and Wei
Chu. From the keyword facet, we can infer that Zoubin’s main specialty is in Machine
Learning and Bayesian Modeling. However, although the tag cloud view gives the user
some notion of the relative importance of each term within a facet, no information
as to what the actual count is given. This information can be obtained by switching
to the histogram counts view (2). As expected, the view represents an histogram of
the distribution of the most frequent terms within a facet. The venue facet shows that
Zoubin has published 32 times in the NIPS conference and 13 times in I[CML. The views
can be changed by the use of a roll down menu located to the left of each facet (3).
We chose this behavior as it was the most simple and natural way of adding views to a

standard faceted search interface. The year facet features a more exotic rose histogram

7.4. EXPLORATORY VISUAL SEARCH 153

About Feedback DBLP - CompSci E

D CIOUdl I]ining Search or add keywords ... [GO] ’ Add Keyword
3
Qchange facet view I

Searching for: v Zoubin Ghahramani

Y Found 125 results sorted by: number of citations ~ Pages: 1 2 3 ... 13 & @ Refine by AUTHORS: show: Ta_g cloud -
David A Cohn, Zoubin Ghahramani, Michael | Jordan - Active Learning with Statistical Models CoRR Carl Edward Rasmussen David J. Fleet
cs-Al3603104()- (1996) paid J. kiegman ~ David L. Wild
(3 Read article - 9 Cited 353 times - @) Sigilar / Add to query Edward Snelson Geoffrey E. Hinton Jiri
1) : '

David A_Cohn, Zoubin Ghzhramani, Michal 129 Cg’;‘f:éewg%g‘fgfeﬂthors +5| Models. J Artif Matas JurgenVan Gael ~ Karsten .
Intell. Res. (JAIR) (JAIR) 4{):129-145 (1996) o Borgwardt Katherine A. Heller
EQ Read article - 9 Cited 353 times - @ Similar / Add to query .Y Michael |. Jordan Ramin Zabih

_ _ . _ o . Ny Ricardo Siiva sam T Roweis Wei Chu
David A Cohn, Zoubin Ghahramani, Michael | Jordan : Active Learning with Statistical Models. NIPS-.
1994 @ .

@ Refine by KEYWORDS: show: tagcloud -

[Read article - ¥ Cited 353 times - @ Similar / Add to query

algorithm bayesian editor

Zoubin Ghahramani, Michael |. Jordan : Factorial Hidden Markov Models. Machine Learning (ML) gaussian hidden infinite introduction

29(2-3):245-273 (1997)

learning makov miture Model

networks — process — processes sparse

Zoubin Ghahramani, Michael |. Jordan : F@d_HEﬁLMAmLMMﬂLMEEJﬂﬂEj—.
B Read article - ¢ Cited 320 times - @ histogram view for the venue facet = Refine by VENUE: show: counts =

(3 Read article - 9 Cited 320 times - @ Similar / Add to query

NIPS 32
Xiaojin Zhu, Zoubin Ghahramani, John D. Lafferty : Semi-Supenised Learning Using Gaussian Fields and
Harmonic Functions. ICML 2003 JMLR 15
¢ Cited 270 times - @ Similar / Add to query ICML 13
. . . L . - PAMI 13
Zoubin Ghahramani, Geoffrey E. Hinton : WVariational Learning for Switching State-Space Models. Meural
Computation (NECO) 12(4):831-864 (2000) BIOINFORMATICS 6
¢ Cited 99 times - @ Similar f Add to query UAI 6
Zoubin Ghahramani, Matthew J. Beal : Propagation Algorithms for Variational Bayesian Leamning. MIPS CORR 5
2000 ML 3
¢ Cited 84 times - @ Similar / Add to query show maore
4
MNaonori Ueda, Ryohei Makano, Zoubin Gh rose diagram for the year facet *bm—FeFMBGEH%e—. = Refine by YEAR: show: rose -
Models. Neural Computation (NECQO) 12(9): 2TO9=ZTZE (20007
2011 1994
F Cited 76 times - @ Similar / Add to query
’ z010 '[1397
MNaonori Ueda. Rwvohei Nakano. Zoubin Ghahramani. Geoffrev E. Hinton : SMEM Aloorithm for Mixture

Figure 7.14: Illustrating the tag cloud view.

154 CHAPTER 7. CLOUD MINING

. . About Feedback DBLP - CompSci E
cloudminin Sesrch or sdd keywords GO | | AddKeyword
YWD yw
Searching for: ¥ Zoubin Ghahramani 3 ~ ICML 3£ = * refining by the venue ICML
Y’ Found 13 results sorted by: number of citations = Pages: 1 2 & o Refine by AUTHORS: show: tagcloud =
Kiaojin Zhu. Zoubin Ghahramani. John D. | afferty : Semi-Supervised Learning Using Gaussian Fields and Arik Azran Dawid L. Wild Edward Snelson

Harmonic Functions. [CIML 2003 John D. Lafferty Jurgen Van Gael

r Cited 270 times - @ Similar / Add to query 4 Katherine A. Heller rosaiinaw
Yuan (Alan) Qi, Thomas P Minka, Rosalind W._Picard, Zoubin Ghahramani : Predictive automatic Picard Sam T. Roweis . Sinead Williamson
relevance determination by expectation propagation. ICML 2004 Thomas P. Minka WE| Chu Hiaajin Zhu
E3 Read article - 9 Cited 30 times - @ Similar / Add to query Yee Whye Teh *uan (Alan) Qi Yunus Saatci
Ruslan Salakhutdinov, Sam T. Roweis, Zoubin Ghahramani : Optimization with EM and Expectation- o Refine by KEYWORDS: show: tagcloud =

Conjugate-Gradient. ICMVL 2003 .
ICML automatc Da@yesian

¢ Cited 29 times - @ Similar / Add to query i
clustering comallis determination

Katherine A. Heller, Zoubin Ghahramani - note how the facet values have changed *\ expectations gaussian Iearnlng
(3 Read article - 9 Cited 28 times - @ Similar 7504 1o query W, \ model predictive propagation
ot - - -
Wei Chu, Zoubin Ghahramani, David L. Wild : A graphical model for protein secondary structure LY relevance sampling semi-supervised
prediction. CML 2004 W '
= Refine by VENUE: show: counts =
E3 Read article - 9 Cited 15 times - @ Similar / Add to query e Y
ICML ™ 13
Jurgen Van Gael, Yunus Saatci, Yee Whye Teh, Zoubin Ghahramani : Beam sampling for the infinite ;Y
hidden Markov model. ICML 2008) h
o Refine by YEAR: show: tagcloud -
(3 Read article - 9 Cited 8 times - @ Similar / Add to query ‘-)
2003 2004 2005 2006 2007
Zoubin Ghahramani : Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML 2008 2009

2007). Corvallis, Oregon, USA, June 20-24, 2007 ICML 227(): (2007)

& Similar f Add to query

Ryan Prescott Adams. Zoubin Ghahramani : Archipelago: nonparametric Bayesian semi-supemvised
learning. ICML 2009

(3 Read article - € Similar / Add to query
Finale Doshi-Velez, Zoubin Ghahramani : Accelerated sampling for the Indian Buffet Process. ICML 2009
(3 Read article - @ Similar / Add to query

[P S N T DU O I WSV SR DU T N SR FUNFE SUPR S [N DU S —_- |

R

Figure 7.15: Illustrating tag cloud view 2.

7.4. EXPLORATORY VISUAL SEARCH 155

(4). We created this view in order to showcase Cloud Mining’s ability to plug in with a
variety of different views that make use of existing web technologies. For instance, this
visualization makes us of the powerful JavaScript RGraph charts library (Heyes, 2008).

Continuing on our example, in Figure 7.15 the user has additionally selected “ICML”
from the venue facet (1). What is immediately apparent is that “David Wild” has
disappeared from the author tag cloud. This suggests that Zoubin has worked mostly
with David Wild on conferences other than ICML. However, for the conference ICML
now it is Katherine Heller and Wei Chu with whom Zoubin has mostly worked with.
Additionally the year facet suggests that 2005 has been Zoubin’s most prolific year
for the ICML conference (2). Combining this observation with the previous one on
the author facet could suggest that it is during that year also that Zoubin, for the
conference ICML, has mostly worked with Katherine and Wei.

This example illustrates how the different views can be used to quickly infer inter-
esting aspects about the data without having to go through all the search results page
after page. The emerging pattern is that Zoubin, for the conference ICML, has mostly
collaborated with Katherine and Wei. And that 2005 was his most prolific year, again
for the conference ICML. With a standard faceted search interface, it would probably
be harder to look at the facet values and their counts in order to infer the same kind
of patterns. What is interesting with the tag cloud view is that these patterns are
popping up right away. As previously discussed, this is just an example, the end goal
is to tap into the creativity of third party developers and designers in order to provide

more interesting visualizations for different kinds of data.

7.4.2 Back-end Implementation and Rendering

The previous subsection covered how the facet visualization could be used to infer inter-
esting aspects about the data. As we have said, this type of interaction is an important
ingredient of an ESS. Covering the back-end of how these types of visualizations are
handled forces us to review how the entire back-end of Cloud Mining functions. As we
have discussed, a Cloud Mining instance is simply a customizable web interface which
renders the results retrieved by fSphinx.

Figure 7.16 depicts a simplified UML diagram of the entire Cloud Mining back-

156 CHAPTER 7. CLOUD MINING

‘ webpy.application ‘

? fsphinx.FSphinxClient |

CloudMiningApp
cl: FSphinxClient

sim_cl: SimClient ﬂ simsearch.SimClient |
ui: dict

options: dict
javascripts: list
stylesheets: list

view: DirectoryMapper
r— public: DirectoryMapper

visu: dict > Visualization
init_webpy_app(options: dict) name: str

set_fsphinx_client(cl: FSphinxClient) description: str

set_sim_client{sim_cl: SimClient) setup(facet: Facet, kwargs: dict)

set_ui(ui: dict) render(computed_facet: Facet, kwargs: dict)
add_stylesheets(path: str)

add_javascripts(path: str)
set_application_path(path: str):
override_template(path: str)
set_public_dir(path: str)
register_visualization(visu_class: Visualization)
run(midleware: list)

from_config_dir(path: str): CloudMiningA|
from_directory{path: str}: CloudMiningAy

i

DirectoryMapper

TagCloud ‘ ‘ Counts ‘ ‘ Rose

root: str
cache: dict

map(loc: str, pos: int)

unmap(loc)

list(): str

lookup(name: str): (type: str, path: str)
read(name: str): str

Figure 7.16: Cloud Mining simplified UML diagram

7.5. ITEM BASED SEARCH 157

end. The CloudMiningApp class inherits from the webpy.application class. web.py
is a minimalistic freely available and open source web framework for Python (Swartz,
2006). However, we did write some scaffolding code to web.py in order to easily conceive
the applications in a MVC (Model View Controller) manner. From the diagram, the
web application has several objects amongst which are an FSphinxClient object and
SimClient object. As previously discussed, the first object is used for faceted search,
while the second object, as we will see next, is intended for item based search. These
two objects are simply attached to the web application while creating the instance. The
web application also holds a dictionary of Visualization objects. This later maps facets
to the different possible visualizations which are provided at the interface level. Each
visualization inherits from the main Visualization class. In order to create a new facet
visualization, the designer would inherit from this class. Users can then register them
within the web application in order to use them. The CloudMiningApp object also
has a DirectoryMapper object. This later is used to customize the look and feel of the
interface by letting developers override a set of templates. The DirectoryMapper object
simply tells the web application where to find these templates in order to render the
interface. A brief tutorial on how to use Cloud Mining, the different visualizations, and
how to customize instances is provided online or at the end of this thesis in Appendix
C. We briefly mentioned the SimClient object to perform item based search. This later

object is part of the SimSearch package which we will be covering next.

7.5 Item Based search

In the previous sections we have covered two of the main ingredients of an ESS. First,
the system should provide several metadata facet selections for the user to browse and
refine by. Second, the system should support some kinds of visualizations, at the user
choice, in order to provide insights about the data. We now turn our attention to
another crucial element of an ESS; its ability to search for similar documents as well as
to discover new ones. In order to provide such an experience, the search must be focused
on the whole content of the document and not just on its textual representation. In
chapter 6, we have reviewed several methods of performing these types of searches. The

last method, Bayesian Sets, offered a new paradigm for IR called item based search in

158 CHAPTER 7. CLOUD MINING

which queries are composed of possibly several documents (called items), and the results
are a set of documents (or items) sharing some common concept. This characteristic,
and several others, made Bayesian Sets a perfect candidate for an ESS framework
such as Cloud Mining. However, we noted that designing an interface, which supports
multiple item based queries, remains a challenge.

In what follows, we will further describe our reasons for choosing Bayesian Sets over
other algorithms to perform similarity searches in Cloud Mining. Then we will provide
our interface solution to multiple item based queries. The interface extends from the
current one but still allows facet metadata selection as well as full text search. This is a
desirable feature as it allows users to explore the corpus by mixing textual queries with
whole items. As previously discussed, Cloud Mining is composed of several modules
which can be used independently. Similarity search in Cloud Mining is handled by
SimSearch (Ksikes, 2011b), our open source implementation of Bayesian Sets and a full
scale item based search engine. Consequently we will describe the inner workings of
SimSearch and its interaction with fSphinx and Cloud Mining. Although Bayesian Sets
is very fast, it would be nice to scale to very large datasets and to millions of users. This
is important if one day SimSearch and consequently Cloud Mining are to be provided

as a pluggable search service over the cloud.

7.5.1 Why Bayesian Sets?

Bayesian Sets (Ghahramani and Heller, 2005; Heller and Ghahramani, 2006) offers a
couple of unique characteristics which makes it a perfect candidate for discovery and
similarity based searches. First, Bayesian Sets decouples the feature engineering from
the matching algorithm. The developer’s work get reduced to choosing an appropriate
feature for the task of interest. As we have seen in chapter 6, many different types of
features exist for textual or multimedia items. The only limitation is that the features
must be, in some ways, binarizable. The decoupling of the feature engineering from
the matching algorithm is highly desirable in a framework such as Cloud Mining, which
is aimed at creating ESSs for any kinds of data. Developers would then simply be
choosing from a library of featurizers in order to add similarity search to their Cloud

Mining instance. Second, Bayesian Sets allows for queries made of multiple items. As

7.5. ITEM BASED SEARCH 159

previously discussed, this is a desirable exploratory search feature as it could help in
revealing and/or specifying common concepts among items. Third, unlike machine
learning algorithms, no traditional training is required. All the items are directly used
in a matrix which can later be transformed in an efficient form suited for fast sparse
matrix multiplication. The matrix simply corresponds to the presence or absence of
a feature value within each item. The matrix can be stored in a text file ready to
be loaded in memory. For the same dataset, the matrices, possibly covering different
feature types, can then be shared and used interchangeably. Fourth, Bayesian Sets is
fast and easily scalable to millions of items. In fact, the matrix product can be carried
over multiple cores or machines and the scores re-combined and returned to the user.

Fifth, Bayesian Sets is simple to implement and easily modularized within or without

Cloud Mining.

7.5.2 Front-end in Cloud Mining

As we have seen, the unique characteristics of Bayesian Sets fit quite well within a
framework such as Cloud Mining. However, the design of an interface which supports
faceted search as well as item based search still remains a challenge. There are many
open questions about the design of the interface to support such a functionality, but
the overall sought behavior can be outlined.

The overall design goal was not be depart too much from conventional faceted
search behaviors. As such, the interface should provide the ability to mix items with
conventional faceted metadata selections. The results should be a set of similar items
restricted to the facet selection(s) and/or full text search. The facet grouping function
should be adapted to make use of the similarity search scores. For example, the terms in
a tag cloud could be weighted by the similarity scores in addition to its frequency. The
interface should also provide feedback as to why the documents have matched. This is
important in order to help users form a mental model about the underlying matching
algorithm. Keeping in mind the interface is generic before customization, the behaviors
should work on any kind of data such as text, images, or videos.

In what follows we will present a couple of prototype interfaces with some of the

desired behaviors previously exposed. The first interface stems from the idea that an

160 CHAPTER 7. CLOUD MINING

item should behave exactly like any other query terms. The second interface treats
items no different than a facet refinement. The third one, inspired from Google Image,
makes use of a similarity search mode. Then we will cover, with examples, the current
solution implemented in Cloud Mining. The current interface re-takes several ideas

from the previous prototypes.

Items as a Query

The first most simple design consists of treating an item not differently than a query
term. Figure 7.17 shows the search results of a prototype which employs this pattern.
The items are movies from the IMDb dataset. As previously discussed in the IMDb
dataset, the features of each movie are bag-of-words of their plot keywords. Notice how
the movie item “Titanic” is distinguishable solely by its cover image (1). As expected,
this query tells the system to search for all the popular cartoons which are also similar
to the movie Titanic. New movie items are added to the current query with the button
“More of this!” (2). In order to add movies not found in the current search, users can
disable query terms to make them sticky, thereby keeping them for subsequent queries
(3). After the user has added a movie to his query, he can keep on refining by facet
values (4). An indication as to why the document has matched is shown at the bottom
of the surrogate (5). In this example, the cartoon Ratatouille has matched because of
the presence of the specific plot keywords “Starving Artist”, “Blockbuster” or “Face
Slap”. The cartoon “The Sinking of the Lustinia” has matched because of a “Ship
Wreck”, “U Boat” or “Tragedy”. All of these events do occur in the movie Titanic.
This design pattern is interesting because it minimalistically adds item based search
to the current faceted search interface. However, putting on the same line items with
query terms could be confusing. This is because this behavior could convey the wrong
impression that the user is digging through the search results with items. Also adding
new movies not found in the current search could necessitate several interventions such
toggling off, searching, toggling off again and then searching again. Another shortcom-
ing of the interface is that not all items do have a good metaphor for its representation
within the query. For example, scientific articles do not have any cover image, and

therefore would not fit well within a generic interface.

7.5. ITEM BASED SEARCH 161

‘ ‘ Powered by * . Cloud Mining on IMDb.

Similarity Search powered by Bayesian Sets.
Search: @ in all items (keeping inactive query terms) () in current results
About | Feedback

> Select / remove query terms:

r u ‘—@an item is treated like a query term I
4

2 4
Qadd the item to the current search I q)faceted meta-data selection possible

< B ¥ {¥ Animation 3
Found 27530 results |n 0.028 sec. (Facets: 7.415 sec.) (Similarity: 0.23 sec.) Pages:1 2 3 6783910 >> o RefinebyYEAR: show counts
Ratatouille (2007) - 111 min - Rated G .f_é, More ofthis! 1937 1940 1942 1953 19651982 1989 1991
ol o 7 (8.2110 - 115,702 IMDb votes) 1992 4004 1396 1997 4198 1999 2001
i Genre: Animation / Comedy / Family / Fantasy
ATATARIEE 2002 2003 2004 2007 2008

a 'rected by Brad Bird, Jan Pinkava with Patton Oswalt, lan Holm, Lou Remano
di - : T fi he French countryside who arrives in Paris, only to find out that his cooking idol is dead. When he makes
15a uery terms are Ssticl i -
=y ky a restaurant's new garbage boy, the culinary and personal adventures begin despite Remy's family's » Refine by GENRE: show counts
Al % - - ;
skepticism and the rat-hating world of humans. full story on IMDB Action Adult Adventure Comedy Crime

7 Starving Artist/ Told in Flashback / Blockbuster / Face Slap / Theit Fa m | | F t
& like 8% # - The Incredibles # - Stardust 44k Drama Y Fantasy History Horror

E3 Go to IMDb - B See some photos - [Watch a trailer - & Torrent search Music Musical Mystery Romance sci-Fi
Short Sport Thriller War

The Sinking of the Lusitania (1918)- 12 min @7 More of this!
7 (T.510 - 185 IMDb votes) = Refine by KEYWORD: show counts

Genre: Animation / Short
Baby Beast Cat Dinosaur Dog Forest

Directed by Winsor McCay .
Winsor McCay recreates the sinking of the ocean liner Lusitania by a German u-boat in this propaganda piece designed to stirup ~ Friend Hero ng Lon Love Fig
Prince Princess Rat Rescue Robot

: Ir anti-German sentiment during World War . full story on IMDb
Am P 5 S Submarine Warrior
&7 Statue OFf Liberty /Ocean Liner / Ship Wreck / U Boat / Tragédy ‘—+ reason why this item matched ea

2 like Lifeboat # - Titanic % - Spies ik _))
(3 Go to IMDb - B8 See some photos - [B] Watch a trailer - 4% Torrent search ° Refine by DIRECTOR: shew saunts
Andrew Stanton Ash Brannon Brad Bird

- s Beauty and the Beast (1991)- 84 min - Rated G & More of this! C|yde Geronimi David Hand Dad

o h bbb 7 (8.0M10-62,529 IMDb votes)

Genre: Animation / Drama / Family / Fantasy / Musical / Romance

P A ‘ Directed by Gary Trousdale, Kirk Wise with Paige O'Hara, Robby Bensaon, Richard White [Hayao M|yazak| James Algar Jan

siveman Don Bluth Gary Trousdale

Figure 7.17: Items mixed with query terms

162 CHAPTER 7. CLOUD MINING

Items as a Facet Refinement

Another more involved interface pattern consists of treating items like a facet refine-
ment. Figure 7.18 shows a mock-up in which the search box, items and facets are all
treated as refining elements. The user can add keywords to the current query in a tradi-
tional manner (1). The search keywords are then shown at the top of the search results
(2). New items can easily be added with another search box with auto-completion (3).
This allows to add new items from the whole corpus which are not necessarily found
in the current search. The newly added items are depicted in a facet like panel, from
which they can be toggled or removed (4). Another way to perform similarity search is
through the use of two buttons located under each document surrogate (5). The first
button called “similar” starts a completely new query disregarding any previous refine-
ments. The second button called “add to set” adds the item to the current search. The
results are then shown to be ordered by “similar” (6). The user can continue adding
textual keywords or refining by facet metadata (7).

The pattern exposed here is interesting because it lets us isolate item based search
to only a facet refinement. The item panel could then be engineered so that it would
act as a pluggable search component. However, the panel still requires a metaphor
to represent each item. Also what is really happening is not a refinement per se, but
rather a re-ranking of the search results with respect to the textual query and to the
similarity score of each document. Instead what might be needed is a modal behavior
which clearly states that any future actions will be handled under similarity search.
Nevertheless this interface seems promising and might be tested further in a future

version of Cloud Mining.

Similarity Search Mode

Recall from chapter 6, the pattern Google used for its similar image search feature
(Figure 6.9). Each image has a button called “similar” which lets the user search for
visually similar images. Once the button has been clicked, the results are framed in a
clearly marked similarity search mode. He can then cancel the mode or further refine by
using various filters. This is an interesting pattern because a search for similar images

is not a refinement, neither it is a query, instead it is rather a mode of the system, and

7.5. ITEM BASED SEARCH

163

6
Qesurts re-ranked by similarity I

1
Q add keywords or start new search I

2
Qsearch keywords with count I

C\.
A

5

keywords electronics people cities 5
[so@)ﬁmilm |v]
‘ add items * - {3) add items to the current search I
L™ \
similar add to set similar add to set similar add to set
4 W—
items are shown as refinements I
facet

search for similar items only
or add to current query

/ T
¢ \| —— resufts

; refine by facet I

Figure 7.18: Items as a facet refinement

164 CHAPTER 7. CLOUD MINING

should therefore probably be marked as such. However, Google Image does not support
multiple item based searches, neither does it provide feedback as to why these images
were returned as similar. In what follows, we will present our current solution for Cloud

Mining which takes into account the various patterns previously encountered.

Current Solution

The current solution employed in Cloud Mining makes use of the similarity search
mode pattern previously encountered. In this interface the items are not mixed with
the textual query terms, neither are they considered as facet refinements. Instead the
items are shown in a separate box at the top of the query terms. The box has enough
space to display the full title of the item and therefore no metaphor is actually needed.
This fits well with our goal to design a generic interface which would work for any
kind of data. The interface also employs the two buttons, “similar” and “add to set”,
pattern previously discussed. All the features of the interface are best described with
an example.

Figure 7.19 shows the search result page of the DBLP instance after the article
“Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions” has been
added. The interface has switched to similarity search mode and any element pertaining
to it is now marked in orange color (1) (2) and (3). Under this mode any facet refinement
or added keyword will restrict the set of similar items. The refined search results are
re-ranked according to the similarity search score of each document with respect to
the queried item(s) (2). This ranking function can be customized as we will see next
with SimSearch. For example, in the IMDb instance, we chose to return similar but
also popular movies in order to offer good recommendations. Items can be disabled
or removed in order to try out different search combinations. When a query term is
disabled, it remains sticky, just as we have described on the first interface prototype.
Feedback as to why each document has matched is marked in orange color using different
font sizes for each feature value (3). The larger the font of a feature value, the more
weight it had in the computation of the similarity search score. At any time the mode
can be canceled and the previous faceted search experience recovered (4). Two buttons
located at the bottom of each document surrogate called “Similar” or “Add to query”

are used to either start a completely new similarity search or add the item to the current

7.5. ITEM BASED SEARCH 165

IP - CompSci E

D cloudmining Search or add keywords .. | [GO | [Add Keyword]@ similarity search mode

Leoking for results similar to: (X
' v
v Semi-Supenised Leaming Using Gaussian Fields and Harmonic Functions. 3
4 -
Searching for. '« Zoubin Ghahramani X @ re-ranked by most similar | cancel similarity search I
“:‘ Found 124 results sorted by: mostsimilar_v ‘ Pages:1 2 3 ... 13 & < Refine by AUTHORS: show: tagcloud ~
Xiaojin Zhu, Jaz S. Kandola, Zoubin Ghahramani, John D. Lafferty - Nonparametric Transforms of Graph Car| Edward Rasmussen David

Kernels for Semi-Supenised Learning. NIFS 2004 A Cohn David L Wild Edward

Snelson Geoffrey E. Hinton Hyun-Chul
Xiaojin Zhu i John D. Lafferty / Zoubin Ghahramani / semi-supervised / wameg ‘ Kim Jiri Matas Jurgen Van Gael

Ryan Prescott Adams, Zoubin Ghahrama.ﬁ'i"':"mc_h_!pelagu: nonparametric Bayesian semi-supemvised Katherine A. Heller Michael I.
learning. ICVIL 2009) Jordan Ramin Zabih Ricardo
G2 Read article - @ Similar / Add to query @ why this item matched Silva Ryan Prescott Adams ~ Sam T.

Roweis Wei Chu

[Read article - 9 Cited 29 times - & Similar f Add to query

Zoubin Ghahramani / semi-supervised / icml / wamng

Wei Chu, Zoubin Ghahramani : Preference learning with Gaussian processes. ICML 2005 e Refine by KEYWORDS: show: tagcloud =
. o 6 .
D Read article - &9 Similar / Add to query note how the facet values +‘ algorithm bayeslan classification
' . have changed ; .
Zoubin Ghahramani / icmi / gsussian / esmeg d gaussian graphical graphs

B learning miwe model

Ruslan Salakhutdinoy, Sam T. Roweis, Zoubin Ghahramani - Optimization with EM and Expectation-
process pProcesses semi-supenvised

Conjugate-Gradient. ICML 2003

:) L . sparse statistical variable
¢ Cited 29 times - & Similar / Add to query

Zoubin Ghahramanifih.um ‘ = Refine by VENUE: show: counts =
Edward Snelson, Carl Edwakrd Ras;ﬁ'ﬁssen. Zoubin Ghahramani : Warped Gaussian Processes. NIFS NIPS 32
2003 JMLR 15
3 Read apisle - @& Si"“ilara’.i‘}.d'fl to query PAMI 13

5 @
Zoubin search for similar articles ar ICML 12

add it to the current query

Wei Chu, Vikas Sindhwani, Zoubin Ghahramani, 5. Sathiya Keerthi : Relational Learing with Gaussian R A/ dICS 6
Processes. NIPS 2006 LA 6
(3 Read article - @ Similar / Add to query CORR 5

Figure 7.19: Similarity search on the DBLP instance

166 CHAPTER 7. CLOUD MINING

query (5). Finally notice how the facet values have changed (6). Now the author Wei
Chu appears in larger font indicating that he has not only produced many articles with
Zoubin but also that these articles may be quite similar to the current query items. The
actual facet grouping function can be customized as we will see in the next subsection.
Unfortunately the DBLP dataset does not provide the full text body, nor does it provide
the abstract of each article. This limits the quality of the similarity search results. In
order to further describe the kinds of results obtained, let us take another example from
the IMDB instance.

Figure 7.20 shows the search result page after having added the movie “The Lion
King” to the current query. The user is now explicitly asking for musical cartoons which
are similar to the Lion King (1) and (2). The concept cluster found by Bayesian Sets is
somewhat made of movies which are Disney animations with anthropomorphic animal
characters (3). The movie the Lion King IT unsurprisingly matches as top result. The
movie Aladdin matches because it is a Disney animation with “poetic justice”, a “first
love”, a “monkey” and a “runaway”. Note that on the IMDb instance the document
surrogate has been customized with a single “More of this!” button, which performs
equivalently to “Add to query”.

As previously mentioned, multiple items based searches are possible. In Figure 7.21
the user has found and added the movie “Ratatouille” to the current set of items by
toggling off the query term “Musical” (1) and (2). This further specifies the cluster of
anthropomorphic animal characters found in these movies. Movies such as Ice Age, Tim
and Plumbaa, and Fantastic Mr. Fox are now emerging from the search results (3). For
example, the movie Ice Age matches because of a “vulture” and “animal character”.
The movie Timon and Plumbaa matches because of the presence of the plot keywords
“The Lion King”, “warthog”, “furry”, “furries” or “anthropomorphic”.

The interface was tested with discounted usability principles. In our tests the results
were encouraging. However, we did note that users had difficulties forming multiple item
based queries. At first, it was not evident to the user that disabling query terms would
make them sticky through the search. Also users would not necessarily understand
that the “Add Keyword” button could be used to search beyond the first pages of the
result set. Nevertheless, this interface does resolve most of the design goals previously

outlined. That is the experience does not depart too much from conventional faceted

7.5. ITEM BASED SEARCH

Search or add keywords ... | | GO | | AddKeyword

D cloudmining

Leoking for results similar to:

1
looking for movies similar to:
"The Lion King"

v The Lion King 3 ==}

167

About Feedback IMDb - movies E

Searching for: ~ Animation 3 =~ Musical ¥ *—@ with these keyword refinements

» Found 552 results sorted by: mostsimilar -

AR TERELSR ERITION

The Lion King II: Simba's Pride (1998) - Video - 81 min - Rz
7 (5.810 - 8,592 IMDb votes)

7 More of this!
Genre: Animation / Adventure / Family f Musical / Romance

Directed by Darrell Rooney, Rob LaDuca with Matthew Broderick, Maira Kelly, Neve
Camphell

Simba’s daughter is the key (o a resclution of g bitter feud between Simba's pride and the
outcast pride led by the mate of Scar. full story on IMDb

Pages: 1 2 3 ... 56 2.

= Refine by YEAR: show: tagcloud -

1959 1986
1092 1903 1995
1998 1999 2004

1037 1951
1989 1991
1906 1997

1967

= Refine by GENRE: show: tagcloud =

Actinn dventure

Biography ~ Comedy

&7 Furry / Furries f Anthropomorphic / Anthropomorphic Animal / Licn

3) keywords which have matched

Drama

EQ Goto IMDb - See some photos - [Watch a trailer - £ Torrent search

FIRST TIMO DN DD
&

Aladdin (1992) - 90 min - Rated G
[(7.8M0-63,299 IMDb votes)

Genre: Animation / Family / Fantasy f Musical / Romance

7 More of this!

L

Directed by Ron Clements, John Musker with Scoit Weinger, Robin Williams, Linda
Larkin

Aladdin, a street urchin, accidentally meets Princess Jasmine, who is in the city

undercover. They love each other, but she can only marry a prince. full story on IMDb

L,,_‘,'v Disney Animated Feature / Poetic Justice / First Love / Monkey / Runaway

E3 Goto IMDD -% See some photos - B Watch a trailer - Tarrent search

The Jungle Book 2 (2002)- 72 min - Rated G 3% More of this!
7 (5.2/10 - 2,452 IMDb votes) f_

Genre: Adventure / Animation / Family / Musical

Directed by Steve Trenbirth with John Goodman, add more movie items

Mowgli, missing the jungle and his old friends, runs
the danger he's in by going back to the wild. full story on IMDb

7 Disobedience / Disney Animated Feature / Lava / Vulture / Wildlife

(3 Goto IMDD -8 see some photos - & Watch a trailer - Torrent search

Alice in Wonderland (1951) - 75 min - Rated G
U (7.4M0-16,577 IMDb votes)

Genre: Animation / Adventure / Family § Fantasy / Musical

7 More ofthis!

Family
Horror

Short

ntary
Fantasy

Romance

History Mystery

Sci-Fi Thriller

= Refine by KEYWORD: show: counts -

= Refine by DIRECTOR: show: counts
Wilfred Jackson 16
Ron Clements 5
Clyde Geronimi 4
David Hand 4
Don Bluth 4
John Musker 4
Gary Goldman 3
Wolfgang Reitherman 3
show maore
@ Refine by ACTOR: show: counts -
Frank Welker 18
Jim Cummings 12
hlam: e Rinramaan [

Figure 7.20: Similarity search on the IMDDb instance

168

D cloudmining (‘search or s keymorss . | (60, [AddKeyword

Loocking for results similar to:

(1)

¥ The Lion King £
J+ multiple movie items could be added |

-
-

v Ratatouille 3

CHAPTER 7. CLOUD MINING

About Feedback IMDb - movies E

Searching for: « Animation 3 | Musical 3

"Musical" was toggled off
to find the movie Ratatouille

abic,

s Found 27,528 results sorted by: mostsimilar ~

AEERE RIS A TIGN

The Lion King II: Simba's Pride (1928) - Video - 81 min - Rz
7 (5.8110 - 8,592 IMDb votes)

7 More ofthis!
Genre: Animation / Adventure / Family / Musical / Romance

Directed by Darrell Rooney, Rob LaDuca with Matthew Braderick, Moira Kelly, Neve
Campbell

Simba's daughter is the key to a resolution of a bilter feud between Simba's pride and the
outcast pride led by the mate of Scar. full story on IMDb

&5 Furry/ Furries / Anthropomorphic / Anthropomorphic Animal / Anthropomorphism
E3 Goto IMDb - B See

some photos - E Watch a trailer - %= Torrent search

Ice Age: The Meltdown (2006) - 91 min - Rated PG
7 (6.9M10 - 45821 IMDb votes)

Genre: Animation / Adventure / Comedy / Family

@5 More ofthis!

AN N N _R_B_|

Directed by Carlos Saldanha with Ray Romanao, John Leguizamo, Denis Leary

Diego, Manny and Sid return in this sequel to the hit ice Age. This time around the Ice Age

everyone about the situation. full story on IMDb
&7 Vulture / Flatulence / Character's Point Of View Camera Shot/ Blockbuster / Animal

(3 Go to IMDb - B See some photos - [l Watch a trailer - 4% Torrent search

Timon and Pumbaa (1995) - TV Series - 30 min - Rated TV-Y
7 (6.7M0 - 488 IMDb votes)

Genre: Animation / Comedy / Family

with Ernie Sabella, Kevin Schon, Quinton Flynn

7 More ofthis!

o
o

The further misadventures of various Lion King characters. full story on IMDE ‘ i

@5 The Lion King / Warthog / Furry / Furries / Anthropomorphic
(3 Gote IMDb - B0 See some

photos - 5% Torrent search

Fantastic Mr. Fox (2009) - 87 min - Rated PG
MR AMN - /R 222 IMNA vntas)

7 Wore ofthis!

Pages: 1 2 3 ... &,

is over and is starting to melt, which will destroy their valley. So they must unite and warm ‘ Refine by DIRECTOR'

@ Refine by YEAR:

show: tagcloud -

1986 1995 1997 1998 1999
2000 2001 2002 2003 2004
2005 2006 2007 2008
2009
= Refine by GENRE: show: tagcloud -
Action Adventure Comedy
cime Drama Family Fantasy
Horror Music Mystery Romance
sci-Fi Short Thriler

e Refine by KEYWORD:

show: counts A

show: counts -

Da!(f: Fleischer 614
5
Friz Frqlthg m 274
Chuck JO’",‘+ notice how the results have changed
Josfgph’ ‘Barbera 207
"u/":l;illiam Hanna 205
Robert McKimson 189
Tex Avery 131
Wilfred Jacksaon v
show more

= Refine by ACTOR: show. counts -

LY DR o T Ll

Figure 7.21: Similarity search on the IMDDb instance 2

7.5. ITEM BASED SEARCH 169

search. Users can mix keywords with items while still refine by facet metadata. It
integrates with visual search as well as provide feedback as to why documents match.

Finally, the interface is generic and can be used for any kind of data.

7.5.3 Back-end implementation with SimSearch

The underlying back-end which performs similarity search within Cloud Mining is Sim-
Search (Ksikes, 2011b). SimSearch is our own implementation of Bayesian Sets. It
provides many of the features of an item based search engine such as indexing data,
querying the index or interfacing with fSphinx to provide item and facet combination
searches. The software can be used independently from Cloud Mining and is freely
available under an open source license at GitHub. What follows provides an overview
of the inner working of SimSearch. For more information as to how to use SimSearch,

a tutorial is available online or at the end of this thesis in Appendix B.

matched ids, log

scores, matched

binary ; : computed |
] i...Query feature values

............................. dataset

S matrix to csr format, ; icompute query vector, :
:bag of words, histogram, : ; X i :
; ; icompute hyper-parameters, i matrix computation, :
‘texture or shape features: : . . : : X :

T TR T inverted index : : fast ranking ;

Figure 7.22: Indexing to querying with SimSearch

SimSearch has been designed to keep all of the benefits of Bayesian Sets. Figure
7.22 shows the steps involved from indexing to querying. The first step consists of
extracting the features from the data into a binary dataset. Only the bag-of-words
feature extractor is included in the package, but many more can be added. An indexer
uses a feature extractor in order to binarize the feature values as they are extracted from
the data and writes the results into a binary dataset. The binary dataset keeps track of
the item ids and features values and holds a representation of the sparse binary matrix
taken as input by Bayesian Sets. This approach respects the decoupling of the feature

engineering within Bayesian Sets. Developers are free to either plug in a new feature

170 CHAPTER 7. CLOUD MINING

extractor of their liking or directly create the binary dataset. The second step involves
loading the binary dataset into a computed index. This includes transforming the
binary matrix into a format suited for efficient sparse matrix multiplication, computing
the hyper-parameters and creating the inverted indexes to keep track of the item ids
and feature values within the matrix. In the third step, the computed index is queried
and the results are returned. This includes the computation of the query vector, the
actual matrix multiplication and the fast ranking of the returned results. The results
are a set of matched item ids with log scores together with matched feature values. The
feature values and their individual scores are used by Cloud Mining to show why each
item has matched.

Figure 7.23 depicts a simplified UML diagram of the SimSearch package. The In-
dexer object is used to binarize the features returned by a feature extractor and to write
the results within the binary dataset. For this purpose it has an iterator and a Fileln-
dex object. The iterator could be a BagOfWordslter object or anything which returns,
as the data is being read, the couple (item id, feature value). The FileIndex object is
used to manipulate the binary dataset on disk. It is then used within a ComputedIndex
object to load the matrix in memory. The ComputedIndex is the in memory represen-
tation of the binary dataset. The matrix is transformed into a CSR format for fast
sparse matrix multiplication. Additionally the ComputedIndex object computes all the
necessary hyper-parameters and inverted indexes. A QueryHandler object is used to
query a ComputedIndex object for a given list of item ids. The QueryHandler object
computes the query vector, performs the actual matrix multiplication and returns the
top k best results in a ResultSet object. The efficient sparse matrix multiplication as
well as some other matrix operations are performed by the Python module scipy.sparse
(E. Jones et al., 2001).

In order to interface with fSphinx, the SimClient object behaves like a FSphinxClient
object by wrapping its functionalities. The SimClient object uses a QueryHandler
object to query the computed index upon seeing a similarity search query. A similarity
search query is a mix of items and textual queries. The items in the query are indicated
by the field @similar followed by the item id and some other optional variables such
as the title of the item. The QuerySimilar object behaves identically to a fSphinx
MultiFieldQuery, but takes into account the item ids in the query. An attribute called

7.5. ITEM BASED SEARCH

Indexer

iter_features: iter
index: Filelndex

BagOfWordslter

index_data()
show_stats()

db = MySQLdb
sql_features =]

1>

Serializable

iter (}: (id: int, feat: str)

Computedindex

index: Filelndex

X: csr_matrix

mean: aray

alpha: array

beta: array
alpha_plus_beta: array
log_alpha_plus_beta: array
log_alpha: array

log_beta: array

0

Filelndex

index_path: str
mode: str

ids: dict

fts: dict

XCo: array
yco: array

_load_file_index(index_path: str)
_compute_matrix_to_csr)
_compute_hyper_parameters{c: int)

read(index_path: str)
write(id: int, feat: str)
close()

QueryHandler

computed_index: Computedindex
results: ResultSet

query(itemn_ids: list, max_results: int)
get detailed_scores(item_ids: list)
_make_query_vector()
_compute_scores()
_order_top_results(max_results: int)

ResultSet

time: float
total_found: int
query_item_ids: list
log_scores: list

_ sfr_ ():str

fsphinx.fSphinxClient

fsphinx.MultiFiedQuery

SimClient

]

wrap_cl: SphinxClient
query handler: QueryHandler

QuerySimilar

ats: [QueryTermSimilar]

Query(guery: QuerySimilar)
_DoSimQuery(item_ids: list)
_DoSphinkQuery(query: QuerySimilar)
Clone(): SimClient

FromConfig(path: str): SimClient

AddQueryTerm(gt: QueryTermSimilar)
Getltemlds(): list

fsphink.QueryTerm

QueryTermSimilar

item_id: int
extra: dict

Figure 7.23: SimSearch simplified UML diagram

171

172 CHAPTER 7. CLOUD MINING

log_score_attr must be declared as a float and set to 1 in the Sphinx configuration file.
This attribute is updated at query time for each item by the scores returned from the
QueryHanlder object. The search of the wrapped fSphinx client is then performed as
usual. As mentioned, SimClient wraps an existing fSphinx client in a way that any
of its options can be overridden. These include the ranking of the search results or
the facet grouping functions. These can then take into account the updated log score
attributes in their computation.

With the SimClient class, SimSearch respects another benefit of Bayesian Sets which
consists of combining item based search with faceted search. However, another very
interesting aspect of Bayesian Sets is its speed and scalability. In what follows we will
briefly cover some of the ways in which indexing and querying can be distributed over

multiple cores or machines.

7.5.4 Scaling Bayesian Sets

Although Cloud Mining could be run on the developer’s server, it would be interesting to
provide the framework as a web service that would power multiple instances. This would
fit well with our vision of Cloud Mining as a pluggable search solution offered over the
cloud. But this would require scaling Cloud Mining to multiple cores or machines. As
previously mentioned, faceted search is easily scalable with Sphinx. However, SimSearch
would still require features such as live distributed indexing and distributed search.

Figure 7.24 shows how live distributed indexing could be implemented. The file in-
dex has been replaced by a NoSQL database. NoSQL database systems are often highly
optimized for retrieval, appending and more or less for updating operations. They offer
higher scalability and availability than traditional relational databases. From the figure,
the NoSQL database synchronizes between new incoming data and several split com-
puted indexes. The data can be added, updated or removed without worrying about
corrupting the computed indexes. The computed indexes are created from sequential
chunks of the database in one atomic operation. They can live on multiple cores or
machines. These computed indexes are updated all at once (rotated) after x number of
updates.

Distributed search can be performed in a fairly straight forward manner. Figure

7.5. ITEM BASED SEARCH 173

computed index

X1
rotate computed indexes computed index
new data -
NoSQL database every x no updates X2

N~ A

LY

computed index
X3

Figure 7.24: Simsearch live distributed indexing

‘computed index which holds
index of items

index of features 0
and matrix in CSR format

X1 —

top scores for
items from 0 to n-1

top scores for
items from 0 to k

for a new query X2 top scores for
obtaincand q items from n to 2n-1

top scores for
X3 > .
K items from 2n to k

Figure 7.25: Simsearch distributed search

174 CHAPTER 7. CLOUD MINING

7.25 shows an overview of the process involved. Recall from chapter 6, that Bayesian
Sets performs a single multiplication between a large sparse matrix and a query vector.
This computation can be processed in parallel in a map reduced fashion (Dean and
Ghemawat, 2008). The matrix is split into multiple sequential chunks which can be
obtained from the distributed indexes discussed previously. The top scores of each sub-
matrix multiplication are then returned and sorted. The final results are obtained by
merge-sorting each of these top scores. Finally, the top k scores of the final results are

returned.

7.6 Example of Instance Building

In this section we will describe how to build a Cloud Mining instance from scratch.
That is we won’t even assume that the developer of the instance has data available.
This section is really a summary of the process we went through in order to build the
DBLP, IMDb and MEDLINE instances. The interested reader may have a look into
the examples/ and scraping/ directories of the Cloud Mining project page for further

scraping the data setting up the backend

AN

i
single value multi-value . Sphinx indexer
g(able table autoconfig “::SSSL config config

detalils.

,'{

web source

IMDb, MEDLINE, DBLP ... mass scraping

fSphinx indexer
creating the instance \
cus(amiz

overriden

directory
css

templates ..

]

CloudMining
app

Sphinx index

Figure 7.26: Building a Cloud Mining instance from scratch

The whole process of building a Cloud Mining instance is summarized in Figure
7.26. The first (optional) step consists of downloading and scraping the data of interest
(1). The second step consists of setting up the back-end (2). This includes properly
loading the data into a database and indexing it with Sphinx. Although not shown

7.6. EXAMPLE OF INSTANCE BUILDING 175

in this diagram, if similarity search is desired, the data must also be featurized and
indexed by SimSearch at this step. In order to query the index, a fSphinx client and, if
desired, a SimSearch client, must be configured. The third step consists of creating the
instance by having Cloud Mining read the fSphinx and SimSearch configuration files
and render the interface (3). At this step and as previously discussed, the look and
feel of the Cloud Mining instance can be customized by setting up some options or by

overriding a set of templates.

7.6.1 Scraping Data

As previously discussed, the size of the different instances meant that we had to down-
load potentially millions of documents from the web. The relevant information also had
to be extracted and loaded into a database. To simplify this process, we have written
the program Mass Scraping (Ksikes, 2010), also a thesis contribution. Mass Scraping is
a Python module which is useful to download and scrape websites on a massive scale.
The program is open source and free available at GitHub.

Mass Scraping goes through a series of three steps as shown in Figure 7.27. First,
the data is retrieved and saved into a repository (1). As we will see, a repository is
an efficient directory structure which is designed to save space as well as to allow for
the inclusion of a large number of files. Second, the information is extracted from the
repository and placed in tab delimited text files called tables (2). Third, the tables
are then populated within a database (3). The whole process is controlled by a sin-
gle configuration file. Each of the steps are performed by a separate programs called
retrieve.py, extract.py and populate.py respectively. We will now cover each of these

steps in greater detail.

Retrieving Data

The first step consists of using the program retrieve.py. This program is used to down-
load web resources in the most efficient manner possible. For example, retrieve.py can
use multiple concurrent connections in order to download the resources in parallel. The
retrieved resources are then directly saved in the repository. Other options include shuf-

fling the list of input URLs, sleeping after x number of failures, stopping and resuming

176 CHAPTER 7. CLOUD MINING

value table

(items)

web
resource

raw html

=== retrieve ===<# repository extract === populate === MySQL
'\.\ i multi-value 4,/" tables
C} N | table f
O \\ | (facets)
N :
. v
N |~
s g
config file
Figure 7.27: Retrieve, extract, populate with Mass Scraping
retrieval.

The program does not crawl the web but simply takes as sole input a list of URLs.
For a particular website, this list can be obtained by noticing a pattern in the way
the URLs are generated. For example, IMDb references each movie page by an ID.
Therefore the list of URLs can be obtained by iterating over all movie ids from 1 to
about 2M.

On some file systems, storing potentially millions of files in one directory could make
lookup operations extremely slow. Additionally compressing textual data can save more
than 80% of disk space. For these reasons, the data downloaded by retrieve.py is saved
in an efficient directory structure called a repository. A repository is a tree-like directory
structure where each leaf contains files in a compressed form. The files pertaining to
each resource are named after the MDb5 hash of the URL. The directories are named
after the first characters of the filenames of the files located at the leaves. For example,
the web page http://www.imdb.com /title/tt0111161/ is saved at the leaf 73/03.zip with
a filename of 7303ddebe20d37e7ed27d643594324a8.html.

Extracting Data

The second step consists of using the program extract.py. This program is used to
extract the relevant parts of a document into a set of tab delimited text files called

tables. The program can read input from raw data or from the repository discussed

7.6. EXAMPLE OF INSTANCE BUILDING 177

previously. A configuration file has to written in order to tell extract.py how the data
should be parsed. The configuration file is made of a set of directives marked by a
unique field identifier which starts with the symbol @. Each field entry holds a regular
expression, an optional post processing callback, and a SQL field specification. The
regular expression provides a concise and flexible means for matching text. While the
callback function is used to perform any necessary post formatting. For example, the
callback can be used to change an extracted date into a format understandable to
MySQL. The SQL field specification is used by the program populate.py, as we will see
next. For example, in order to extract the ID and title from an IMDb movie web page,

the following configuration file can be written:

regex_mode = ’inline’
regex_flag = re.I|re.S

@imdb_id = dict(

regex = ’href="http://www.imdb.com/title/tt(\d+)/"’,
sql = ’int(12) unsigned primary key’
)
Otitle = dict(
regex = ’<h1>(.+7)\(’,
callback = lambda s: strips(s, ’"’),
sql = ’varchar(250)’

The regex mode could either be “inline” or “global”. In inline mode, extract.py
only gets the first matching text, whereas in global mode it gets them all. This is used
for single value or multiple value fields. The callback function for the @title field tells
extract.py to strip the quotes from the beginning and the end of the resulting matching
text. Note that a configuration file is just plain Python code with the additional @ to
mark each field.

The interested reader may wonder why we haven’t used packages such as Ixml
(Richter, 2000) or Beautiful Soup (Richardson, 2004). In practice we have observed
that the parsing methods employed by these packages do not scale well to millions of
documents. In fact, for HI'ML documents, these packages have to load the entire DOM
in memory before any writing can take place. This obviously slows down parsing and

consumes memory. Although less robust and expressive, regular expressions are much

178 CHAPTER 7. CLOUD MINING

faster in practice. It can be argued that a SAX parser could have been used instead.
This later reads data as a stream, and recognizes the beginning or end of a node in
an event-driven manner. However, for our purpose, which consisted of scraping HTML
documents only once and from the same source, using a SAX parser would probably

have been overkill.

Loading Data

The last step consists of using the program of populate.py. This program takes as input
a table file along with its associated configuration file in order to populate the database.
Each table is then loaded into a corresponding MySQL table. The program takes care
of creating the schema of the MySQL table according the SQL field specifications of the
configuration file. Applying this process to our IMDb scrape led to one table for all the
single-valued items, and multiple tables for each multi-valued fields. For example, the
title or the description of a movie is single-valued and therefore loaded into one table
keyed by movie ids. While the actor names, directors or plot keywords are multi-valued
and therefore loaded into three different tables respectively. After the data has been
scraped and loaded in the database, further steps are required on the back-end in order
to setup the instance. These steps involve indexing the data from the database as well

as setting up the search clients.

7.6.2 Setting up the Back-end

At this step the data is expected to have been loaded in a database. Keeping our
IMDB example, let us assume we have the fairly conventional database schema shown
in Figure 7.28. As previously discussed, there is only one table for all the single-valued
items and multiple tables for each multi-valued items. For instance, the title, year and
total user rating of a movie are stored in the single-valued table. While the genre or
plot keywords are each stored in separate tables. Setting up the back-end consists of
creating lookup tables for the facets, indexing the data with Sphinx, and creating the
search clients with fSphinx and SimSearch.

Sphinx has attributes which are additional values that can be used to perform further

filtering and sorting during search. In fact, every facet in fSphinx must be declared as

7.6. EXAMPLE OF INSTANCE BUILDING 179

[single-valued items table] [multi—valued items tables}

/ [T~

genres table plot_keywords table

movies table

imdb_id title year rating imdb._id genre imdb,_id keyword

1 Terminator 1984 1 action 1 future

2 Fight Club 1999 1 sci-fi 1 cyborg

2 crime 2 office

2 drama 2 boxing

Figure 7.28: A typical DB schema with one table for single-valued items and multiple tables

for each multi-valued items.

an attribute. However, Sphinx has a limitation with multi-value attributes which can
only contain integers. In order to circumvent this issue, we need to create lookup tables
to map integers to facet values. The lookup tables should then be passed to the facet
of the fSphinx client. Creating a lookup table is as easy as performing a MySQL select
group by statement on the facet values. For example, to create the lookup table for the
genre facet, all that is required is the following SQL statement. Here we create a table
genre_tags which maps facet ids to corresponding facet values.

set @i := 0;

insert genre_tags
select @1 := @1 + 1, genre from genres group by genre;

Next we need to write a configuration file in order to tell Sphinx how to index the
data. The process is fairly straightforward and boils down to writing a couple of SQL
statements which specify what parts of the database should be indexed. The interested
reader is encouraged to consult the Sphinx documentation for more details on this issue.

Now we are ready to create an fSphinx client to query the index. As we have seen, an
fSphinx client is just a Sphinx client but with additional functions to facilitate faceted
search. The details as to how to setup a fSphinx client can be found in the tutorial

online or provided in the Appendix A. The process boils down to mentioning how to

180 CHAPTER 7. CLOUD MINING

retrieve hits from the database, creating the facets and attaching them to the client. It
is recommended to put all the boiler plate of the client setup in a configuration file.
As previously discussed, Cloud Mining provides an interesting feature of combining
full text with item based search. This feature is provided by SimSearch with the
SimClient class. The details as to how to setup a SimClient is provided in the tutorial
online or at the end of this thesis in Appendix B. Basically a SimClient behaves like
a normal fSphinx client with the difference that upon seeing a similarity search query,
the results and facets are re-ranked by a chosen function. This function can take into
account a Sphinx attribute called log_score_attr in its computation. The value of the
attribute is automatically updated by SimSearch with the similarity scores of each
document matching the query items. It must be declared as a float and set to 0 in
the Sphinx configuration file. The indexing of items has been covered in the previous

section and is further detailed in the tutorial found in the Appendix A.

7.6.3 Creating the Instance

The fSphinx client or SimSearch client each have a command line interface. This is a
useful for testing queries or for debugging. However, in order to setup the web interface
the clients must be registered within a Cloud Mining instance. This is performed by
calling on the set_fsphinx_client or the set_sim_client method of the CloudMiningApp
object. Another way is to simply specify a directory that holds all the configuration
files of a Cloud Mining instance. For example, the directory ezamples/dblp holds all
the files necessary to build the DBLP instance.

As previously mentioned the CloudMiningApp object is a web.py application that
is run like any other web applications. The default look and feel of the interface can be
customized. As previously discussed, there are basically two levels of customizations.
The first level is performed by setting some options, possibly at run time, either di-
rectly within the fSphinx or SimSearch client or within the application. For example,
the sorting functions are setup directly in the fSphinx client. While the look and feel
of a single facet can be changed by calling on the set_ui_facet method of the applica-
tion. The second level is used for more aesthetic drastic changes of the interface. In

this case, the designer can override a chosen set of templates by calling on the method

7.7. CONCLUSION 181

override_template of the CloudMiningApp object. There are many more methods docu-
mented in the API that the interested reader is encouraged to consult. We also provide
a brief tutorial at the end of this thesis in Appendix C.

Figure 7.9 shows a Cloud Mining interface before and after customization. We have
added new sorting functions by popularity, date or user ratings (6) in our fSphinx client
configuration file. The document surrogate template has been overridden to display the
cover image of each movie as well as links to picture galleries or trailers (3). The color
palette of each facet was modified as well as the available visualization by calling on
the set_ui_facet method (4) and (5). The end result is a full scale exploratory search

system written with just a few lines of code.

7.7 Conclusion

As previously stated, our goal with Cloud Mining was to build a system which would
embody most of the ideas on exploratory search previously discussed in this thesis.
The underlying motivation of this work, and main contribution towards the thesis,
is to show how traditional faceted search systems could naturally be extended with
core exploratory search functionalities. First, the facets are extended with different
visualizations which are selectable at run time. Second, although not currently part
of Cloud Mining, search views are also a natural addition. Third, in order to help
discover whole new sets of interest, previously unreachable with traditional text search,
item based search should also be integrated within the system. As we have previously
described with Cloud Mining, this functionality can be naturally implemented either
as a search mode or as another facet. In fact, as previously shown, instances built with
Cloud Mining allow users to combine textual queries with whole items. Fourth, since
there isn’t one ESS for every application, the system must be thought as a framework
or as a platform extensible with plugins, and with instances tunable to a particular
document collection of choice. The plugins include the different views for the facets or
for the search results, as well as different feature extractors for item based search.
More concretely, in Cloud Mining, each exploratory search function is performed
by a separate module that can be used independently. Faceted search is performed by

fSphinx, while item based searches are carried over by SimSearch. The default interface

182 CHAPTER 7. CLOUD MINING

and user interaction is carefully designed according to usability principles, but the final
look and feel is eventually customized either by specifying some options at run time or
by overriding a set of templates. New facet views can easily be added, as well as new
feature extractors for SimSearch. Cloud Mining was tested on large publicly available
datasets which, for the occasion, were significantly enhanced. The software, underlying
modules and built instances are freely available under an open source license.

However, Cloud Mining is still a work in progress and several new features are
envisioned in the short term. First, we would be interested to add search views as
pluggable widgets. These could include a map view and a space-time view, as explained
in chapter 5. Second, Cloud Mining could feature different skins, possibly but not
necessarily, for different devices such as tablets or phones. Third, an entity extraction
module should be provided. This latter could help in resolving the lack of metadata
issue discussed in chapter 4, and encountered while building a WikiLeaks cable instance.
Fourth, each instance could make use of a social module to vote, comment, edit or
curate the documents found. This is a currently important missing piece of Cloud
Mining which should help in implementing the pipelining idea approach to information
overload described at the of chapter 5. Fifth, similarity search should be improved
in order to allow for queries made of items not necessarily present in the document
collection.

In the long term, we would like to make Cloud Mining into a fully scalable pluggable
search solution. This would include the creation of an ecosystem for shared datasets,
search components, and instances, as discussed at the end of chapter 5. Along with
this ecosystem, an interface to help designers visually build instances should be made
available. At the end Cloud Mining could become a solution provided over the cloud

requiring no installation whatsoever.

183

Conclusion

In this thesis we have covered what we believe would be the main ingredients of an
exploratory search system (ESS). In essence a system which is exploratory should em-
ploy multiple modes of interaction such as textual queries, facets, visual results and
query-by-example. The goal of the thesis was to show how all of these elements could
be integrated into a typical faceted search system that users are already accustomed to.
In this respect, we propose that the future of exploratory search might be a traditional
faceted search system, but with the added ingredients of information visualizations and
query-by-example. In order to come to this conclusion and to illustrate our ideas, we
first had to review the current status quo (chapters 1, 2, 4, 5, 6), and to see how it
can be extended. For the first two chapters, this led to the creation of Biomed Search
(chapter 3), and for the next chapters to the creation of Cloud Mining (chapter 7).

Biomed Search, has been positively received by the community. The system indexes
over 1 million images from the biomedical domain. It features the novel characteristics
of indexing the text caption of an image as well as the text which refers to the image.
We noticed that indexing the referring text to images yields a greater recall while not
undermining precision. At the interface level, the grid view with zoom in/out sparked
a lot of ideas as to how to represent search results more graphically. Users were also
indirectly asking for a search experience which is faceted and visual. Moreover, content
based type of searches were also an indirectly highly demanded feature. The work on
Biomed Search naturally led to the creation of Cloud Mining.

Cloud Mining, is a framework to instantiate ESSs. On the back-end, it is comprised
of two other software which can be used independently. First, fSphinx, interacts with
Sphinx in order to facilitate faceted search. Second, SimSearch, is an item based search
engine implementing Bayesian Sets, that performs query-by-example. In order to test

out the framework, we applied Cloud Mining to three instances with datasets such as

184 CONCLUSION

DBLP, IMDb and MEDLINE. Each of these dataset were significantly enhanced with
citations from CiteSeerX and PubMed Central for DBLP and MEDLINE respectively.
Finally, Cloud Mining and all its components are available under an open source license.

The chief result of this work and main contribution of this thesis come as lessons
learned, suggestions or recommendations as to how extend the current paradigm of
faceted search into the one of exploratory search, as we have done while designing
Cloud Mining. First, search results and facets should support different views in order
to provide an overall analysis of the document collection. On the back-end, those
views should be implemented as plugins, as there are as many of them as different
visualizations for a given data type. On the front-end, views could be integrated in
a traditional faceted search interface, by adding a roll-down menu next to the search
results and next to each facet. Users are them able to select the right set of views for
the task of interest. Second, as previously mentioned, ESSs should be able to present
sets of similar documents as well as discover new ones. On the back-end, item based
search implemented with Bayesian Sets is the right paradigm as it reduces the handling
of complex content based searches to choosing the right plugin i.e. feature extractor. On
the front-end, item based search could always be integrated, in a standard faceted search
interface, either as a search mode or as another facet. Third, good engineering practices
and the broad set of different applications for exploratory search require a system to be
designed in a generic manner. In this respect, the system should be extensible with the
plugins previously discussed of search views, facet views and feature extractors, with a
final interface tunable to the particular collection of choice. Fourth, those plugins should
be part of an ecosystem website where developers can submit new ones for designers to
pick from.

As mentioned, Cloud Mining is an application of that vision. First, the facet values
can be viewed in many different ways. Second, multiple-item based searches are possible
and can be combined with textual queries. Third, Cloud Mining provides a flexible
architecture in which all instances run from the same code base. This lays the track
to a completely pluggable search framework, in which a designer will be able to build
ESSs by simply dragging and dropping different search components or widgets, each
performing a specific task within the interface. In Cloud Mining, the facets can be

added or removed dynamically. The customization of the interface happens at various

CONCLUSION 185

levels either by specifying some options at runtime or by overriding a set of templates.
New facet views can be created, shared and/or re-used by other designers.

It is our belief that the concepts exposed in this thesis of facets, visual results, and
query-by-example will be an integrand part of ESSs. In this respect, these notions
should be thought to go beyond the medium of personal computers. In the near fu-
ture, users will have ubiquitous access to large tactile displays, virtual and augmented
reality devices. This stresses the importance of having a pluggable search framework
or platform skinable and adaptable to the particular device of choice. However, it is an
open question as to how open ended these systems should be in order to accommodate
for all these different types devices and possible paradigm shifts. As in Figure 7.29,
a group of users directly manipulate the content of a document collection with subtle
hand gestures, as well as collaborate on their findings. But even then, the concepts of
text search, facets, visual results and query-by-example may still remain relevant, and

therefore pervasive and universal.

Figure 7.29: The future of search (courtesy of JR Schmidt)

At the end of chapter of 5, we have drafted what could be the next steps for a system
such as Cloud Mining. The goal would be to drive every one of its components by a

community of users. The datasets should be comment-able, editable, subject to voting

186 CONCLUSION

and sharable among users. In a similar manner, every interaction widget such as facets
or search views should be sharable and reusable across instances. Additionally, every
instance should have social and collaborative features. This could include the ability to
mark, tag, comment, vote upon or even edit potentially interesting documents. These
actions, performed by many users, would then close the loop on the uploaded datasets,
enriching them in the process and reused by yet another ESS for a perhaps completely
different task. By providing these tools, a process known as crowdsourcing can take
place, which subsequently would make sense of a large amount of data, and in a way pro-
vide a solution to information overload. Human augmentation intelligence may thereby
be achieved, not only with the tools, but also by the work of every interconnected agent
involved in the process. This could lead to the emergence of a higher level type of
collective intelligence. Once that point is reached, the “enlightened society” that Bush,

Licklider, Engelbart and others had dreamed of may actually become a reality.

187

Appendix A

fSphinx Tutorial

This tutorial on fSphinx is aimed at users with some familiarity with Sphinx. If you
are not familiar with Sphinx, I invite you to check out the excellent book from O’Reilly
or to go through the Sphinx documentation. Throughout this tutorial we will assume
that the current working directory is the “tutorial” directory. All the code samples can

be found in the file “./test.py”.

A.1 Setting up and Indexing Data

This tutorial uses a scrape of the top 400 movies found on IMDb. First let’s create a
MySQL database called “fsphinx” with user and password “fsphinx”.
In a MySQL shell type:

create database fsphinx character set utf8;
create user ’fsphinx’@’localhost’ identified by ’fsphinx’;

grant ALL on fsphinx.* to ’fsphinx’@’localhost’;

Now let’s load the data into this database:

mysql -u fsphinx -D fsphinx -p < ./sql/imdb_top400.data.sql

Let Sphinx index the data (assuming indexer is in /user/local/sphinx/):

/user/local/sphinx/indexer -c ./config/sphinx_indexer.conf --all

And let searchd serve the index:

https://github.com/alexksikes/fSphinx
http://sphinxsearch.com
http://oreilly.com/catalog/9780596809553
http://sphinxsearch.com/docs/

188 APPENDIX A. FSPHINX TUTORIAL

/user/local/sphinx/searchd -c ./config/sphinx_indexer.conf

You can now create a file called “_test.py”:

importing the required modules
sphinxapi

fsphinx *

let’s build a Sphinx Client

cl = sphinxapi.SphinxClient ()

assuming searchd is running on 10001

cl.SetServer(’localhost’, 10001)

let’s have a handle to our fsphinx database

db = utils.database(dbn=’mysql’, db=’fsphinx’, user=’fsphinx’, passwd=’fsphinx’)

let’s have a cache for later use

cache = RedisCache (db=0)

A.2 Setting up the Facets

Every facet in fSphinx must be declared as an attribute either single or multi-valued.
The file “./config/sphinx_indexer.conf” holds Sphinx indexing configurations. For the

director facet, this file must have the following lines:

needed to create the director facet
sql_attr_multi = \
uint director_attr query; \

select imdb_id, imdb_director_id directors

Additionally every facet (except facets with numerical value terms) must have a
corresponding MySQL table which maps ids to terms. Let’s have a look at the direc-

tor_terms table:

select * director_terms limit 5;
B e bt ettt +
| id | director |
B e Tt +
| 5 | Ingmar Bergman |
| 19 | Federico Fellini |

| 33 | Alfred Hitchcock |

A.3. PLAYING WITH FACETS 189

| 36 | Buster Keaton |
| 37 | Gene Kelly |

B e +

Going through sphinx_indexer.conf, we see that we have at our disposal the following
facets: year, genre, director, actor and plot keywords. Each but the year facet has a
corresponding MySQL table which maps ids to term values. When the facet terms are

numerical, as in the year facet, there is no need to create an additional MySQL table.

A.3 Playing with Facets

Creating a facet to be computed is easy:

sql_table is optional and defaults to (facet_name) _terms

factor = Facet(’actor’, sql_table=’actor_terms’)

the sphinx client is what will perform the computation

factor.AttachSphinxClient (cl, db)

let’s set the number of facet values returned to 5

factor.SetMaxNumValues (5)

Here we have created a new facet of name “actor” with terms found in the MySQL
table named “actor_terms”. We also need to attach a SphinxClient to perform the
computation and pass a handle to our database to fetch the results. Additionally we
have limited the number of facet values to 5.

We can proceed and compute this facet:

computing the actor facet for the query "drama"

factor.Compute (’drama’)

At this point it’s important to step back and understand what happened. fSphinx
called Sphinx to process the query. The results are then found in factor.results. This
later holds some basic statistics such as the time it took to compute or the total number
of facet values found. The list of facet values is providing in factor.results[‘matches’].

Each facet value is a dictionary with the following key-values:

@groupby: id of the facet value indexed by Sphinx.
Q@term: term of the facet value fetched MySQL.

190 APPENDIX A. FSPHINX TUTORIAL

@count: number of times this facet term appears.
@groupfunc: value of a custom grouping function (see next section).
@selected: whether this facet has been selected (see section on multi-field

queries) .

In fact we can print the facet and see for ourselves:

let’s see how this looks 1like

factor

actor: (5/3563 values group sorted by "@count desc' 0.030 sec.)

1. Al Pacino, Qcount=7, @groupby=199, G@groupfunc=7, @selected=False

2. John Qualen, Q@count=6, Q@groupby=702798, Qgroupfunc=6, Q@selected=False

3. Morgan Freeman, Qcount=6, Q@groupby=151, @groupfunc=6, @selected=False
4. Robert De Niro, @count=9, @groupby=134, @groupfunc=9, @selected=False
5.

Robert Duvall, @count=6, @groupby=380, @groupfunc=6, @selected=False

By default facets are grouped by their terms, sorted by how many times they appear
and ordered alphabetically. Let’s group sort our facet by a custom function which

models popularity.

setting up a custom sorting function

factor.SetGroupFunc (’sum(user_rating_attr * nb_votes_attr)’)

You can pass to SetGroupSort any Sphinx expression wrapped by an aggregate
function such as avg(), min(), max() or sum(). Sphinx provides a rather long list of
functions and operators which can be used in this expression.

Let’s additionally order the final results by the value of this expression:

QOgroupfunc holds the value of the custom grouping function

factor.SetOrderBy (’@groupfunc’, order=’desc’)

Now we can compute the facet and print it:

computing the actor facet for the query "drama"

factor.Compute (’drama’)

let’s what we get

factor

actor: (5/3563 values group sorted by "@groupfunc desc" 0.012 sec.)
1. Morgan Freeman, Q@count=6, @groupby=151, @groupfunc=1218292.125,

@selected=False

http://sphinxsearch.com/docs/manual-2.0.1.html#expressions

A.4. PERFORMANCE, CACHING AND MULTIPLE FACETS 191

2. Robert De Niro, @count=9, @groupby=134, Q@groupfunc=933700.375,
@selected=False

3. Al Pacino, Qcount=7, @groupby=199, @groupfunc=868737.0, @selected=
False

4. Robert Duvall, Qcount=6, @groupby=380, Q@groupfunc=800953.3125,
@selected=False

5. John Cazale, @count=5, Q@groupby=1030, Q@groupfunc=676553.75, @selected=

False

A.4 Performance, Caching and Multiple Facets

Most of the time we have many facets from which we may want to refine from. Calling
Sphinx each time would be rather inefficient. Also we’d like to make good use of
some of the great optimization Sphinx provides with batched queries. Also since facet
computation is expensive, we’d like to make sure the computation is cached when
possible.

Let’s first create another facet to refine by year:

sql_table is optional and defaults to (facet_name) _terms

fyear = Facet(’year’, sql_table=None)

Since year is a numerical facet, we didn’t need a MySQL table for the term values.
Instead we explicitely pass “None” to the sql_table parameter.
Now we can create a group of facets which will carry the computation of the year

and actor facet all at once:

let’s put the facets in a group for faster computation

facets = FacetGroup(fyear, factor)

as always Sphinx is what carries the computation

facets.AttachSphinxClient (cl, db)

finally compute these two facets at once

facets.Compute ("drama", caching=False)

If we were to print this group of facets, we would have the same results as if the year
and actor facets had been computed independently. Note that we can setup each facet
differently, say we’d like to group sort by count on the year facet but by popularity on

the actor facet.

192 APPENDIX A. FSPHINX TUTORIAL

As we discussed above the facet computation can be expensive, so we better make
sure we don’t perform the same computation more than once. Let’s have a cache on

our facets.

turning caching on

facets.AttachCache (cache)

The object cache is the RedisCache we have previsouly created. The cache has a
couple of options you can setup such as the amount of memory to use and the expiration
on the keys. Each facet computation within the group is cached independantly.

Now we can perform our computation as usual:

computing facets twice with caching on
facets.Compute (’drama’)
facets.Compute (’drama’)

assert (facets.time == 0)

this makes sure the facet computation is not fetched from the cache
facets.Compute(’drama’, caching=False)

assert (facets.time > 0)

We can also preload the facet cache computation within the cache. To preload your
facets starting from a query (usually the empty query) and recursively down to every

facet values, have a look at the tool preload_facets.py (see section on tools).

A.5 Playing With Multi Field Queries

A crucial aspect of faceted search is to let the user refine by facet values. A user may
also want to toggle on or off different facet values and see the results. To do so easily

fSphinx supports a multi-field query object.

creating a multi-field query

query = MultiFieldQuery (user_sph_map={’actor’:’actors’, ’genre’:’genres’})

This creates a query parser for a multi-field which maps the user search in “actor”
or “genre” to a Sphinx search in the fields “actors” or “genres” respectively.

Now let’s parse a query string:

parsing a multi-field query

A.5. PLAYING WITH MULTI FIELD QUERIES 193

query.Parse(’Q@year 1999 @genre drama Qactor harrison ford’)

The multi-field query object has a couple of representations. The first one is the

query as represented by the user.

the query the user will see: ’(@year 1999) (@genre drama) (Q@actor harrison ford
))

query.user

Then there is the query which will be passed to Sphinx. Since we mapped genre to

genres, here is what we get:

the query that should be sent to sphinx: ’(Q@year 1999) (@genres drama) (Qactors
harrison ford)’

query.sphinx

We can toggle any terms on or off and see how the user and the Sphinx query differ:

let’s toggle the year field off
query[’@year 1999°].ToggleOff ()

the query the user will see: ’(@-year 1999) (@genre drama) (@actor harrison
ford)’

query.user

the query that should be passed to Sphinx: ’(@genres drama) (Qactors harrison
ford)’

query.sphinx

¢

In order to know if a facet value has been selected, the “in” operator is overloaded:

is the query term ’Q@year 1999’ in query

assert (’Q@year 1999’ query)

There is a unique / canonical representation of the query which could be used for

caching:

a canonical form of this query: (Qactors harrison ford) (Q@genres drama)

query.uniq

Another representation is in the form of a pretty url:

a unique url path representing this query: /actor/harrison+ford/genre/drama/

year /*1999/70t=210

194 APPENDIX A. FSPHINX TUTORIAL

query.ToPrettyUrl ()

Finally we can pass a query object to Compute as if it was a normal string. However

the SphinxClient match mode must be set to extended?2:

setting cl to extended matching mode

cl.SetMatchMode (sphinxapi.SPH_MATCH_EXTENDED2)

and now passing a multi-field query object

factor.Compute (query)

and looking at the results

factor

actor: (5/25 values group sorted by "@groupfunc desc" 0.020 sec.)

1. Frederic Forrest, Q@count=2, @groupby=2078, @groupfunc=161016.6875,
@selected=False

2. Harrison Ford, @count=2, Q@groupby=148, Q@groupfunc=161016.6875, G@selected=
True

3. Jerry Ziesmer, Qcount=1, Q@groupby=956310, @groupfunc=137119.265625,
@selected=False

4. G.D. Spradlin, @count=1, @groupby=819525, @groupfunc=137119.265625,
@selected=False

5. Kerry Rossall, @count=1, Q@groupby=743953, @groupfunc=137119.265625,
@selected=False

6. James Keane, Q@count=1, @groupby=443856, Qgroupfunc=137119.265625,

@selected=False

We see that the facet value “Harrison Ford” has been properly marked as selected.

A.6 Retrieving Results

fSphinx internally uses an object called DBFetch which retrieves the terms from the

facets. This object may be used independently:

let’s fetch the results from the DB
db_fetch = DBFetch(db, sql =
’>’’select
imdb_id, filename, title, year, plot,
(select group_concat(distinct director_name separator ’@#Q@’) from directors
as d
where d.imdb_id = t.imdb_id) as directors

from titles as t

where imdb_id in ($id)

A.6. RETRIEVING RESULTS 195

order by field(imdb_id, $id)
7;7)

The sql parameter is a SQL statement with the special variable $id which will be
replaced by the ids that Sphinx returns. Here we are asking to fetch the title, year, plot
and list of directors from the DB.

let’s perform a simple query

results = cl.Query(’movie’)

and fetch the results form the DB

hits = db_fetch.Fetch(results)

The object “hits” behaves like a normal sphinx result set. However each match has
an additional field called “@hit” for each field value retrieved. Let’s see how this looks

like (only showing the first result and omitting some lengthy attributes):

looking at the hits

hits

matches: (7/7 documents 0.000 sec.)
1. document=56687, weight=1
year_attr=1962, user_rating_attr=0.800000011921, runtime_attr=134
plot=In a decaying Hollywood mansion, Jane Hudson, a former child star,
her sister Blanche, a movie queen forced into retirement after a
crippling accident, live virtual isolation.
directors=Robert Aldrich
imdb_id=56687
title=What Ever Happened to Baby Jane?
year=1962
filename=e9278ce4f803b67952831742a86£3289d

words :

1. "movie": 7 documents, 7 hits

Additionnaly we may want to post-process the results returned by DBFetch. For
example we grouped the directors with a phony separator. Let’s have DBFetch return

these values as a list instead of as a concatenated string.

make sure directors are returned as a list instead of as a concatenated string

db_fetch.post_processors = [SplitOnSep(’directors’, sep=’0#@’)]

196 APPENDIX A. FSPHINX TUTORIAL

There are post-processors to build excerpts and to highlight results or you can write

your own.

A.7 How about item based search?

To look up similar things and search for whole items, have a look at SimSearch.

make sure you have SimSearch installed

simsearch

assuming we have created a similarity search index

index = simsearch.ComputedIndex(’./data/sim-index/’)

and a query handler to query it

handler = simsearch.QueryHandler (index)

and wrap cl to give it similarity search abilities

cl = simsearch.SimClient (cl, handler)

order by similarity search scores

cl.SetSortMode (sphinxapi.SPH_SORT_EXPR, ’log_score_attr’)

looking for movies similar to Terminator (movie id = 88247)

cl.Query(’@similar 88247°)

A.8 Putting Everything Together

fSphinx can replace a normal SphinxClient entirely. Every feature discussed above can
be attached to the client.

Let’s create an FSphinxClient:

creating a sphinx client

cl = FSphinxClient ()

it behaves exactly like a normal SphinxClient

cl.SetServer(’localhost’, 10001)

Now let’s attach a db_fetch object to retrieve results from the db:

get the results from the db

cl.AttachDBFetch(db_fetch)

https://github.com/alexksikes/SimSearch

A.9. PLAYING WITH CONFIGURATION FILES 197

Let’s attach the facets we made above:

attach the facets

cl.AttachFacets (fyear, fgenre)

And finally we can run the query:

running the query

cl.Query(’movie’)

or pass a MultiFieldQuery

cl.Query(query)

The results can be found cl.query, cl.hits and cl.facets and are the same as if com-

puted independently.

A.9 Playing With Configuration Files

Lastly we can put all these parameters in a single configuration file. A configuration
file is a plain python file which creates a client called “cl” in its local name space. Have
a look at “./config/sphinx_client.py”.

Let’s create a client using a configuration file:

create a fSphinx client from a configuration file

cl = FSphinxClient.FromConfig(’./config/sphinx_client.py’)

Now we can run our query as usual:

querying for "movie"

cl.Query(’movie’)

A.10 Additional Tools

A configuration file can be passed to “search.py” at the command line:

python ../tools/search.py -c config/sphinx_client.py ’harrison ford’

This tool provides a command line interface to fSphinx which could be used for

testing and debugging.

198 APPENDIX A. FSPHINX TUTORIAL

The cache can be pre-computed or pre-loaded using the tool “preload_cache.py”.

python ../tools/preload_cache.py -c config/sphinx_client.py ’’

This will compute the facets given in “sphinx_client.py” for the empty query (full
scan) and perform this computation for every facet value under it. It is important to
note that by default every preloaded facet will always persist in the cache (the key will
not expire). It is assumed that your configuration file has either a cache attached to
the facets or to the entire client. In the later case the computation of the search is also

cached along with the computation of the facets.

A.11 Cool, Now I’d like an Interface

Now that you got yourself setup on the backend, you might still want an interface. You
may also be interested in choosing between different visualizations for your facets. If
this is the case, have a look at Cloud Mining. Cloud Mining uses the configuration file

(discussed above) to build a complete search interface.

python /path/to/cloudiminig/tools/serve_instance -c config/sphinx_client.py

A.12 1 don’t even have data, how do I start?

If you’d like to scrape websites on a massive scale, feel free to give Mass Scrapping a
shoot. It’s a tool I made which makes it easy to retrieve, extract and populate data. It

was used to download all the content from the IMDb website in order to make this.

https://github.com/alexksikes/cloudmining
https://github.com/alexksikes/mass-scraping
http://imdb.cloudmining.net

199

Appendix B

SimSearch Tutorial

In this tutorial, we will show how to use SimSearch to find similar movies. The
dataset is taken from a scrape of the top 400 movies found on IMDb. We assume the
current working directory to be the “tutorial” directory. All the code samples can be

found in the file “. /test.py”.

B.1 Loading the Data

First thing we need is some data. We will be using the same dataset as the one in the
fSphinx tutorial. If you don’t already have the data, create a MySQL database called
“fsphinx” with user and password “fsphinx”.

In a MySQL shell type:

create database fsphinx character set utf8;
create user ’fsphinx’@’localhost’ identified by ’fsphinx’;

grant ALL on fsphinx.* to ’fsphinx’@’localhost’;

Now let’s load the data into this database:

mysql -u fsphinx -D fsphinx -p < ./sql/imdb_top400.data.sql

B.2 Creating the Index

In this toy example we will consider two movies to be similar if they share “specific”

plot keywords. Let’s first have a quick look at our movies. In a mysql shell type:

https://github.com/alexksikes/SimSearch
https://github.com/alexksikes/fSphinx/blob/master/tutorial/

200 APPENDIX B. SIMSEARCH TUTORIAL

use fsphinx;

select imdb_id, title titles limit 5;

111161	The Shawshank Redemption
61811	In the Heat of the Night
369702	Mar adentro
56172	Lawrence of Arabia
107048	Groundhog Day

tom— - B e ittt +

Now let’s create an index and add some keywords of interest:

simsearch

pprint pprint
creating the index in ’./data/sim-index/’
index = simsearch.FilelIndex(’./data/sim-index’, mode=’write’)

adding some features for the item id 111161 and 107048
index.add (111161, ’prison’)

index.add (111161, ’murder’)

index.add (111161, ’shawshank’)

index.add (107048, ’weatherman’)

index.add (107048

index.add(’weather forecasting’)

index.close ()

SimSearch has created 4 files called .xco, .yxo, .ids and .fts in ./data/sim-index/.
The files .xco and .yco are the x and y coordinates of the binary matrix. This matrix
represents the presence of a feature for a given item. The file .ids keeps track of all the
item ids with respect to their index in this matrix. Similarly the file .fts keeps track of
the feature values. The line number of the file is the actual matrix index.

If we’d like to build a larger index from a database, we would use the indexer. Let’s
build an index with features from all the plot keywords found on this sample IMDb

dataset.

let’s create our index

index = simsearch.FilelIndex(’./data/sim-index’, mode=’write’)

our database parameters

B.3. QUERYING THE INDEX 201

db_params = {’user’:’fsphinx’, ’passwd’:’fsphinx’, ’db’:’fsphinx’}

an iterator to provide the indexer with (id, feature value)
bag_of_words_iter = simsearch.BagUfWordsIter(
db_params = db_params,

sql_features = [’select imdb_id, plot_keyword from plot_keywords’]

create the index provisionned by our iterator

indexer = simsearch.Indexer (index, bag_of_words_iter)

and finally index all the items in our database

indexer.index_data ()

2012-10-03 11:34:11,600 - INFO - SQL: select imdb_id, plot_keyword
plot_keywords

2012-10-03 11:34:12,894 - INFO - Done processing the dataset.

2012-10-03 11:34:12,894 - INFO - Number of items: 424

2012-10-03 11:34:12,895 - INFO - Number of features: 13607

2012-10-03 11:34:12,895 - INFO - 1.29 sec.

It is important to note that the bag of words iterator is just an example. The indexer
can take any iterator which returns the couple (item_id, feature_value) for a given item.
The id must be an integer and the feature_value must be a unique string representation
of the feature value. However please note that you can also directly create the matrix in
xco and .yco format and then have SimSearch read it. In fact SimSearch does not care
as to how the features are extracted. All that SimSearch does is the actual matching of
items with respect to these features. For example the matrix could be representing user
preferences. In this case the coordinates (item_id, user_id) would indicate that user_id
has liked item_id. The items are then thought to be similar if they share a set of users

liking them (the “you may also like” Amazon feature ...).

B.3 Querying the Index

Now we are ready to query this index and understand why things match. At its core
SimSearch performs a sparse matrix multiplication. For speed efficiency the matrix
must be converted into CSR and loaded in memory. This computed index is then

queried using QueryHandler object.

let’s create a computed index from our file index

http://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_.28CSR_or_CRS.29

202 APPENDIX B. SIMSEARCH TUTORIAL

index = simsearch.ComputedIndex(’./data/sim-index/’)

and a query handler to query it

handler = simsearch.QueryHandler (index)

now let’s see what is similar to "The Shawshank Redemption" (item id 111161)

results = handler.query(111161)

results
You looked item ids (after cleaning up): 111161
Found 100 0.00 sec. (showing top 10 here):

id 111161, log score = 18087.2975693
id = 455275, log score = 17787.5833743
id = 107207, log score = 17784.619186
id = 367279, log score = 17782.0579555
id = 804503, log score = 17780.7218639
id = 795176, log score = 17779.8914104
id = 290978, log score = 17777.6663835
id = 51808, log score = 17777.0082114
id = 861739, log score = 17776.2298019

id = 55031, log score = 17776.1551032

SimSearch does not have a storage engine. Instead we have to query our database

to see what these movies are:

select imdb_id, title titles where imdb_id
(111161 ,36868,120586 ,455275,117666 ,40746 ,118421,405508,318997,107207) order
by field(imdb_id,
111161 ,36868,120586 ,455275,117666 ,40746 ,118421,405508,318997,107207) ;

111161	The Shawshank Redemption
455275	Prison Break
107207	In the Name of the Father
367279	Arrested Development
804503	Mad Men
795176	Planet Earth
290978	The O0ffice
51808	Kakushi-toride no san-akunin
861739	Tropa de Elite
55031	Judgment at Nuremberg

e B et +

OK obviously it matched itself, but why did “Prison Break” and “In the Name of
the Father” matched?

B.4. COMBINING FULL TEXT SEARCH 203

let’s get detailed scores for the movie id 455275 and 107207
scores = handler.get_detailed_scores ([455275, 107207], max_terms=5)

pprint (scores)

[{’scores’: [(u’Prison Break’, 3.9889840465642745),
(u’Prison Escape’, 3.4431615807611875),
(u’Prison Guard’, 3.3141860046725258),

(u’Jail’, 1.906534983820483),
(u’Prison’, 1.8838747581358608)],
’total_score’: 7.2857111578648492},

{’scores’: [(u’Wrongful Imprisonment’, 3.5927355935610334),
(u’False Accusation’, 2.6005086594980238),
(u’Courtroom’, 2.2857779746776647) ,

(u’Prison’, 1.8838747581358608) ,
(u’Political Conflict’, -0.4062528198464137)],
’total_score’: 4.3215228336074638}]

Of course things would be much more interesting if we could index all movies in
IMDb and consider other feature types such as directors, actors or, even more desirably,
preference data.

Note that the query handler is not thread safe. It is merely meant to be used once
and thrown away after each new query. However the computed index is and should
be loaded somewhere in memory so it can be reused for subsequent queries. Also note
that SimSearch is not limited to single item queries, you can just as quickly perform
multiple item queries.

Although this is a toy example, SimSearch has been shown to perform quite well
on millions of documents each having hundreds of thousands of possible feature values.

There are also plans to implement distributed search and real time indexing.

B.4 Combining Full Text Search

OK this is rather interesting, however sometimes we’d like to combine full text with
item based search. For example we’d like to search for specific keywords and order these
results based on how similar they are to a given set of items. This is accomplished by
using the simsphinx module. The full text search query is handled by Sphinx so a little
bit of setting up is necessary.

First you need to install Sphinx and fSphinx.

http://sphinxsearch.com
http://sphinxsearch.com
https://github.com/alexksikes/fSphinx

204 APPENDIX B. SIMSEARCH TUTORIAL

After you have installed Sphinx, let it index data (assuming Sphinx indexer is in

/user /local /sphinx/):

/usr/local/sphinx/bin/indexer -c ./config/sphinx_indexer.conf --all

And now let searchd serve the index:

/usr/local/sphinx/bin/searchd -c ./config/sphinx_indexer.conf

Note that the “sphinx_indexer.conf” must have an attribute called “log_scores_attr”

set to 0 and declared as a float.

log_score_attr must be set to O
sql_query =\
select *,\
0 as log_score_attr,\

table

log_score_attr will hold the scores of the matching items

sql_attr_float = log_score_attr

We are now ready to combine full text search with item based search.

creating a sphinx client to handle full text search

cl = simsearch.SimClient (fsphinx.FSphinxClient (), handler, max_terms=5)

A SimClient wraps a SphinxClient to provide it with similarity search ability.

assuming searchd is running on 10001

cl.SetServer(’localhost’, 10001)

telling fsphinx how to fetch the results

db = fsphinx.utils.database (dbn=’mysql’, **db_params)

cl.AttachDBFetch (fsphinx.DBFetch(db, sql=’’’
select imdb_id as id, title
from titles
where imdb_id in ($id)
order by field(imdb_id, $id)’’’
))

order the results solely by similarity using the log_score_attr

cl.SetSortMode (sphinxapi.SPH_SORT_EXPR, ’log_score_attr’)

enable us to search within fields

B.4. COMBINING FULL TEXT SEARCH 205

cl.SetMatchMode (sphinxapi.SPH_MATCH_EXTENDED2)

searching for all animation movies re-ranked by similarity to "The Shawshank

Redemption"

results = cl.Query(’@genres animation @similar 111161°)

On seeing the query term “@similar 1111617, the client performed a similarity search

and then set the log_score_attr accordingly. Let’s have a look at these results:

looking at the results with similarity search

results

matches: (25/25 documents 0.000 sec.)

1. document=112691, weight=1618

@sim_scores=[(u’Wrongful Imprisonment’, 3.5927355935610334), (u’Prison Escape
>, 3.4431615807611875), (u’Prison’, 1.8838747581358608), (u’Window Washer

>, -0.4062528198464137), (u’Sheep Rustling’, -0.4062528198464137)],
release_date_attr=829119600, genre_attr=[3, 5, 6, 9, 19], log_score_attr
=17772.2988281, nb_votes_attr=16397

id=112691

title=Wallace Gromit A Close Shave

2. document=417299, weight=1586

@sim_scores=[(u’Redemption’, 1.8838747581358608), (u’Friendship’,
0.9769153536905899), (u’Tribe’, -0.4062528198464137), (u’Psychic Child’,
-0.4062528198464137), (u’Flying Animal’, -0.4062528198464137)],
release_date_attr=1108972800, genre_attr=[2, 3, 9, 101, log_score_attr
=17771.71875, nb_votes_attr=10432
id=417299
title=Avatar: The Last Airbender

3. document=198781, weight=1618

@sim_scores=[(u’Redemption’, 1.8838747581358608), (u’Friend’,
1.5656352897757075) , (u’Friendship’, 0.9769153536905899), (u’Pig Latin’,
-0.4062528198464137) , (u’Hazmat Suit’, -0.4062528198464137)1,
release_date_attr=1016611200, genre_attr=[2, 3, 5, 9, 10], log_score_attr
=17766.1152344, nb_votes_attr=99627
1id=198781

title=Monsters, Inc.

Again note that a SimClient is not thread safe. It is merely meant to be used once or
sequentially after each each request. In a web application you will need to create a new
client for each new request. You can use SimClient.Clone on each new request for this

purpose or you can create a new client from a config file with SimClient.FromConfig.

206 APPENDIX B. SIMSEARCH TUTORIAL

That’s pretty much it. I hope you’ll enjoy using SimSearch and please don’t forget

to leave feedback.

https://mail.google.com/mail/?view=cm&fs=1&tf=1&to=alex.ksikes@gmail.com&su=SimSearch

Appendix C

Cloud Mining Tutorial

207

Cloud Mining automatically builds exploratory faceted search systems. It leverages

Sphinx as a full text retrieval engine and fSphinx for faceted search. SimSearch is

used for item based search. The aim is to provide an interface which will encourage

nonlinear search and data exploration. The facets support different visualizations such

as tag clouds, histogram counts or a rose diagram and can be extended with pluggins.

Create a file called application.py with the following lines:

cloudmining CloudMiningApp

create a new CloudMining web application

app = CloudMiningApp ()

create a FSphinxClient from a configuration file

cl = FSphinxClient.FromConfig(’/path/to/config/sphinx_client.py’)

set the fsphinx client of the app

app.set_fsphinx_client (cl)

Execute application.py and aim your browser at http://localhost:8080:

python application.py

On data from IMDb, the interface shown at the top of Figure 7.9 is obtained. After

customization, we obtain the interface shown at the bottom of this figure.

Feel free to try out some instances, here and there. Have a look at the api for

customization and look into some of the example instances provided.

Thank you to Andy Gott for the logo design, FAMFAMFAM and Fugue for the

https://github.com/alexksikes/CloudMining
http://sphinxsearch.com/
https://github.com/alexksikes/fSphinx/
https://github.com/alexksikes/SimSearch/
http://dblp.cloudmining.net
http://imdb.cloudmining.net
http://medline.cloudmining.net
https://github.com/alexksikes/CloudMining/blob/master/cloudmining/api.py
https://github.com/alexksikes/CloudMining/tree/master/examples
http://reallysimpleworks.com/
http://www.famfamfam.com/lab/icons/silk/
http://p.yusukekamiyamane.com/

208 APPENDIX C. CLOUD MINING TUTORIAL

icons. Rose diagram thanks to RGraph.

http://www.rgraph.net/

209

Bibliography

Aggarwal, C. and P. Yu (2000). “The IGrid index: reversing the dimensionality curse
for similarity indexing in high dimensional space.” In: Proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
pp. 119-129 (p. 109).

Ahlberg, C. and B. Shneiderman (1994). “Visual information seeking using the filmfinder.

In: Proceedings of the SIGCHI conference on Human factors in Computing Systems
(CHI). ACM, pp. 433-434 (p. 71).

Ahlberg, C., C. Williamson, and B. Shneiderman (1992). “Dynamic queries for in-
formation exploration: An implementation and evaluation.” In: Proceedings of the
SIGCHI conference on Human factors in Computing Systems (CHI). ACM, pp. 619—
626 (p. 71).

Airtime (2012). http://blog . airtime . com/ post / 24471686727 / hello - world
(p. 122).

Aksyonoff, A. (2007). Sphinz Open Source Search Server. http://sphinxsearch.com
(p. 140, 143, 148).

Amazon (1990). The Internet Movie Database. http://wuw.imdb.com/ (p. 129).

— (2005). Mechanical Turk. https://www.mturk.com (p. 55).

Artist Rising (2007). Original Artwork and High-Quality Art Prints by Living Artists.
http://www.artistrising.com/ (p. 83).

Azencott, C.,; A. Ksikes, S. Swamidass, J. Chen, L. Ralaivola, and P. Baldi (2007).
“One-to four-dimensional kernels for virtual screening and the prediction of physi-
cal, chemical, and biological properties.” In: Journal of Chemical Information and
Modeling 47.3, pp. 965-974 (p. 106, 118).

Bates, M. J. (1979). “Information search tactics.” In: Journal of the American Society

for information Science 30.4, pp. 205-214 (p. 72).

http://blog.airtime.com/post/24471686727/hello-world
http://sphinxsearch.com
http://www.imdb.com/
https://www.mturk.com
http://www.artistrising.com/

210 BIBLIOGRAPHY

Bates, M. J. (1989). “The design of browsing and berrypicking techniques for the online
search interface.” In: Online Information Review 13.5, pp. 407-424 (p. 2).

Bellman, R. (1966). Adaptive control processes: A guided tour. Princeton University
Press (p. 108).

Belmonte, N. G. (2011a). PhiloGL. http://www.senchalabs.org/philogl/. Sencha
Labs (p. 103).

— (2011b). World Flights. http://philogb.github.com/world-flights/ (p. 85).

Ben-Bassat, T., J. Meyer, and N. Tractinsky (2006). “Economic and subjective mea-
sures of the perceived value of aesthetics and usability.” In: ACM Transactions on
Computer-Human Interaction (TOCHI) 13.2, pp. 210-234 (p. 20).

Berners-Lee, T., R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret (1994). “The
world-wide web.” In: Communications of the ACM 37.8, pp. 76-82 (p. 7).

Beyer, K., J. Goldstein, R. Ramakrishnan, and U. Shaft (1999). “When is “near-
est neighbor” meaningful?” In: Proceedings of the 7th International Conference of
Database Theory. Springer, pp. 217-235 (p. 108).

BioMed Central (2000). BioMed Central — The Open Access Publisher. http://www.
biomedcentral.com/ (p. 38).

Blei, D. and J. Lafferty (2006). “Dynamic topic models.” In: Proceedings of the 23rd
International Conference on Machine Learning (ICML). ACM, pp. 113-120 (p. 55).

Brin, S. and L. Page (1998). “The Anatomy of a Large-Scale Hypertextual Web Search
Engine.” In: Computer Networks 30.1-7, pp. 107-117 (p. 13).

Bush, V. (1945). “As We May Think.” In: The Atlantic Monthly 176.1, pp. 101-108
(p. 1, 7).

Cao, Z., T. Qin, T. Liu, M. Tsai, and H. Li (2007). “Learning to rank: from pairwise
approach to listwise approach.” In: Proceedings of the 24th International Conference
on Machine learning (ICML). ACM, pp. 129-136 (p. 112).

Capra, R. and G. Marchionini (2008). “The relation browser tool for faceted exploratory
search.” In: Proceedings of the 8th ACM/IEEE-CS joint conference on Digital li-
braries. ACM, pp. 420-420 (p. 80, 90).

Capra, R. and G. Marchionini (2007). “Faceted Browsing, Dynamic Interfaces, and Ex-
ploratory Search: Experiences and Challenges.” In: Proceedings of the Workshop on

http://www.senchalabs.org/philogl/
http://philogb.github.com/world-flights/
http://www.biomedcentral.com/
http://www.biomedcentral.com/

BIBLIOGRAPHY 211

Human-Computer Interaction and Information Retrieval (Cambridge, MA. Citeseer,
pp. 7-9 (p. 87).

Card, S., J. Mackinlay, and B. Shneiderman (1999). Readings in information visualiza-
tion: using vision to think. Morgan Kaufmann (p. 73).

Carsabi (2012). http://www.carsabi.com (p. 62).

Caruana, R., A. Niculescu-Mizil, G. Crew, and A. Ksikes (2004). “Ensemble selection
from libraries of models.” In: Proceedings of the 21st International Conference on
Machine Learning (ICML) (p. 14).

Chen, J., S. Swamidass, Y. Dou, J. Bruand, and P. Baldi (2005). “ChemDB: a public
database of small molecules and related chemoinformatics resources.” In: Bioinfor-
matics 21.22, pp. 41334139 (p. 118).

Chi, E., P. Pirolli, K. Chen, and J. Pitkow (2001). “Using information scent to model
user information needs and actions and the Web.” In: Proceedings of the SIGCHI
conference on Human Factors in Computing Systems (CHI). ACM, pp. 490-497
(p. 54).

Chordash, A. (2006). Pimm: The image of science: Google-like Biomedical Image Search
Engine for pros. http://pimm.wordpress . com/2006/12/06/biomed-search-
google-like-biomedical-image-search-engine-for-pros/ (p. 43).

Clarke, C., E. Agichtein, S. Dumais, and R. White (2007). “The influence of caption
features on clickthrough patterns in web search.” In: Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and development in information
retrieval. ACM, pp. 135-142 (p. 23, 26).

Clarkson, E., K. Desai, and J. Foley (2009). “Resultmaps: Visualization for search
interfaces.” In: Visualization and Computer Graphics, IEEE Transactions on 15.6,
pp. 1057-1064 (p. 87).

Clarkson, E., S. B. Navathe, and J. D. Foley (2009). “Generalized formal models for
faceted user interfaces.” In: Proceedings of the 9th ACM/IEEE-CS joint conference
on Digital libraries. ACM, pp. 125-134 (p. 92).

Collins, C., S. Carpendale, and G. Penn (2009). “Docuburst: Visualizing document
content using language structure.” In: Computer Graphics Forum. Vol. 28. 3. Wiley
Online Library, pp. 1039-1046 (p. 84).

Cutting, D. (1999). Apache Lucene. http://lucene.apache.org/ (p. 39, 148).

http://www.carsabi.com
http://pimm.wordpress.com/2006/12/06/biomed-search-google-like-biomedical-image-search-engine-for-pros/
http://pimm.wordpress.com/2006/12/06/biomed-search-google-like-biomedical-image-search-engine-for-pros/
http://lucene.apache.org/

212 BIBLIOGRAPHY

Dean, J. and S. Ghemawat (2008). “MapReduce: simplified data processing on large
clusters.” In: Communications of the ACM 51.1, pp. 107-113 (p. 174).

del.icio.us (2003). http://delicious.com/ (p. 87).

Deselaers, T., D. Keysers, and H. Ney (2008). “Features for image retrieval: an experi-
mental comparison.” In: Information Retrieval 11.2, pp. 77-107 (p. 102).

Dumais, S., E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. Robbins (2003). “Stuff I've
seen: a system for personal information retrieval and re-use.” In: Proceedings of the
26th Annual International ACM SIGIR Conference on Research and development
in informaion retrieval. ACM, pp. 72-79 (p. 23).

Efthimiadis, E. (1996). “Query expansion.” In: Annual Review of Information Science
and Technology 31, pp. 121-187 (p. 70).

Engelbart, D. (1962). Augmenting Human Intellect: A Conceptual Framework. Tech.
rep. Air Force Office of Scientific Research (p. 1).

— (1995). “Toward augmenting the human intellect and boosting our collective 1Q).”
In: Communications of the ACM 38.8, pp. 30-32 (p. 1).

Flickr (2004). http://www.flickr.com/ (p. 87).

Franzen, K. and J. Karlgren (2000). “Verbosity and interface design.” In: Technical
Report 4, pp. 2000-61 (p. 20).

Furnas, G., T. Landauer, L. Gomez, and S. Dumais (1987). “The vocabulary problem in
human-system communication.” In: Communications of the ACM 30.11, pp. 964—
971 (p. 18, 46, 47, 54).

Ghahramani, Z. and K. A. Heller (2005). “Bayesian Sets.” In: Advances in Neural
Information Processing Systems (NIPS) (p. 113, 118, 158).

Google (2004). Google Earth. http://earth.google.com/ (p. 96).

Google Earth Anomalies (2012). Possible Egyptian Pyramids Found Using Google Earth.
http://www.googleearthanomalies.com/Anomalies/tabid/56/articleType/
ArticleView/articleld/43/Default.aspx (p. 96).

Granka, L. A., T. Joachims, and G. Gay (2004). “Eye-tracking analysis of user behavior
in WWW search.” In: Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval. ACM, pp. 478—

479 (p. 28).

http://delicious.com/
http://www.flickr.com/
http://earth.google.com/
http://www.googleearthanomalies.com/Anomalies/tabid/56/articleType/ArticleView/articleId/43/Default.aspx
http://www.googleearthanomalies.com/Anomalies/tabid/56/articleType/ArticleView/articleId/43/Default.aspx

BIBLIOGRAPHY 213

Guan, Z. and E. Cutrell (2007). “An eye tracking study of the effect of target rank
on web search.” In: Proceedings of the SIGCHI conference on Human Factors in
Computing Systems (CHI). ACM, pp. 417-420 (p. 28).

Guttman, A. (1984). “R-Trees: A Dynamic Index Structure for Spatial Searching.”
In: Proceedings of the ACM SIGMOD International Conference on Management of
Data. ACM, pp. 47-57 (p. 109).

Harris, J. and S. Kamvar (2006). We Feel Fine. http://wuw.wefeelfine.org/ (p. 87).

Hassenzahl, M. (2004). “The interplay of beauty, goodness, and usability in interactive
products.” In: Human-Computer Interaction 19.4, pp. 319-349 (p. 20).

Hearst, M. (2006a). Flamenco. http://flamenco.berkeley.edu/ (p. 61, 148).

— (2009). Search user interfaces. Cambridge University Press (p. 15, 22, 45, 84).

Hearst, M., A. Divoli, H. Guturu, A. Ksikes, P. Nakov, M. Wooldridge, and J. Ye (2007).
“BioText Search Engine: beyond abstract search.” In: Bioinformatics 23.16, p. 2196
(p. 41).

Hearst, M. and D. Rosner (2008). “Tag clouds: Data analysis tool or social signaller?”
In: Proceedings of the 41st Annual International Conference on System Sciences.
IEEE, pp. 160-160 (p. 87).

Hearst, M. (2006b). “Design recommendations for hierarchical faceted search inter-
faces.” In: ACM SIGIR workshop on faceted search, pp. 1-5 (p. 55).

Heller, K. A. and Z. Ghahramani (2006). “A simple Bayesian framework for content-
based image retrieval.” In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. Vol. 2. IEEE, pp. 2110-2117 (p. 117, 158).

Heyes, R. (2008). RGraph. http://www.rgraph.net (p. 155).

Highwire Press (1995). http://highwire.stanford.edu/ (p. 31, 38).

Hotchkiss, G., T. Sherman, R. Tobin, C. Bates, and K. Brown (2007). “Search Engine
Results: 2010.” In: Technical Report (p. 20).

Howarth, P. and S. Riiger (2004). “Evaluation of texture features for content-based
image retrieval.” In: Image and Video Retrieval. Springer, pp. 326-334 (p. 104).
Hutchinson, H., B. Bederson, and A. Druin (2006). “The evolution of the international

children’s digital library searching and browsing interface.” In: Interaction Design

and Children, pp. 105-112 (p. 18).

http://www.wefeelfine.org/
http://flamenco.berkeley.edu/
http://www.rgraph.net
http://highwire.stanford.edu/

214 BIBLIOGRAPHY

Huynh, D. and D. Karger (2009). “Parallax and companion: Set-based browsing for the
data web.” In: WWW Conference. ACM (p. 61, 64).

Jarvelin, K. and J. Kekéldinen (2002). “Cumulated gain-based evaluation of IR tech-
niques.” In: ACM Transactions on Information Systems (TOIS) 20.4, pp. 422-446
(p. 13, 112).

Joachims, T. (2002). “Optimizing search engines using clickthrough data.” In: Proceed-
ings of the 8th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, pp. 133142 (p. 111).

Joachims, T, L. Granka, B. Pan, H. Hembrooke, and G. Gay (2005). “Accurately inter-
preting clickthrough data as implicit feedback.” In: Proceedings of the 28th Annual
International ACM SIGIR Conference on Research and development in information
retrieval. ACM, pp. 154-161 (p. 73).

Jones, E.; T. Oliphant, and P. Peterson (2001). SciPy: Open source scientific tools for
Python. http://wuw.scipy.org/ (p. 170).

Jones, R., B. Rey, O. Madani, and W. Greiner (2006). “Generating query substitutions.”
In: Proceedings of the 15th International conference on World Wide Web. ACM,
pp. 387-396 (p. 70).

Kaisser, M., M. Hearst, and J. Lowe (2008). “Improving search results quality by cus-
tomizing summary lengths.” In: Proceedings of the 46th Annual Meeting of the As-
sociation for Computational Linguistics (p. 25).

Keppel, G., W. Saufley, and H. Tokunaga (1992). Introduction into Design and Analysis
(p. 22).

Kleinberg, J. M. (1999). “Authoritative Sources in a Hyperlinked Environment.” In:
Journal of the ACM (JACM) 46.5, pp. 604-632 (p. 13).

Kohavi, R., R. Henne, and D. Sommerfield (2007). “Practical guide to controlled ex-
periments on the web: listen to your customers not to the hippo.” In: Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, pp. 959-967 (p. 22, 23).

Kohavi, R., R. Longbotham, D. Sommerfield, and R. Henne (2009). “Controlled exper-
iments on the web: survey and practical guide.” In: Data Mining and Knowledge
Discovery 18.1, pp. 140-181 (p. 22).

Ksikes, A. (2006). Biomed Search. URL: http://www.biomed-search.com (p. 14, 31).

http://www.scipy.org/
http://www.biomed-search.com

BIBLIOGRAPHY 215

— (2010). Mass Scraping. https://github.com/alexksikes/mass-scraping (p. 39,
175).

— (2011a). fSphinz. https://github.com/alexksikes/fSphinx (p. 140, 143, 149).

— (2011Db). SimSearch. https://github.com/alexksikes/SimSearch (p. 140, 158,
169).

Kuniavsky, M. (2003). Observing the user experience: a practitioner’s guide to user
research. Morgan Kaufmann (p. 16).

Lee, B., G. Smith, G. Robertson, M. Czerwinski, and D. Tan (2009). “FacetLens: ex-
posing trends and relationships to support sensemaking within faceted datasets.”
In: Proceedings of the SIGCHI conference on Human Factors in Computing Systems
(CHI). ACM, pp. 1293-1302 (p. 80).

Letham, B., C. Rudin, and K. A. Heller (2013). “Growing a list.” In: Data Mining and
Knowledge Discovery, pp. 1-24 (p. 118).

Ley, M. (2002). “The DBLP computer science bibliography: Evolution, research issues,
perspectives.” In: String Processing and Information Retrieval. Springer, pp. 481—
486 (p. 127).

Li, H., I. Councill, W.-C. Lee, and C. L. Giles (2006). “CiteSeerX: an architecture and
web service design for an academic document search engine.” In: Proceedings of the
15th International Conference on World Wide Web. ACM, pp. 883-884 (p. 128).

Licklider, J. (1960). “Man-computer symbiosis.” In: IRE Transactions on Human Fac-
tors in Electronics 1, pp. 4-11 (p. 1).

Liu, F., T.-K. Jenssen, V. Nygaard, J. Sack, and E. Hovig (2004). “FigSearch: a figure
legend indexing and classification system.” In: Bioinformatics 20.16, pp. 28802882
(p. 32).

Manning, C. D., P. Raghavan, and H. Schiitze (2008). Introduction to information
retrieval. Cambridge University Press (p. 8, 54).

Marchionini, G. and B. Brunk (2003). “Toward a general relation browser: A GUI for
information architects.” In: Journal of Digital Information 4.1 (p. 62, 79).

Marchionini, G. (1997). Information seeking in electronic environments. Cambridge
University Press (p. 26).

— (2006). “Exploratory search: from finding to understanding.” In: Communications

of the ACM 49.4, pp. 41-46 (p. 2).

https://github.com/alexksikes/mass-scraping
https://github.com/alexksikes/fSphinx
https://github.com/alexksikes/SimSearch

216 BIBLIOGRAPHY

Marchionini, G. and R. W. White (2009). “Information-seeking support systems: Intro-
duction to theme issue.” In: Computer 42.3 (p. 3).

Mason, J. (2002). “Filtering spam with SpamAssassin.” In: HEANet Annual Conference
(p. 103).

Microsoft (2009). Bing. http://www.bing.com (p. 26).

Miller, G. A. (1983). “Informavores.” In: The study of information: interdisciplinary
messages, pp. 111-113 (p. 1).

Mizzaro, S. (1997). “Relevance: The whole history.” In: Journal of the American Society
for Information Science and Technology 48.9, pp. 810-832 (p. 8).

Morville, P. and J. Callender (2010). Search Patterns - Design for Discovery. O’Reilly
(p. 60, 92).

Muja, M. and D. Lowe (2009). FLANN-Fast Library for Approzimate Nearest Neighbors
User Manual (p. 109).

NCBI (1996). PubMed. http://www.ncbi.nlm.nih.gov/pubmed (p. 132).

— (2003). Entrez cross-database search. http://www.ncbi.nlm.nih.gov/sites/
gquery (p. 132).

— (2005). Pubmed Central. http://www.ncbi.nlm.nih.gov/pmc/ (p. 31, 38, 132).

Nene, S. and S. Nayar (1997). “A simple algorithm for nearest neighbor search in high
dimensions.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence
19.9, pp. 989-1003 (p. 109).

Netscape (1998). DMOZ - Open directory project. http://http://wuw.dmoz . org/
(p. 46).

Nielsen, J. (1994a). “Guerrilla HCI: Using discount usability engineering to penetrate
the intimidation barrier.” In: Cost-justifying usability, pp. 245-272 (p. 17).

— (1994b). “Heuristic evaluation.” In: Usability inspection methods 17, pp. 25-62 (p. 21).

— (2000). “Why you only need to test with 5 users.” In: Jakob Nielsen’s Alertbox
(p. 21).

— (2003). “Usability 101: Introduction to usability.” In: Jakob Nielsen’s Alertbox (p. 15).

Nielsen, J. and K. Pernice (2010). Eyetracking web usability. New Riders Pub (p. 22).

Nobel Media (1999). Nobelprize.org - The Official Web Site of the Nobel Prize. http:
//www .nobelprize.org/nobel_prizes/lists/all/ (p. 133).

OpenStreetMap (2004). URL: http://www.openstreetmap.org/ (p. 75).

http://www.bing.com
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/sites/gquery
http://www.ncbi.nlm.nih.gov/sites/gquery
http://www.ncbi.nlm.nih.gov/pmc/
http://http://www.dmoz.org/
http://www.nobelprize.org/nobel_prizes/lists/all/
http://www.nobelprize.org/nobel_prizes/lists/all/
http://www.openstreetmap.org/

BIBLIOGRAPHY 217

Oracle (1999). Endeca. https://www.endeca.com (p. 61).

Paek, T., S. Dumais, and R. Logan (2004). “WaveLens: a new view onto Internet search
results.” In: Proceedings of the SIGCHI conference on Human Factors in Computing
Systems (CHI). ACM, pp. 727-734 (p. 25).

Palantir (2004). https://www.palantir.com (p. 74).

Parallax (2009). http://www.freebase.com/labs/parallax/ (p. 64).

Perugini, S. (2008). “Symbolic links in the open directory project.” In: Information
Processing € Management 44.2, pp. 910-930 (p. 47).

Plaisant, C., T. Bruns, B. Shneiderman, and K. Doan (1997). “Query previews in net-
worked information systems: the case of EOSDIS.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI). Vol. 2. ACM, pp. 202—
203 (p. 79).

Rademacher, P. (2005). HousingMaps. http://www.housingmaps.com/ (p. 75).

Radlinski, F. and T. Joachims (2005). “Query chains: learning to rank from implicit
feedback.” In: Proceedings of the 11th ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining. ACM, pp. 239-248 (p. 111).

Ranganathan, S. (1950). Classification, coding and machinery for search. Unesco (p. 48).

Richardson, L. (2004). Beautiful Soup. http://www.crummy.com/software/BeautifulSoup/
(p. 177).

Richter, S. (2000). lzml. http://1xml.de/ (p. 177).

Rocchio, J. J. (1971). “Relevance feedback in information retrieval.” In: The SMART
Retrieval System: Experiments in Automatic Document Processing. Ed. by G. Salton.
Prentice-Hall Inc. Chap. 14, pp. 313-323 (p. 8).

Riiger, S. (2010). Multimedia information retrieval. Morgan & Claypool Publishers
(p. 106).

Sahami, M., S. Dumais, D. Heckerman, and E. Horvitz (1998). “A Bayesian approach
to filtering junk e-mail.” In: Learning for Text Categorization: Papers from the 1998
workshop. Vol. 62. AAAT Technical Report, pp. 98-105 (p. 102).

Salton, G., A. Wong, and C. S. Yang (1975). “A Vector Space Model for Automatic
Indexing.” In: Communications of the ACM 18.11, pp. 613-620 (p. 11).

Sanfilippo, S. and P. Noordhuis (2011). Redis. http://redis.io/ (p. 140).

Sap (1972). https://www.sap.com (p. 74).

https://www.endeca.com
https://www.palantir.com
http://www.freebase.com/labs/parallax/
http://www.housingmaps.com/
http://www.crummy.com/software/BeautifulSoup/
http://lxml.de/
http://redis.io/
https://www.sap.com

218 BIBLIOGRAPHY

Saracevic, T. (2007). “Relevance: A review of the literature and a framework for thinking
on the notion in information science. Part III: Behavior and effects of relevance.”
In: Journal of the American Society for Information Science and Technology 58.13,

pp. 2126-2144 (p. 8).

Schmidt, J. (2010). Chromotive. http://cargocollective.com/jrschmidt/Chromotive-

Data-Visualization (p. 76).

schraefel, m., M. L. Wilson, A. Russell, and D. A. Smith (2006). “mSpace: Improving
Information Access to Multimedia Domains with Multimodal Exploratory Search.”
In: Communications of the ACM 49.4, pp. 47-49 (p. 61, 64).

Science Daily (2009). Google Earth Aids Discovery Of Early African Mammal Fossils.
http://www.sciencedaily.com/releases/2009/04/090428171006.htm (p. 96).

Seeley, Y. (2004). Solr. http://lucene.apache.org/solr/ (p. 148).

Shneiderman, B., D. Byrd, and W. Croft (1997). “Clarifying search: A user-interface
framework for text searches.” In: D-lib magazine 3.1, pp. 18-20 (p. 17).

Shneiderman, B. and C. Plaisant (2005). Designing the user interface 4th edition. Pear-
son Addison Wesley, USA (p. 16, 17).

— (2006). “Strategies for evaluating information visualization tools: multi-dimensional
in-depth long-term case studies.” In: Proceedings of the AVI workshop on beyond
time and errors: novel evaluation methods for information visualization. ACM, pp. 1—
7 (p. 23).

Shneiderman, B. (1996). “The eyes have it: A task by data type taxonomy for infor-
mation visualizations.” In: Visual Languages, 1996. Proceedings., IEEE Symposium
on. IEEE, pp. 336-343 (p. 73).

Shneiderman, B. and M. Wattenberg (2001). “Ordered treemap layouts.” In: Proceed-
ings of the IEEE Symposium on Information Visualization 2001. Vol. 73078 (p. 86).

Silva, R., K. A. Heller, and Z. Ghahramani (2007). “Analogical Reasoning with Re-
lational Bayesian Sets.” In: Journal of Machine Learning Research 2, pp. 500-507
(p. 117).

Singhal, A. (2001). “Modern Information Retrieval: A Brief Overview.” In: IEEE Data
Eng. Bull. 24.4, pp. 35-43 (p. 8, 10).

http://cargocollective.com/jrschmidt/Chromotive-Data-Visualization
http://cargocollective.com/jrschmidt/Chromotive-Data-Visualization
http://www.sciencedaily.com/releases/2009/04/090428171006.htm
http://lucene.apache.org/solr/

BIBLIOGRAPHY 219

Sinha, R. (2005). “Google’s pragmatic, data-driven approach to user interface design.”
In: January. URL: http://rashmisinha.com/2005/01/13/googles-pragmatic-
data-driven-approach-to-user-interface-design/ (p. 23).

Sinitsyn, A. (2006). “Duplicate song detection using audio fingerprinting for consumer
electronics devices.” In: Tenth International Symposium on Consumer Electronics.
IEEE, pp. 1-6 (p. 111).

Smith, D. A., A. Owens, P. Sinclair, P. André, M. L. Wilson, A. Russell, K. Martinez,
P. Lewis, et al. (2007). “Challenges in Supporting Faceted Semantic Browsing of
Multimedia Collections.” In: Semantic Multimedia. Springer, pp. 280283 (p. 52).

Songza (2008). URL: http://songza.com (p. 75).

Spéarck Jones, K. (1972). “A statistical interpretation of term specificity and its appli-
cation in retrieval.” In: Journal of Documentation 28, pp. 11-21 (p. 12, 117).

Spotfire (1996). https://www.spotfire.com (p. 74).

Strohman, T. (2008). Efficient processing of complex features for information retrieval.
ProQuest (p. 52).

Swartz, A. (2006). web.py. http://webpy.org/ (p. 39, 140, 157).

Tamura, H., S. Mori, and T. Yamawaki (1978). “Textural features corresponding to
visual perception.” In: IEEFE Transactions on Systems, Man and Cybernetics 8.6,
pp. 460-473 (p. 104).

Tanin, E., B. Shneiderman, and H. Xie (2007). “Browsing large misc data tables using
generalized query previews.” In: Information Systems 32.3, pp. 402-423 (p. 79).
Teevan, J., E. Adar, R. Jones, and M. Potts (2006). “History repeats itself: repeat
queries in Yahoo’s logs.” In: Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and development in information retrieval. ACM,

pp. 703-704 (p. 20).

— (2007). “Information re-retrieval: repeat queries in Yahoo'’s logs.” In: Proceedings of
the 30th Annual International ACM SIGIR Conference on Research and develop-
ment in information retrieval. ACM, pp. 151-158 (p. 70).

The Economist (2011). The leaky corporation. http://www.economist . com/node/
18226961 (p. 2).

TMDb (2008). The Movie Database. http://www.themoviedb.org/ (p. 130).

Toffler, A. (1984). Future shock. Bantam (p. 1).

http://rashmisinha.com/2005/01/13/googles-pragmatic-data-driven-approach-to-user-interface-design/
http://rashmisinha.com/2005/01/13/googles-pragmatic-data-driven-approach-to-user-interface-design/
http://songza.com
https://www.spotfire.com
http://webpy.org/
http://www.economist.com/node/18226961
http://www.economist.com/node/18226961
http://www.themoviedb.org/

220 BIBLIOGRAPHY

Tombros, A. and M. Sanderson (1998). “Advantages of query biased summaries in
information retrieval.” In: Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and development in information retrieval. ACM, pp. 2-10
(p. 25).

Tufte, E. R. (1990). Envisioning information. Graphics Press (p. 89).

Tufte, E. R. and P. Graves-Morris (1983). The visual display of quantitative information.
Graphics press Cheshire, CT (p. 89, 90).

Tunkelang, D. (2009). Faceted search. Morgan & Claypool Publishers (p. 45, 52, 59,
61).

Viégas, F. B., M. Wattenberg, and J. Feinberg (2009). “Participatory visualization
with wordle.” In: IEEFE Transactions on Visualization and Computer Graphics 15.6,
pp. 11371144 (p. 87).

Viégas, F. B., M. Wattenberg, F. Van Ham, J. Kriss, and M. McKeon (2007). “Manyeyes:
a site for visualization at internet scale.” In: IEEFE Transactions on Visualization
and Computer Graphics 13.6, pp. 1121-1128 (p. 74, 89).

Viewzi (2008). http://en.wikipedia.org/wiki/Viewzi (p. 77).

Virzi, R. A., J. L. Sokolov, and D. Karis (1996). “Usability problem identification using
both low-and high-fidelity prototypes.” In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI). ACM, pp. 236-243 (p. 21).

Volkswagen (2010). URL: http://www.volkswagen.co.uk/#/new/ (p. 76).

Voorhees, E. M. (1994). “Query expansion using lexical-semantic relations.” In: SI-
GIR’94. Springer, pp. 61-69 (p. 60).

Wang, A. (2003). “An industrial strength audio search algorithm.” In: International
Conference on Music Information Retrieval (ISMIR). Vol. 2 (p. 110).

Weber, R., H. Schek, and S. Blott (1998). “A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces.” In: Proceedings of
the International Conference on Very Large Data Bases, pp. 194-205 (p. 109).

Weinberg, G. (2006). DuckDuckGo. https://duckduckgo.com (p. 26).

Weiss, S. (2005). Text mining: predictive methods for analyzing unstructured informa-
tion. Springer-Verlag (p. 55).

Weskamp, M. (2004). “Newsmap.” In: Webdesigning Magazine, June (p. 86).

http://en.wikipedia.org/wiki/Viewzi
http://www.volkswagen.co.uk/#/new/
https://duckduckgo.com

BIBLIOGRAPHY 221

White, R. W., J. M. Jose, and I. Ruthven (2003). “A task-oriented study on the in-
fluencing effects of query-biased summarisation in web searching.” In: Information
Processing & Management 39.5, pp. 707-733 (p. 18).

White, R. W. and G. Marchionini (2007). “Examining the effectiveness of real-time
query expansion.” In: Information Processing € Management 43.3, pp. 685-704
(p. 71).

White, R. W. and R. A. Roth (2009). “Exploratory search: Beyond the query-response
paradigm.” In: Synthesis Lectures on Information Concepts, Retrieval, and Services
(p- 2, 3, 69).

Wilson, M. L. (2011). Search User Inteface Design. Morgan & Claypool Publishers
(p. 15).

Wilson, M. L., P. André, and m. schraefel (2008). “Backward Highlighting: Enhanc-
ing Faceted Search.” In: Proceedings of the 21st Annual ACM Symposium on User
Interface Software and Technology. ACM, pp. 235-238 (p. 65).

Wold, S., K. Esbensen, and P. Geladi (1987). “Principal component analysis.” In:
Chemometrics and Intelligent Laboratory Systems 2.1, pp. 37-52 (p. 108).

Wolfram, D., A. Spink, B. J. Jansen, and T. Saracevic (2001). “Vox populi: The public
searching of the web.” In: Journal of the American Society for Information Science
and Technology 52.12, pp. 1073-1074 (p. 10).

Xu, J. and W. B. Croft (1996). “Query expansion using local and global document
analysis.” In: Proceedings of the 19th annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, pp. 4-11 (p. 54).

Xu, S., J. McCusker, and M. Krauthammer (2008). “Yale Image Finder (YIF): a new
search engine for retrieving biomedical images.” In: Bioinformatics 24.17, p. 1968
(p. 42).

Yee, K.-P., K. Swearingen, K. Li, and M. Hearst (2003). “Faceted metadata for image
search and browsing.” In: Proceedings of the SIGCHI conference on Human factors
in computing systems. ACM, pp. 401-408 (p. 52, 148).

Yeh, A. S., L. Hirschman, and A. A. Morgan (2003). “Evaluation of text data mining
for database curation: lessons learned from the KDD Challenge Cup.” In: Bioinfor-
matics 19.suppl 1, pp. i331-1339 (p. 32).

Zdziarski, J. (2004). The DSPAM project (p. 103).

	List of Figures
	Introduction
	Notions of Information Retrieval
	Defining Relevance
	Precision and Recall
	Set Retrieval
	Ranked Retrieval
	Conclusion

	Search User Interfaces
	Designing Search Interfaces
	The Process of Designing
	Some Key Design Guidelines
	Small Details and Aesthetic Design

	Evaluation of Search Interfaces
	Informal Usability Testing
	Formal Studies and Controlled Experiments
	Large Scale and Longitudinal Studies

	Presenting the Search Results
	Document Surrogates
	Summaries
	Highlighting of Query Terms
	Additional Features
	Importance of Sorting

	Conclusion

	Biomed Search
	Motivations and Overview
	Features and Novel Approaches
	Implementation and Technology Used
	Similar Services
	Conclusions and Future Work

	Faceted Search Systems
	Directory navigation
	Parametric Search
	Faceted Navigation
	Faceted Search
	Back-end Concerns
	Information overload
	Computational Cost
	The Vocabulary Problem
	Availability of Metadata

	Front-end Concerns
	Presenting the Facets
	Organizing the Facets
	Handling the Search Box
	Multiple Selections

	Examples
	Endeca
	Flamenco
	Parallax
	mSpace
	Carsabi

	Conclusion

	Information Visualization for Search
	Interacting with Query Terms
	Representing Query Terms
	Dynamic Queries

	Representing the Search Results
	Principles and Motivation
	Examples of Visual Search Results

	Visualization on the Facets
	Visualizing Frequency
	Fitting the Data Type

	Plenty More Visualizations
	The Docuburst
	World Globe Pathways
	Treemap Like Views: Newsmap
	Pictograms: We Feel Fine
	Tag Cloud like Visualizations
	Quantifying Data with Bubbles

	Putting Everything Together
	Conclusion

	Similarity and Multimedia Search
	Content Based Search
	Features
	Bag-of-words
	Color Histograms
	Texture Histograms
	Other Feature Types

	Search in Metric Space
	Distances
	Curse of Dimensionality
	Efficient Nearest Neighbor Search
	Fingerprints

	Learning to Rank
	Bayesian Sets
	Overall Algorithm
	Sparse Binary Data
	Analysis of the Query Vector
	Results

	Examples
	UCI's ChemDB
	Google Image
	Xyggy Patent Search
	Airtime

	Conclusion

	Cloud Mining
	Datasets and Instances Built
	DBLP with CiteSeerX
	IMDb
	MEDLINE with PubMed Central
	Other Datasets

	A Framework and Technology Used
	User Interaction
	Architecture
	Software Engineering
	How Instances are Built

	Faceted Search
	Front-end in Cloud Mining
	Back-end implementation with fSphinx

	Exploratory Visual Search
	Facet Visualization
	Back-end Implementation and Rendering

	Item Based search
	Why Bayesian Sets?
	Front-end in Cloud Mining
	Back-end implementation with SimSearch
	Scaling Bayesian Sets

	Example of Instance Building
	Scraping Data
	Setting up the Back-end
	Creating the Instance

	Conclusion

	Conclusion
	fSphinx Tutorial
	Setting up and Indexing Data
	Setting up the Facets
	Playing with Facets
	Performance, Caching and Multiple Facets
	Playing With Multi Field Queries
	Retrieving Results
	How about item based search?
	Putting Everything Together
	Playing With Configuration Files
	Additional Tools
	Cool, Now I'd like an Interface
	I don't even have data, how do I start?

	SimSearch Tutorial
	Loading the Data
	Creating the Index
	Querying the Index
	Combining Full Text Search

	Cloud Mining Tutorial

