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Abstract

Towards Exploratory Faceted Search Systems

Alex Ksikes

In this thesis, we cover what we believe would be the main ingredients of an exploratory

search system (ESS). In a nutshell, these are textual queries, facets, visual results, social

search and query-by-example. The goal of the thesis is to show how all of these elements

could readily be integrated into a typical faceted search system that users are already

accustomed to. In this respect, we propose that the future of exploratory search might

be a traditional faceted search system, but with the added ingredients of information

visualizations and query-by-example.

To illustrate our ideas we have built two freely available web applications. The

first one, Biomed Search, has been positively received by the community and o↵ers

some novel characteristics. First, in order to improve on both precision and recall,

Biomed Search indexes not only the text caption but also the text that refers to the

image. Second, the interface uses a common pattern of zooming in on a particular

search result in order to display more information. User feedback on Biomed Search

has hinted towards faceted search, visual search results and query-by-example.

The second system, Cloud Mining, is an attempt at implementing the vision set

forth in this thesis. The system is a framework used to instantiate ESSs. It o↵ers the

novel characteristics of facet views as well as multiple-item based searches combined

with textual queries. Cloud Mining paves the way to a completely pluggable search

framework, in which every component would be driven by a community of users. The

system was tested on large publicly available datasets and all its software components

are available under an open source license.

The main contributions of this thesis come as lessons learned, suggestions or rec-

ommendations as to how to extend the current paradigm of faceted search into the one

of exploratory search. The search results and facets should be extended with di↵erent

views. Query by example should be integrated with Bayesian Sets as it reduces the

handling of complex content based searches to choosing the right plugin. Finally, the

system should be thought as a framework to instantiate ESSs, in which every one of its

component is a community driven plugin. These customized tailored tools, when ap-

plied to a dataset of interest, could o↵er a collective intelligence approach to information

overload.
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Introduction

The only real voyage of discovery consists not in seeing new landscapes, but in having new

eyes, in seeing the universe with the eyes of another, of hundreds of others, in seeing the

hundreds of universes that each of them sees.
Marcel Proust, La Prisonnière

Vannevar Bush, J.C.R. Licklider and Douglas Engelbart envisioned the future of infor-

mation technology. The core idea of their research was to invent innovative technologies

in order to augment the human intellect. The end result would be emergence of an ”en-

lightened society” (Engelbart, 1962) in which mankind would be able to undertake the

resolution of important fundamental problems. For example, Bush (1945) proposed the

memex or ”memory extender”, an electromechanical device used to read large research

libraries. Licklider (1960) suggested a human-computer symbiosis to free the mind from

mundane tasks, and as such would focus on providing insights as well as help humans

make better decisions. And Engelbart (1995) envisioned the enhancement of the human

intellect by ”harnessing the collective human intellect of all the people contributing to

e↵ective solutions”.

At the time of their conceptions, these revolutionary ideas were infeasible to im-

plement. However, with the invention of the transistor, the personal computer and

the Internet, these visions have come closer to reality. The World Wide Web together

with large commercial search engines such as Google are already a close incarnation

of those ideas. However, with the advancement of computing technology also came a

growing issue known as information overload (To✏er, 1984). Although human beings

are informavores in nature (Miller, 1983), we can only process and make sense of a

small amount of information at any given time. Furthermore, information overload is

growing at an explosive exponential rate. In fact, it has been estimated that the amount

of new information, either created or replicated, will increase from less than 1 zettabyte
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in 2009 to 35 zettabytes by the year 2020 (The Economist, 2011). One zettabyte is one

trillion gigabytes, which is enough to store the equivalent of 250 billion DVDs.

Current commercial search engines use a process known as the “query and response”.

The user issues a query, and receives, as a response, a set of potentially relevant doc-

uments. The process has been formalized by Bates (1989) in the lookup-based model.

As shown in Figure 0.1, the model is comprised of four main elements. On the left

hand side, the documents are processed in a summarized form understandable by the

user, known as the document surrogates. On the right hand side, the user’s underlying

information need is reduced to a query statement. This later usually takes the form of

a set of keywords together with boolean operators. A match occurs when the document

surrogates “fit” in the user’s query. The user then investigates the surrogates, and if

appropriate, delves into the documents of interest. The process may repeat itself, with

the user attempting to find the right query which will yield the right set of documents.

Figure 0.1: The Lookup-based model according to Bates, 1989.

The lookup-based model has been identified as best suited for question answering

tasks and fact finding (Marchionini, 2006). In fact, the process must start with a

carefully specified query, and should end with precise results. But the results returned,

together with their potential relationships, are not intended to be further analyzed with

more scrutiny. In the look-up based model, the answer is assumed to be found in the

matched documents, not necessarily in the search results themselves. The query repre-

sents a one shot summary of the user’s underlying information need. However, given

today’s reality of information overload, the lookup-based model appears to fall short in

adequately answering the user’s insatiable thirst for new information and knowledge.

This has led researchers to go beyond this paradigm, and look into a new class of

information seeking, known as exploratory search (White and Roth, 2009).
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In an exploratory search system (ESS), the user may have a vague information

need (Marchionini and White, 2009). His goals are not necessarily well defined, neither

are his the means to achieve them in the first place. Instead, the role of the system

is to provide a discovery type of experience by helping users learn from exposure to

information found in the document collection. Thus, as White and Roth (2009) so nicely

put it, exploratory search is “as much about the journey through the information space

as the destination”. In this setting, the lookup-based model employed by traditional

search engines, becomes a necessary but not su�cient condition to exploratory search.

There is a need to go beyond that paradigm to provide functionalities meant to help

users get a more throughout grasp and understanding of the document collection, while

at the same time push towards non-linear search and exploration.

Figure 0.2: Ingredients of an exploratory faceted search system, showing how one paradigm

leads to the next.

In this thesis, we suggest a natural way of extending the current paradigm employed

by traditional search systems, into the one of exploratory search. Since there isn’t

one system for every exploratory application, the end goal of the thesis is to provide



4 INTRODUCTION

a framework or a platform extensible with plugins, and with instances tunable to a

particular document collection of choice. It is important to note that our approach

consists of attempting to naturally extend the current consensus around traditional

search. In this respect, we seek to build a system in which there should be no loss in

moving from one paradigm to the next. What could be performed in the older setting

must still hold in the new setting.

In order to do so we can list what we believe would be the main natural ingredients

to exploratory search. These include, but are not limited to: facets, information visu-

alization, query-by-example and social search. Figure 0.2 depicts how each paradigm

naturally extends to the next. For example, exploratory search is achieved by extend-

ing faceted search, but with the added functionalities of visualization, query-by-example

and social search. And faceted search itself, is achieved by combining faceted navigation

with full text search. In this figure, the more plain an arrow is, the more direct is the

implication from one paradigm to the next.

Another core approach taken by the thesis is to design real software in order to

illustrate our ideas and motivate new ones. In this respect, we have developed two

software. The first one, Biomed Search, is a large scale biomedical image search engine

indexing over 1M documents. The system features some novel characteristics and has

motivated many of the ideas found in this thesis. The second one, Cloud Mining, is

a framework to instantiate scalable ESSs with ease. The system is architectured in a

modular manner in order to accommodate for pluggable search. It features the novel

characteristics of facet views as well as multiple-item based searches combined with

textual queries. Cloud Mining was designed as a framework that embodies most of the

ideas described in this thesis.

Consequently, our journey begins by covering some basic notions of information re-

trieval (chapter 1). Since the user’s mental model representation of a system is largely

determined by his interaction with the interface, the next chapter will provide a neces-

sary review of search user interfaces (chapter 2). Next, we will be presenting, Biomed

Search, as a case study application of the two preceding chapters, and as a motivating

example for the next coming chapters (chapter 3). An exploratory search experience

must provide suggestions for refinements and present the information in well chosen

groups or categories rather than in a single result set. This is achieved with faceted
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search (chapter 4). However, an ESS must also provide di↵erent representations of the

document collection in order to help the user attain new insights. In order to do so we

will extend faceted search to the visualization of the search results, whether they are

presented as a list of document surrogates or grouped in chunks as facet values. This

will be the subject of the chapter on information visualization for search (chapter 5).

Exploratory search must also encourage document discovery and serendipitous activity.

This will lead us to go beyond text, and embrace queries made of whole items. This will

be the subject of the following chapter on multimedia and similarity search (chapter

6). However, another important activity of exploratory search consists of managing,

enriching, and sharing the retrieved information. We broadly characterize this activity

as social search, and the subject will be touched upon throughout this thesis, but more

particularly at the end of the chapter 5. Finally, we will be discussing Cloud Mining as

embodying all the concepts previously exposed of search, facets, visualization, query-

by-example and social search (chapter 7), and as a natural extension to traditional

faceted search systems.

The grander vision here is to provide a fully scalable pluggable solution in which

every exploratory search function is part of an ecosystem, where datasets, search com-

ponents and instances are shared and enriched by a community of users. A designer

would then be able to build customized tailored interfaces for di↵erent applications.

Given these tools, users would then subsequently enrich the dataset, which could then

be reused for yet another application. This process, in a way, would provide a collective

intelligence solution to information overload. In this respect, we are hopeful that this

work will inspire others and will add another building block towards the “enlightened

society” that Bush, Licklider, Engelbart and others had envisioned.
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Chapter 1

Notions of Information Retrieval

The very first ingredient of an ESS is the search system itself. Therefore in this chapter

we will cover the basic concepts and notions of information retrieval. Information

retrieval (IR) is a very active field of research which spans over six decades. The first

description of a search system is probably due to Vannevar Bush with the memex

(Bush, 1945) (Figure 1.1). Using the the memex, users would be able to store all

their books, films and communications. The content could then be be consulted with

”exceeding speed and flexibility”. As the name suggests, the memex was designed to be

an ”enlarged intimate supplement to one’s memory”. Nowadays we have much advanced

on that vision. The World Wide Web (Berners-Lee et al., 1994) and its primary mean

of access; search engines such as Google or Bing, have become ubiquitous.

Figure 1.1: Vannevar Bush’s vision of the memex

As information retrieval is such a broad field, this chapter makes no attempt at
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being an exhaustive review. Instead, the most fundamental and necessary concepts of

IR will be provided. First, the notion of relevance i.e. what it means for the information

retrieved to be relevant, will be broadly characterized. Then, we will look into measures

of relevance such as precision and recall. The trade-o↵s between precision and recall

will also be addressed. Finally, we will cover text search with special emphasis placed

on the review of the Boolean set model and the ranked retrieval model. As noted, this

will be a basic introduction of IR. For in depth coverage, the interested reader may

consult (Singhal, 2001) and (Manning et al., 2008).

1.1 Defining Relevance

Probably the first notion to be defined is the notion of relevance of an IR system. That

is what it means for a search engine to retrieve documents that are relevant to the user

(Rocchio, 1971). The notion of relevance itself has been the source of intense debates

amongst researchers often disagreeing on how to measure it (Mizzaro, 1997; Saracevic,

2007). However, the general consensus has been to characterize relevance either through

a purely cognitive point of view or solely through a benchmarking approach. The former,

which will be addressed in the next chapter 2, naturally leads to the design of search

user interfaces and to evaluation methods that favors user studies. The later leads to

the back-end design of search systems and to evaluation methods that only take into

consideration the documents retrieved relative to a query. In this setting, precision and

recall provide a natural metric of relevance, which is now going to be discussed.

1.2 Precision and Recall

Precision and recall are two common measures of the performance of a search engine.

For a given query, the system returns or retrieves a set of documents from which some

of them are actually relevant to the user query. As in Figure 1.2, precision is defined

as the fraction of retrieved documents which are relevant to the query.

precision =
|{relevant documents} \ {retrieved documents}|

|{retrieved documents}|
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where {·} and | · | denotes set definition and cardinality of a set respectively. Recall, on

the other hand, is defined as the fraction of relevant documents that are successfully

retrieved.

recall =
|{relevant documents} \ {retrieved documents}|

|{relevant documents}|

Note that it is trivial to achieve 100% recall by always returning all the documents in

the corpus regardless of any query. Therefore, in order to assess on the performance

of search engine, computing recall alone is not enough. One should also compute a

measure such as precision which accounts for non relevant documents.

Figure 1.2: Precision and recall

Ideally an IR system would optimize on both precision and recall. However, there is

a trade-o↵ between high precision and high recall. In fact if one achieves high precision

it usually is at the expense of high recall. And optimizing for high recall, conversely, will

usually lead to poor precision. We will see this trade-o↵ occurring frequently throughout

this text while presenting IR systems. System designers characteristically have to favor

one over the other.

As an example to illustrate the trade-o↵s between precision and recall, suppose we

have a collection of biomedical articles and we’d like to find all the articles with images

of a network pathway. We can achieve high precision by searching for the sentence

“network pathway”. Although most of the images will be relevant (high precision), we
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would probably be missing a lot of them (low recall). Alternatively, we can achieve

high recall by searching for “genetics”. We would probably be getting all the articles

with an image of a network pathway (high recall) but also a lot of the other irrelevant

documents (low precision).

This issue particularly expresses itself in the Boolean set retrieval model. In that

model, the user enters a Boolean query and the system retrieves documents accordingly.

Trading o↵ between precision and recall is achieved with di�culty through cumbersome

long queries, as we will discuss next.

1.3 Set Retrieval

In a Boolean set retrieval model (Singhal, 2001), a user enters a query made up of

Boolean operators such as AND, NOT, OR and gets documents that match that query.

The documents are returned in an unordered set and the precision, and/or recall, de-

pends on the user’s ability to write complex Boolean queries. Boolean search systems

could additionally be extended with field operators to search within specific fields of

the document collection. For example, a user can find terms within the title, text body,

author, and other areas of the documents of interest.

There has been excellent documentation of the di�culty the general public has with

using Boolean search models (Wolfram et al., 2001). In practice, set retrieval su↵ers

from a clear trade-o↵ between high precision and high recall. Because the documents

returned lacked any ordering, a user can either achieve very high precision by formulat-

ing a very restrictive query, or, high recall by choosing a very loose one. Users usually

have to be experts in formulating complex Boolean queries in order to retrieve the most

relevant set. It is important to note, however, that if the ranking of documents returned

is not required due to the nature of those documents, and when the domain of interest

is reserved to experts, set retrieval could be a fine approach for search. For exam-

ple, PubMed from the United States National Library of Medicine, o↵ers an advanced

search feature to help users build queries made of Boolean expressions. The user is

able to create complex queries restricted to specific fields and made of AND, OR, NOT

operators (see Figure 1.3). This advanced search feature is helpful to non-expert users,

considering that PubMed ranks the articles found by dates only.
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Figure 1.3: The boolean search interface of PubMed

In order to circumvent the di�culties of the Boolean set model, an interesting com-

promise consists of ranking the search results. The query could remain fairly loose but

the results returned could be ranked according to some metric. In that case a user

looking for books may enter some keywords related to the book and have them ordered

by popularity, price or location. In the following section we will cover these IR systems

also called ranked retrieval models.

1.4 Ranked Retrieval

Information retrieval researchers sought alternatives to the di�culties related to the

use of set retrieval systems. In an approach that freed users from algebraic queries

(formally structured), researchers developed approaches based upon free-text, unstruc-

tured methods. The chief resulting success was the development of an approach that

sought even wider results, but combined with a means of ranking the results based upon

relevance. Because this method ranks the results matching a query, it also eliminates

the user requirement to develop clearly-defined Boolean logic filters. In this context,

documents at the top of the search rankings have a greater relevance than those found

further down the results listing.

There were two major contributions that made ranked retrieval a viable alternative

to set retrieval systems. The first one is the vector space model approach developed

by Salton et al. (1975). In the vector space model, each document is represented by
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a vector. Each index in the vector corresponds to a word (or term) found in the

document collection. Each component of the vector is a numerical value which reflects

the importance or the weight of the term in the document. The query becomes a vector

which is then compared to all the other vectors (documents) in the set. A similarity

measure, usually the cosine angle between vectors, is used to match the query against

the documents. The results are then ranked according to how close they are to the user’s

query. However, the question of properly weighting each term within the document and

the collection still remains.

Another major contribution to ranked retrieval and to the vector space model is

the work on tf-idf by Spärck Jones (1972). tf-idf stands for term frequency multiply

by inverse document frequency. Let us assume we have a document collection D of

documents di each containing terms tj. The term frequency tf(t, d) of a term t within a

document d is the number of times t appears in d divided by the total number of terms

in d.

tf(t, d) =
|{ti 2 d : ti = t}|

|d| (1.1)

where {·} and | · | denotes set definition and cardinality of a set respectively. A high

term frequency indicates that a term is more representative of the document content.

On the other hand, we can define the document frequency df(t,D) of a term t within a

document collection D as the number of documents di 2 D containing t, divided by the

total number of documents. The inverse document frequency is the logged reciprocal

of this expression.

idf(t,D) = log(df(t,D)�1) = log
|D|

|{di 2 D : t 2 di}|
(1.2)

The inverse document frequency emphasizes rare terms over common ones. The tf-idf(t, d,D)

of a term t within a document d in the collection D is the term frequency multiply by

the inverse document frequency.

tf-idf(t, d,D) = tf(t, d)⇥ idf(t,D) (1.3)

Intuitively, a term with high tf-idf is a term which is representative of the document

content while not being too popular on the whole corpus. This measure will then favor

frequent but rare terms in the document (specific terms). The terms in the vector space
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model can now be weighted by tf-idf and a similarity measure can then be used in order

to rank each document according to the user’s query.

The vector space model and tf-idf proved to be highly successful for ranking results

in a set of documents which had no explicit connections with respect to each other.

However, with the advent of the World Wide Web and hypertext collections, researchers

started to develop ranking methods based on a notion of document authority. For

example, a hypertext collection could be modeled as a graph with links as edges and

documents as nodes. That graph can then be harnessed in order to rank documents

based on a certain notion of authority, and independently of the user’s query. In

this respect Jon Kleinberg’s HITS algorithm (1999) and Larry Page and Sergey Brin’s

PageRank (1998) were the two most notable measures of authority (Figure 1.4). The

latter measure was at the basis of Google’s search engine.

Figure 1.4: PageRanks of a simple network of websites. Intuitively, a website has a high

PageRank if there are many pages pointing to it, or if it is being pointed by possibly fewer

websites but with a high PageRank.

Today the ranking algorithms are much more complex, and PageRank, for example,

is just one more signal amongst many others used. Numerous other measures of docu-

ment relevance should also be noted such as F-score, Mean Average Precision (MAP)

or Normalized Discounted Cumulative Gain (NDCG) (Järvelin and Kekäläinen, 2002).

As we will discuss in chapter 6, machine learning techniques could be used to train

di↵erent rankers optimized on a given performance measure. The ranking models pro-

duced could even be combined or ensembled in order to achieve greater performance
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(Caruana et al., 2004). Furthermore, with the advent of the social web, search is now

sought to be personalized to a specific user’s need and profile.

1.5 Conclusion

A number of key points should be highlighted from the discussion presented above.

First, while set retrieval models to date allowed users to more clearly specify their search

requirements, Boolean logic queries have been di�cult for users to utilize e↵ectively.

Second, this issue has prompted the development of ranked retrieval but did so at the

price of losing the clear filtering abilities of set retrieval. As we will see in chapter

4, faceted search provides a best of both worlds in which the results are ranked while

still providing filtering abilities. Third, modern search engines use the structure of the

document collection itself in order to pre-order the search results independently of the

user’s query.

Other techniques can be used to improve relevance. Biomed Search, a full text web

search engine for biomedical images developed at the University of Cambridge (Ksikes,

2006), achieves greater precision by indexing only a few tidbits of important text data;

image captions and referring text to images. Biomed Search will be covered in a chapter

3 of this thesis as a case study.

In this introduction to IR, we have attempted to cover the notion of relevance by

looking into di↵erent models such as set and ranked retrievals. However, we have yet

to focus on improving relevance from a cognitive perspective. How should the results

be presented to the user in order to improve relevance? That is the focus of the next

chapter on search user interfaces.
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Chapter 2

Search User Interfaces

So far we have been interested in improving relevance solely quantitatively. However,

that is not the only area to which improvements can be made that also generate sig-

nificant gains in relevance. The role of a search system is to enable users to articulate

formed expressions of their informational needs, and then to foster understanding of the

results returned. In this chapter we will see how careful attention to the interface can

ultimately enhance the relevance of the search. Initially we will discuss general guide-

lines for designing the user interface. Then we will provide a review of some common

procedures to evaluate the interface. This will be followed by a careful examination of

some characteristics of a typical search user interface. This chapter is meant to be a

necessary overview of the field while covering exploratory search systems. For a more

in depth coverage of search user interface design, the interested reader may consult

(Hearst, 2009; Wilson, 2011). This introduction is focused on classical search user

interfaces, the inclusion of faceted search is left to chapter 4.

2.1 Designing Search Interfaces

Nielsen (2003) describes five usability goals of the user interface: learnability, e�ciency,

memorability, errors and satisfaction. Learnability relates to the facility with which

first-time users are able to successfully complete initial jobs using the interface. Ef-

ficiency pertains to the rapidity with which users are able to accomplish their tasks

once the initial interface functions are understood. Memorability relates to the user’s

ability to return to proficiency following a period of non-use. Errors are important to
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understand from the user interface perspective. We want to know what kinds of errors

are made, how many, and whether or not the user was able to surmount them and ulti-

mately be successful while using the interface. Naturally, errors and the aforementioned

other interface aspects a↵ect user satisfaction. We need to clearly understand the ways

in which the users are satisfied (or not) and to what degree. Keeping in mind these

five usability principles, we can now proceed to explain in greater details the process of

designing an interface.

2.1.1 The Process of Designing

Today web interfaces follow a user-centered approach to design. This process involves

a series of steps (see Figure 2.1) in which the user is constantly solicited (Shneiderman

and Plaisant, 2005).

Figure 2.1: User-centered design approach

The first step usually consists of developing a user need assessment. This may

involve repeated interviews with a variety of users in order to fully understand who

they are and what goals they have.

In the second step, the designer must understand what tasks are necessary for the

user to achieve its goal. This step is called task analysis (Kuniavsky, 2003) and involves

that a designer choose the user goals and tasks which will be supported by the interface.

These later could take the form of working scenarios that typify the anticipated tasks.

The third step involves the creation of a prototype which will then be informally

tested by a set of target users. That step is repeated by revising the prototype until

the designer and its users meet the desirable usability goals. The process can be time

consuming and costly and therefore the designer may choose as few user participants as
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reasonably possible. This later principle is sometimes referred to as discount usability

testing (Nielsen, 1994a).

Once reasonably assured that the prototype product is su�ciently ready, plans for

more formal testing are then possible. These include controlled experiments using a

variety of methods or large scale longitudinal studies. We will be touching on this

subject in a subsequent section.

This approach to design was at the crux of the making Biomed Search and Cloud

Mining. We followed these steps in order to refine our prototypes, detect possible flaws

and meet our desirable usability goals. In what follows we will present some tips and

key principles to great interface design.

2.1.2 Some Key Design Guidelines

Shneiderman and Plaisant (2005) describe eight “golden rules” or design principles

applicable to most interacting systems. In a seminal paper, Shneiderman, Byrd, et al.

(1997) further apply those rules to the design of textual search database systems. We

are now going to review those guidelines in the context of web search user interface

design. We have followed those guidelines while designing Cloud Mining, which will be

presented in the last chapter (chapter 7) of this thesis.

The first and foremost design principle consists of striving for consistency. Providing

the user with an interface that is consistent in its appearance and features is very

important. Although not always achievable, aiming towards consistency throughout

the search interface provides the user with a more positive, less frustrating, and easier

to learn and repeat experience. This has the consequence of reinforcing the user’s trust

in the system, as all the interacting elements are where they are expected to be.

The second design guideline consists of providing shortcuts and query prompts for

users based upon skill level. For the less experienced user, providing a query prompt

response for clarifications can expedite attainment of the desired results. However, an

expert user can more precisely specify his query using advanced operators right at the

beginning.

The third design guideline consists of o↵ering informative feedback to the user.

For example, providing immediate search results can assist the user in deciding if the
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search is headed in the right direction (see Figure 2.2). Even a limited number of results

can significantly help the user (Hutchinson et al., 2006). Another example consists of

highlighting the query terms within each summary of the search results (White, Jose,

et al., 2003).

Figure 2.2: Google instant search not only suggests possible search queries but also dynam-

ically updates the search results.

The fourth guideline, related to providing informative feedback in the context of

search interfaces, consists of designing for closure. The idea is to provide the user with

a clear statement that his intended action has been completed. For example, the search

page should not only list the results but also the query performed together with a count

of the total number of results returned. This provides a sense of satisfaction and relief,

and prepare the user for the next actions to undertake.

The fifth principle consists of reducing user’s errors. The most frequently encoun-

tered errors are spelling and typographical. In addition, there may also be vocabulary

issues that make queries unsuccessful (Furnas et al., 1987). Another error handling

issue relates to the generation of an empty result set. In order to reduce the likelihood

of an empty set search result, the user interface can be designed to provide estimations

of results for variant queries.

The sixth design guideline consists of permitting easy reversal of actions. This leads

to making sure that no action is final and that there is always a way of undoing previous

actions. Not necessarily in the context of search but as an interesting illustrating

example, Google’s Gmail has recently released from its labs a mean of undoing “send”.
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After hitting the send button, the user has a few seconds to undo this action which

consequently prevents the email from being sent (Figure 2.3).

Figure 2.3: With a Gmail lab plugin, the user has a few seconds to stop his email from

being sent.

Seventh, the designer should always be taking into consideration the trade-o↵ be-

tween an opaque and a transparent functionality. The balance is one of choosing the

extent to which the system anticipates a user’s needs (opaque operations), versus ones

which supply more user controls over the behavior of the interface (transparent op-

eration). For example, Google News provides a good balance between opaque and

transparent operations of its underlying personalization algorithm. With a set of slid-

ers, the user can specify the degree to which a topic of interest weights in the main

news feed. By default each topic has equal weights (see Figure 2.4).

Figure 2.4: Google News lets the user modify the degree to which a particular topic a↵ects

the main user’s personalized feed. By default each topic weights equally.

The eight and last design guideline consists of reducing the user short-term memory
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load. Teevan et al. (2006) found, over the course of a year, that 40% of a user’s search

views were on pages previously searched. Some 71% were employing the exact same

query string as previously used. This would hint towards providing a history mechanism

as well as favorite shortcuts. Nowadays most browsers provide a way of searching and

managing a search history (see Figure 2.5).

Figure 2.5: On a new open tab, Google Chrome shows your most recently visited websites.

Those can be further managed or included as favorite shortcuts.

2.1.3 Small Details and Aesthetic Design

The design guidelines presented above are useful. However, attention to small details

can make a great di↵erence between a successful and a failed interface. For example, the

amount of space visually presented to the user in a query box can ultimately influence

the length of the query. Users seeing a wider entry area would be encouraged to type

longer queries (Franzen and Karlgren, 2000).

Aesthetics has also an important role to play in the user interface experience. The

impression generated by the appearance of the design tends to correlate with the user’s

impressions about its quality and user satisfaction (Hassenzahl, 2004). However, it has

been shown that the more aesthetic designs, while giving the user a positive impression

about relevance, may actually be less useful than comparable more basic ones (Ben-

Bassat et al., 2006).

Hotchkiss et al. (2007) interviewed a Google vice president and reported that an
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extensive list of details is carefully taken into consideration with the design of the

search result page. In the upper left corner, also known as the “sweet spot”, Google

makes sure that the ads placed there are not only relevant but visually merge nicely

within the results.

2.2 Evaluation of Search Interfaces

Having looked at the process of designing and at some key design guidelines, we can

now delve into the the actual evaluation of the interface. Specifically, in this section we

will examine informal studies, controlled experiments, and large-scale log-based testing.

2.2.1 Informal Usability Testing

As described elsewhere in this thesis, the interface design process is an iterative one.

Prospective users need to be interviewed and observed doing certain tasks using the

interface. The designer first creates an initial prototype interface, and then tests its

ability to meet user satisfaction and the principles previously discussed.

Early stage design may require the use of paper mock-ups depicting various interface

designs and scenarios. Here the focus is on the the interaction between the major design

elements of the interface. This practice is referred to as “low-fi” testing and costs little

money. Studies have shown that they can reveal similar types of usability flows as a

more finished design (Virzi et al., 1996).

After the low-fi design, a more refined interface with a greater level of interaction

can be conceived. However, as we have previously discussed, the interface could still

be tested using discount usability principles. In fact Nielsen (2000) suggested that only

five participants may be required to find 85% of usability problems.

Another form of discount usability and informal testing consists of submitting the

interface to a group of experts. These experts will critique the interface by following a

set of usability guidelines and heuristics. Heuristic evaluations combined with informal

usability testing have been shown to work well in the early stages of the design (Nielsen,

1994b).
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2.2.2 Formal Studies and Controlled Experiments

Biomed Search and Cloud Mining have been tested using informal usability testings.

However, for exhaustiveness, what follows is a brief presentation of more formal studies.

The interested reader may consult (Keppel et al., 1992; Kohavi, Henne, et al., 2007;

Kohavi, Longbotham, et al., 2009) and (Hearst, 2009) for a more detailed treatment of

formal usability testing.

Figure 2.6: A heatmap showing that most of the user attention is to the top of the search

engine result page. (courtesy of buetc.com)

The idea behind formal usability testing is to understand the mental process that

participants are going through while using the interface. In order to achieve this,

participants behavior is observed and recorded using a variety of methods. These may

include audio and video recording, blind written observation, remote observations or

even eye-tracking (Nielsen and Pernice, 2010) (see Figure 2.6). These experiments

are especially useful in order to isolate a particular feature within the interface. The

combination of the data collected together with satisfaction surveys is then processed

to assess on the usability of the interface or of the particular feature of interest.
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2.2.3 Large Scale and Longitudinal Studies

Large scale usability testing takes advantage of a large number of users. This is espe-

cially applicable to websites that receive many visitors on a daily basis. One approach,

called bucket testing (Kohavi, Henne, et al., 2007) or A/B testing, consists of creating a

variation of a design and to randomly split user tra�c into two segments. One portion

of the user sees the new design whereas the rest are directed to the usual interface.

The user behaviors are then recorded in log files. The study is usually completed in a

few days for sites with a lot of tra�c. Bucket testing has been shown to be a highly

e↵ective method in order to resolve disputes about design decisions (Sinha, 2005).

Longitudinal studies are those conducted over an extended period of time (Shnei-

derman and Plaisant, 2006). Because they occur in a more relaxed environment, longi-

tudinal studies can capture more variations in usage behavior. In fact the user usually

has more time and as such may not be acting in a task oriented manner. A typical

study is described by Dumais et al. (2003) in which most users while browsing personal

information, given a su�cient amount of time, eventually always switch to sorting by

dates instead of using the defaults.

2.3 Presenting the Search Results

The typical search engine result page (SERP) is a list of information summarizing the

retrieved documents (see Figure 2.7). Each result usually contains the title of the

document and a set of important metadata. This collection of information is often

called the document surrogate.

2.3.1 Document Surrogates

The surrogate should genuinely reflect the content of the document. Research suggests

that the query terms should appear within the document surrogate (Clarke et al.,

2007). The relationship of the query terms within the document retrieved should also

be stressed. If the query terms appear in the title then they do not need need to appear

in the summary. According to the study, the source (URL) should be succinct and

stress the relationship with the user’s query.
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Figure 2.7: Google’s search engine result page (SERP). Each document surrogate is made

of a title, source URL and summary with keyword-in-context (KWIC).
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All of these factors and elements impact the likelihood that the user will select the

retrieved document for further exploration. We now delve into summaries which are

included within the document surrogate.

2.3.2 Summaries

The document summaries used by traditional search engines are not like those used

in the abstract of a research paper. Usually they are not intended to inform the user

about the main topics of the document. Rather, they are meant to display fragment of

sentences showing how the query terms are used within the document, and how they

appear in respect to each other. As such, the query keywords are often referred to as

keyword-in-context (KWIC) and the summaries as query-based summaries. Tombros

and Sanderson (1998) showed that search engines with query-based summaries are

more e↵ective than systems which would simply o↵er the first sentences of the retrieved

document. The study also showed that participants opened fewer full text articles with

query-based summaries than without, e↵ectively disregarding the less relevant ones.

In another study about summaries, Paek et al. (2004) found that given three choices

for how to view summaries, there was a definite preference for an instant view, in

which clicking expanded the document summary to present additional information.

The majority of participants generated faster and more accurate results with instant

view.

As to the length of the summary, Kaisser et al. (2008) determined that it is usually

query dependent. If the query is about getting the answer to some known facts, then

a one sentence summary is preferred. However for queries which are more exploratory

in nature, a paragraph is usually preferred even if this means that the user will have to

do further scrolling down the page.

In Biomed Search, the grid view shows a grid style view of images with summary

information. Clicking on an image shows more information and clicking again shows

the full information in a paragraph style format. This type of interface provided a

nice trade-o↵ in summary size. On the other hand, Cloud Mining simply shows the

full metadata as collapsible or expandable. It is then up to the designer to further

customize the summary information.
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2.3.3 Highlighting of Query Terms

Highlighting query terms is meant to draw the user attention to the parts of the docu-

ment that are most likely relevant to the query. It also helps the user to see how close

each query term is with respect to each other. In fact the proximity of query terms is a

strong indicator of relevance (Clarke et al., 2007). The use of query term highlighting

either within summaries or within the whole retrieved document has been shown to be

a useful feature (Marchionini, 1997).

Cloud Mining uses a form of highlighting in which each facet is assigned to a di↵erent

color. This creates a logical link between the facet values and the associated metadata

found in the document surrogates. The system also supports a more traditional kind

of highlighting of query terms. This later feature is turned o↵ by default in order not

to bloat the interface. Biomed Search supports traditional highlighting in which the

referred text is bold faced.

2.3.4 Additional Features

Aside from the document surrogates themselves are a number of additional features

which have been found useful in search engine listings. These include infinite scrolling,

possible previews of document content, blending of results from di↵erent verticals, and

shortcuts.

There is no standard number of results to be displayed per page. Traditional web

search engines typically show between ten to thirty results per page. Recently search

engines such as DuckDuckGo (Weinberg, 2006) are featuring infinite scrolling (see Fig-

ure 2.8). This provides a nice trade-o↵ between showing few results and yet more, if

the user is interested, by scrolling down the page.

There are a few approaches to show a preview of a document within the results

page. The usual approach consists of allowing the user to click on the document title

or an adjacent icon to see more information. This approach has been employed by the

Bing (Microsoft, 2009) search engine (see Figure 2.9).

When the query is ambiguous, the general approach, employed by most mainstream

web search engines, is to provide a diversity of results. A particularly e�cient approach

consists of prompting the user to further refine his query in a similar fashion to Google’s
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Figure 2.8: Scrolling down the page on DuckDuckGo shows more results.

Figure 2.9: When clicking next to the document surrogate, Bing shows more information

about the website in a quick preview pane.
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popular “did you mean?” feature. This could be especially helpful when a query has

several commonly understood, but quite di↵erent, definitions.

Blending query search results and media types has been a fairly recent trend with

search engine providers. The idea is to mix the results obtained from other vertical

search engines within the search engine page. The query “Star Trek” in Google, at the

time of this writing, leads to a media rich page with information from Google News,

Google Images, Wikipedia and IMDb (see Figure 2.10).

Figure 2.10: Google’s search page for the query “Star Trek” showing blended results from

di↵erent verticals such as news, images, Wikipedia, IMDb and similar user search queries.

Shortcuts or one boxes are direct answers to user queries. Typing something like

“What time is it in Cambridge, England” in Google will generate a one box view at

the top of the page with the current time at Cambridge. Naturally, the listing of other

possibly relevant results will also be returned.

2.3.5 Importance of Sorting

Search results are often sorted according to highly tested and closely guarded algo-

rithms. As an alternative, they may also be sorted by clearly defined metadata fields.

As it has been previously noted, users tend to look at the first results and rarely look

beyond the first page (Granka et al., 2004). In an interesting twist on this user char-

acteristic, Guan and Cutrell (2007) reversed the order of the listing. The participants
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became aware of the reversal and began to spend more time looking at the bottom of

the page. This could suggest that users will spend a brief amount of time scanning the

relevance of the results. Once aware of the relevance ranking pattern employed by the

search engine, users will work the system out to get the results of interest.

Biomed Search uses a standard ordering by relevance. Cloud Mining, by default,

order the results by relevance but also let the designer create its own sorting functions.

In this case, the user can then select between these di↵erent sorting functions at the

interface level.

2.4 Conclusion

The user interface of a search engine forms the first and last impressions made on a

user. The interface remains the critical focal point through which all users experience

every stage of the search. It is through the interface that the queries are formed and

converted into informative answers. By following the recommendations of this chapter,

the designer can create an interface that fosters improvements to all aspects and stages

of the user search. Better interface designs will assist the users in articulating better

queries, help them understand the results and facilitate query modifications if necessary.

In the next chapter we will see how most of the principles shown in this chapter

were applied to Biomed Search (chapter 3). Throughout the thesis we will also be able

to note that certain specific elements of the user interface will re-emerge. This will

especially be important when discussing faceted search (chapter 4) and Cloud Mining

(chapter 7).
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Chapter 3

Biomed Search

We have broadly covered ”search systems” from a back-end and front-end perspec-

tive. In this chapter we present a system that we have developed called Biomed Search

(Ksikes, 2006) as a case study of the concepts previously discussed in this thesis. Biomed

Search is a freely available web application that helps biologists locate interesting im-

ages, and thereby interesting scientific articles, in a new unconventional manner. The

underlying intuition behind Biomed Search is that a picture is worth a thousand words,

and as such much of the information of a bioscience article may have been summarized

and conceptualized in the images it contains.

The main contribution of this chapter towards the thesis is twofold. First of all by

building a system such as Biomed Search, we were able to identify some of the users

future intended exploratory search needs presented later in this thesis. In essence users

were indirectly asking for faceted search, more ways of visualizing the search results

and looking up similar or related images. Secondly Biomed Search provides some novel

features on its own. The system not only searches within the text caption of an image,

but also in the text that refers to an image. The interface makes use of common pattern,

but applied to the bioscience domain, which consists of letting the user switch between

a list view and a grid view. In grid view the user can zoom in on an image to display

more information. Finally, the scale of Biomed Search is large with over 1M images

indexed from sources such as Highwire Press (1995) and Pubmed Central (NCBI, 2005).
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3.1 Motivations and Overview

Biomed Search is based on the observation that, when reading a bioscience article,

researchers tend to focus much of their attention on the title, abstract, conclusion and

figures of a document. If researchers spend most of their time on these sections, it must

be that they are rich of information and should therefore be indexed and presented to

the user first. The precision of the search system is therefore greatly increased because

only the information of importance is indexed.

Biomed Search focuses solely on the figures and on the captions of the articles.

Abstracts and conclusions are left for a later implementation. The figures are colorful

and engaging and can be nicely arranged within the interface. They can also be searched

across a document corpus regardless of the actual document to which they belong. Not

only do we index the caption but also any sentences that refer to a figure. The later

provides some additional meta information which improves both recall and precision.

The typical search process in Biomed Search consists of typing some keywords in

the search box. A list of images associated with that text is then rendered. The

user can decide to switch to a grid view to see more images. He can also ask for any

picture associated with an article. After having scanned through the images, the user

can select a particular article of interest. The search process is di↵erent than with a

typical search engine. Here the user searches for important pieces information such as

figures and only after that does he decide to go ahead and read the full article. Note

that there is a potentially interesting underlying principle at work, which would consist

of finding relevant documents by searching for interesting parts of documents such as

figures, captions, paragraphs or sentences.

It is to be noted that search over captions of bioscience images has been attempted

before but on a much smaller scale. The 2002 KDD competition is the prominent

example showing that figure captions are useful at locating important information (Yeh

et al., 2003). The FigSearch project (Liu et al., 2004) was a classification system for

figures and full text of biological papers. However, that project is no longer available

online and is of a much smaller scale as it only featured 50,000 images.

Biomed Search regroups many notions seen in the first and second chapter. It at-

tempts to improve on both recall and precision by focusing on figure captions. The
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search interface features some interesting patterns in order to improve the user expe-

rience too. Perhaps a unique feature is the fact that referred text to images is also

indexed. At the time of its conception, Biomed Search was the largest biomedical im-

age search engine with over 1M figures indexed. In the next sections we will explain

the di↵erent features of Biomed Search in more detail as well as its implementation.

We will also expand about future directions of the project.

3.2 Features and Novel Approaches

What are the important parts of a bioscience article? What are the parts that re-

searchers scan through before deciding to go ahead and read the full article? The main

idea of Biomed Search is to build a search engine that is focused on indexing and dis-

playing these important parts to the user. Figure 3.1 shows a snippet of the results

obtained for the query “foot pressure”. We first see a large image together with its

caption. Located at the top is the title, journal and authors associated with the article

to which this image belongs. Beneath the caption, at the bottom, we see the di↵erent

sentences that referred to the image. The highlighted text shows where each part was

taken from within the article (see Figure 3.2).

The interaction within the Biomed Search interface is summarized in Figure 3.3. The

interface makes use of two known design patterns. The first one consists of switching

between a list view and grid view (1). The second one occurs in grid view and consists

of zooming on an image to reveal more information (2). More precisely, the list view

shows all the information associated with an image at the expense of screen real estate,

while the grid view shows up to nine images per screen real estate but less detailed

information. However, in grid view the user can click on an image to zoom it in. In

this case the image appears bigger and shows more information. The user can then

save that image in its own window and continue to search (3). He can also ask to see

the image in list view to list even more information. The user can also ask to list all

images that belong to a particular article. After having browsed through a couple of

images either in full view or in grid view, the user can then jump to the article itself

and decide whether or not to read it (4).

Let’s take an example to explain most of the features of Biomed Search. As seen



34 CHAPTER 3. BIOMED SEARCH

Figure 3.1: Snippet of the results obtained for the query “foot pressure”
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Figure 3.2: Fields indexed by Biomed Search

on Figure 3.4, a search for “motor neurons” restricted to the journal “BMC Genomics”

is being conducted (1). In full view our screen only shows one image. The title of the

article is displayed at the top of the image (2). Clicking on the title leads to the article

which contains that particular image. Under the title is shown the journal name and

the authors of the article. There is a link called “caption source” which leads to the

figure within the source article. In this case, the user is taken to the exact place where

the image is located within the document. The caption text is displayed under the

image (3). And under the caption, by clicking on “View text citing this image”, are

shown the sentences that referred to the image (4). All the images of the article could

be listed (5). In this case a search over the PubMed ID (PMID) is simply conducted.

The image could also be seen in an extra large / poster version (6). Finally the result

could be saved to its own window for future reference (7).

Figure 3.5 shows the grid view search. In that view the images could be zoomed

in/out. When zoomed in, more detailed information about the figure is being shown.

To see all available information, the user can click on “More in full view” and switch

from grid to full view. The grid view with zoom in/out pattern has been used in several
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Figure 3.3: Interaction flow in Biomed Search
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Figure 3.4: The di↵erent features of Biomed Search: full Lucene query syntax and switch

between list and grid view (1), article title with “caption source” (2), actual text caption

(3), sentences referring to the image (4), list all the figures from the article (5), extra large

poster size version of the image (6), and save the image in its own browser window for future

reference (7)
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other image search engines. For example, the latest iteration of Google’s image search

features a similar zoom in/out to show more or less information. Perhaps the most novel

feature of Biomed Search is the fact that the referred text to images is also indexed.

Biomed Search is also one of the largest image search engine in the biomedical domain

with over 1M images from 500,000 articles and 200 journals. The full corpus of images

of all sizes occupies over 100GB.

Figure 3.5: Grid view in Biomed Search

3.3 Implementation and Technology Used

The articles which Biomed Search indexes are found on Highwire Press (1995) and on

Biomed Central (2000). Currently Highwire Press has over 2M free articles, while

Biomed Central has about 100,000 articles. Highwire Press and PubMed Central

(NCBI, 2005) are the largest repositories of free biomedical articles. PubMed Cen-

tral also has the largest repository of open access articles. Open access articles can

be re-used and are under are a public domain license. Biomed Central is a subset of

PubMed Central with a di↵erent interface. Highwire provides the articles for free to

consult but images may have a specific license depending on the journal and article
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from which they belong. Biomed Search indexes a selection of about 500,000 articles

from Highwire Press. These are mostly the HTML documents since many of the old

articles are in PDF format. From Biomed Central about 60,000 articles were indexed.

Figure 3.6 outlines the di↵erent steps required to go from the raw data to the

index ready for retrieval. A simple crawler was used in order to gather all the URLs

from Highwire Press and Biomed Central (1). Then a program called Mass Scraping

(Ksikes, 2010) was used to massively download the HTML from each URL (2). The

HTML goes in a zipped and hashed named directory structure called a “repository”.

A repository is a directory structure used to e�ciently store and retrieve data given

the MD5 hash name of a file. An example of a file in this directory structure would be

/data/02.zip/028e2fae37944162df896e43b3cd80 and the directory /data holds all xx.zip

for each MD5 hash named file. Several levels of directories could be chosen for very

large datasets. Caption texts, referring texts and image URLs are then parsed from the

repository (3). A program called “extract”, which is part of the Mass Scraping package,

takes regular expressions and transforms the output. Mass Scraping was developed at

the University of Cambridge and is available under a GPL license (Ksikes, 2010). This

program was later used on Cloud Mining in order to download, parse and populate

various datasets such as data from the Internet Movie Database (IMDb). The images

are also mass downloaded (4) and re-sampled in a small and large format in order to fit

within the interface (5). We also query MEDLINE to get additional information such

as PMIDs, author names or journal titles (6). The parsed data is then fed to a Lucene

index for retrieval (7). For tokenization, the standard Lucene settings are used. Words

are split at punctuation characters and hyphens, stop words are removed and a simple

stemming is applied. MySQL is used for logs and other stored information. All the

tools were written in Python.

The web application is programmed in Python using web.py (Swartz, 2006). Lucene

(Cutting, 1999) is simply a retrieval engine and does not support a server to process

many queries per second. To circumvent this problem and to allow a programmatic

interface in any language the common architecture on Figure 3.7 was chosen. The web

interface makes a query in the form of a url with parameters (REST query) (1). The

query is then handled by a search server whose role is to query the Lucene index (2).

Lucene retrieves the results and passes them on to the search server (3). The results
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Figure 3.6: Going from raw data to the index ready for retrieval
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Figure 3.7: Biomed Search web server architecture

are then returned in XML or JSON to the web interface (4). The web interface that

initiated the query renders the results.

The interface was built with the usability principles described in chapter 2. Variants

of the interface were tested on a small group of candidates before settling for the current

one. The JavaScript library Highslide.js was used to perform the e↵ect of zooming in

and out of a search result while in grid view. We also tested the e�ciency of retrieval

with and without referring caption text. This was performed by comparing the results

returned with standard caption search against the results returned with the additional

referred caption texts indexed. We noticed an overall increase in recall and precision.

This should not be surprising because the referred texts tend to provide additional

specific keywords, not found in the caption, which further describe the image.

3.4 Similar Services

A couple of similar services were developed at about the same time Biomed Search was

released. The BioText search engine (Hearst, Divoli, et al., 2007) indexes 80,000 figures

and their captions 1. In addition abstracts are also shown and searched. The interface

allows to switch between an abstract view, a caption view and a grid view. However,

BioText does not yet search within the referred text to a figure caption. One important

1I was one of the authors of the BioText search engine.
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di↵erence with Biomed Search is that all images in BioText are taken from open access

articles letting researchers re-use the images at will.

Another service built after BioText is the Yale Image Finder (YIF) (S. Xu et al.,

2008). YIF uses the same source of articles as BioText but is more up to date. At the

time of this writing, there are currently over 140,000 images indexed. YIF is a more

modern search engine as it also features content based search, a functionality we will

be describing in greater details in chapter 6. Using standard OCR techniques, YIF is

able to search for the text inside an image. The system also has a related image search

feature. As previously noted, the search is conducted on the text caption and the text

recognized inside the image. The interface seems to be plain but e↵ective. After the

user provides a few keywords, the most relevant images are retrieved and presented in

the form of a thumbnail view. Clicking on an image of interest shows a higher resolution

image. Related images are shown on the right hand side.

Another system similar to Biomed Search was biomedimages.com. It was released

in 2004 before Biomed Search. Unfortunately the system is no longer online. The

interface was similar to Google Image with the caption text under each figure. The

source dataset was PubMed Central. At the time only 30,000 images were indexed.

3.5 Conclusions and Future Work

Biomed Search is a free tool to help biologists find interesting scientific articles. The

main idea behind Biomed Search is to index and display the most important information

of an article to researchers. This led us to build an image only search engine with a

couple of interesting characteristics. First, the interface makes use of a common design

pattern which consists of switching between a list and a grid view. In grid view, the

user can have more information displayed by zooming on an image of interest. Second,

the text referring to a caption is also indexed improving both on recall and precision.

Third, at the time of its conception Biomed Search was the largest biomedical image

search engines indexing over 1M images.

Many new features could be added. For example, a user could refine his search by a

specific topic such as “cancer research” or “medicine”. He could also sort by date or by

relevance. Some glitches could also be fixed such as collapsing very long captions. Per-
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haps one very useful feature would consist of letting the user select between diagrams,

tables or pictures. Such a feature could be implemented with a simple heuristic on the

content of the image. Otherwise a classifier could be built which would use caption

text as labels and the content of the image as features. We could also try to recognize

topical features such as genes/proteins, organisms or diseases (MeSH terms) in order

to improve search.

It would also be useful to go further than Lucene’s default statistical ranking. One

very simple case is being able to weight di↵erent fields di↵erently. For example, full

text would have much lower weight than higher informative fields such as caption and

referred text. Obviously, we would need to fully control the ranking function if we

decide to provide personalization and content based search. It is important to note

that Biomed Search is only text based and does not provide any search on the content

of the images. This limitation will be addressed in chapter 6.

As previously discussed, Biomed Search indexes “free” and open access articles. The

“free” articles are free to be browsed but not free to be re-used. However, the open

access articles are free to be re-used in any manner as long as the copyright of the article

is preserved. Free articles on Biomed Search cannot technically be re-used beyond fair

use policy. On the other hand the open access articles is consistently growing reaching

over 130,000 articles on Pubmed Central. Therefore there are also plans to entirely

move Biomed Search to open access articles.

Biomed Search was released by the end of December 2006. The service was very

well received across specialized sites and blogs (Chordash, 2006). The web referencing

drove significant tra�c to the site. We were then able to watch our users and listen to

their feedback. The number one requested feature was the ability to refine by a topic

of interest. In essence users were asking for faceted search. Many users also requested

finding similar images, essentially asking for item based search. Last but not least,

the zoom in/out sparked a lot of ideas on how to visualize search results. Eventually

users were asking for an exploratory search system which would embody components

of faceted search, item based search and data visualization. Those components will be

the topic of the next chapters (chapters 4, 5, 6 respectively) and will culminate with

the presentation of Cloud Mining (chapter 7).
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Chapter 4

Faceted Search Systems

We have given a general overview of information retrieval and the challenges of building

and evaluating a search user interface. We have looked into a case study, Biomed Search,

which provided a good example of an information retrieval system with a great user

interface. However, we have concluded that Biomed Search would probably be more

powerful if the user would be able to refine his query as he searches. Such a solution is

provided by faceted search, which is the subject of this chapter.

As we have already discussed one important aspect of an ESS is to provide the users

with di↵erent view points of the data being explored. It is therefore necessary towards

the thesis to provide some background material about faceted search. This material will

also help the reader transition towards chapter 5 in which di↵erent visualizations could

be employed on top of the facets in order to provide greater insights and analysis of the

data collection. The contribution towards the thesis of this chapter is one of exhaus-

tiveness while covering exploratory search, but it provides no novelty or advancement

in the field per se.

This chapter follows a similar treatment of the field as Tunkelang (2009). First, we

will go through the evolution of faceted search from a simple directory navigation to a

fully featured system. Then, we will focus our attention to some of the back-end and

front-end concerns. Finally, several applications that incorporate interesting features

of faceted search will be presented. As this chapter is meant to be an overview, the

interested reader is encouraged to consult the books from Hearst (2009) and Tunkelang

(2009) for a more detailed treatment of the field.
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4.1 Directory navigation

One of the simplest ways of organizing a document collection is through the use of

a hierarchy of categories. Such an organization of the space is usually referred as a

taxonomy. Using this kind of organization, the user can more easily access and find

the documents of interest. One of the key benefits of a taxonomy over full text search

is that it provides guidance towards potentially interesting subsets of the document

collection. For example, in the early days of the web, Yahoo! successfully organized

web pages into a pertinent taxonomy. The service still exists nowadays and has been

re-branded as Yahoo! Directory (see Figure 4.1). Another example includes The Open

Directory Project, also known as DMOZ (Netscape, 1998), which uses volunteer editors

in order to build “the largest human-edited directory of the web”. These services o↵er

broad categories of informational topics in which the diverse web population might be

interested.

Figure 4.1: Directory navigation after the category “Computers and Internet” has been

selected.

However, it is important to note that users characteristically begin searches with

a predetermined notion of what they are interested in finding. A critical issue arises

when the user does not have the same conception of the ordered information path as

the taxonomist. This issue has first been quantitatively studied by Furnas et al. (1987)
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in a paper on the “vocabulary problem” also referred as vocabulary mismatch. As

an example of the vocabulary problem, in Yahoo! Directory, a user looking for online

tutorials on programming may wrongly start browsing under the “Education” category,

leading to a list of schools and universities, when he should probably have started

with the “Computers & Internet” category followed by the next available category of

“Programming & Development”.

Unfortunately the vocabulary problem does occur frequently (Furnas et al., 1987).

In fact, it is nearly impossible to ask users to have a preconceived concept of the infor-

mation relationship path that parallels that of the taxonomist in order to ultimately

arrive at the same information endpoint. Although there have been e↵orts at circum-

venting this problem (Perugini, 2008), directory navigation su↵ers from the fundamental

limitation in which the user must discover and follow the same mental model as the

taxonomist. We now turn our attention to parametric search, also known as “advanced

search”, as a means to help the user specify his query.

4.2 Parametric Search

In most search scenarios, the user can search through a set of specific fields of the

document collection. In a parametric search interface, these fields are presented as

choices usually rendered as a drop down menu. For example, a collection of products

may have di↵erent fields such as the geographical location of each product, its price,

brand or even color. The user can then pre-select these choices before any search has

actually taken place (see Figure 4.2). On the back-end, the query is specified as a set of

keywords and Boolean operators. The search is then performed in a similar manner to

set retrieval, previously discussed in chapter 1. Unlike directory navigation, no further

categories are proposed after the search has been performed. The user has to come

back to the search interface and then specify a di↵erent set of values for each search

field.

Unfortunately parametric search su↵ers from the same limitation as set retrieval.

The users struggle with the limitations of their own conceptual awareness of the space

of query possibilities. With this approach, the users must contend with the frustration

of formulating queries that may produce seemingly endless results, or, none at all. It
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Figure 4.2: A parametric search interface for light emitting diodes. (courtesy of osram-

os.com)

assumes that the user would take one attempt to gather information successfully across

all search possibilities.

Although parametric search does o↵er expressivity, it provides little guidance through

the space of possible queries. What has been gained with directory navigation has been

lost for better expressivity of the search query. Next we will see a solution, faceted

navigation, which provides the best of both worlds.

4.3 Faceted Navigation

Using multiple directories, each being a taxonomy of a particular concept usually related

to a search field, leads to faceted navigation. Let’s take an example to illustrate this.

Suppose the document collection is a set of products. The user can select a price range,

a brand or the location of the product in each respective directory. The user can then

see the results after having made a particular selection. The directories are also updated

to reflect the set of choices pertaining to the current search. He can then subsequently

refine his query by these other possible choices. The object in which the user refines his

query is called a facet (Ranganathan, 1950). The name comes from the fact that the

search results are in essence filtered through a particular viewpoint, in our example by

prices, brands or locations. It provides a view or facet of the document collection for

the particular concept being refined by.
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Figure 4.3 provides an example of faceted navigation at play. The collection is a set

of product essentials featured by the website SOAP.com. The first facet called “TYPE”

and located on the mid left corner, allows the user to refine by various types of products.

Under it, the second facet called “BRAND”, unsurprisingly allows the user to refine by

various brand names. In this example the user has already selected the brand “Dove”

in which there are 148 products. Note that the “TYPE” facet has changed accordingly

after this selection was made. The facet “TYPE” now only shows the refinements for

the brand “Dove”. These include types of products made by Dove such as “Bar Soaps”,

“Body Lotions” or “Body Washes”. The results are shown to the right and dynamically

adapt according to the user’s faceted selections.

This approach enables the user to progressively refine his search by seeing how the

selection within a particular facet manifests the availability of choices in alternative

facets. For example, the user could have selected another brand and see what types of

product choices would be o↵ered to him. Or he could have selected only some product

types and see what brands would be o↵ering these types of products. Note that many

more kinds of facets are possible. In fact, not shown in Figure 4.3 are facets for color,

product features, user ratings and price range. This approach resolves the problem of

“all or nothing” results encountered with parametric search. The query has also gained

on expressibility by providing guidance through the space of possible queries. Unlike

the simple directory navigation approach, the user can now browse by not one but

multiple possibly orthogonal taxonomies.

Faceted navigation, like parametric search and directory navigation, does not take

into consideration the unstructured data of the document collection. By unstructured,

we mean that the data has not been clearly identified, and as such is not part of any

field. For example, the body text of an article is unstructured, while the author name, if

identified, is structured information which can lay into an author field. Faceted search

provides a mean of accessing unstructured data, while still keeping the refining ability

of faceted navigation.
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Figure 4.3: Faceted navigation at Soap.com where the brand “Dove” has been selected from

the “BRAND” facet. Note how the “TYPE” facet has changed to only provide choices of

the types of products made by Dove. Not shown in this figure are facets for color, product

features, user ratings or price range.

4.4 Faceted Search

A combination of faceted navigation and full text search leads to faceted search (as

in Figure 4.4). The structured information, or metadata, is browsed using a faceted

navigation interface. The remaining unstructured data or full text is accessed by a

simple search box. After a search has been performed, the user can immediately see

into which facets the results fell in. This provides further guidance for subsequent

searches and refinements.

As in faceted navigation, faceted search provides guidance through the space of

possible queries and their results. However, these facets usually always portray the

same look and feel. They are in fact usually represented as a hierarchical directory of

choices. Rare are interfaces which attempt at representing the facet and their values

with a more proper look and feel. For example, the user may want to see the location

of a product on a map rather than as a list of countries or cities. The user may also be

interested to relate the di↵erent facets in order to draw insights from the data. As we

will see in chapter 5, one of the thesis contributions will be to go beyond faceted search
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Figure 4.4: Faceted search at Amazon.com for the query “video games”

by providing di↵erent visualizations on the facets. However for now, let us focus on

faceted search and present some of the back-end and front-end concerns. The review

that follows is important towards the thesis as faceted search should be implemented

with a clear understanding of the potential issues and challenges that may arise.

4.5 Back-end Concerns

Back-end developers of applications for faceted search are confronted with numerous

concerns, including information overload, computational cost, the vocabulary problem,

and the availability of metadata. These issues, when addressed initially, can make the

user experience significantly more successful. We are now ready to cover each of these

issues.

4.5.1 Information overload

As we have previously encountered in the introduction of this thesis, information over-

load is a serious matter pertaining to modern society in general, and to current search

users in particular. Rarely are we faced with a paucity of available information. There

are mainly two concerns as to how faceted search systems may be generating informa-

tion overload. First, too many facets may be displayed at a given time. Second, a facet
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may provide too many selection choices.

In theory there is an unlimited number of facet categories in which a document

may be classified. In fact, there are as many facets as there are di↵erent taxonomies.

In order to limit the number of facets, the common practice consists of favoring facets

with values which can be assigned to all the documents in the collection over those with

values that are assigned to only a small subset. Also Tunkelang (2009) recommends

favoring facets with high entropy distribution of values. For example, a facet whose

values are evenly spread across the collection is preferable over those whose values

are highly concentrated. Another possible solution commonly employed, consists of

consolidating facets with common concepts. For example, directors, developers, script

writers of a video game may be consolidated within a single author facet.

The second concern arises when a facet generates too many values. In this case,

the common practice consists of showing only the values with the highest frequency.

Another heuristic consists of clustering the facet values based on a measure of similarity.

The most obvious procedure consists of performing stemming of the facet values and

clustering those with common stems. Another way of preventing information overload

of facet values could consist of creating predefined hierarchies within each facet (Yee

et al., 2003). The values then fall within one or many hierarchical categories. In this

case the facet organization may no longer be automatically generated. For example,

the values of a location facet may be organized in a hierarchy starting with country,

region, and city.

4.5.2 Computational Cost

Another source of concern is the computational cost associated with faceted search. The

initial set retrieval can be computed e�ciently with standard inverted index techniques

(Strohman, 2008). However, the facet computation and their associated counts can be

much more expensive, specifically if the counts are sequentially dependent (Smith et al.,

2007). There are two general approaches commonly employed to computing the facet

values. We list them here for completeness towards the thesis.

The first method is a top-down approach in which the inverted index is leveraged in

order to compute the intersection of the documents assigned to a facet value with the
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documents in the result set. The top-down approach can be summarized by the pseudo

code below. The algorithm iterates over the facet values of each facet. A search is then

performed for each facet value and the previous query. The number of results returned

is then stored within each facet.

results = {}

for facet in facets:

for value in facet.get_all_values():

documents = client.search(query AND (@facet.name value))

results[facet.name][value] = len(documents)

return results

The pseudo code above makes use of the field operator @field value which restricts

retrieval to a particular value in specified index field. Also note that len(results) should

be thought as not iterating over all the documents but instead as returning an estimate

of the count.

The other approach consists of computing the facets bottom-up. In this case the

algorithm would consist of iterating over the documents in the result set first and then

on the facet values assigned to each document. Each facet value is then accumulated

for each document. Below is the pseudo code describing the bottom-up approach.

results = {}

for document in client.search(query):

for facet_name, value in document.get_facet_values():

results[facet_name][value]++

return results

The two approaches are computationally expensive. The top-down approach re-

quires computing a large number of intersections over all possible facet values. Because

the facet values are expected, this approach could make use of locality on disk. On the

other hand, the bottom-up approach requires iterating over all the documents. Because

the user query is unexpected, the set of returned documents are more likely to be scat-

tered across the disk. However, there are a couple of ways to make the bottom-down

approach more e�cient. First, we can restrict the number of results returned either by

fixing a hard limit or by sampling. Second, the facet values can be accumulated during

the scoring phase of each document with the facet value ids pre-loaded in memory.
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We now turn our attention to an issue we have previously encountered but which

resurfaces while implementing faceted search systems. This is the well known vocabu-

lary problem.

4.5.3 The Vocabulary Problem

The vocabulary problem (Furnas et al., 1987) naturally arises in faceted search, either

during full text search query or when presenting the facet values to the user. In order

to circumvent this issue during full text search, the query could be expanded with

synonyms found in the index (J. Xu and Croft, 1996). However, many other solutions

have been proposed and as the issue pertains to full text search and information retrieval

in general the interested reader is encouraged to consult the book on IR by Manning

et al. (2008) for a more detailed treatment.

The vocabulary problem also arises while presenting the facet values. In this case,

the facet value selection could lead to an unintended result set. As a solution to this

problem, the common practice consists of providing a preview of the results returned

for a given facet value selection. This technique is usually referred to as providing

“information scent”: that is cues that indicate the value, cost of access and location of

available information content (Chi et al., 2001). In faceted search, this could consist of

simply providing a count associated with each facet. The count displays the number

of results returned if the facet value were to be selected. Another solution consists of

letting the user directly see how the search results change with each selection. This is

usually achieved by letting the user toggle the selection on or o↵ to see what happens.

4.5.4 Availability of Metadata

A document collection can have various degrees of structure to it. As previously dis-

cussed, a document has some structure when it has some meta information which

describes it. For example, a document about a product may have a price, whether it is

in stock, a description and perhaps some further labels describing it. As we have seen,

faceted search crucially needs metadata information in order to provide them as facet

choices. However, most document collections may be at best semi-structured or could

even be completely unstructured. In this case, the developer of the system may have
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to use several text mining techniques in order to extract metadata from the document

collection. In what follows, we will outline just a few text mining techniques. The

interested reader may consult (Weiss, 2005) for a broader covering of text mining.

The first thing one can note is that many document collections have some latent

metadata ready to be exploited. These can include the length, creation date, type

and so on for each document within the collection. For example, photos may embed

metadata such as the manufacturer, model, orientation, and software use of the camera.

Other metadata may include the time the photo was taken or even the geographical

location. This information comes for free and could be used in order to design the facets

of the system.

Beyond the exploitation of latent metadata, the developer may use more involved

text mining techniques such as terminology extraction. This could involve the creation

of controlled dictionaries for each subject of interest. The dictionaries can be created

from the same document collection or from a di↵erent but related collection. The

dictionaries are then used to pick up the keywords which will become the values of each

facet for each subject of interest. Terminology extraction techniques can also be used

to extract more precise concepts such as people names, places, or dates.

Another approach consists of using statistical categorization in order to place docu-

ments in predetermined categories so that multiple independent categorizations produce

entirely di↵erent useful facets. Of particular interest is the technique called topic mod-

eling for discovering the abstract “topics” that occur in a collection of documents (Blei

and La↵erty, 2006).

In any case having good metadata is crucial to faceted search. This process may be

automated but will most certainly always require some human intervention. To that

end it is always possible to use crowd-sourcing techniques such as Amazon’s Mechanical

Turk (2005) in order to provide cleansing and reorganization of the facet values. To put

it succinctly, facets design may always require a human in the loop (Hearst, 2006b).

4.6 Front-end Concerns

Turning from planning for the back-end of the search refinement and results we now

examine concerns related to the front-end. The concerns may reduce to how to present
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facets, how to organize those facets and their values, how should the search box behave

and how should multiple selections be performed from the user’s point of view. Those

are user interface design concerns and the discussion and treatment presented here

cannot hope to be exhaustive. Instead we will provide with the most feasible and

generally accepted solutions.

4.6.1 Presenting the Facets

The initial consideration is the layout of where the facets should be. There is usually no

optimum place to locate the facets as those will vary by the type of application involved.

However, one possible layout consists of having the facets in a panel left of the search

results. This is appealing because the user sees both the facets and the results at the

same time. This layout may also emphasize the results since they are in the middle of

the visual real estate. However, in some circumstances, the user may get confused and

wrongly think that the facets are results. Yet this is one of the most common layout

employed in the industry. Figure 4.5 shows the use of this layout at LinkedIn.

Figure 4.5: Faceted search at LinkedIn showing the usual facet to the left layout

Another layout choice is to place the facets to the top of the search results (as

in Figure 4.6). This area of prime real estate emphasizes the facets over the results.

This may have the positive aspect of forcing the user to refine his query into a more
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comprehensive one before or after the initial search. The drawback of this layout is

that the results are not initially seen as the user may have to scroll down the page to

display them.

Figure 4.6: Facets presented at top at YouTube

Another location is to place the facets at the bottom of the page. This positioning

is often used to present the user with additional refinements or options. Frequently this

area will be used to suggest to the user additional choices for exploration. Because the

facets are not immediately seen, this type of layout is characteristically intended for

more experienced users. In fact, the average user may never see the suggestions placed

there.

Obviously many other options could be tried. One could consist of having the facets

in separate tabs. Each tab would then be used to perform the refinements. Another

very commonly used option consists of having the facets to the right. Although this may

seem unintuitive at first, this type of layout could provide easy access to the facets while

putting all the emphasize on the search results. Cloud Mining is using that particular

facet to the right design layout by default.

Sometimes it may be useful to be able hide facets and only provide them as an

advanced search options. One important design choice could consist of hiding the used

facet values. This has the consequence of prioritizing space within the interface and

of encouraging exploration and comparison of the remaining facet values. At times
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it may be important to disambiguate the user’s query in order to know which facets

are relevant to the search. In this case, the user may be prompted to disambiguate

his query through the use of a dialog box, for example. However, trying to anticipate

what users mean is a guessing game. People regularly use di↵erent words or expressions

to mean quite varying things. Moreover, individuals themselves are not consistent in

terminology use and understanding.

4.6.2 Organizing the Facets

We now turn our attention as where to organize the facets and their respective values.

Again we merely list common practices and recommendations, but by no mean can we

hope to be exhaustive. The first organization of facets simply consists of keeping their

location constant throughout the use of the interface. This organization is called static

ordering and has the advantage of reinforcing the user’s mental model of the interface.

Simply by keeping each feature of the interface static or constant, the user always know

where to expect these features of the interface. The drawback with respect to faceted

search is that some facets may not be relevant to the user’s query and therefore may

not be useful when shown.

In contrast to static ordering of facets, dynamic ordering places facets in a specified

order based upon ranking algorithms that estimate the utility function of facets with

respect to the user’s query. This approach is particularly useful when there is a poten-

tially large number of facets. It is therefore advantageous when only a few and most

relevant facets would apply to the user’s query.

Another design option consists of grouping related facets based upon some notion

of similarity. A simple example relates to academic journal searches. We might wish to

search according to authors, reviewers, name of institution, adviser, etc . . . We could

create an individual facet for each of these but alternatively, we could simply group

them into a facet called “people”. From there we can organize by sub-facets composed

of the elements previously noted. This is a useful means of adding a lot of facets in

a manner that sensibly facilitate the user’s query development and refinement while

preserving a static ordering.

The same solution choices for presenting facets (static, dynamic and grouping) are
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applicable to choices related to selection of which facet values to display. A great way of

achieving static ordering while simultaneously ranking the facet is to create a hierarchy.

Hierarchical facet values can be used in grouping even for those that initially lack them.

For example, a tree could be formed that displays where the facet values are located.

The designer can create and enforce any number of hierarchical values deemed useful.

However, as with all hierarchies, the designer would have to create a taxonomy with

the potential vocabulary problem as previously discussed.

4.6.3 Handling the Search Box

It is with the inclusion of a search box that faceted search is developed from navigation.

Without a search box, what we would have is merely faceted navigation, through which

the user could only browse the text corpus. However, the search box comes with its

own set of design challenges and deciding how it will behave from the stand point of the

user interface design is critical. Tunkelang (2009) outlines several design challenges and

provides some first hand solutions. These challenges include the behavior of the query

filters, the fields being searched by default, whether to use query expansion, multi-word

queries and whether to use multiple search boxes. We are now going to cover some of

these issues in a bit more details.

The first question to consider is with respect to selected query filters. After a search

has been performed, should subsequent searches adhere to the existing query filters or

should it reset them all? The most commonly used pattern consists of always clearing

up the current facet selections after each search. In this case, the search is always a

new one. Another approach is simply to provide the user with the choice of selecting

whether the search is performed within the current results or if a new search must be

performed. Another option consists of providing two buttons, one to do a new search

and another one to search within results. This later approach was chosen for Cloud

Mining.

The second consideration is with respect to the fields being searched. Do we want

to search within all fields or only within specific fields? In traditional search engines the

search is usually performed against all the fields and ranking is used to push the most

relevant results to the top of the results. However, this approach may undermine the
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e↵ectiveness of faceted search. In fact, searching in all fields may return high recall and

low precision results with a negative impact on the facet refinements. These later will

also be counting results and providing refinements which are more likely to be irrelevant

to the query. As a first hand solution to this problem, we could generate the facets

favoring a high precision query, while keeping the high recall of the initial search query

to retrieve the search results. For example, the facets may be generated by performing

a search only in the title of the documents, while the results would be generated with

a search against all fields.

The other user interface choices as to how to handle the search box all pertain to

information retrieval overall. These include query expansion, multi-word queries and as

to whether to integrate multiple search boxes within the interface. For faceted search,

the common practice here consists of sticking with the what users are most commonly

already used of with full text search. So for query expansion it is recommended, at the

very least, the single or plural form of a noun to return the same results. Further query

expansion such as the use of a thesaurus to obtain additional matches could also be of

interest. However, too aggressive query expansions may degrade retrieval performance

(Voorhees, 1994). Multi-word queries should probably be performed as conjunctions of

query terms instead of disjunctions. Concerning whether to integrate multiple search

boxes within the interface. For example, a search box for query terms that only matches

a specific field of interest. The overall design guideline here is again to stick with the

defaults, that is only one query box and the use of advanced field operators if searching

within a field.

4.6.4 Multiple Selections

There are at least two possible choices from which the user could select multiple values

from the same facet. The first one is simply to treat multiple selection as a disjunctive

(OR) selection of facet values. The other one is to perform a conjunctive (AND)

selection. The di�culty is to convey to the user whether a conjunction or a disjunction

will be performed. It is then important to design an interface that adheres to well

know conventions and design patterns (Morville and Callender, 2010). Check boxes for

example, convey the idea of performing a disjunction whereas links are better suited
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for conjunctions (as in Figure 4.7).

Figure 4.7: At YoYo.com, age is singly assigned and therefore shown as a disjunctive query

refinement

Tunkelang (2009) notes that facets which can be assigned multiple times to docu-

ments should usually lead to a conjunctive selection. Whereas facets which are singly

assigned naturally leads to a disjunctive selection. For example, if the document col-

lection is a set of books, facets such as authors, categories, departments could have

multiple facet values assigned to each document. Whereas book format such as paper-

back, hardcover or audio naturally leads to disjunctive facet value selection. Tunkelang

(2009) further notes that it is generally not a good design idea to provide the option of

letting the user select whether a disjunction or a conjunction is performed within the

same facet. These kinds of complicated user interactions are better handled by letting

the user specify complex queries within the search box.

4.7 Examples

We will now turn our attention to some interesting faceted search research projects and

industry products. These include Endeca (Oracle, 1999), Flamenco (2006), Parallax

(Huynh and Karger, 2009), mSpace (schraefel et al., 2006) and more recently Carsabi
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(2012). It is important to note that faceted search has become ubiquitous and we

present these projects either because they are introducing a novel approach or because

there are canonical of what faceted search is all about. Other systems that provide a

more visual approach to faceted search, such as the Relation Browser (Marchionini and

Brunk, 2003), will be covered in the next chapter.

4.7.1 Endeca

Figure 4.8: Endeca showing di↵erent visualization of the facets while browsing an inventory

of items

Endeca was founded in 1999 with the goal of providing custom made faceted search

solutions to enterprises. The company is well known for having evangelized faceted

search which at the time was branded as “guided navigation”. Endeca now powers many

di↵erent types of businesses in industries as varied as financial services, manufacturing

or governments. Figure 4.8 shows a faceted search system powered by Endeca used to

browse through an inventory of items. In many ways Endeca is similar to Cloud Mining.

First the system is framework used generate custom made faceted search systems for all

kinds of applications. Second the Endeca goes beyond classical facet search to provide
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more proper visual ways of representing the facets. The company was recently acquired

by Oracle, and we were unfortunately unable to fully test the system out.

4.7.2 Flamenco

The approach taken by Flamenco consists of only using hierarchical facets to refine

through the document collection. Figure 4.9 shows the flamenco interface used to

browse a collection of pictures of fine arts. The user has selected “Objects” from the

“MEDIA” facet. Further refinements are provided within a large set of facets in which

values are hierarchically organized.

Figure 4.9: Flamenco’s hierarchical faceted navigation interface browsing through pictures

fine arts

The software has been open sourced since 2006, with the hope of letting developers

create Flamenco systems for their data of choice. However, note that not all data comes

organized in a rich set of taxonomies. Instead designers willing to try Flamenco may

have to come up with their own hierarchical classifications, which could be a di�cult

process. This approach is to be contrasted with Cloud Mining which uses facet with

visualizations as opposed to facet with complicated hierarchies. This makes Cloud

Mining immediately applicable with minimal setup on the developers end.
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4.7.3 Parallax

Developed at MIT, Parallax (Huynh and Karger, 2009) is a collaborative knowledge base

of structured data. The interface extends faceted search in a semantic web approach

by shifting views between related sets of entities. In addition to providing filters based

on facets associated with the results, Parallax utilizes ontologies to yield connections

to related sets, each of which having its own facet.

Figure 4.10: Linking Nobel Prize winners and their country of nationality using Parallax

Using many of the techniques that promote the success of faceted search, Parallax

has advanced features related to exploratory search and the semantic web. However,

the investment given to providing a far richer set of relationships bears the price of

making the system harder to use. Figure 4.10 shows an application of Parallax to

browse through Nobel Prize winners. The interested reader may simply check out the

website (Parallax, 2009).

4.7.4 mSpace

mSpace (schraefel et al., 2006), developed at the University of Southampton, is a multi-

column faceted navigation system. Each column represents a facet or a “slice” through

the information space and is ordered from left to right by importance in a iTunes like

manner. New columns representing di↵erent concepts about the information space can
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also be added or re-arranged. This lets the user slice and dice through the informa-

tion space in many di↵erent ways. For example, a user may choose a set of familiar

concepts in order to browse through a possibly unfamiliar document collection. The

order of the columns, from left to right, implies importance. For example, a user may

order a “price” column to the left of a “quantity” column implying that “price” dices

“quantity” and not the other way around.

Figure 4.11: With mSpace the user can re-order the facets (columns) implying importance

and the gaps, to the left of the selected facet values, are highlighted. (courtesy of mSpace.fm)

However, the facet value choices can still be made in any column. In this case the

gaps, from right to left, are highlighted (Wilson et al., 2008). Figure 4.11 presents the

multicolumn facet design employed by mSpace and the backward highlighting mecha-

nism at play. Here the user has made two selections from the “Theme” and “Subject”

columns. The backward highlighting in the unused left facets reveal that the items

must be from the 1910s to 1950s or from the 1970s.

4.7.5 Carsabi

Carsabi, released in 2012, is a search engine engine for used cars (Figure 4.12). The

system provides a simple yet e↵ective approach to faceted search, which we chose to

cover here because of its choice of filters and visual presentation of the search results.

In a filter the facet values are statically presented. That is the facet values are always

shown regardless of whether a selection has occurred in the same facet or in other facets.

The operations performed in a filter are usually disjunctions, but conjunctions are also

possible but most likely desirable if the set of facet values is small. When the user filters

by body style or car color, a query for related terms is performed. However, the system

does not actually perform any content based search, that is search performed on the
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analyzed content of the document rather than on the metadata such as keywords, tags,

or descriptions, as we will cover in chapter 6.

Figure 4.12: Carsabi uses filters as facets and the results are visually presented

Another feature of Carsabi is to present the documents (the cars) visually, rather

than as a list of text. As we will cover next in chapter 5, this is a desirable exploratory

search feature. Overall Carsabi incorporates many of the functionalities of a modern

search engine and can be thought of a template for future faceted search interfaces for

specific vertical domains. The company was acquired by Facebook and recently in 2013

by the “people search engine” Ark.

4.8 Conclusion

Faceted search combines faceted navigation with full text search. This provides the user

with the opportunity to work successfully with content that is semi-structured. Full

text search is used to attain to those results which do not have structural characteristics.

While on the other hand, faceted navigation provides a mean of browsing and refining

by metadata structured information. This greatly reduces the chance of generating no

results, while still providing refinements when too many results are returned.

This chapter also provided some common practices as to how to build an e�cient

faceted search solution. In general information overload could be avoided by reducing
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the number of facets or facet values, and/or by preferring those with higher coverage

in the set returned. The vocabulary problem could also be an issue if the facets design

is at odds with the user’s expected classification. On the front-end we have looked into

the many ways in which facets could be presented, organized and into which the search

box should be handled.

Finally, five well known applications of faceted search were presented. Endeca, was

designed to provide a wide range of enterprises with faceted search capability. It has

achieved great success making inroads for use in e-commerce, where enterprise clients

can readily search semi-structured catalogs. The second application, Flamenco, has pi-

oneered hierarchical faceted search. Placing the facet values within hierarchies provides

a consistent organization of information throughout the interface. The third applica-

tion, Parallax, developed at MIT, is a collaborative knowledge base with a semantic

web approach. Its interface is noted for its visual appeal and use of ontologies to pro-

duce connections to related sets. The fourth application, mSpace uses a multicolumn

facet designs in which their order implies importance and the gaps in between are high-

lighted. Finally, Carsabi provides an interface which is exemplary of a typical, simple

yet functional faceted search solution. The facets behave as filters and the search results

are visually presented.

Providing an overview of faceted search was necessary towards the thesis. In fact,

the approach taken by the thesis is not the one advancing of faceted search per se,

but rather of seeing how the current status quo could be improved through various

exploratory search features, which in the past have been used more or less separately.

Here we can notice that the summary provided by the facet values, taken as a whole,

give insights about the results retrieved. If we were to provide a way to visualize these

facets, we could probably provide greater insights and better refining abilities, and

therefore, encourage non-linear search and exploration.

Another approach taken by the thesis is to put to practice many of the concepts

exposed of exploratory search into one framework, called Cloud Mining (chapter 7).

Recognizing that a facet look and feel should be a widget within a framework is another

contribution towards the thesis. As such the approach taken in Cloud Mining is di↵erent

than for the systems presented above in this chapter. More precisely, we attempt to

abstract many of the notions of exploratory search, in this chapter the concept of a
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facet, so they could fit as extensions or plugins of a well designed framework.

Consequently, the next chapter will focus on information visualization for faceted

search. We will attempt to show how di↵erent visualizations on the search results and

on the facets could be applied to di↵erent types of data, keeping in mind that those

should be thought of as plugins and not part of a monolithic system.
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Chapter 5

Information Visualization for Search

Faceted search lets users explore or navigate within the document collection. However,

most mainstream search systems only feature a fixed mode of interaction. For example,

the search results are most often depicted as a list of text with minimal interactions

such as sorting or paging. But in order to obtain new understanding of the data, it

may be necessary to allow for multiple interaction modes. In fact, according to White

and Roth (2009), an ESS should increase user responsibility as well as control. This

should include letting the user select how the data is visualized depending on the task

of interest.

Therefore, in this chapter, we will go beyond traditional faceted search and see how

information visualization could be employed in order to make the user experience more

exploratory. First, we will revisit the query terms themselves. Then, we will cover

several examples of visualizations which can be applied to the search results or to the

facets. Finally, we will present a pipeline in which users and designers can contribute

new datasets, new visualizations or new interfaces. We believe this is an interesting

approach to cope with information overload as it leads to further collective data sense

making and understanding.

The contribution of this chapter towards the thesis is threefold. First, we attempt to

make it clear that several visualizations or views could and should be employed either

on the search results or on the facets. Second, we go beyond this observation and claim

these views should be implemented as plugins of a well designed framework. Third,

we describe the community driven pipeline to ESS previously mentioned. This later

approach to coping with information overload was the raison d’être of Cloud Mining,
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which will be presented in chapter 7.

5.1 Interacting with Query Terms

The elements of interaction of a faceted search interface are composed of the query

input box and of the facet refining values. In this section we will discuss the query

terms resulting from the user’s interaction with the input search box and/or refining

facet values. More specifically, we will describe the visual depiction of the query terms

and its connection with the search results.

5.1.1 Representing Query Terms

In a typical search scenario, the user inputs a set of query terms, and obtains a set

of matching documents. Usually the query terms remain in the search box. In order

to reformulate the query, the user has to click in the input search box, and manually

add or remove query terms. A di↵erent approach consists of letting users more directly

interact with the query terms. These are usually depicted in the form of tags with

actions such as toggling, removing or clearing. The user is then able to more easily

manipulate the query, thereby obtain narrower or broader search results.

Another visual play on the query consists of providing relevant suggestions. Query

suggestions is the product of some extensive research in IR on query expansion (Efthimi-

adis, 1996). The idea behind query suggestion is to o↵er the user additional keywords

for consideration in order to guide the search towards relevant documents. In its most

simple usage, the suggested query terms simply act as shortcuts to previously typed

queries (Teevan et al., 2007). However, the suggestions may also help the user discover

a set of query terms leading to new documents of interest. Query suggestion has most

commonly been implemented within large commercial search engines by using substan-

tial search logs (R. Jones et al., 2006). For example, at the time of this writing, if a

user were to type the query “the hobbit”, the input by other users may have led to

suggest “movie”. The user may have had been unaware that the movie the Hobbit had

just been released. If the user had been searching for “Tolkien” instead, then the search

engine might more simply have suggested the query term “book”. The suggestions are

most often depicted in the form of a list. However, other search companies have tried
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more appealing visualizations with more or less success (see Figure 5.1).

Figure 5.1: Quintura represents suggested query terms in a more appealing way.

A drawback to query suggestion is that it may induce the users into the most

conventional pathways, and consequently reduce exploration. This is usually referred as

query drifting (White and Marchionini, 2007). In this respect what most people would

be presented with is a much narrower set of the entire web. In this case, the results that

Google retrieves may just as well be coming from its cache. One way to address this

issue is to provide greater feedback between the query and the retrieved results. This

leads to another matter for discussion, which is the tight coupling between the query

terms and the search results in the form of dynamic queries (Ahlberg, Williamson, et

al., 1992).

5.1.2 Dynamic Queries

Dynamic queries are those in which the results are continuously updated as additional

terms are entered. The FilmFinder interface is an early example of the usage of dynamic

queries (Ahlberg and Shneiderman, 1994). On the FilmFinder interface movies are

represented as dots on a x-y axis (as in Figure 5.2). The y-axis measures the popularity

of the film, while the x-axis indicates the year of release. By manipulating sliders,

thereby specifying a query, the user is given immediate feedback on the retrieved results.
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This allows the user to immediately re-formulate the query in order to further explore

the collection. For example, a user might be interested in movies with actors of last

names starting from “A to C” in the years 1994. As the results are retrieved, the user

may increase the year slider, and immediately see more movies falling within the grid

space. FilmFinder was invented in 1994, it remains an early example of the usefulness

of dynamic query search in order to encourage an exploratory type of user behavior.

Figure 5.2: Released in 1994, FilmFinder is early example of the power of dynamic queries.

(courtesy useit.com)

Dynamic queries are very good at quickly manipulating data on numbers of dif-

ferent dimensions. This is critically important for hypothesis generation. It provides

immediate feedback on the entered hypothesis, thus enabling the user’s mind to assess

on the validity of the hypothesis, or its re-formulation. It turns out that this approach,

known as the trace tactic, also fosters information need development (Bates, 1979).

That is, when the user may not be initially certain what information is needed, but as

the results appear, may get a clearer understanding of what is actually required. From

this the user can manipulate the query terms in order to generate new documents of
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interest.

As previously noted in this thesis, users spend most of their time on the top retrieved

documents. Paging is rarely used, instead users prefer to re-formulate their queries

until their information need is satisfied (Joachims et al., 2005). Dynamic queries help

in instantaneously having a look at the results, which in returns encourage users to

explore the collection even further. However, if we could also lay more results on a page

than a simple list of documents, we may also help the user discover new ones. The

next section will address this point by delving into how information visualization can

be used in order to represent the search results.

5.2 Representing the Search Results

We now turn our attention to the visualization of the search results. Shneiderman (1996)

stated that an exploratory interface should allow a user to select a display depending

on the data type and task at hand. When applied to the search results, the user

should be able to select between di↵erent views depending on his informational need.

For example, a certain view could provide an overview of the entire collection, while

another one, perhaps using a graph, could be showing intricate relationships between

documents. This paradigm is useful in order to gain greater insights from the data.

The underlying idea remains the same; to improve on the user’s cognitive ability using

the principles of information visualization.

5.2.1 Principles and Motivation

More generally Card et al. (1999) define six basic principles in which information visu-

alization could improve the cognitive ability of the user. The first principle consists of

presenting the results in a manner which expands the human memory. While this may

be obvious, it is a challenge to present the data in a way which favors recollection. For

example, geospatial data could simply be displayed on a map instead of presenting a

list of coordinates. The products in a shopping site should be represented as a visual

depiction of the product rather than as text data.

The second principle is presenting only the relevant information to the user in order

to reduce his search process. For example, the results returned by a search engine should
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show only the important pieces of data so as to help determine the overall relevance

with respect to the query. Mouse hovering over a specific result would then show more

details.

The next principles are all very much related and we state them here for complete-

ness. Third is to present the information in a manner which lets the user identify and

recognize patterns in the data. Fourth is to present the information so that the user

can easily infer relationships from the data that would otherwise be more di�cult to

induce. Fifth consists of enabling the user to monitor a large number of events at once.

Finally the sixth principle consists of letting the user directly interact with the data

through a space of parameter values as opposed to accessing a static diagram.

When applied to search results, these principles could provide a guideline as to

how to make patterns emerge, and therefore help humans make better decisions. For

example, using a time-line visualization might show that a recurring stock price drop

occurs closely around September 11. This might o↵er alternative insights to stock

price drops around the World Trade Center disaster. The point here is that patterns

might emerge that would have otherwise been unnoticed with other data formats. Sales

patterns, crime patterns, etc . . . might be obviated with improved data visualization

alternatives. Policing decisions might be improved and resource utilization might be

economized and optimized.

There are a number of companies that have made interesting contributions to infor-

mation visualization in interfaces. Companies such as Sap (1972), Spotfire (1996) and

Palantir (2004) take a massive amount of business intelligence data and create interfaces

that allow analysts to make better business decisions. IBM has a project called Many

Eyes (Viégas, Wattenberg, Van Ham, et al., 2007), which is a large collection of visu-

alizations on which people can collaborate and discuss the data collected. It serves as

a catalyst for discussion and collective insights. How interesting it might have been to

have had these tools when the notorious Enron emails were released. Would the collec-

tive insights of better informed analysts have drawn more accurate conclusions earlier?

How might the outcome have been di↵erent (or not)? These kinds of visual tools may

have at least led to more scrutiny and have reduced the loss and su↵ering of many. To

illustrate our point, let us cover more examples as to how di↵erent visualizations could

be applied to the search results.



5.2. REPRESENTING THE SEARCH RESULTS 75

5.2.2 Examples of Visual Search Results

Housing Maps (Rademacher, 2005) was released in 2005 and is usually referred as the

first mash-up bringing together data from Craigslist on Google Maps (see Figure 5.3).

It lets users visualize apartment rentals on a map, which may be more convenient than

as a list. Indeed a user might not know beforehand the name of the region he might be

interested in, but he might rather recognize the region on a map and its neighborhood.

This approach is interesting as various layers such as crime rates, school education level

or average income could in the future be superimposed on top of the map in order to

help users better find their apartment of choice. This map view was finally integrated

within Craigslist in 2012 using the OpenStreetMap (2004) mapping service.

Figure 5.3: Using Housing Maps, apartment rentals may be much more conveniently visu-

alized on a map.

Another service of interest, which was released in 2007, is Songza (2008) (see Figure

5.4). Although not a strict example of how to apply information visualization to the

search results, the service is nevertheless interesting as it lets the user directly interact

with the results. On Songza the search results is a list of songs found on YouTube.

Instead of clicking on the result and being led to YouTube, the user can directly rate,

add to queue or listen to the song. As such it o↵ers a di↵erent interface to interact with

songs found on YouTube.
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Figure 5.4: On Songza, playing, rating, or sharing a song on YouTube is just one click away.

Volkswagen (2010) o↵ers an interesting faceted search solution to browse through

its product line of cars (see Figure 5.5). Instead of showing the results as a list of links

or text, the system simply renders them as a visual depiction of a car. As such the user

can immediately see the vehicle of interest, its colors and features. Also of interest are

the facets which make use of pictograms. We will see more of that in the next section.

The interface provided by Volkswagen is remarkable and prescient of the one employed

within a modern exploratory search system. However, the system still lacks the ability

to change search views or to provide recommendations.

Although not necessarily immediately applicable to search engines, Chromotive of-

fers an interesting visualization of the colors humans associate to feelings. On Chromo-

tive (Schmidt, 2010) users take a survey answering questions about their geographical

location and the color they associate the most to a particular feeling. Figure 5.6 shows

the results of conducting this survey for the keyword “death”. As it can be seen, north

Americans and western Europeans associate the color black with death; whereas people

in India associate death with the color white, and brown reddish for many in Africa.

Research into the colors humans associate to feelings can provide great insights. From



5.2. REPRESENTING THE SEARCH RESULTS 77

Figure 5.5: The Volkswagen faceted search solution depicts cars as to what they are as

opposed to a textual representation.

a commercial standpoint, it could help marketers choose the most appropriate color

palette for packaging. Furthermore, this visualization o↵ers a view into the human psy-

che; reciprocity in the description of our feelings and our emotions may not be solely

bounded to a nation or to a religion.

Viewzi (2008) was a startup which specialized on visual search. The idea was to pull

up the results from Google and other search providers, and to represent them in a more

appealing way. The user was given the ability to choose between over 16 di↵erent views

such as a song view (similar to Songza), a website view or a time-line view. Viewzi

perfectly illustrates our point of letting the user select a view that is more appropriate

at the task at hand. In Figure 5.7, Viewzi lets us visualize blog posts on a time-line.

This is especially useful considering that the notion of date/time is crucial in blogs.

Thanks to Viewzi the search results can be viewed in many di↵erent ways depending

on the user’s informational need, and in order to improve on the overall understanding

of the data.
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Figure 5.6: The color of death across the world with Chromotive.

Figure 5.7: Visualizing blog posts with a time-line at Viewzi.
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5.3 Visualization on the Facets

We now cover how di↵erent visualizations which could be applied to the facets them-

selves. We have seen in chapter 4 that faceted search provides a seamless integration

between browsing and searching. The user searches for keywords, gets some results

and then potentially keeps on browsing the corpus through the di↵erent facet values.

We have also seen that the facets provide an interesting summary of the search results

with respect to the facet classification. More precisely the facets could reveal patterns

of distribution and occurrence at an aggregate level. However, for those patterns to

emerge, the data must be represented appropriately.

5.3.1 Visualizing Frequency

Much of the success of faceted search is due in fact to the use of query previews (Plaisant

et al., 1997; Tanin et al., 2007). Query previews give the user a hint of what to expect

before he selects a link or issues a query. In a standard faceted search system, the

query preview takes the form of a simple numerical count. Naturally some systems

have attempted to represent this count more graphically.

Figure 5.8: The Relation Browser shows a visual depiction of the count. Di↵erent facet and

search views are also possible. (courtesy ieee-tcdl.org)

The Relation Browser (RB) (Marchionini and Brunk, 2003) is one of these early

examples. In RB a bar indicates the relative frequency of the facet terms (Figure 5.8).
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The darker portion of the bar shows the count if the facet term is selected within the

current search space. While the lighter and longer portion of the bar shows the overall

count of the facet term within the entire collection. Another interesting feature of RB is

the ability to switch between views on the search results and on the facets (Capra and

Marchionini, 2008). On the facets a cloud view similar to a tag cloud is provided. RB

also features dynamic queries with an excellent response feedback. However, the system

is client based which limits its scalability. As we will see, Cloud Mining shares many

features with RB but can scale to thousands of users and to millions of documents.

Figure 5.9: On FacetLens the items are seen depicted inside circles in each facet ordered by

frequency.

Another system worth mentioning is FacetLens (Lee et al., 2009). The facets on

FacetLens take most of the real estate on the interface. The facet values are ordered by

frequency and depicted as large circles (as in Figure 5.9). These circles depict the actual

search results of interest. According to the authors the interface help users identify and

compare between di↵erent trends. Furthermore it o↵ers pivot operations which allow
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the user to navigate the dataset using relationships between items.

Visualizing frequency (or some other metric) within facets could be interesting in

the discovery experience. The correct visualization always could shift the focus from

finding to more exploratory tasks such as data analysis. However, facets come from

metadata of many di↵erent types. For example, dates could be represented textually

or more graphically as a time-line. Locations could be better served by points or by

regions on a map rather than by a list of coordinates. Therefore, a broader set of

visualizations than the ones limited to depicting frequencies is possible. We are now

going to review some of the visualizations possible with respect to the “type” of facet

at play.

5.3.2 Fitting the Data Type

A very simple visualization is the one of check-boxes for multi-select disjunctive facets.

Examples of their use can be found in many websites. The new search interface at

Ebay is solely composed of disjunctive facets represented by a list of check-boxes. In

Figure 5.10 the user filters by (ORs) a couple of brands and visually see the results.

The selection is clearly shown on the facet. The user can also search for more terms to

be added within the facet itself.

Figure 5.10: Obvious choice of check boxes to represent multi-select disjunctive facets at

Ebay.
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In most of the examples previously presented, the facet values are essentially cat-

egorical. The data is qualitative and can be organized on a nominal or ordinal scale.

However, facets often need to display quantitative data such as product dimensions or

price ranges. In most cases a simple range slider may be better suited for display. Fig-

ure 5.11 shows the use of range sliders at the Molecular’s Wine Store . The counts are

visualized as a simple histogram of records. Using this pattern, the user can visually

refine his search. The histogram provides an overview of the information space which

can help in guiding the search process.

Figure 5.11: At the Molecular’s Wine Store facets with quantitative data are depicted with

range sliders with histogram counts. (courtesy isquared.wordpress.com)

Many variants of the range slider are possible. For example, when interested about

a maximum value only, a single ended slider may be used. Discrete data, which can

be fitted on an interval, can use a slider with ticks at each interval. Additionally input

boxes can be used to let the user manually enter values. Sometimes the data should be

divided into bins of di↵erent sizes. For example, product prices may be clustered in a

way as to let the user more easily select a specific range. In this case the use of a range

slider might be inappropriate.
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There are plenty of other visualizations for other types of data. For example, when

refining by a certain color, a color picker may be a good choice. There are various

ways to implement a color picker facet. The website Artist Rising (2007) features a full

palette of colors (see Figure 5.12). However, this kind of display lets the user select

illegal values which could alienate some of the benefits of faceted search. Another

approach could consist of a list of colored labels together with their respective counts.

Figure 5.12: A color palette facet at the website Art Rising.

Many more displays for facets are possible. One can imagine a map to represent

geographically based metadata as we have seen for search results. What is important

to understand is that the facets can go much beyond textual representation. First, the

count could be more interestingly represented. The idea is to provide a landscape of the

search space at play. Second, the depiction of the facet and its interaction are subject

to the underlying data type. If the data is qualitative or categorical in nature, then a

conventional list of check-boxes could be used. If the data is quantitative, then range

sliders may be preferred. More exotic facet displays, otherwise used in software, may



84 CHAPTER 5. INFORMATION VISUALIZATION FOR SEARCH

also fit well within interface. The point being that there is probably as many facet

views as there are ways of visualizing data. The next section will review many more

visualizations, considering that they could be adapted to visualize the search results

and/or the facet values.

5.4 Plenty More Visualizations

We now cover more visualizations which could be adapted to a faceted search user

interface. The reader should keep in mind that we cannot possibly be exhaustive in

this review. We are merely picking visualizations which we think could be immediately

adapted to a faceted search system such as Cloud Mining. However, there are potentially

many more visualizations for search and the interested reader is encouraged to consult

(Hearst, 2009) for a more complete treatment of the subject.

5.4.1 The Docuburst

Figure 5.13: The DocuBurst of a document showing the occurrences of subconcepts of the

word ”idea”. (courtesy Christopher Collins)

The first visualization of interest is the DocuBurst (Collins et al., 2009). The

DocuBurst represents a sort of radial space-filling layout of the hyponyms (IS-A re-
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lation) of a document. The user loads a document and chooses a word (node) at which

to root the visualization. In Figure 5.13, the word “idea” was chosen to root the vi-

sualization. The occurrences of concepts that fall under the word “idea” appear as

wedges in concentric circles. The gold colored nodes indicate words in which the first

two characters match “pl”. A “paragraph browser” could optionally be added to the

side of the visualization. The browser shows which paragraphs in the document contain

a selected node.

Although the DocuBurst works on a single entity, the techniques can be generalized

to multiple documents. This makes it usable to either represent search results or as a

refining facet. As a facet, we could adapt the visualization by re-rooting it after each

selection.

5.4.2 World Globe Pathways

Figure 5.14: Visualizing the lights of major airlines on a world globe. (courtesy of Nicolas

Garcia Belmonte)

Another example of visualization, which could be on the facets or on the search

results, is the one of pathways on a world globe. Figure 5.14 shows the pathways of

international airlines (Belmonte, 2011b). The flights of Air France are unsurprisingly
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originating from Paris and to every major cities of the world.

It is easy to imagine how this sort of pathway visualization could be used for other

types of data. For example, we might be interested to explore the major wind currents

of the planet. The user would be able to refine his browsing by facets such average

wind speed or temperature and visualize the results on a globe. In the field of business

intelligence, visualizing the flow of international financial transactions could also be of

interest.

5.4.3 Treemap Like Views: Newsmap

Newsmap (Weskamp, 2004) is an ordered treemap (Shneiderman andWattenberg, 2001)

visualization on top of the results provided by Google News. Google News aggregates

similar news from various sources with respect to a topic and to a country of interest.

On Newsmap the size of each cell relates to the frequency of appearance of the news.

Whereas the color is linked to a particular topic. Additionally the user can filter news

from specific countries (see Figure 5.15).

Figure 5.15: Newsmap “visually reflects the constantly changing landscape of the Google

News aggregator”.

Figure 5.15 was captured immediately after the mass shooting of Sandy Hook El-

ementary School. Following the tragedy, a lot of discussions arose about further gun
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control in the USA. Also of interest is the perpetual coverage of the Syrian war. This

later mater is covered similarly across di↵erently countries. This should not be sur-

prising considering that most international coverage originates from only a few news

organizations. However, this type of visualization makes this observation quite ap-

parent. The same treemap like visualization could surely be applied to search results

(Clarkson, Desai, et al., 2009). For example, it could provide an alternative overview

of clustered documents not limited to the top 10 results.

5.4.4 Pictograms: We Feel Fine

We Feel Fine (Harris and Kamvar, 2006) is a web service to visualize and make sense of

a database of over 12 million human “feelings”. The database was built, over a period

of 3 years, by crawling blogs, looking for phrases such as “I feel” or “I’m feeling”. Of

particular interest are the facets which are represented with respect to what they mean

(Figure 5.16). The gender facet is represented as a pictogram of a woman or man.

The weather is depicted using familiar meteorological icons. After the selection, the

“feelings” are shown on a beautifully colored interface.

5.4.5 Tag Cloud like Visualizations

Tag Clouds were quite popular during the Web 2.0 era. They first appeared in 2005 in

high-profile websites such as the photo sharing site Flickr (2004) or the shared book-

marking site del.icio.us (2003). They provide a visual representation, using di↵erent

font size and color, of the term occurrences within a document. They have been shown

to be e↵ective as a signaler of social activity (Hearst and Rosner, 2008). Since then

people have worked on more visually pleasing tag cloud like visualizations such as a

Wordle (Viégas, Wattenberg, and Feinberg, 2009) (as in Figure 5.17).

These clouds visualizations could easily be adapted as facets (Capra and Marchion-

ini, 2007). One could imagine being able to select multiple values within a Wordle. In

this case the invalid choices would be grayed out. Another adaptation could consist

of making a new word cloud for each subsequent refinement. In this case the selected

terms would be removed from the list and a new list would be generated from the

returned search results.
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Figure 5.16: WeFeelFine depicts the facet values for what they mean.

Figure 5.17: The Wordle of chapter 6 of this thesis on multimedia search.
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5.4.6 Quantifying Data with Bubbles

Another visualization example comes from the ManyEyes project (Viégas, Wattenberg,

Van Ham, et al., 2007). As we have previously discussed, at ManyEyes users upload

data, choose a visualization and then share it with others for discussion. Figure 5.18

presents a depiction of the human world population by nations. This visualization

quickly clarifies the population size di↵erences between nations. It allows users to

compare the bubbles together in order to easily quantify the data at play. Many other

uses can be imagined such as comparing geographic sizes of nations, income levels,

health, or education levels. This visualization can easily be used as a facet or as an

alternative search result view.

Figure 5.18: A ManyEyes bubble like visualization of the demographic of nations.

As one can imagine, many more possible visualizations can be employed. Although

not necessarily immediately applicable to faceted search, the classic books from Tufte
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(1990) and Tufte and Graves-Morris (1983) provide many more interesting ways of

visualizing information. However, at this point, the real challenge consists of building

a system which would integrate many of these visualizations. In the next section, we

will provide a mean to quickly create such a system while making every component

re-usable by a community of users.

5.5 Putting Everything Together

We have reviewed the relation browser (Capra and Marchionini, 2008) and noted an

interesting feature which lets the user switch between di↵erent search views. In fact,

we have reviewed many di↵erent views which can be chosen for the search results. We

have also reviewed many views which can be used on the facets. We even covered some

more visualizations and showed that they could easily be adapted to search. Now we

wish to provide a way for the designer to create ESSs which would make use of all

these di↵erent visualizations. This is one of the main motivation behind the creation

of a system such as Cloud Mining, which we will be presenting towards the end of this

thesis (chapter 7).

Figure 5.19 presents the main parts of a pluggable search system. The first part

consists of a repository of shared datasets, which can take the form of a social website.

People would upload datasets for the community to comment, vote on the quality or to

further edit. One important aspect is to let users describe the datasets by specifying

the type of each field. This is important because only some visualization can be applied

to some types of data.

The other part takes the form of another social site but in which datasets are

replaced by widgets. These widgets are pluggable elements which are used to build a

search interface as well as its functions. In the previous section we have covered some

of these widgets for the query terms, search results or for the facets. An application

programming interface (API) would be provided to let developers create new ones.

These widgets can then be uploaded to the site for others to use or to socialize on.

The last part takes the form of a web application from which a designer can drag

and drop di↵erent widgets to make up the interface. The designer can first choose a

dataset of interest, a layout for the interface (facets on the left, right or top) and then
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Figure 5.19: A pipeline to build a faceted exploratory search system in which every part is

subject to crowd sourcing.
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populate it with the di↵erent widgets. After the designer has created the interface, he

can then submit it to yet another social site (or section of the same site). This can

take the form of a gallery of interfaces created to explore certain parts of the uploaded

datasets.

Figure 5.20 shows the kinds of widgets which would be made available to the de-

signer, however note that many more documented in (Clarkson, Navathe, et al., 2009;

Morville and Callender, 2010) could be adapted. As we have seen in chapter 4 there are

check boxes for disjunctive facet selections. There are also more visual facet types such

as a treemap or a tag cloud. Interestingly, refining by keywords (or searching within

results) could simply be implemented as another facet widget. Although we haven’t

covered item based search yet, we can see that, at the interface level, the functionality

can be implemented as yet another facet. We will see in chapter 6 how this holds at

the back-end as well. There are also other widget types for search views or for query

terms. The whole idea is to let the community create these re-usable elements so they

could be shared amongst users.

The created interface could look like the one shown in figure 5.21. The designer

of this interface has thrown in di↵erent search views as well as four refining facets.

The space-time search view shown here lets the user visualize the search results on a

map within a specific time frame. In this figure, the user has selected results that fall

within some period of time after January 2012 but before the end of 2013 in the area

of San Jose, CA. The time line also shows the frequency of results within the selection.

If the data were crimes occurring in the bay area, this interface would be useful to

spot on when and where most crimes occur. Also of interest, again chosen from the

repository of widgets, is the graph view. We can imagine that this view would show the

interconnectedness of the search results. For example, an edge could represent whether

two crimes share some kind commonality. After completion, the interface is once again

submitted to a community driven website. People can now browse (possibly using an

ESS made with the framework) through a plethora of interfaces for various datasets.

Figure 5.22 further illustrates on the idea of this generic pluggable search interface.

We could imagine that this interface could be used to browse through the various

products of a store. The hierarchy widget would let the user select product categories,

while the range facet could be used to set a maximum price. The color picker could
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Figure 5.20: Di↵erent facet widgets to choose from in order to build the interface and the

functions of the system.
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Figure 5.21: A pluggable search interface featuring di↵erent search views such as space/time.
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Figure 5.22: A classic interface built using the repository of widgets described in Figure

5.20
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be used to select products of only a specific color. The calendar could set a maximum

delivery estimate date. The interface also has di↵erent search views such list, detail, or

thumbnail. This is a conventional interface seen on many existing shopping sites. The

point is that every element of the interface is a re-usable widget.

Figure 5.23 shows the same interface previously presented in grid mode view. This

mode is similar to the Biomed Search grid view. The user sees the results as a grid and

can zoom in to a specific item, thereby showing more details. If the data were crimes,

we could imagine that the main pictures would be the ones taken by the o�cer at the

scene. The zoomed-in result also features social actions. For example, while exploring,

it would be highly desirable to bookmark or landmark specific items from the search

space. Other actions could include commenting, voting or even wiki-like actions such as

editing the whole item. This interaction is important as it closes the loop of the steps

exposed above. Indeed the shared datasets are now being enriched by the community

of people using the interface. These datasets can now further be re-used for some other

tasks within some other interface. The process can then repeat itself making the shared

datasets more and more rich and complete.

The use of Google Earth (Google, 2004) illustrates fairly well the principle exposed

above. Google Earth was originally created by Keyhole, a Central Intelligence Agency

(CIA) funded company acquired by Google in 2004. Google Earth lets us navigate and

explore a virtual version of the planet. The user can see all kinds of interesting data

onto the globe through the use of layers. These later are created by developers thanks to

a well documented API. With time people have made incredible discoveries on Google

Earth. For example, some unknown mammal fossils (Science Daily, 2009) were found

and the sites of huge lost pyramids may have been uncovered (Google Earth Anomalies,

2012). In fact, Google Earth lets anyone examine the planet for lost treasures, and, in

the process, lets the data be enriched by a community of users. One can imagine many

possible uses of these community driven interfaces. The main idea is to make the whole

process much more explicit while letting designers easily create such systems as well as

all the re-usable components.
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Figure 5.23: A Biomed Search like grid view featuring social actions.
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5.6 Conclusion

In this chapter we went beyond the traditional faceted search interface. First we looked

into the query terms and their connection to the search results. In order to favor

exploration, the interface should give instant feedback on the user’s potential actions.

We then looked into how the search results and the facets could be represented visually

in order to favor exploration and the emergence of patterns within the data. We have

also given many more examples of visualizations considering that they could be adapted

within a faceted search system.

The central idea, and main thesis contribution of this chapter, is to let designers

easily create a system that would make use of some of these visualizations. To that

end we have proposed a pipeline in which each step would be community driven. The

end results is a plethora of interfaces which, when used by the community, would

subsequently improve on the data. As such, this paradigm could o↵er a solution to

information overload. In fact the many datasets, through the use of these interfaces,

are processed by the community and made sense of. The datasets and the search widgets

can then be re-used within a subsequent search system and the process repeats itself.

We will get back to this idea while presenting Cloud Mining in last chapter of this thesis

(chapter 7).

So far we have focused our attention on systems that retrieve data through the use of

keywords. However, some data such as images or videos have many more characteristics

than their textual metadata information. An exploratory search system should have a

mean of accessing the very nature of these items. Moreover an ESS should be able to

present sets of similar documents and to discover new ones. This will be the focus of

the next chapter on similarity and multimedia search.
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Chapter 6

Similarity and Multimedia Search

Previously we have examined text-based information retrieval and the principles for

the design of a good search user interface. Following this discussion we then explored

a case study with Biomed search. Biomed Search is a full text search engine to look

up images in the biomedical domain. Users are able to see the search results in list or

in grid view. In grid view a particular image of interest could be zoomed in to provide

more detailed information.

From Biomed Search we received feedback from users indicating their desire to refine

their search. The grid view also triggered some ideas as to how to visualize the search

results di↵erently. We then covered faceted search, and went beyond this paradigm with

information visualization. By employing the right visualization, either on the search

results or on the facets, the user is then able to make greater sense of the data, making

his experience more exploratory.

However, another function of an exploratory search system is to present similar sets

of results as well as to discover new ones. In order to do so, our system should be

able to retrieve sets of results which are not necessary directly accessible with full text

search. This is even more important that nowadays much data is multimedia in nature,

i.e. images or videos. We therefore turn our attention to retrieval methods which focus

on the whole content of documents.

In this chapter, we first provide a necessary overview of the field of multimedia

search. Then, a new type of algorithm called item based search is presented. Item

based search reduces content based search to feature engineering. This is a desirable

characteristic for an exploratory search framework and recognizing that is the main
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contribution of this chapter towards the thesis. Finally, we briefly review, especially

focusing on the interface, various services that provide content based type of searches.

This will give us some ideas as to how to incorporate item based search within the

framework presented in chapter 7.

6.1 Content Based Search

In content based search the query is made of documents, rather than of keywords. The

results are a set of “similar” or “related” documents. As the name implies, the search

is performed over the whole content of the documents. One di�culty in matching

documents which are multimedia is that they may have no apparent structure. Also

the number of variables to consider may be very large. For example, images may have

millions of pixels which, taken sequentially, have no obvious underlying pattern. In

order to make sense of this sheer amount of data, the information must be condensed

into meaningful pieces of information. These are called features and many have been

engineering for all types of applications. Figure 6.1 illustrates one very simple type of

features used for images. Here the pixel intensity histogram of the image is taken and

represented as a vector. The images can then be matched using a similarity measure

between their respective feature vectors.

Figure 6.1: The intensity histogram of this image serves as a feature vector in order to

di↵erentiate between di↵erent types of yeasts. (courtesy Yeast Resource Center)
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In a nutshell, documents are represented as feature vectors and matched using an

appropriate metric. Documents with “close enough” features are then thought to be

similar. The query is thought of as a set of examples taken from an already existing

“cluster” of examples. Figure 6.2 shows this principle of query-by-example and the

two key concepts of features and distance metric. In this figure, the user is looking

for images similar to Cambridge’s King College Chapel. The best result is the same

building but taken at a di↵erent angle. The next best result is a picture of the main

gate of St John’s College. This leads us to think that the features have captured the

main lines of the buildings but has disregarded more subtle distinctions.

Figure 6.2: Querying for an image of Cambridge’s King College Chapel within a feature

space.

This brief overview outlines the main ingredients of content based search. First,

the relevant features must be chosen and extracted. Then a metric must be properly

chosen. And finally an algorithm should be crafted to perform the matching e�ciently.

We now take a closer look into the making or engineering of features.

6.2 Features

As we have seen, features are engineered in such a way as to capture some aspect or

characteristic of the data. For example, for text, the words and their order within each

document would be of interest. While for images, we might want to consider the color
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usage, texture composition or shape. In what follows we will first explore the simple

bag-of-words model used for textual documents. Then we will shift our attention to

some commonly employed types of features for images. The interested reader is invited

to consult (Deselaers et al., 2008) for a more complete treatment of multimedia feature

engineering.

6.2.1 Bag-of-words

Perhaps the simplest type of features for textual items is the bag-of-words model. The

bag-of-words model regards text as an unordered collection of words. Note that this

is usually an incorrect assumption for documents written in natural languages such as

English, in which the word order and furthermore its grammar matter. Nevertheless,

the bag-of-words model is commonly used in document classification. In fact, let us

illustrate the use of the bag-of-words model for the task of filtering out unwanted emails.

The method presented below is called Bayesian filtering (Sahami et al., 1998). We

represent an email as a bag-of-words or binary vector w = (w1, . . . , wn), where wi = 1

if word i is present in the email; otherwise wi = 0. Given the vector w of an email, we

are interested in the probability p(c|w) of the email to be in c, where c is either spam

or ham (not spam). Using bayes’ theorem we can write this probability as:

p(c|w) =
p(c) · p(w|c)P

k2{S,H}
p(k) · p(w|k)

where S and H denote spam and ham respectively. It would be impractical to directly

estimate the probabilities p(w|c). Instead, we make the ”näıve” assumption that the

words in w are conditionally independent given the class c. Under this assumption we

can write:

p(c|w) =
p(c) ·

Qn
i=1 p(wi|c)P

k2{S,H}
p(k) ·

Qn
i=1 p(wi|k)

The probabilities p(wi|c) and p(c) can easily be estimated from a training set. The

probability p(wi|c) is estimated as the frequency of the word i given the class (spam

or ham) within the training set. The priors p(S) and p(H) can be estimated as the

number of emails in spam and ham respectively in the training set. We can classify an
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email as spam if the following ratio is greater to a chosen threshold:

p(c = S|w)

p(c = H|w)
> �

Bayesian filtering has proven itself to be quite successful at filtering out spam. In

fact the method forms the backbone of various commercial spam filtering programs

such as SpamAssassin (Mason, 2002) or DSPAM (Zdziarski, 2004). The method does

have some disadvantages however. For example, a spammer may send emails with an

attached list of legitimate keywords thereby tricking the algorithm. Another trick could

include replacing some letters of highly spammy words or sending the email as an image.

These issues naturally lead us to consider more sophisticated types of features.

6.2.2 Color Histograms

The human eye can perceive three overlapping range of frequencies with peaks falling

into the red, green and blue (RGB) areas of the rainbow spectrum. Therefore one

simple way of modeling the color of an image can consist of computing an histogram

of RGB triplets. This is essentially the same as the intensity histograms previously

discussed only that now RGB triplets have replaced intensity values.

Figure 6.3 shows a snapshot of a real time color histogram of the movie Shrek using

the PhiloGL library (Belmonte, 2011a). The RGB space of the current frame has been

subdivided into 8⇥ 8⇥ 8 3D color bins. The proportion of pixels that fall in each bin

is represented by a sphere of a given size and color. On the figure we see a histogram

dominated by the color blue due to the preponderant blue sky of the current frame.

The counts are usually normalized over the total number of pixels. Quantization

may also be necessary for space e�ciency. This is typically performed by assigning a

k-bit integer to each histogram bin i as follows:

i 7!
�
2k

hi

n+ 1

⌫

where n and hi are the number of pixels and counts at each bin respectively. Note that

we have divided by n + 1 instead of n in order to make sure we never reach 2k, which

would be outside the range of the k-bit integer.
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Figure 6.3: Live color histogram of the movie Shrek using a demo of the PhiloGL library.

6.2.3 Texture Histograms

Tamura et al. (1978) have mathematically defined and studied six basic features that

correspond to the human visual perception of texture. Out of these six features, coarse-

ness was the most fundamental, followed by contrast and directionality. Texture, unlike

color, is a property of a region of pixels. Therefore, in order to compute texture, a

window around each pixel must be taken. The coarseness (C), contrast (N) and direc-

tionality (D) can then be computed within that window. The feature of the image is

then an histogram of the three values C, N and D. This way of computing texture is

known as Tamura texture. In this discussion we will only derive the details of coarse-

ness. The interested reader may consult Howarth and Rüger (2004) for a more complete

treatment of Tamura texture features and their evaluation. Furthermore, we focus on

gray scale images, a similar computation could be carried over to color images.

An image has texture at various di↵erent scales. Coarseness attempts to extract

the largest of these scales. First, a moving average at every point (i, j) over a 2k ⇥ 2k

window is taken:

ak(i, j) =
i+2k�1�1X

i0=i�2k�1

j+2k�1�1X

j0=j�2k�1

p(i0, j0)

22k
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where p(i, j) is the gray level at the point/pixel (i, j). Now we can compute the bigger

of the horizontal and vertical di↵erences of ak at the edge of the window as follows:

ck(i, j) = max(|ak(i� 2k�1, j)� ak(i+ 2k�1, j)|,

|ak(i, j � 2k�1)� ak(i, j + 2k�1)|)

We then maximize ck over k in order to find the largest detected scale 2k̂(i,j) at point

(i, j):

k̂(i, j) = argmaxk ck(i, j)

Finally the coarseness of the whole image is then averaged:

coarseness =

P
(i,j) 2

k̂(i,j)

numberofpixels

For the pixels at the edges, the computation of ak and ck should be adapted in order

not to exceed the original size of the image.

6.2.4 Other Feature Types

There are many kinds of features for di↵erent types of objects and applications. In what

follows we show how to build features from statistical moments. Although the presen-

tation is focused on images, these features are interesting because the same principles

could be applied to other types of objects. We will then see an application of spec-

tral features in Cheminformatics. Spectral features are built by noticing and counting

recurring substructures in the objects of interest.

Statistical moments o↵er an interesting way of summarizing distributions. They

can be used as features as we will see next with images. Let the object be an image

and denote by p(i, j) the intensity of this image at pixel (i, j). The average of pixel

intensities can then be written as follows:

µ =
1

wh

wX

i=1

hX

j=1

p(i, j)

where w and h is the width and height of the image respectively. More generally, we

can define the central moments of the quantity p for k > 1 as:

p̄k =
1

wh

wX

i=1

hX

j=1

(p(i, j)� µ)k
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where p2 is known as the variance of p, while p3 and p4 are defined as skewness and

kurtosis respectively. From statistics, we know that µ and of all central moments is

su�cient to re-construct the distribution of p. Therefore, the vector (µ, p2, p3, ..., pk)

could be used as a feature of the distribution p.

Departing from image features, spectral features are used in Cheminformatics in

order to model small molecules. The main idea behind spectral features is to count re-

curring substructures. In Cheminformatics, this approach boils to counting re-occurring

substructure within small molecules represented in 1D, 2D or 3D (Azencott et al., 2007).

For example, a molecule could be represented in 1D as a SMILE string. In this case, the

feature vector of the molecule is made of counts of all substrings of a certain maximum

size. A molecule could also be represented in 2D. In this case, the spectral vector can be

devised as a count of all sub-paths along a molecular carbon chain. Going even further,

the 3D representation of a molecule can be taken into account. In this case, a feature

vector can be built by counting distances between specific atoms of importance.

The features noted above represent only a small sample of the many possibilities.

The interested reader may consult Rüger (2010) for a more complete treatment of

feature engineering. The central premise is always to identify an important aspect of

the object which subsequently can make a sensible use for comparison to other objects

in order to identify similar ones.

6.3 Search in Metric Space

After a feature space has been devised, one may then be tempted to choose a proper

distance measure in order to match the documents. This approach is known as nearest

neighbor search. In this section, we will naturally first cover some simple distance

measures between vectors. However, as we will see, nearest neighbor search becomes

very challenging as the dimension of the space increases. This is referred as the curse of

dimensionality. In order to circumvent this issue, we will be proposing two approaches.

The first one consists of making nearest neighbor search more e�cient. The second one

consists of collating the features into textual fingerprints.
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6.3.1 Distances

There are many distance measures for all kinds of di↵erent feature spaces. Perhaps the

simplest metric between real value feature vectors of a fixed dimension n are induced

by the Minkowski norm Lp:

dp(v, w) = Lp(w � v)

Where v and w are two vectors in Rn and Lp is the Minkowski norm defined as:

w 7! Lp(w) = |w|p =
 

nX

i=1

|wi|p
!1/p

L2 is the well known Euclidean distance between between two points. L1 is known

as the Manhattan norm. The name relates to the distance a car has to drive in a

rectangular street grid to get from point a to point b. L1 is the maximum norm or

Chebyshev norm and corresponds to the maximum of the components.

Note that not all measures of similarity need to be strictly induced by a norm. One

well known example is the cosine similarity. The cosine similarity measures the angle

between two vectors:

dcos(v, w) = 1� v · w
L2(v)L2(w)

Plenty of other measures of similarity exist depending on the nature of the feature

space. For example, if the feature vectors are probability vectors, that is vectors with

non-negative components that add up to one, then the Kullback-Leibler divergence

could be a good measure. The Kullback-Leibler divergence measures the degree of

di↵erence between two probability distributions v and w. More precisely it measures

the expected number of extra bits required to code samples from v when using a code

based on w, rather than using a code based on v.

dKL(v, w) =
X

i

vi log
vi
wi

However, note that dKL is not a metric as it is not symmetric. Also dKL is not finite as it

tends to infinity as one of the components of w tend to zero. This could be problematic

if the feature vectors have arbitrarily small components. In order to resolve these issues,

the Jensen-Shannon is usually preferred:

dJS(v, w) = (dKL(v,m) + dKL(w,m))/2
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where m = (v +w)/2. The Jensen-Shannon divergence could be thought as the metric

and finite version of the Kullback-Leibler divergence.

After having devised a feature space together with a distance measure, retrieval

could be reduced to matching nearby objects. This approach is referred as nearest

neighbor search. However, as we will see next, this simple approach su↵ers from a

problem called the curse of dimensionality.

6.3.2 Curse of Dimensionality

The curse of dimensionality refers to the fact that indexing hi-dimensional vectors

e�ciently is very challenging (Bellman, 1966). To illustrate, let us suppose we have a

n-dimensional unit hypercube [0, 1]n where the data points are uniformly distributed.

If we would like to capture a portion of the data p, the length l in each dimension of

this volume can be written as l = p1/n. Therefore, in order to capture one 1% of the

data in a 10 dimensional unit hypercube, we would have l = 1
100

1
10 ⇡ 0.63. So enclosing

just 1% of the data in a 10 dimensional space would already require 63% of the range in

each dimension. For a 100 dimensional space, the range becomes 95%. After only 500

dimensions, it becomes 99%. Therefore, most of the volume enclosed in the hypercube

is actually located on its surface!

With a similar argument, Beyer et al. (1999) showed that, as the dimensionality of

the space increases, all the points tend to exhibit the same distance with respect to

each other. This has the ultimate consequence of making the simple nearest neighbor

search approach ill defined. Nevertheless, as we will see next, researchers have been

looking for ways to make nearest neighbor search more practical and e�cient in high

dimensions.

6.3.3 E�cient Nearest Neighbor Search

The first observation one can make is that the real feature space, the one used to dis-

criminate between objects, may have a lower dimensionality than the apparent data

space. In this case, the dimension of the data space could be reduced with Principal

Component Analysis (PCA) (Wold et al., 1987). However, PCA still becomes imprac-

tical as the size the dataset increases. Also adding new documents to the index may
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require to re-compute PCA each time on the whole dataset.

A second class of methods consists of partitioning the feature space into a tree

structure. The R-tree is one of these methods (Guttman, 1984), and many variants

have been invented since. However partitioning the feature space may become harder

as the dimensionality increases. This is due to the fact that the data is much more

likely to be sparsely populated. In fact Weber et al. (1998) have shown that after a

certain number of dimensions, R-tree like methods are not more e↵ective than a simple

linear scan of the data.

A third approach, which can be used in combination of the first two, consists of

storing each dimension of the feature space separately. This technique is often referred

as vertical decomposition. Each dimension is treated separately depending on its sig-

nificance. One example of the use of this technique is the IGrid (Aggarwal and Yu,

2000), which computes a similarity score based on the dimensions of the points close to

the query point.

A fourth approach at making nearest neighbor more practical consists of relaxing

the constraint of finding exact matches. This approach, referred as approximate nearest

neighbor search, consists, in its simplest form, of only matching the best neighbors

which are some ✏ away to the query point (Nene and Nayar, 1997). More complicated

procedures have been devised since, and the interested reader is encouraged to try out

Marius Muja’s library of approximate nearest neighbor algorithms (FLANN) (Muja and

Lowe, 2009).

6.3.4 Fingerprints

Amore e�cient way of comparing documents consists of comparing their respective “fin-

gerprints”. The idea behind fingerprinting is to build a representation of the document

which allows for a fast and reliable retrieval within a database record. A fingerprint

should be small but robust. That is a non humanly perceivable change in the object

does not necessary lead to a change in the fingerprint. It is important to note that

fingerprints attempt to identify documents based on perception and therefore are very

di↵erent than hash functions such as Message Digest Algorithm 5 (MD5) or Cyclic Re-

dundancy Check (CRC) in which a change in a single bit lead to completely di↵erent
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documents.

There are a lot of di↵erent fingerprint types for all kinds of applications. A popular

example is the use of audio fingerprints by the program Shazam to identify songs play-

ing in a real world environment (Wang, 2003). Figure 6.4, from the Shazam article,

summarizes the method employed. First, a spectrogram of the song is generated (A).

Second, the peaks of intensity of the spectrogram are extracted (B). The peaks of inten-

sity are called the constellation map of the song. It reduces a complicated spectrogram

into a sparse set of coordinates. Third, a target zone for each point (anchored point) in

the constellation map is defined (C). Fourth, each anchored point and their respective

target zone are hashed and indexed (D). Wang reports that that this type of combinato-

rial hashing yields a speed improvement of 10,000 times for only 10 times more storage

with a minimal loss of probability signal detection. The procedure exposed above is

applied to create a large database index of audio files. The search consists of matching

the hashes of the queried audio file with the hashes found in the index.

Figure 6.4: Creating the fingerprint of an audio file with Shazam (courtesy of Shazam)
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Fingerprinting has not only been used for searching exact matches but also to remove

“close” duplicates in a large data corpus. For example, Sinitsyn (2006) has described

how to use audio fingerprints in order to perform background self-cleaning from dupli-

cates in data management middleware. However, what fingerprinting is doing is extract

some features and collate them in a way as to permit e�cient retrieval. But when it

comes to supporting exploratory search, retrieving sets of similar items would be more

desirable than just returning near exact matches.

6.4 Learning to Rank

There are mainly two problems with the methods exposed above. First of all there is,

when the data is uniformly distributed, the curse of dimensionality which may prevent

us from precisely di↵erentiating between relevant documents. Secondly, as the size of

the dataset increases, nearest neighbor search may become computationally intensive.

This could lead to slow retrieval and therefore to unhappy users. One approach to

resolve these issues consists of using machine learning techniques in order to produce

ranking models.

The approach taken by most machine learning-ranking algorithms consists of a two

phase scheme, as described in Figure 6.5. In the first phase a chunk of the relevant

documents is identified using a simple retrieval model. The retrieval model could include

the e�cient nearest neighbor search previously encountered, but other heuristics are

possible. This phase is called top-k document retrieval because only the top matching

documents are retrieved but not yet sorted. The relevance of each document in the

set is addressed in the second phase, in which a more accurate but computationally

expensive model is used for ranking.

The ranking model is usually learned from training data. The training data consists

of query-document pairs together with a ordinal or boolean score. The scores are usually

determined by human judges who assess on the relevance of each document with respect

to a given query. However, the scores may also be automatically derived by analyzing

click-through logs (Joachims, 2002), query chains (Radlinski and Joachims, 2005) or

by more direct user feedback such as Google +1 or Facebook likes. Machine-learned

ranking (MLR) is a relatively new research area and the interested reader is encouraged
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Figure 6.5: Basic architecture of a machine-learned search engine

to consult Cao et al. (2007) report for a more detailed treatment.

Cao et al., 2007 has categorized MLR algorithms into three groups. The first group

is called the point-wise approach in which, given a query-document pair, the goal is to

predict its ordinal or numerical score. In this case, learning to rank can be approximated

to a regression problem. The second group of MLR algorithms is called the pairwise

approach. In this case, the problem is formulated as repetitively discriminating between

pairs of documents for a given query – given two documents, which one is the most

relevant with respect to the query. Here the problem is reduced to binary classification.

Finally in the list-wise approach the model is trained on an entire list documents for a

given query.

To evaluate the performance of a ranking algorithm or to optimize a model on

the list-wise approach, researchers have come up with many di↵erent ranking quality

measures. Discounted cumulative gain (DCG) and normalized DCG (NDCG) are the

evaluation metrics most commonly used in academic research. DCG measures the

overall quality of a list of results for a given query (Järvelin and Kekäläinen, 2002).

The gain of a document directly depends on its position in the list. The higher a

relevant document is on the list, the more weight or gain it has in the final computation

of the score. In order to compare a search engine’s performance from one query to

another, DCG is normalized by an ideal DCG (IDCG). IDCG is computed by taking

the DCG of the result list sorted by relevance. The normalized DCG (NDCG) can
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be averaged over all queries in order to obtain the average performance of the ranking

algorithm.

6.5 Bayesian Sets

Figure 6.6: Full text search versus item based search

Nearest neighbor search and MLR models have shown to be quite successful in

the industry. However, these approaches still su↵er from a couple of issues. First, a

significant amount of training data may be required for the ranking model. Second,

nearest neighbor search does not address how to perform multiple document queries.

Third, a lot of engineering may take place in choosing and tuning the right method either

for retrieval or for ranking. A di↵erent approach consists of taking a probabilistic view of

the data. Bayesian Sets (Ghahramani and Heller, 2005) uses a model-based concept of

a cluster and ranks each item by using a score which represents the marginal probability

of belonging to a cluster containing the query items. The approach allows for multiple



114 CHAPTER 6. SIMILARITY AND MULTIMEDIA SEARCH

item based queries, and, amongst other benefits, reduces the work involved in setting up

a similarity search based solution to feature engineering. To stress these particularities,

the search algorithm is referred as item based as opposed to content based.

Figure 6.6 o↵ers an overview comparison of full text search versus item based search.

In full text search, the query is made of keywords which are then matched against a

back-of-the-book index. In item based search, the query is made of whole items which

are themselves composed of feature values. Here the back-of-the-book index is replaced

by a list of feature values together with their corresponding items. The goal of the

algorithm is to find the set of items which best fits within the cluster defined by the

query items. Bayesian Sets has been chosen for similarity search within Cloud Mining.

In this respect we ought to describe the algorithm in greater detail.

6.5.1 Overall Algorithm

We start by considering a collection of items D. The user provides a query in the form

of a small subset Dq ⇢ D. The set Dq is assumed to be coming from some concept /

class / cluster Q. The goal of the algorithm is to find a set of items in Q which best

complements Dq. Therefore, the goal of the algorithm is to compute p(x 2 Q|Dq), the

probability that an item x 2 D belongs to the cluster Q given that Dq has already

been observed. Note that some items may be more probable than others a priori. For

example, the probability of a string decreases with the number of characters. In order

to suppress these e↵ects, we need to normalize this probability by the prior probability

of x. Therefore the Bayesian criterion becomes:

score(x) =
p(x 2 Q|Dq)

p(x)
(6.1)

Using Bayes rule, we get:

score(x) =
p(x, Dq)

p(x)p(Dq)
(6.2)

We assume the data points are generated by some distribution with unknown parame-

ters ✓. Each of the three terms of (6.2) above are marginal likelihoods. We can express

these probabilities in integral forms by averaging over all possible values of the model

parameters:

p(x) =

Z
p(x|✓)p(✓)d✓ (6.3)
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where ✓ are the parameters of the distribution chosen to model the item feature vectors,

p(✓) is the prior over these parameters, and p(x|✓) is the likelihood of observing x given

the parameters. Similarly for the query set, we have:

p(Dq) =

Z " NY

i=1

p(xi|✓)
#
p(✓)d✓ (6.4)

where we have assumed that every item in the query set are drawn i.i.d. Finally the

numerator of equation (6.2) can be expressed in a similar manner:

p(x, Dq) =

Z " NY

i=1

p(xi|✓)
#
p(x|✓)p(✓)d✓ (6.5)

where every item in the query set and the item x to be scored is assumed to be drawn

i.i.d. from our model with unknown, but the same parameters, ✓. Given these marginal

likelihoods, equation (6.2) can be interpreted as the ratio of the probability that Dq

and x belong to the same model with the same parameters ✓, to the probability that

Dq and x belong to models with di↵erent parameters ✓1 and ✓2. The larger this score

is, the more likely x belongs to the same cluster as the query set Dq.

6.5.2 Sparse Binary Data

In general computing these integrals can be computationally intensive. However, it

turns out that if the data is sparse and binary then the score (6.2) can be computed

e�ciently in a single sparse matrix multiplication. Let us define the specific model in

the case of sparse binary data. We assume that each xi 2 Dq is represented by a binary

vector xi = (xi1, ...., xiJ) where xij 2 {0, 1}. A natural way of defining a cluster is to

assume that each xi has an independent Bernoulli distribution:

p(xi|✓) =
JY

j=1

✓
xij

j (1� ✓j)
1�xij (6.6)

The conjugate prior for the parameters of the Bernoulli distribution is the Beta distri-

bution:

p(✓|↵, �) =
JY

j=1

�(↵j + �j)

�(↵j)�(�j)
✓
↵j�1
j (1� ✓j)

�j�1 (6.7)

where ↵ and � are the hyperparameters of the prior and �(·) denotes the Gamma

function. The hyperpameters are set empirically from the data as ↵ = m and � =
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(1�m), where m is the mean vector of all items in the dataset D, and  is a scaling

factor. For a query Dq = {x1, ...,xN} consisting of N vectors, it is easy to show that:

p(✓|↵, �) =
Y

j

�(↵j + �j)

�(↵j)�(�j)

�(↵̃j + �̃j)

�(↵̃j)�(�̃j)
(6.8)

where ↵̃j = ↵j +
PN

i=1 xij and �̃j = �j + N �
PN

i=1 xij. The other two marginal

likelihoods, p(x) and p(x, Dq), can be expressed in a similar manner. Combining all

three marginal likelihoods in equation (6.2) gives:

score(x) =
p(x, Dq)

p(x)p(Dq)

=
Y

j

�(↵j+�j+N)
�(↵j+�j+N+1)

�(↵j+�j)
�(↵j+�j+1)

�(↵̃j+x·j)�(�̃j+1�x·j)

�(↵̃j)�(�̃j)

�(↵j+x·j)�(�j+1�x·j)
�(↵j)�(�j)

(6.9)

This rather long expression can be simplified by noting that �(x) = (x� 1)�(x� 1) for

x > 1. Also each case x·j = 0 and x·j = 1 can be taken separately. If x·j = 0, then:

score(x) =
Y

j

✓
↵j + �j

↵j + �j +N

◆ 
�̃

�

!
(6.10)

and if x·j = 1, then

score(x) =
Y

j

✓
↵j + �j

↵j + �j +N

◆✓
↵̃

↵

◆
(6.11)

Putting these two cases together, we obtain:

score(x) =
Y

j

↵j + �j

↵j + �j +N

✓
↵̃j

↵j

◆x·j
 
�̃

�

!1�x·j

(6.12)

Taking the log of this expression, we get a score which is linear in x:

log score(x) = c+
X

j

qjx·j (6.13)

where

c =
X

j

log(↵j + �j)� log(↵j + �j +N) + log(�̃j)� log(�j) (6.14)

and

qj = log ↵̃j � log↵j � log �̃j + log �j (6.15)

Thus, if we put the entire dataset D into one large matrix X with J columns, the log

scores s of all items can be computed in a single matrix multiplication as:

s = c+Xq (6.16)



6.5. BAYESIAN SETS 117

For each query Dq the algorithm computes q, the scalar c and the expression (6.16)

above, which on sparse binary data, is very e�cient. Moreover, we may also omit the

computation of c if we only care about ranking the items. The score of a single vector

item x dependents on q and on whether the features are present in the vector.

6.5.3 Analysis of the Query Vector

In fact, let us analyze the vector q in order to provide some intuition as to how Bayesian

Sets performs behind the hood. This is important because the vector q provides some

indication as to why things have matched, which, in turns, is crucial in order to provide

useful feedback to the user in a system such as Cloud Mining. The expression (6.15)

can be re-written as:

qj = log
↵̃j

↵j

� log
�̃j

�j

= log

✓
1 +

P
i xij

↵j

◆
� log

✓
1 +

N �
P

i xij

�j

◆ (6.17)

So if the data is sparse then we can expect the first term to dominate this expression.

Therefore, we can approximate the contribution of feature j by:

qj ⇡ log

✓
1 + const

querymeanj

datameanj

◆
(6.18)

Intuitively, a feature which is frequent in the query set but rare in the overall dataset will

have a high weight. However, a feature which is frequent in the dataset but rare or not

present in the query set will have a smaller or zero weight. This is loosely analogous to

tf-idf (Spärck Jones, 1972) under the vector space model (chapter 1) in which the terms

which are frequent in the document but rare in the whole corpus provide the largest

contribution to the scoring function. However, note that in the vector space model the

weights are query independent and the query itself has the sole role of selecting those

weights.

6.5.4 Results

Bayesian Sets has been tested successfully on a number of applications ranging from

searching through a database of images (Heller and Ghahramani, 2006), performing

analogical reasoning with relational data (Silva et al., 2007) or intelligently growing a
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list of relevant items from a small seed of examples (Letham et al., 2013). Ghahramani

and Heller (2005) report that the quality of the results to be comparable to Google Sets.

This is remarkable considering that Google must have a very large amount of training

data at its disposal. Bayesian Sets directly works on items and as such opens up a new

paradigm for search. After full text search and content based, we now no need to worry

about a metric space, and we can solely focus on the feature engineering of the items

themselves. The algorithm is very e�cient and can be scaled to millions of items. In

fact CloudMining, which will be presented at the end of this thesis, uses Bayesian Sets

on millions of documents each with thousands of feature values.

6.6 Examples

In this section we will review some content or item based search systems applied to

document collections as varied as small molecules, multimedia images or U.S. patents.

Since content and item based search is fairly new, not so many interfaces have been

tested. We will therefore pay special attention to the interface patterns employed by

these services. We will also present, if the service is not proprietary, a brief overview of

the technology back-end used and its possible limitations.

6.6.1 UCI’s ChemDB

Small molecules are widely used as synthetic building blocks of drugs. They can also

function as leads for drug discovery and other interesting compounds. Outside their

usage in chemistry, small molecules could operate as probes in system biology. ChemDB

(Chen et al., 2005) o↵ers a service to search nearly 5M small molecules. The search

is content based but the service additionally permits fuzzy full text searches on 65M

annotations. The search could also be performed on a “virtual chemical space”, which is

composed of hypothetical products synthesizable from the building blocks in ChemDB.

Multiple molecule queries are also possible, and could be especially useful when finding

compounds sharing several key functional groups. The features are defined by leveraging

di↵erent spectral representations of small molecules (Azencott et al., 2007). As we

have seen, this later consists of counting the occurrences of substructures within small

molecules. This could include counting substrings in SMILES, paths in 2D atom-based
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graphs or atomic distances in 3D.

The interface lets the user directly input a molecule by drawing it. Various search

filters are also provided. The filters are used to restrict the results by the number of

rotable bonds, predicted XLogP or molecular weight. In Figure 6.7 the user has drawn

two molecules. The right panel shows the results ranked by similarity scores. As noted it

is possible to perform multiple molecule queries. However, it isn’t necessarily clear how

precision is a↵ected if more than two molecules are queried. In fact, we should expect

the “relevant” results to be molecules with the largest number of matched functional

groups regardless of their importance in the full corpus.

Figure 6.7: Searching for molecules with “similar” functional groups in ChemDB

6.6.2 Google Image

Google Image was released back in 2001 as a purely full text image search engine. The

search was performed like Biomed Search on the title of the image, the anchored text

and the text surrounding it. In April 2009, Google released Similar Image Search from
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its lab. In 2010, Google acquired the content based product search company like.com

for $100M. Recently Google has been adding new features such as looking up images

by color or by visual similarity to an uploaded image (as in Figure 6.8).

Figure 6.8: Submitting an image in Google Image for similarity search

We cannot comment on the actual back-end algorithm used due to its proprietary

nature, but we can focus on the interface. The interface portrays an interesting pattern

for similarity based searches. In Figure 6.9, the user has performed a full text search

followed by a selection of an image query. The search is then clearly marked as a search

for “visually similar images”, and the user can switch o↵ that mode by clicking on the

cross. The query image is then shown as an additional refinement on the left. Each

image on the result set can be picked for similarity searches. The user can then further

refine his search by clicking on the various filters.

The results are impressive, but unfortunately multiple image queries are not possible.

Also there seems to be some confusion as to what happens when the user choses a similar

image. Will this add the image to the existing query (a refinement) or will this start

a new query while keeping the full text query? Nevertheless the interface features an

interesting pattern which will be extended in CloudMining to support multiple item

based searches.
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Figure 6.9: Google Image makes use of a mode to indicate that search has switched to

visually similar images

6.6.3 Xyggy Patent Search

Xyggy is a fairly recent startup which focuses on item based search and content dis-

covery. Xyggy uses Bayesian Sets at its core technology and unsurprisingly features

multiple item based searches. Multiple demos ranging from searching for similar songs,

images and patents used to be available on the website. However, the startup has re-

cently pivoted to become an app discovery engine for the Android marketplace. The

patent demo was especially interesting due its size and the content searched (all U.S.

patents). The features were engineered as bag-of-words from the abstract of each patent.

Multiple patent queries were possible to find commonalities between patents. The in-

terface consisted of drag and dropping the patents into a search box.

The patent search service looked promising, however the interface was probably too

di�cult to use for non-experts. First, there was no feedback given to the user as to why

the patents matched the query. This is important because the system needs to convey

some kind of understanding to the user about the underlying matching algorithm. Sec-

ond, in order to retrieve some patents, a full text search was first required. This was

performed using the same search box as the one used to drag and drop the patents.

This would lead to a mixing of items with full text search keywords, thereby making

the actual search di�cult to comprehend. Third, there was unfortunately no way of

refining the search results to a specific year or to any other metadata. Nevertheless,
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Figure 6.10: Searching for multiple patent items with Xyggy Patent Search

Xyggy Patent Search was still an interesting fun service to use. The interface would

probably have gained a lot by borrowing the patterns employed by Google’s Image

Search and by applying them specifically to patents.

6.6.4 Airtime

Airtime was launched in June 2012 with the goal of bringing people with similar interests

to meet through live video chat (Airtime, 2012). Although not a search engine, Airtime

uses proprietary technology to find people users would most likely enjoy chatting with.

The service connects with Facebook in order to retrieve the user’s interests. The location

of users is also taken into account, as well as their mutual Facebook friends.

Although the technology is proprietary, we could imagine that Airtime uses the

two phases approach discussed previously. The first phase would consist of crudely

retrieving a set of potential candidates. The second phase would use an MLR model for

each user in order to rank the best recommended candidates. The optimizing metric

of the learning algorithm could be modeled after the expected length of conversation

with the retrieved candidates.
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Figure 6.11: Matching people with respect to their interests at Airtime

6.7 Conclusion

In this chapter we have gone beyond full text search to present content based search.

In content based search, retrieval is performed on the whole content of the objects

themselves. In order to do so, the characteristics or features of these objects must

be properly extracted. We have then reviewed a couple of the most simple features

employed in text and in multimedia applications. In order to perform retrieval, we

then covered di↵erent distances in feature space and the nearest neighbor approach.

However, we stumbled upon some issues with respect to high dimensionality feature

spaces. This led us to consider MLR techniques, and then a new paradigm for search

called item based search. In this new paradigm, we no longer care about a metric space

but solely focus on the features and/or on the matching algorithm itself.

This later characteristic, with some others described in the next chapter, makes item

based search, implemented with Bayesian Sets, a great fit towards building a frame-

work for exploratory search systems. Recognizing to move towards a generic approach

to similarity and multimedia search, which is up to feature engineering, is our main

contribution of this chapter towards the thesis. This approach reduces the handling

of complex content based searches to choosing the right plugin. These plugins could
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obviously be provided and/or shared by a community of developers. The framework

is now not only generic but also open ended because completely new data types could

be handled in the future by writing the right feature extractor or plugin. This is a

powerful characteristic made possible thanks to the incorporation of item based search

within the framework.

Being able to search for similar items is a very important part of a user experience

which is sought to be non-linear and exploratory. However, it still remains a challenge

to create an interface to support these kinds of user interactions. Furthermore, it would

be nice if the user could mix items with full text search queries and faceted metadata

selections. Additionally, we would be interested to keep the ideas on information visu-

alization previously presented. In what follows we will be presenting CloudMining, a

framework which attempts at merging all these concepts into one system. We will also

present SimSearch, an item based search engine which implements Bayesian Sets, and

show how it can be distributed to scale to very large datasets of tens of millions or even

billions of items.
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Chapter 7

Cloud Mining

We are now well equipped to present Cloud Mining. The approach taken in this chapter

is to provide a concrete example that the immediate future for exploratory search

might be a natural extension to traditional faceted search systems, with the added

functionalities of information visualization and query by example or item based search.

Cloud Mining embodies three of what we believe would be the main ingredients of

exploratory search. Again, in a nutshell, these are that the user experience should be

faceted, visual and item based. However, the system must also adapt to the dataset

and task of interest. To this end, Cloud Mining was designed to be a framework, rather

than a particular ESS bounded to one type of application. For example, Figure 7.1

shows the front page of three di↵erent systems, instantiated with Cloud Mining, for

data as varied as movies from IMDb to scientific articles found in PubMed.

The contribution of this chapter towards the thesis is threefold. First, we hope that

by building Cloud Mining, we will also show how a traditional faceted search system

(chapter 4) could be extended to accommodate for visualization (chapter 5), and for

item based search (chapter 6). To this end the ESSs, instantiated with Cloud Mining,

feature a couple of novelties such as letting the user select between di↵erent facet views

at run time, as well as combine text search with whole items. Second, we would like

to illustrate on the idea that the future is not one monolithic system, but rather a

framework or a platform which hosts its various exploratory search functionalities. To

this end, Cloud Mining has been architectured in a modularized manner where the

facet views are plugins and item based search could employ di↵erent feature extractors.

In the long run, the goal is to provide an API for designers to create new plugins,
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Figure 7.1: Front page of three di↵erent instances
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and a website ecosystem or a gallery to share them. Third, Cloud Mining and all its

components are freely available under an open source license. The hope here is to let

the community continue on this work and attempt to achieve the vision set forth in this

thesis.

In what follows, we will first cover the datasets used to build three di↵erent instances

with Cloud Mining. These were chosen for their scale (millions of documents) and for

their variety of coverage. An overview of the technical characteristics of the framework

will then be provided. Following that is a detailed discussion as to how Cloud Mining

supports faceted, visual and item based search on the back-end and on the front-end,

as described in chapter 4, 5 and 6 respectively. Then, we will show how to build an

instance from scratch and finally conclude with future plans.

7.1 Datasets and Instances Built

In order to test Cloud Mining, we had to acquire several datasets. These are DBLP

covering computer science publications, IMDb for movies, and MEDLINE for biomed-

ical articles. We chose these datasets because they are publicly available, particularly

large, and o↵er a wide variety of metadata. However, they still required various en-

hancements in order to use them for faceted search. The instances built from these

datasets are available as online demos at the Cloud Mining project page. The datasets

can be recreated by running the scripts found in scraping/ directory. The customized

instances are available in the examples/ directory.

The process in which these instances were built will be described in a subsequent

section. We will also not delve into the details of the interface as the opportunity will

arise in another section. Building these instances was crucial in order to assess on

the genericity and usability of the system. Following is a detailed description of each

dataset and the instance built from it.

7.1.1 DBLP with CiteSeerX

DBLP (Digital Bibliography & Library Project) is a large computer science bibliography

website from the Universität Trier, Germany (Ley, 2002). The database existed since

1980s and was originally focused on logic programming. Nowadays the scope of the
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database has been significantly widened to many more fields in computer science. The

database lists over 2.1 million articles from the most important journals and conferences.

The database is publicly accessible in an XML format. Due its accessibility, metadata

available and relatively small size, DBLP is a good candidate for an exploratory faceted

search solution.

One drawback of DBLP is the lack of full text for each article. In fact, and unlike

MEDLINE, even abstracts are not available. Therefore the ordering of the results could

at best be set by decreasing publication dates. A better metric of the importance of a

scientific article is the number of citations it has received. In order to provide such an

ordering, we have enhanced DBLP with citations found from articles in CiteSeerX (Li et

al., 2006). This was performed by scraping CiteSeerX for pages showing the most cited

articles and cross-referencing them with the articles in DBLP. Another small addition

to the original database consisted of letting the user refine by keywords. Because of the

lack of full text, we chose the keywords found in the title of each article, filtering out

stop words. These keywords were also used for similarity search along with some other

metadata.

The total size of the enhanced DBLP database is 2GB. The database is not available

for download but can be re-created by running the scripts found in the scraping/dblp

directory of the Cloud Mining project page. The schema of the database is very simple

with one table for all single value items such as id, title, or year of the article, and

a couple of multi-value tables for each facet such as author names, year, venue and

keywords. The author facet table is the largest and takes up to 1 million distinct

values.

As previously noted, similarity search is performed on the keywords found in the

title, author names, venue names and year. The similarity search matrix is 1.8 million

rows (documents) for 1.4 million columns (features). Most similarity search queries do

not take more than .2 seconds on a standard Linux server. Figure 7.2 shows a fully

customized Cloud Mining instance running of the DBLP data. The sorting function

has been customized to allow ordering by citations (default), relevance or by year (1).

The document surrogate has been given a more DBLP like citation look with links to

full text articles as well as links to CiteSeerX (2). Finally, the default available facets

have been slightly changed with di↵erent colors and views (3). Further details of the
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interface and its user interaction will be described in a subsequent section.

Figure 7.2: Look and feel of the DBLP instance

7.1.2 IMDb

The Internet Movie Database (IMDb) (Amazon, 1990) is a website which gathers in-

formation related to films, television programs, and video games. The project origi-

nated back in the early 1990s as a Usenet posting known as the “rec.arts.movies movie

database”. Later the access to the database was greatly facilitated by the use of freely

available UNIX shell scripts. In 1993 the database had its own website. In a similar

manner to Wikipedia, IMDb greatly benefited from the contributions and passion of
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Internet users, who would edit or add new entries to the database. By 1998 the web-

site had become mainstream and was later acquired by Amazon. Since then IMDb

has become the premier source for reviews and information about movies and online

entertainment for over 100 million Internet users every month.

The database is exhaustive with over 2.5 million titles and about 5 million person-

alities. The plot keywords associated with each movie are especially rich and specific,

which make them good features for similarity search. One hurdle encountered while

setting up the back-end was the lack of publicly accessible database dump. Unfortu-

nately Amazon only provides the IMDb dataset as a set of plain text files. These files

do not have any movie ID which subsequently makes it hard to know what information

belongs to each movie. At the end we concluded that it was probably harder to create

a database from these files than it was to scrape the entire IMDb website, even if the

process could take weeks. We opted for the later route and our scraping methodology

is described in a subsequent section. In order to keep it focused solely on films, the

database was trimmed by removing records related to video games, TV programs or

related to the movie adult entertainment industry. Fairly recently IMDb changed the

layout of their site, which prevented us from re-scraping and updating our database.

For this reason, we should probably have used the more open TMDb (2008) database,

which seems to have kept the original spirit of IMDb.

The total size of the trimmed out IMDb database is 3GB. There are about 1.2

million movie references. All the files used to create this database is available in the

scraping/dblp directory of the Cloud Mining project page. The database has a very

single schema, similar to DBLP, which consists of one table for single value items and

multiple tables for each facet. The actor facet table is the largest one with over 1.5

million possible distinct values.

As we have noted, similarity search is performed on the plot keywords associated

with each movie. These are specific and well spread out across the most popular movie

titles. For example, the movie WALL-E has over 100 specific plot keywords such as

“Robot”, “Plant”, “Rescue”, “Future” or “Cockroach”. The similarity search matrix is

250,000 rows (movies) for 80,000 columns (plot keywords). The Cloud Mining instance

runs smoothly even under heavy load. Most queries complete in less than .2 seconds on

a standard Linux server. Figure 7.3 shows a fully customized Cloud Mining interface



7.1. DATASETS AND INSTANCES BUILT 131

for IMDb. The results can now be ordered by popularity (default), dates, user ratings

or number of votes (1). The document surrogate has been customized with a more

appealing look and feel with a cover image, user ratings, links to photo galleries or

even links to trailers (2). The choice of available facets and their views has also been

slightly changed from the defaults (3). Again, further details of the interface and its

user interaction will be described in a subsequent section.

Figure 7.3: Look and feel of the IMDb instance
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7.1.3 MEDLINE with PubMed Central

MEDLINE (Medical Literature Analysis and Retrieval System Online) is a large biblio-

graphic database of life sciences and biomedical articles. It is maintained by the United

States National Library of Medicine (NLM) and is freely available for download. It is

also freely accessible and searchable via NCBI’s PubMed (1996) or NLM’s Entrez system

(2003). The database contains over 21 million articles from over 5,500 selected journals

dating back from the 1950s. Each article has all the expected fields of a scientific article

including the title, author names, date of publication and even abstracts. MEDLINE

makes use of MeSH (Medical Subject Headings) terms for classification purposes.

One drawback of MEDLINE is the lack of full text and citation information. As

a result, search systems such as PubMed or Entrez order the search results by dates

only. This could be useful if one is interested about freshly published articles, but could

quickly become cumbersome to spot the most influential articles in a given field. In

order to provide an ordering of the search results by number of citations, we performed

a citation analysis of the articles found in PubMed Central (PMC). The PMC dataset

provides access to the full content of over 2.6 million articles in MEDLINE (NCBI,

2005). The articles on PMC are open access which means that they are free to read

and even, depending on copyrights, free to modify. The citation analysis gave us an

estimate of the number of citations as well as many of the citing articles for each article

found in MEDLINE. Another drawback of MEDLINE is the fact that the author names

are usually in an abridged version. In an author facet, this issue makes many common

names artificially inflated. For example, Chinese names such as Wang or Zhang are

very common and are proposed as first facet choices in our instance. We haven’t found

a solution for this yet.

The total size of the MEDLINE database with citation information is 63GB. We

decided to scrape PubMed instead of loading the full MEDLINE database. The main

reason for this is space e�ciency as the standard MEDLINE database contains a lot of

unnecessary information. The total size of PMC data is about 12GB. Our database is

not available for download but can be re-created by running the scripts found in the

scraping/medline directory of the Cloud Mining project page. The database schema is

very similar to the one used for DBLP and IMDb. The author facet table is the largest
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and can take up to 5 million distinct values. Some MySQL table such as the one used

to hold MeSH terms can have over 250 million rows.

Due to its size, we did not attempt similarity search on this instance. However,

we added a couple of new features not found on the PubMed website. Besides faceted

search, the first feature, previously noted, is that search is now ordered by number of

citations. Another feature, related to the previous one, is that it is possible to browse

through the citations of any article and continue refining by facet values. Other more

simple features include a link to the PMC article, if available, and the fact that the

search is performed over all fields including abstracts.

As we have noted in chapter 4 faceted search can be an expensive operation. In

order to make the search as fast as possible, we had to implement a couple of tricks.

The first trick consisted of indexing the documents by increasing number of citations,

and then use the natural order of the index to retrieve the results. With this trick no

expensive sorting operation is actually taking place. This made it possible to place a

cuto↵ to forcibly stop search after 1000 matches is found and processed. For the actual

facet computation, the cuto↵ was set to 100,000. Another trick consisted of distributing

the search over the 2 cores of our Linux machine.

Figure 7.4 shows the Cloud Mining interface for our MEDLINE dataset. As ex-

pected, the results are ordered by number of citations (1). Each document surrogate is

customized with a full list of MeSH terms as well as links to the full text article, when

available, and to the citing documents (2). Again the details of the interface will be

described in a subsequent section.

7.1.4 Other Datasets

We also tested Cloud Mining on some other datasets. The first one is a list of Nobel

prize winners with metadata such as gender, country of residence, a�liation or the type

of prize won. In order to do so the data was scraped from the Nobelprize.org website

(Nobel Media, 1999). An old Cloud Mining interface applied to this dataset can be

seen in Figure 7.5. We also attempted to make an instance for the WikiLeaks cable

data. Since the metadata wasn’t rich enough, we used a terminology extraction tool in

order to extract people names, places and dates. However, due to the sensitivity of the
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Figure 7.4: Look and feel of the MEDLINE instance
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material, we did not continue on this work.

Figure 7.5: Cloud Mining applied to the Nobelprize.org dataset. The metadata associated

with each record such as Gender, A�liation, Prize or Year is assigned to a specific color.

7.2 A Framework and Technology Used

This section provides an overview of the entire system. In the next sections each aspect

of the framework will be described in greater detail. The goal of Cloud Mining is to

provide a framework to let developers easily build exploratory search systems. The

end product of the framework, called an instance, embodies all the concepts previously

exposed of search, facets, visualization and query by example. Additionally the frame-

work itself is architectured as to allow for pluggable search. The framework is also

composed of software which can be used independently.

In what follows we will describe, with an example, the overall sought user interaction.

Next the pluggable search architecture of Cloud Mining will be outlined. Finally, we

will show how Cloud Mining is made of several di↵erent modules, and conclude as to

how instances are built.
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7.2.1 User Interaction

The instances built with Cloud Mining all share the same kind of user interaction,

regardless of the type of data explored. The features of search, facets, visualization and

query by example are all included. In order to build the interface, we decided to take

a conventional faceted search interface and extend it with exploratory capabilities. In

what follows we will not get into the details of the interface per se but rather focus on

the overall sought user interaction. The details of the interface and its customization

will be covered in the next sections.

Figure 7.6 shows a mock-up of the user flow throughout the interface of a Cloud

Mining instance. The user is greeted with a front page with many facets and their

values to choose from (1). Each type of facet metadata is depicted with a specific color.

For example if the data were movies, the color blue could be assigned to directors. This

provides a logical link between the metadata of the same type throughout the interface.

Suppose the user has selected a specific term from the blue facet. The facet selection

is now shown as a tag or keyword at the top of the search results (2). Following a

conventional layout, the facets are now located to the right of the search results. The

actual facet selection is always marked at the top, but no requirement is set as to

whether they should also appear within the facet. Suppose the user has selected a term

from the red colored facet. The search results are now refined by the terms in the

blue and in the red facet (3). In Cloud Mining all the facet selections are conjunctives.

Item based search is featured by the use of two buttons located at the bottom of each

document surrogate. The first button called “similar” mimics the expected behavior

of returning similar documents only, disregarding all previous text queries and facet

refinements (4). The second button called “add to query” adds the document (or item)

to the current query. In this case, the previous results are re-ranked by how similar

they are to this particular item (5). For simplicity this mock-up shows the item as

being mixed with textual query terms. However, as we will see later, this behavior has

been slightly changed in the current interface. When performing item based searches,

the facet values are also re-weighted by similarity scores. This is because the facet

values are supposed to provide relevant refinements, which may or may not be based

on the frequency of appearance in the document corpus. Di↵erent views on the facets
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Figure 7.6: User Interface Flow
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are possible. In this example, the user has selected a graph view to possibly reveal the

interconnectedness of these facet values within the search results. For example, if the

data were movies, then an edge in this graph could represent whether two actors have

played in the same film. Finally, the user can try out di↵erent combinations of query

terms by selecting, adding, removing or toggling them on or o↵. By doing so, the user

can navigate through the corpus and jump from one place to another or from (1) to (5).

In this example, the user could have jumped from (5) to (4) by removing two query

terms. By default each document surrogate displays all the metadata featured in the

facets. Clicking on a director name here directly selects this query term only, leading

from (4) to (2).

7.2.2 Architecture

There are mainly two di↵erent approaches which can be taken while designing a frame-

work such as Cloud Mining. The first approach consists of writing code to generate

code. In this case, Cloud Mining would first generate the code of the instance according

to some instructions. These instructions could be given in a set of configuration files.

Then the designer would be able to take over the instance and customize it at his will by

re-writing or adding some portion of the code. This approach allows for full control over

the instance, but also leads to high maintenance costs. Updates to the Cloud Mining

framework are di�cult to propagate to each instance. The designer is usually left with

many instances which are each slightly di↵erent depending on their customization. In

order to update an instance, the code has to be generated and the old code, pertaining

to customization, must be merged. This approach becomes impractical in a cloud based

environment where several instances have to be updated at once.

Instead we opted for another approach which consists of having each Cloud Mining

instance run from the same code base. This makes it possible to make every component

of exploration and future modules as easy to install as a pluggable widget. Figure 7.7

depicts such an architecture. At the center, the Cloud Mining framework is responsible

for the default behaviors of each instance. This includes faceted search, similarity search

and the rendering of the interface. Each satellite Cloud Mining instance simply indicates

to the framework how the default behaviors should be overridden. For example, a Cloud
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Figure 7.7: Di↵erent instances running from the same code base
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Mining instance could specify a di↵erent set of templates pertaining to the look and

feel of the document surrogate. However, as we will see, every instance must specify

at least a fSphinx configuration file. In this approach, an update to the Cloud Mining

framework gets instantaneously propagated to every instance. For example, we could

create a social module that would let users comment and vote on every document. That

module would then be usable by every instance with minimal configuration required.

This fits perfectly well with our desire to build a pluggable search framework. The

end goal is to let designers create ESSs as simply as drag and dropping di↵erent search

widgets.

7.2.3 Software Engineering

From a software perspective, the goal was to decouple the functionalities of Cloud

Mining as much as possible. We opted to make Cloud Mining into a web application

which calls di↵erent modules for its di↵erent exploratory search tasks. Each of these

modules is a software on their own that can be used completely independently. For

example, fSphinx (Ksikes, 2011a) is used for faceted search, while SimSearch (Ksikes,

2011b) is a solution to perform item based search. Each of these software will be covered

in greater detail in the next sections. The following figure shows how each module is

built on top of existing technologies and how they interact with each other.

Figure 7.8 depicts the main application stack of the Cloud Mining framework. Cloud

Mining is built on top of the Python web framework web.py (Swartz, 2006). It uses

various libraries to help in performing many of its functionalities. For example, Dirmap

replaces the template reader of web.py to allow for overriding. Cloud Mining calls on

fSphinx to perform faceted search. As we will see, fSphinx is built on top of the Sphinx

retrieval engine (Aksyono↵, 2007). Similarity search is performed by SimSearch (Ksikes,

2011b) which, through the use of the SimClient class, is being used by fSphinx in order

to combine items with query terms. In essence Cloud Mining is just a web front-end

to fSphinx with further exploratory task abilities. There is also a caching mechanism

which has now been replaced by Redis (Sanfilippo and Noordhuis, 2011).
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Figure 7.8: Cloud Mining software application stack. Cloud Mining is built on top of webpy

and uses fSphinx and SimSearch for exploratory search. Cloud Mining, fSphinx and SimSearch

are contributions to this thesis.

7.2.4 How Instances are Built

A Cloud Mining instance is a web application which overrides the default behavior

provided by the framework. In order to build an instance, the designer first writes

an fSphinx client for the data of interest. The details as to how this is done is left

to a subsequent section. Then the fSphinx client is registered to the instance. For

item based search, a SimClient can also be registered in a similar manner. Finally, the

application can be run like any other Python web application. Figure 7.9 shows the look

and feel of the interface before and after customization. The generic interface, before

customization, shows the title of each item (1) as well as the available facet metadata

(2). The “similar” and “add to query” buttons are not shown because no SimClient

was registered to this particular instance. The bottom screen shows the interface after

customization. Each document surrogate now has a more appealing look and feel with

user ratings and a description (3). The color palette has been modified (4) as well as the

available facet visualizations (5). The designer also added to the fSphinx client several

di↵erent sorting functions which are reflected on the interface (6). This instance was
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Figure 7.9: Look and feel of a Cloud Mining instance before (top) and after (bottom)

customization.
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built with just a few lines of code. It involved rewriting one template for the document

surrogate, adding one CSS file for the look and feel, and setting up some options in

the Cloud Mining app. For more detailed instructions, we have provided a complete

example as to how to build an instance towards the end of this chapter.

This ends the overview of the Cloud Mining framework. As mentioned, Cloud

Mining is made of independently usable modules for each of its exploratory search

tasks. The challenge was to provide a default interface for any kind of data, while at

the same time laying the tracks to a pluggable search solution. We will now cover in

greater detail the Cloud Mining front-end as well as the back-end for faceted search,

visualization and item based search.

7.3 Faceted Search

All the systems built with Cloud Mining incorporate faceted search. In chapter 4, we

have reviewed faceted search in details. We have reviewed some of the front-end and

back-end concerns. We have also gone over several systems and compared their inter-

faces and potential novel features. As we have previously discussed, Cloud Mining is

composed of several modules and libraries, each of which performs a certain exploratory

search function. Faceted search in Cloud Mining is handled by fSphinx (Ksikes, 2011a),

a layer on top of Sphinx (Aksyono↵, 2007) which facilitates handling and computation

of the facets. In what follows we will present, with examples, the faceted search user

interface of Cloud Mining. Then the inner working of fSphinx will be covered in greater

detail.

7.3.1 Front-end in Cloud Mining

Recall from chapter 2, that designing a search user interface can be a challenging pro-

cess. There are many elements which must be taken into account. These include the

presentation of good informative document surrogates, highlighting of query terms or

the handling of several sorting scenarios. While designing the interface, we went through

several prototypes and tested them with discount usability. However, due to the generic

nature of the interface, we decided to settle for a conventional layout. More customiz-

ability such as the look and feel of the document surrogate is left to the designer. The



144 CHAPTER 7. CLOUD MINING

Figure 7.10: Cloud Mining front page greeting users with many di↵erent kinds of facets.
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front-end concerns raised in chapter 4 included the organization of the facets and their

values, the behavior of the search box or how to perform multiple selections within

facets. Many of those concerns are best described and addressed with an example of

usage.

Figure 7.10 shows the front page or entry page of a Cloud Mining instance. The

user is greeted with a portal like page which shows a search box, a short description of

the instance, and several facet panels. Note that in this figure the instance has been

slightly customized for the IMDb dataset. But the generic page is very similar, only

some facet views and colors have been changed. As expected, the user can either type

a query in the search box (1) or select a facet value (2). The facets shown on the

interface reflect the facets of the underlying fSphinx client, which will be covered in the

next subsection. Their grouping and ordering are also specified by the fSphinx client.

As we have discussed, a Cloud Mining instance is simply a customizable web interface

to fSphinx. Finally the user can jump to each of the instances we have built so far for

the DBLP, IMDb and MEDLINE dataset (3). This menu stresses the fact that these

instances are all running under the same code base. Hopefully, in the future, this menu

will be extended further with many more instances built by the community.

Suppose the user has selected “animation” from the genre facet. Figure 7.11 shows

the result of such an action. The search results are expectedly shown on the left hand

side. Again note that for this example, the document surrogate has been customized

with a more appealing look and feel. The facet selection “animation” is shown at the

top of the search results (1). Next to the logo, the search box is extended with a

“Add Keyword” button (2). This lets the user add keywords to the current query,

thereby searching within the current results. Di↵erent sorting choices are specified by

the underlying fSphinx client and is rendered by a roll down menu (3). Using the

facets on the right hand side, the user can further refine his search (4). At the moment

the interface only supports conjunctive facet metadata selections. A facet can also be

toggled o↵ or back on by clicking on the title (5). Toggling the facet o↵ corresponds

to disabling the facet on the fSphinx client, thereby disregarding its computation. The

facets have di↵erent views such as a tag cloud or a histogram count. The user can

specify this view using a roll down menu (6). This later aspect of the interface will be

covered in greater detail in the next section on exploratory visual search.
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Figure 7.11: Cloud Mining faceted search page showing several features.
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Figure 7.12: Cloud Mining faceted search page showing several other features.



148 CHAPTER 7. CLOUD MINING

Figure 7.12 provides another opportunity to cover more features of the interface.

Here the user has conjunctively refined the results by the facet value “Musical”. If

not apparently evident from the previous example, each facet metadata is assigned to

a specific color (1). This enabled us to save pixels throughout the interface in order

not to have to repeat the facet field before the metadata value. In our test, although

users seemed at first a bit confused, once the color coding was understood, it helped

them to more quickly know what metadata belong to which facet. In order to try out

di↵erent combinations of queries, the query terms can be toggled on/o↵ or removed (2).

This feature addressed a common user behavior pattern which consists of re-starting

a new query with some of the same keywords plus some new ones in order to redirect

the search to a di↵erent path. A common feature included in the interface consists of

highlighting the query terms within the document surrogates on demand (3). Finally

further actions are left to the designer’s discretion. Here the document surrogates have

been customized to provide actions related to movies for IMDb (4). The similarity

search button has also been customized into one single button (5). The use of this

button will be covered in a subsequent section on item based search.

7.3.2 Back-end implementation with fSphinx

As discussed on several occasions, the underlying back-end which performs search and

the actual facet computation is the Sphinx retrieval engine (Aksyono↵, 2007). Sphinx is

an open source full text search server written in C++ which powers many websites such

as Craigslist, Living Social, MetaCafe and Groupon. The main reason why we chose

Sphinx is due to its speed and scalability. Consequently, this makes Cloud Mining

as scalable as Sphinx is. This is to be opposed to systems such as flamenco (Hearst,

2006a; Yee et al., 2003) which are entirely database driven and therefore di�cult to

scale beyond hundreds of thousands of documents. However, Sphinx lacks a couple of

features found in other search engines such as Lucene (Cutting, 1999) or Solr (Seeley,

2004). For example, Sphinx does not have a storage engine, neither does it support

aggressive caching. Also the facet computation requires a lot of back-end setup to

function properly and is not necessarily user friendly.

In order to connect to the search server and issue queries, the Sphinx package
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provides client API libraries for popular Web scripting languages such as PHP, Python,

Perl or Ruby. However, many elements of the search experience such as queries or facets

are not abstracted. This makes it di�cult to introspect into a Sphinx client in order to

render the search results or the facets. In order to circumvent these issues and fill up

on some of the missing features of Sphinx, we wrote fSphinx (Ksikes, 2011a). This later

extends from the Sphinx Python API library to add an easy way to perform faceted

search. With fSphinx the facets can easily be computed, preloaded or cached. The

query terms can be toggled on/o↵ or the search results can be easily retrieved from a

database. Every element that makes up faceted search are objects, and therefore can be

easily rendered by a web interface. All the boiler plate that makes up a fSphinx client

can be put into a configuration file. Indeed a Cloud Mining instance is simply a web

application that reads this configuration file. This is exactly what we needed in order

to provide pluggable search. In fact a change in this configuration file such as adding

or removing a facet is dynamically reflected on the interface. fSphinx can also be used

independently of Cloud Mining to provide faceted search for other types of systems.

The software has been released open source and is freely available for download at

GitHub. For more information as to how to use fSphinx and its various functionalities,

we have provided a tutorial available online or at the end of this thesis in Appendix A.

Each of the modules of the fSphinx package can be used separately or all combined

within an FSphinxClient object. Figure 7.13 depicts a simplified UML diagram of the

fSphinx package. Faceted search is performed by restricting the search, and therefore

the query, to specific fields corresponding to the di↵erent facets of interest. The queries

are abstracted within the MultiFieldQuery object. The query can then be represented

back as a string to be passed to the Sphinx search server or displayed at the command

line or on a web interface. There is also a unique string representation mainly used for

caching, in which the query terms are simply sorted with white spaces trimmed. The

Facet object is used to setup and to carry out the facet computation. By default the

facet values are grouped by counts and ordered alphabetically, but this behavior can be

changed using the various methods of the Facet class. As previously described in chapter

4, facet computation can be expensive. So for e�ciency the facets can be contained

into a FacetGroup. This object computes all the facets at once using Sphinx optimized

batched queries. The Cache class is used for aggressive caching of the search results and
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Figure 7.13: fSphinx simplified UML diagram. The faceted search is carried by a FSphinx-

Client object which behaves like a normal SphinxClient but with faceted search abilities. The

Facet object is used for setup and computation.
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of the facet computations. As we have discussed the FSphinxClient object regroups all

of these elements into one client and can replace a standard Sphinx client entirely. The

FSphinxClient object returns a Hits object which abstracts the list of results returned

by Sphinx and fetched from the database. The database which holds the documents

is then directly used as a storage engine with the DBFetch object. An FSphinxClient

can also be instantiated from a configuration file. A Cloud Mining instance reads this

configuration file to create a client to perform the search. Then it reads every one of

the client components such as Hits, MultiFieldQuery or Facets in order to render the

interface. There are many other classes and methods in the package and the interested

reader may want to consult the documentation provided.

7.4 Exploratory Visual Search

Another main ingredient of an ESS is its ability to display information in a way which

favors the emergence of patterns and provide new insights. In chapter 5, we have

reviewed many di↵erent kinds of visualizations which can be employed on the search

results or on the facets. We also suggested that views should not be imposed, but rather

chosen by the user at run time. We then described an overview of a pluggable search

architecture in which every component of the system such as search views or facet views

could be used within the interface and re-used across other systems.

At the moment Cloud Mining supports three di↵erent types of visualizations on

the facets only. Visualization of the search results has not been implemented yet. In

the example that follows, we will see how the tag cloud view could be used in order

infer something new about the document corpus more easily than by just looking at

the counts of the facet values. From a back-end perspective, we will then cover how

new facet visualizations can be created and registered within an instance. As previously

discussed, a Cloud Mining instance is simply a web application which renders the whole

interface with some level of customizability. In order to cover how facets are displayed

within the interface, we therefore also need to cover how Cloud Mining renders the

interface.
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7.4.1 Facet Visualization

Recall from chapter 4 that facets, beyond their refining ability, provide an interesting

summary of the search results with respect to the facet classification. They could

reveal patterns of distribution and occurrence at an aggregate level. From chapter 5,

we have looked into ways of representing the facet values more graphically. The idea

was that choosing the right visualization could always shift the focus from finding to

more exploratory tasks such as data analysis. At the moment Cloud Mining provides

three di↵erent types of views including a tag cloud, a histogram count and a more

exotic rose diagram. However, as we will see, new views can easily be created and

added. These could include an actionable time-line to represent dates or a map view

for geographical coordinates. The use of facet views in Cloud Mining is best described

with the following example.

Figure 7.14 shows the search result page of the DBLP instance after the author

“Zoubin Ghahramani” has been selected. Shown to the right hand side are the facets

with values ordered by frequency. The author and keyword facets are displayed as a

tag cloud (1). The tag cloud view depicts the facet value with a font proportional to its

frequency. However, note that views do not need to be frequency based but could use

any score returned by the facet grouping function. Also note that the terms contained

in the current query, “Zoubin Ghahramani”, are removed from the tag cloud. Using the

tag cloud view, it has become eye popping evident that the most frequent co-authors

of Zoubin Ghahramani are David Wild, Katherine Heller, Michael Jordan and Wei

Chu. From the keyword facet, we can infer that Zoubin’s main specialty is in Machine

Learning and Bayesian Modeling. However, although the tag cloud view gives the user

some notion of the relative importance of each term within a facet, no information

as to what the actual count is given. This information can be obtained by switching

to the histogram counts view (2). As expected, the view represents an histogram of

the distribution of the most frequent terms within a facet. The venue facet shows that

Zoubin has published 32 times in the NIPS conference and 13 times in ICML. The views

can be changed by the use of a roll down menu located to the left of each facet (3).

We chose this behavior as it was the most simple and natural way of adding views to a

standard faceted search interface. The year facet features a more exotic rose histogram
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Figure 7.14: Illustrating the tag cloud view.
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Figure 7.15: Illustrating tag cloud view 2.
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(4). We created this view in order to showcase Cloud Mining’s ability to plug in with a

variety of di↵erent views that make use of existing web technologies. For instance, this

visualization makes us of the powerful JavaScript RGraph charts library (Heyes, 2008).

Continuing on our example, in Figure 7.15 the user has additionally selected “ICML”

from the venue facet (1). What is immediately apparent is that “David Wild” has

disappeared from the author tag cloud. This suggests that Zoubin has worked mostly

with David Wild on conferences other than ICML. However, for the conference ICML

now it is Katherine Heller and Wei Chu with whom Zoubin has mostly worked with.

Additionally the year facet suggests that 2005 has been Zoubin’s most prolific year

for the ICML conference (2). Combining this observation with the previous one on

the author facet could suggest that it is during that year also that Zoubin, for the

conference ICML, has mostly worked with Katherine and Wei.

This example illustrates how the di↵erent views can be used to quickly infer inter-

esting aspects about the data without having to go through all the search results page

after page. The emerging pattern is that Zoubin, for the conference ICML, has mostly

collaborated with Katherine and Wei. And that 2005 was his most prolific year, again

for the conference ICML. With a standard faceted search interface, it would probably

be harder to look at the facet values and their counts in order to infer the same kind

of patterns. What is interesting with the tag cloud view is that these patterns are

popping up right away. As previously discussed, this is just an example, the end goal

is to tap into the creativity of third party developers and designers in order to provide

more interesting visualizations for di↵erent kinds of data.

7.4.2 Back-end Implementation and Rendering

The previous subsection covered how the facet visualization could be used to infer inter-

esting aspects about the data. As we have said, this type of interaction is an important

ingredient of an ESS. Covering the back-end of how these types of visualizations are

handled forces us to review how the entire back-end of Cloud Mining functions. As we

have discussed, a Cloud Mining instance is simply a customizable web interface which

renders the results retrieved by fSphinx.

Figure 7.16 depicts a simplified UML diagram of the entire Cloud Mining back-
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Figure 7.16: Cloud Mining simplified UML diagram
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end. The CloudMiningApp class inherits from the webpy.application class. web.py

is a minimalistic freely available and open source web framework for Python (Swartz,

2006). However, we did write some sca↵olding code to web.py in order to easily conceive

the applications in a MVC (Model View Controller) manner. From the diagram, the

web application has several objects amongst which are an FSphinxClient object and

SimClient object. As previously discussed, the first object is used for faceted search,

while the second object, as we will see next, is intended for item based search. These

two objects are simply attached to the web application while creating the instance. The

web application also holds a dictionary of Visualization objects. This later maps facets

to the di↵erent possible visualizations which are provided at the interface level. Each

visualization inherits from the main Visualization class. In order to create a new facet

visualization, the designer would inherit from this class. Users can then register them

within the web application in order to use them. The CloudMiningApp object also

has a DirectoryMapper object. This later is used to customize the look and feel of the

interface by letting developers override a set of templates. The DirectoryMapper object

simply tells the web application where to find these templates in order to render the

interface. A brief tutorial on how to use Cloud Mining, the di↵erent visualizations, and

how to customize instances is provided online or at the end of this thesis in Appendix

C. We briefly mentioned the SimClient object to perform item based search. This later

object is part of the SimSearch package which we will be covering next.

7.5 Item Based search

In the previous sections we have covered two of the main ingredients of an ESS. First,

the system should provide several metadata facet selections for the user to browse and

refine by. Second, the system should support some kinds of visualizations, at the user

choice, in order to provide insights about the data. We now turn our attention to

another crucial element of an ESS; its ability to search for similar documents as well as

to discover new ones. In order to provide such an experience, the search must be focused

on the whole content of the document and not just on its textual representation. In

chapter 6, we have reviewed several methods of performing these types of searches. The

last method, Bayesian Sets, o↵ered a new paradigm for IR called item based search in



158 CHAPTER 7. CLOUD MINING

which queries are composed of possibly several documents (called items), and the results

are a set of documents (or items) sharing some common concept. This characteristic,

and several others, made Bayesian Sets a perfect candidate for an ESS framework

such as Cloud Mining. However, we noted that designing an interface, which supports

multiple item based queries, remains a challenge.

In what follows, we will further describe our reasons for choosing Bayesian Sets over

other algorithms to perform similarity searches in Cloud Mining. Then we will provide

our interface solution to multiple item based queries. The interface extends from the

current one but still allows facet metadata selection as well as full text search. This is a

desirable feature as it allows users to explore the corpus by mixing textual queries with

whole items. As previously discussed, Cloud Mining is composed of several modules

which can be used independently. Similarity search in Cloud Mining is handled by

SimSearch (Ksikes, 2011b), our open source implementation of Bayesian Sets and a full

scale item based search engine. Consequently we will describe the inner workings of

SimSearch and its interaction with fSphinx and Cloud Mining. Although Bayesian Sets

is very fast, it would be nice to scale to very large datasets and to millions of users. This

is important if one day SimSearch and consequently Cloud Mining are to be provided

as a pluggable search service over the cloud.

7.5.1 Why Bayesian Sets?

Bayesian Sets (Ghahramani and Heller, 2005; Heller and Ghahramani, 2006) o↵ers a

couple of unique characteristics which makes it a perfect candidate for discovery and

similarity based searches. First, Bayesian Sets decouples the feature engineering from

the matching algorithm. The developer’s work get reduced to choosing an appropriate

feature for the task of interest. As we have seen in chapter 6, many di↵erent types of

features exist for textual or multimedia items. The only limitation is that the features

must be, in some ways, binarizable. The decoupling of the feature engineering from

the matching algorithm is highly desirable in a framework such as Cloud Mining, which

is aimed at creating ESSs for any kinds of data. Developers would then simply be

choosing from a library of featurizers in order to add similarity search to their Cloud

Mining instance. Second, Bayesian Sets allows for queries made of multiple items. As
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previously discussed, this is a desirable exploratory search feature as it could help in

revealing and/or specifying common concepts among items. Third, unlike machine

learning algorithms, no traditional training is required. All the items are directly used

in a matrix which can later be transformed in an e�cient form suited for fast sparse

matrix multiplication. The matrix simply corresponds to the presence or absence of

a feature value within each item. The matrix can be stored in a text file ready to

be loaded in memory. For the same dataset, the matrices, possibly covering di↵erent

feature types, can then be shared and used interchangeably. Fourth, Bayesian Sets is

fast and easily scalable to millions of items. In fact, the matrix product can be carried

over multiple cores or machines and the scores re-combined and returned to the user.

Fifth, Bayesian Sets is simple to implement and easily modularized within or without

Cloud Mining.

7.5.2 Front-end in Cloud Mining

As we have seen, the unique characteristics of Bayesian Sets fit quite well within a

framework such as Cloud Mining. However, the design of an interface which supports

faceted search as well as item based search still remains a challenge. There are many

open questions about the design of the interface to support such a functionality, but

the overall sought behavior can be outlined.

The overall design goal was not be depart too much from conventional faceted

search behaviors. As such, the interface should provide the ability to mix items with

conventional faceted metadata selections. The results should be a set of similar items

restricted to the facet selection(s) and/or full text search. The facet grouping function

should be adapted to make use of the similarity search scores. For example, the terms in

a tag cloud could be weighted by the similarity scores in addition to its frequency. The

interface should also provide feedback as to why the documents have matched. This is

important in order to help users form a mental model about the underlying matching

algorithm. Keeping in mind the interface is generic before customization, the behaviors

should work on any kind of data such as text, images, or videos.

In what follows we will present a couple of prototype interfaces with some of the

desired behaviors previously exposed. The first interface stems from the idea that an
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item should behave exactly like any other query terms. The second interface treats

items no di↵erent than a facet refinement. The third one, inspired from Google Image,

makes use of a similarity search mode. Then we will cover, with examples, the current

solution implemented in Cloud Mining. The current interface re-takes several ideas

from the previous prototypes.

Items as a Query

The first most simple design consists of treating an item not di↵erently than a query

term. Figure 7.17 shows the search results of a prototype which employs this pattern.

The items are movies from the IMDb dataset. As previously discussed in the IMDb

dataset, the features of each movie are bag-of-words of their plot keywords. Notice how

the movie item “Titanic” is distinguishable solely by its cover image (1). As expected,

this query tells the system to search for all the popular cartoons which are also similar

to the movie Titanic. New movie items are added to the current query with the button

“More of this!” (2). In order to add movies not found in the current search, users can

disable query terms to make them sticky, thereby keeping them for subsequent queries

(3). After the user has added a movie to his query, he can keep on refining by facet

values (4). An indication as to why the document has matched is shown at the bottom

of the surrogate (5). In this example, the cartoon Ratatouille has matched because of

the presence of the specific plot keywords “Starving Artist”, “Blockbuster” or “Face

Slap”. The cartoon “The Sinking of the Lustinia” has matched because of a “Ship

Wreck”, “U Boat” or “Tragedy”. All of these events do occur in the movie Titanic.

This design pattern is interesting because it minimalistically adds item based search

to the current faceted search interface. However, putting on the same line items with

query terms could be confusing. This is because this behavior could convey the wrong

impression that the user is digging through the search results with items. Also adding

new movies not found in the current search could necessitate several interventions such

toggling o↵, searching, toggling o↵ again and then searching again. Another shortcom-

ing of the interface is that not all items do have a good metaphor for its representation

within the query. For example, scientific articles do not have any cover image, and

therefore would not fit well within a generic interface.
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Figure 7.17: Items mixed with query terms
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Items as a Facet Refinement

Another more involved interface pattern consists of treating items like a facet refine-

ment. Figure 7.18 shows a mock-up in which the search box, items and facets are all

treated as refining elements. The user can add keywords to the current query in a tradi-

tional manner (1). The search keywords are then shown at the top of the search results

(2). New items can easily be added with another search box with auto-completion (3).

This allows to add new items from the whole corpus which are not necessarily found

in the current search. The newly added items are depicted in a facet like panel, from

which they can be toggled or removed (4). Another way to perform similarity search is

through the use of two buttons located under each document surrogate (5). The first

button called “similar” starts a completely new query disregarding any previous refine-

ments. The second button called “add to set” adds the item to the current search. The

results are then shown to be ordered by “similar” (6). The user can continue adding

textual keywords or refining by facet metadata (7).

The pattern exposed here is interesting because it lets us isolate item based search

to only a facet refinement. The item panel could then be engineered so that it would

act as a pluggable search component. However, the panel still requires a metaphor

to represent each item. Also what is really happening is not a refinement per se, but

rather a re-ranking of the search results with respect to the textual query and to the

similarity score of each document. Instead what might be needed is a modal behavior

which clearly states that any future actions will be handled under similarity search.

Nevertheless this interface seems promising and might be tested further in a future

version of Cloud Mining.

Similarity Search Mode

Recall from chapter 6, the pattern Google used for its similar image search feature

(Figure 6.9). Each image has a button called “similar” which lets the user search for

visually similar images. Once the button has been clicked, the results are framed in a

clearly marked similarity search mode. He can then cancel the mode or further refine by

using various filters. This is an interesting pattern because a search for similar images

is not a refinement, neither it is a query, instead it is rather a mode of the system, and
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Figure 7.18: Items as a facet refinement
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should therefore probably be marked as such. However, Google Image does not support

multiple item based searches, neither does it provide feedback as to why these images

were returned as similar. In what follows, we will present our current solution for Cloud

Mining which takes into account the various patterns previously encountered.

Current Solution

The current solution employed in Cloud Mining makes use of the similarity search

mode pattern previously encountered. In this interface the items are not mixed with

the textual query terms, neither are they considered as facet refinements. Instead the

items are shown in a separate box at the top of the query terms. The box has enough

space to display the full title of the item and therefore no metaphor is actually needed.

This fits well with our goal to design a generic interface which would work for any

kind of data. The interface also employs the two buttons, “similar” and “add to set”,

pattern previously discussed. All the features of the interface are best described with

an example.

Figure 7.19 shows the search result page of the DBLP instance after the article

“Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions” has been

added. The interface has switched to similarity search mode and any element pertaining

to it is now marked in orange color (1) (2) and (3). Under this mode any facet refinement

or added keyword will restrict the set of similar items. The refined search results are

re-ranked according to the similarity search score of each document with respect to

the queried item(s) (2). This ranking function can be customized as we will see next

with SimSearch. For example, in the IMDb instance, we chose to return similar but

also popular movies in order to o↵er good recommendations. Items can be disabled

or removed in order to try out di↵erent search combinations. When a query term is

disabled, it remains sticky, just as we have described on the first interface prototype.

Feedback as to why each document has matched is marked in orange color using di↵erent

font sizes for each feature value (3). The larger the font of a feature value, the more

weight it had in the computation of the similarity search score. At any time the mode

can be canceled and the previous faceted search experience recovered (4). Two buttons

located at the bottom of each document surrogate called “Similar” or “Add to query”

are used to either start a completely new similarity search or add the item to the current
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Figure 7.19: Similarity search on the DBLP instance
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query (5). Finally notice how the facet values have changed (6). Now the author Wei

Chu appears in larger font indicating that he has not only produced many articles with

Zoubin but also that these articles may be quite similar to the current query items. The

actual facet grouping function can be customized as we will see in the next subsection.

Unfortunately the DBLP dataset does not provide the full text body, nor does it provide

the abstract of each article. This limits the quality of the similarity search results. In

order to further describe the kinds of results obtained, let us take another example from

the IMDB instance.

Figure 7.20 shows the search result page after having added the movie “The Lion

King” to the current query. The user is now explicitly asking for musical cartoons which

are similar to the Lion King (1) and (2). The concept cluster found by Bayesian Sets is

somewhat made of movies which are Disney animations with anthropomorphic animal

characters (3). The movie the Lion King II unsurprisingly matches as top result. The

movie Aladdin matches because it is a Disney animation with “poetic justice”, a “first

love”, a “monkey” and a “runaway”. Note that on the IMDb instance the document

surrogate has been customized with a single “More of this!” button, which performs

equivalently to “Add to query”.

As previously mentioned, multiple items based searches are possible. In Figure 7.21

the user has found and added the movie “Ratatouille” to the current set of items by

toggling o↵ the query term “Musical” (1) and (2). This further specifies the cluster of

anthropomorphic animal characters found in these movies. Movies such as Ice Age, Tim

and Plumbaa, and Fantastic Mr. Fox are now emerging from the search results (3). For

example, the movie Ice Age matches because of a “vulture” and “animal character”.

The movie Timon and Plumbaa matches because of the presence of the plot keywords

“The Lion King”, “warthog”, “furry”, “furries” or “anthropomorphic”.

The interface was tested with discounted usability principles. In our tests the results

were encouraging. However, we did note that users had di�culties forming multiple item

based queries. At first, it was not evident to the user that disabling query terms would

make them sticky through the search. Also users would not necessarily understand

that the “Add Keyword” button could be used to search beyond the first pages of the

result set. Nevertheless, this interface does resolve most of the design goals previously

outlined. That is the experience does not depart too much from conventional faceted
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Figure 7.20: Similarity search on the IMDb instance
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Figure 7.21: Similarity search on the IMDb instance 2
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search. Users can mix keywords with items while still refine by facet metadata. It

integrates with visual search as well as provide feedback as to why documents match.

Finally, the interface is generic and can be used for any kind of data.

7.5.3 Back-end implementation with SimSearch

The underlying back-end which performs similarity search within Cloud Mining is Sim-

Search (Ksikes, 2011b). SimSearch is our own implementation of Bayesian Sets. It

provides many of the features of an item based search engine such as indexing data,

querying the index or interfacing with fSphinx to provide item and facet combination

searches. The software can be used independently from Cloud Mining and is freely

available under an open source license at GitHub. What follows provides an overview

of the inner working of SimSearch. For more information as to how to use SimSearch,

a tutorial is available online or at the end of this thesis in Appendix B.

Figure 7.22: Indexing to querying with SimSearch

SimSearch has been designed to keep all of the benefits of Bayesian Sets. Figure

7.22 shows the steps involved from indexing to querying. The first step consists of

extracting the features from the data into a binary dataset. Only the bag-of-words

feature extractor is included in the package, but many more can be added. An indexer

uses a feature extractor in order to binarize the feature values as they are extracted from

the data and writes the results into a binary dataset. The binary dataset keeps track of

the item ids and features values and holds a representation of the sparse binary matrix

taken as input by Bayesian Sets. This approach respects the decoupling of the feature

engineering within Bayesian Sets. Developers are free to either plug in a new feature
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extractor of their liking or directly create the binary dataset. The second step involves

loading the binary dataset into a computed index. This includes transforming the

binary matrix into a format suited for e�cient sparse matrix multiplication, computing

the hyper-parameters and creating the inverted indexes to keep track of the item ids

and feature values within the matrix. In the third step, the computed index is queried

and the results are returned. This includes the computation of the query vector, the

actual matrix multiplication and the fast ranking of the returned results. The results

are a set of matched item ids with log scores together with matched feature values. The

feature values and their individual scores are used by Cloud Mining to show why each

item has matched.

Figure 7.23 depicts a simplified UML diagram of the SimSearch package. The In-

dexer object is used to binarize the features returned by a feature extractor and to write

the results within the binary dataset. For this purpose it has an iterator and a FileIn-

dex object. The iterator could be a BagOfWordsIter object or anything which returns,

as the data is being read, the couple (item id, feature value). The FileIndex object is

used to manipulate the binary dataset on disk. It is then used within a ComputedIndex

object to load the matrix in memory. The ComputedIndex is the in memory represen-

tation of the binary dataset. The matrix is transformed into a CSR format for fast

sparse matrix multiplication. Additionally the ComputedIndex object computes all the

necessary hyper-parameters and inverted indexes. A QueryHandler object is used to

query a ComputedIndex object for a given list of item ids. The QueryHandler object

computes the query vector, performs the actual matrix multiplication and returns the

top k best results in a ResultSet object. The e�cient sparse matrix multiplication as

well as some other matrix operations are performed by the Python module scipy.sparse

(E. Jones et al., 2001).

In order to interface with fSphinx, the SimClient object behaves like a FSphinxClient

object by wrapping its functionalities. The SimClient object uses a QueryHandler

object to query the computed index upon seeing a similarity search query. A similarity

search query is a mix of items and textual queries. The items in the query are indicated

by the field @similar followed by the item id and some other optional variables such

as the title of the item. The QuerySimilar object behaves identically to a fSphinx

MultiFieldQuery, but takes into account the item ids in the query. An attribute called
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Figure 7.23: SimSearch simplified UML diagram
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log score attr must be declared as a float and set to 1 in the Sphinx configuration file.

This attribute is updated at query time for each item by the scores returned from the

QueryHanlder object. The search of the wrapped fSphinx client is then performed as

usual. As mentioned, SimClient wraps an existing fSphinx client in a way that any

of its options can be overridden. These include the ranking of the search results or

the facet grouping functions. These can then take into account the updated log score

attributes in their computation.

With the SimClient class, SimSearch respects another benefit of Bayesian Sets which

consists of combining item based search with faceted search. However, another very

interesting aspect of Bayesian Sets is its speed and scalability. In what follows we will

briefly cover some of the ways in which indexing and querying can be distributed over

multiple cores or machines.

7.5.4 Scaling Bayesian Sets

Although Cloud Mining could be run on the developer’s server, it would be interesting to

provide the framework as a web service that would power multiple instances. This would

fit well with our vision of Cloud Mining as a pluggable search solution o↵ered over the

cloud. But this would require scaling Cloud Mining to multiple cores or machines. As

previously mentioned, faceted search is easily scalable with Sphinx. However, SimSearch

would still require features such as live distributed indexing and distributed search.

Figure 7.24 shows how live distributed indexing could be implemented. The file in-

dex has been replaced by a NoSQL database. NoSQL database systems are often highly

optimized for retrieval, appending and more or less for updating operations. They o↵er

higher scalability and availability than traditional relational databases. From the figure,

the NoSQL database synchronizes between new incoming data and several split com-

puted indexes. The data can be added, updated or removed without worrying about

corrupting the computed indexes. The computed indexes are created from sequential

chunks of the database in one atomic operation. They can live on multiple cores or

machines. These computed indexes are updated all at once (rotated) after x number of

updates.

Distributed search can be performed in a fairly straight forward manner. Figure
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Figure 7.24: Simsearch live distributed indexing

Figure 7.25: Simsearch distributed search
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7.25 shows an overview of the process involved. Recall from chapter 6, that Bayesian

Sets performs a single multiplication between a large sparse matrix and a query vector.

This computation can be processed in parallel in a map reduced fashion (Dean and

Ghemawat, 2008). The matrix is split into multiple sequential chunks which can be

obtained from the distributed indexes discussed previously. The top scores of each sub-

matrix multiplication are then returned and sorted. The final results are obtained by

merge-sorting each of these top scores. Finally, the top k scores of the final results are

returned.

7.6 Example of Instance Building

In this section we will describe how to build a Cloud Mining instance from scratch.

That is we won’t even assume that the developer of the instance has data available.

This section is really a summary of the process we went through in order to build the

DBLP, IMDb and MEDLINE instances. The interested reader may have a look into

the examples/ and scraping/ directories of the Cloud Mining project page for further

details.

Figure 7.26: Building a Cloud Mining instance from scratch

The whole process of building a Cloud Mining instance is summarized in Figure

7.26. The first (optional) step consists of downloading and scraping the data of interest

(1). The second step consists of setting up the back-end (2). This includes properly

loading the data into a database and indexing it with Sphinx. Although not shown
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in this diagram, if similarity search is desired, the data must also be featurized and

indexed by SimSearch at this step. In order to query the index, a fSphinx client and, if

desired, a SimSearch client, must be configured. The third step consists of creating the

instance by having Cloud Mining read the fSphinx and SimSearch configuration files

and render the interface (3). At this step and as previously discussed, the look and

feel of the Cloud Mining instance can be customized by setting up some options or by

overriding a set of templates.

7.6.1 Scraping Data

As previously discussed, the size of the di↵erent instances meant that we had to down-

load potentially millions of documents from the web. The relevant information also had

to be extracted and loaded into a database. To simplify this process, we have written

the program Mass Scraping (Ksikes, 2010), also a thesis contribution. Mass Scraping is

a Python module which is useful to download and scrape websites on a massive scale.

The program is open source and free available at GitHub.

Mass Scraping goes through a series of three steps as shown in Figure 7.27. First,

the data is retrieved and saved into a repository (1). As we will see, a repository is

an e�cient directory structure which is designed to save space as well as to allow for

the inclusion of a large number of files. Second, the information is extracted from the

repository and placed in tab delimited text files called tables (2). Third, the tables

are then populated within a database (3). The whole process is controlled by a sin-

gle configuration file. Each of the steps are performed by a separate programs called

retrieve.py, extract.py and populate.py respectively. We will now cover each of these

steps in greater detail.

Retrieving Data

The first step consists of using the program retrieve.py. This program is used to down-

load web resources in the most e�cient manner possible. For example, retrieve.py can

use multiple concurrent connections in order to download the resources in parallel. The

retrieved resources are then directly saved in the repository. Other options include shuf-

fling the list of input URLs, sleeping after x number of failures, stopping and resuming
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Figure 7.27: Retrieve, extract, populate with Mass Scraping

retrieval.

The program does not crawl the web but simply takes as sole input a list of URLs.

For a particular website, this list can be obtained by noticing a pattern in the way

the URLs are generated. For example, IMDb references each movie page by an ID.

Therefore the list of URLs can be obtained by iterating over all movie ids from 1 to

about 2M.

On some file systems, storing potentially millions of files in one directory could make

lookup operations extremely slow. Additionally compressing textual data can save more

than 80% of disk space. For these reasons, the data downloaded by retrieve.py is saved

in an e�cient directory structure called a repository. A repository is a tree-like directory

structure where each leaf contains files in a compressed form. The files pertaining to

each resource are named after the MD5 hash of the URL. The directories are named

after the first characters of the filenames of the files located at the leaves. For example,

the web page http://www.imdb.com/title/tt0111161/ is saved at the leaf 73/03.zip with

a filename of 7303ddebe20d37e7ed27d643594324a8.html.

Extracting Data

The second step consists of using the program extract.py. This program is used to

extract the relevant parts of a document into a set of tab delimited text files called

tables. The program can read input from raw data or from the repository discussed
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previously. A configuration file has to written in order to tell extract.py how the data

should be parsed. The configuration file is made of a set of directives marked by a

unique field identifier which starts with the symbol @. Each field entry holds a regular

expression, an optional post processing callback, and a SQL field specification. The

regular expression provides a concise and flexible means for matching text. While the

callback function is used to perform any necessary post formatting. For example, the

callback can be used to change an extracted date into a format understandable to

MySQL. The SQL field specification is used by the program populate.py, as we will see

next. For example, in order to extract the ID and title from an IMDb movie web page,

the following configuration file can be written:

regex_mode = ’inline’

regex_flag = re.I|re.S

@imdb_id = dict(

regex = ’href="http://www.imdb.com/title/tt(\d+)/"’,

sql = ’int(12) unsigned primary key’

)

@title = dict(

regex = ’<h1>(.+?)<span>\(<a href="/Sections/Years/\d+/">’,

callback = lambda s: strips(s, ’"’),

sql = ’varchar(250)’

)

The regex mode could either be “inline” or “global”. In inline mode, extract.py

only gets the first matching text, whereas in global mode it gets them all. This is used

for single value or multiple value fields. The callback function for the @title field tells

extract.py to strip the quotes from the beginning and the end of the resulting matching

text. Note that a configuration file is just plain Python code with the additional @ to

mark each field.

The interested reader may wonder why we haven’t used packages such as lxml

(Richter, 2000) or Beautiful Soup (Richardson, 2004). In practice we have observed

that the parsing methods employed by these packages do not scale well to millions of

documents. In fact, for HTML documents, these packages have to load the entire DOM

in memory before any writing can take place. This obviously slows down parsing and

consumes memory. Although less robust and expressive, regular expressions are much



178 CHAPTER 7. CLOUD MINING

faster in practice. It can be argued that a SAX parser could have been used instead.

This later reads data as a stream, and recognizes the beginning or end of a node in

an event-driven manner. However, for our purpose, which consisted of scraping HTML

documents only once and from the same source, using a SAX parser would probably

have been overkill.

Loading Data

The last step consists of using the program of populate.py. This program takes as input

a table file along with its associated configuration file in order to populate the database.

Each table is then loaded into a corresponding MySQL table. The program takes care

of creating the schema of the MySQL table according the SQL field specifications of the

configuration file. Applying this process to our IMDb scrape led to one table for all the

single-valued items, and multiple tables for each multi-valued fields. For example, the

title or the description of a movie is single-valued and therefore loaded into one table

keyed by movie ids. While the actor names, directors or plot keywords are multi-valued

and therefore loaded into three di↵erent tables respectively. After the data has been

scraped and loaded in the database, further steps are required on the back-end in order

to setup the instance. These steps involve indexing the data from the database as well

as setting up the search clients.

7.6.2 Setting up the Back-end

At this step the data is expected to have been loaded in a database. Keeping our

IMDB example, let us assume we have the fairly conventional database schema shown

in Figure 7.28. As previously discussed, there is only one table for all the single-valued

items and multiple tables for each multi-valued items. For instance, the title, year and

total user rating of a movie are stored in the single-valued table. While the genre or

plot keywords are each stored in separate tables. Setting up the back-end consists of

creating lookup tables for the facets, indexing the data with Sphinx, and creating the

search clients with fSphinx and SimSearch.

Sphinx has attributes which are additional values that can be used to perform further

filtering and sorting during search. In fact, every facet in fSphinx must be declared as
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Figure 7.28: A typical DB schema with one table for single-valued items and multiple tables

for each multi-valued items.

an attribute. However, Sphinx has a limitation with multi-value attributes which can

only contain integers. In order to circumvent this issue, we need to create lookup tables

to map integers to facet values. The lookup tables should then be passed to the facet

of the fSphinx client. Creating a lookup table is as easy as performing a MySQL select

group by statement on the facet values. For example, to create the lookup table for the

genre facet, all that is required is the following SQL statement. Here we create a table

genre tags which maps facet ids to corresponding facet values.

set @i := 0;

insert genre_tags

select @i := @i + 1, genre from genres group by genre;

Next we need to write a configuration file in order to tell Sphinx how to index the

data. The process is fairly straightforward and boils down to writing a couple of SQL

statements which specify what parts of the database should be indexed. The interested

reader is encouraged to consult the Sphinx documentation for more details on this issue.

Now we are ready to create an fSphinx client to query the index. As we have seen, an

fSphinx client is just a Sphinx client but with additional functions to facilitate faceted

search. The details as to how to setup a fSphinx client can be found in the tutorial

online or provided in the Appendix A. The process boils down to mentioning how to
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retrieve hits from the database, creating the facets and attaching them to the client. It

is recommended to put all the boiler plate of the client setup in a configuration file.

As previously discussed, Cloud Mining provides an interesting feature of combining

full text with item based search. This feature is provided by SimSearch with the

SimClient class. The details as to how to setup a SimClient is provided in the tutorial

online or at the end of this thesis in Appendix B. Basically a SimClient behaves like

a normal fSphinx client with the di↵erence that upon seeing a similarity search query,

the results and facets are re-ranked by a chosen function. This function can take into

account a Sphinx attribute called log score attr in its computation. The value of the

attribute is automatically updated by SimSearch with the similarity scores of each

document matching the query items. It must be declared as a float and set to 0 in

the Sphinx configuration file. The indexing of items has been covered in the previous

section and is further detailed in the tutorial found in the Appendix A.

7.6.3 Creating the Instance

The fSphinx client or SimSearch client each have a command line interface. This is a

useful for testing queries or for debugging. However, in order to setup the web interface

the clients must be registered within a Cloud Mining instance. This is performed by

calling on the set fsphinx client or the set sim client method of the CloudMiningApp

object. Another way is to simply specify a directory that holds all the configuration

files of a Cloud Mining instance. For example, the directory examples/dblp holds all

the files necessary to build the DBLP instance.

As previously mentioned the CloudMiningApp object is a web.py application that

is run like any other web applications. The default look and feel of the interface can be

customized. As previously discussed, there are basically two levels of customizations.

The first level is performed by setting some options, possibly at run time, either di-

rectly within the fSphinx or SimSearch client or within the application. For example,

the sorting functions are setup directly in the fSphinx client. While the look and feel

of a single facet can be changed by calling on the set ui facet method of the applica-

tion. The second level is used for more aesthetic drastic changes of the interface. In

this case, the designer can override a chosen set of templates by calling on the method
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override template of the CloudMiningApp object. There are many more methods docu-

mented in the API that the interested reader is encouraged to consult. We also provide

a brief tutorial at the end of this thesis in Appendix C.

Figure 7.9 shows a Cloud Mining interface before and after customization. We have

added new sorting functions by popularity, date or user ratings (6) in our fSphinx client

configuration file. The document surrogate template has been overridden to display the

cover image of each movie as well as links to picture galleries or trailers (3). The color

palette of each facet was modified as well as the available visualization by calling on

the set ui facet method (4) and (5). The end result is a full scale exploratory search

system written with just a few lines of code.

7.7 Conclusion

As previously stated, our goal with Cloud Mining was to build a system which would

embody most of the ideas on exploratory search previously discussed in this thesis.

The underlying motivation of this work, and main contribution towards the thesis,

is to show how traditional faceted search systems could naturally be extended with

core exploratory search functionalities. First, the facets are extended with di↵erent

visualizations which are selectable at run time. Second, although not currently part

of Cloud Mining, search views are also a natural addition. Third, in order to help

discover whole new sets of interest, previously unreachable with traditional text search,

item based search should also be integrated within the system. As we have previously

described with Cloud Mining, this functionality can be naturally implemented either

as a search mode or as another facet. In fact, as previously shown, instances built with

Cloud Mining allow users to combine textual queries with whole items. Fourth, since

there isn’t one ESS for every application, the system must be thought as a framework

or as a platform extensible with plugins, and with instances tunable to a particular

document collection of choice. The plugins include the di↵erent views for the facets or

for the search results, as well as di↵erent feature extractors for item based search.

More concretely, in Cloud Mining, each exploratory search function is performed

by a separate module that can be used independently. Faceted search is performed by

fSphinx, while item based searches are carried over by SimSearch. The default interface
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and user interaction is carefully designed according to usability principles, but the final

look and feel is eventually customized either by specifying some options at run time or

by overriding a set of templates. New facet views can easily be added, as well as new

feature extractors for SimSearch. Cloud Mining was tested on large publicly available

datasets which, for the occasion, were significantly enhanced. The software, underlying

modules and built instances are freely available under an open source license.

However, Cloud Mining is still a work in progress and several new features are

envisioned in the short term. First, we would be interested to add search views as

pluggable widgets. These could include a map view and a space-time view, as explained

in chapter 5. Second, Cloud Mining could feature di↵erent skins, possibly but not

necessarily, for di↵erent devices such as tablets or phones. Third, an entity extraction

module should be provided. This latter could help in resolving the lack of metadata

issue discussed in chapter 4, and encountered while building a WikiLeaks cable instance.

Fourth, each instance could make use of a social module to vote, comment, edit or

curate the documents found. This is a currently important missing piece of Cloud

Mining which should help in implementing the pipelining idea approach to information

overload described at the of chapter 5. Fifth, similarity search should be improved

in order to allow for queries made of items not necessarily present in the document

collection.

In the long term, we would like to make Cloud Mining into a fully scalable pluggable

search solution. This would include the creation of an ecosystem for shared datasets,

search components, and instances, as discussed at the end of chapter 5. Along with

this ecosystem, an interface to help designers visually build instances should be made

available. At the end Cloud Mining could become a solution provided over the cloud

requiring no installation whatsoever.
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Conclusion

In this thesis we have covered what we believe would be the main ingredients of an

exploratory search system (ESS). In essence a system which is exploratory should em-

ploy multiple modes of interaction such as textual queries, facets, visual results and

query-by-example. The goal of the thesis was to show how all of these elements could

be integrated into a typical faceted search system that users are already accustomed to.

In this respect, we propose that the future of exploratory search might be a traditional

faceted search system, but with the added ingredients of information visualizations and

query-by-example. In order to come to this conclusion and to illustrate our ideas, we

first had to review the current status quo (chapters 1, 2, 4, 5, 6), and to see how it

can be extended. For the first two chapters, this led to the creation of Biomed Search

(chapter 3), and for the next chapters to the creation of Cloud Mining (chapter 7).

Biomed Search, has been positively received by the community. The system indexes

over 1 million images from the biomedical domain. It features the novel characteristics

of indexing the text caption of an image as well as the text which refers to the image.

We noticed that indexing the referring text to images yields a greater recall while not

undermining precision. At the interface level, the grid view with zoom in/out sparked

a lot of ideas as to how to represent search results more graphically. Users were also

indirectly asking for a search experience which is faceted and visual. Moreover, content

based type of searches were also an indirectly highly demanded feature. The work on

Biomed Search naturally led to the creation of Cloud Mining.

Cloud Mining, is a framework to instantiate ESSs. On the back-end, it is comprised

of two other software which can be used independently. First, fSphinx, interacts with

Sphinx in order to facilitate faceted search. Second, SimSearch, is an item based search

engine implementing Bayesian Sets, that performs query-by-example. In order to test

out the framework, we applied Cloud Mining to three instances with datasets such as
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DBLP, IMDb and MEDLINE. Each of these dataset were significantly enhanced with

citations from CiteSeerX and PubMed Central for DBLP and MEDLINE respectively.

Finally, Cloud Mining and all its components are available under an open source license.

The chief result of this work and main contribution of this thesis come as lessons

learned, suggestions or recommendations as to how extend the current paradigm of

faceted search into the one of exploratory search, as we have done while designing

Cloud Mining. First, search results and facets should support di↵erent views in order

to provide an overall analysis of the document collection. On the back-end, those

views should be implemented as plugins, as there are as many of them as di↵erent

visualizations for a given data type. On the front-end, views could be integrated in

a traditional faceted search interface, by adding a roll-down menu next to the search

results and next to each facet. Users are them able to select the right set of views for

the task of interest. Second, as previously mentioned, ESSs should be able to present

sets of similar documents as well as discover new ones. On the back-end, item based

search implemented with Bayesian Sets is the right paradigm as it reduces the handling

of complex content based searches to choosing the right plugin i.e. feature extractor. On

the front-end, item based search could always be integrated, in a standard faceted search

interface, either as a search mode or as another facet. Third, good engineering practices

and the broad set of di↵erent applications for exploratory search require a system to be

designed in a generic manner. In this respect, the system should be extensible with the

plugins previously discussed of search views, facet views and feature extractors, with a

final interface tunable to the particular collection of choice. Fourth, those plugins should

be part of an ecosystem website where developers can submit new ones for designers to

pick from.

As mentioned, Cloud Mining is an application of that vision. First, the facet values

can be viewed in many di↵erent ways. Second, multiple-item based searches are possible

and can be combined with textual queries. Third, Cloud Mining provides a flexible

architecture in which all instances run from the same code base. This lays the track

to a completely pluggable search framework, in which a designer will be able to build

ESSs by simply dragging and dropping di↵erent search components or widgets, each

performing a specific task within the interface. In Cloud Mining, the facets can be

added or removed dynamically. The customization of the interface happens at various
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levels either by specifying some options at runtime or by overriding a set of templates.

New facet views can be created, shared and/or re-used by other designers.

It is our belief that the concepts exposed in this thesis of facets, visual results, and

query-by-example will be an integrand part of ESSs. In this respect, these notions

should be thought to go beyond the medium of personal computers. In the near fu-

ture, users will have ubiquitous access to large tactile displays, virtual and augmented

reality devices. This stresses the importance of having a pluggable search framework

or platform skinable and adaptable to the particular device of choice. However, it is an

open question as to how open ended these systems should be in order to accommodate

for all these di↵erent types devices and possible paradigm shifts. As in Figure 7.29,

a group of users directly manipulate the content of a document collection with subtle

hand gestures, as well as collaborate on their findings. But even then, the concepts of

text search, facets, visual results and query-by-example may still remain relevant, and

therefore pervasive and universal.

Figure 7.29: The future of search (courtesy of JR Schmidt)

At the end of chapter of 5, we have drafted what could be the next steps for a system

such as Cloud Mining. The goal would be to drive every one of its components by a

community of users. The datasets should be comment-able, editable, subject to voting
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and sharable among users. In a similar manner, every interaction widget such as facets

or search views should be sharable and reusable across instances. Additionally, every

instance should have social and collaborative features. This could include the ability to

mark, tag, comment, vote upon or even edit potentially interesting documents. These

actions, performed by many users, would then close the loop on the uploaded datasets,

enriching them in the process and reused by yet another ESS for a perhaps completely

di↵erent task. By providing these tools, a process known as crowdsourcing can take

place, which subsequently would make sense of a large amount of data, and in a way pro-

vide a solution to information overload. Human augmentation intelligence may thereby

be achieved, not only with the tools, but also by the work of every interconnected agent

involved in the process. This could lead to the emergence of a higher level type of

collective intelligence. Once that point is reached, the “enlightened society” that Bush,

Licklider, Engelbart and others had dreamed of may actually become a reality.



187

Appendix A

fSphinx Tutorial

This tutorial on fSphinx is aimed at users with some familiarity with Sphinx. If you

are not familiar with Sphinx, I invite you to check out the excellent book from O’Reilly

or to go through the Sphinx documentation. Throughout this tutorial we will assume

that the current working directory is the “tutorial” directory. All the code samples can

be found in the file “./test.py”.

A.1 Setting up and Indexing Data

This tutorial uses a scrape of the top 400 movies found on IMDb. First let’s create a

MySQL database called “fsphinx” with user and password “fsphinx”.

In a MySQL shell type:

create database fsphinx character set utf8;

create user ’fsphinx ’@’localhost ’ identified by ’fsphinx ’;

grant ALL on fsphinx .* to ’fsphinx ’@’localhost ’;

Now let’s load the data into this database:

mysql -u fsphinx -D fsphinx -p < ./sql/imdb_top400.data.sql

Let Sphinx index the data (assuming indexer is in /user/local/sphinx/):

/user/local/sphinx/indexer -c ./ config/sphinx_indexer.conf --all

And let searchd serve the index:

https://github.com/alexksikes/fSphinx
http://sphinxsearch.com
http://oreilly.com/catalog/9780596809553
http://sphinxsearch.com/docs/
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/user/local/sphinx/searchd -c ./ config/sphinx_indexer.conf

You can now create a file called “ test.py”:

# importing the required modules

import sphinxapi

from fsphinx import *

# let’s build a Sphinx Client

cl = sphinxapi.SphinxClient ()

# assuming searchd is running on 10001

cl.SetServer(’localhost ’, 10001)

# let’s have a handle to our fsphinx database

db = utils.database(dbn=’mysql ’, db=’fsphinx ’, user=’fsphinx ’, passwd=’fsphinx ’)

# let’s have a cache for later use

cache = RedisCache(db=0)

A.2 Setting up the Facets

Every facet in fSphinx must be declared as an attribute either single or multi-valued.

The file “./config/sphinx indexer.conf” holds Sphinx indexing configurations. For the

director facet, this file must have the following lines:

# needed to create the director facet

sql_attr_multi = \

uint director_attr from query; \

select imdb_id , imdb_director_id from directors

Additionally every facet (except facets with numerical value terms) must have a

corresponding MySQL table which maps ids to terms. Let’s have a look at the direc-

tor terms table:

select * from director_terms limit 5;

+----+------------------+

| id | director |

+----+------------------+

| 5 | Ingmar Bergman |

| 19 | Federico Fellini |

| 33 | Alfred Hitchcock |
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| 36 | Buster Keaton |

| 37 | Gene Kelly |

+----+------------------+

Going through sphinx indexer.conf, we see that we have at our disposal the following

facets: year, genre, director, actor and plot keywords. Each but the year facet has a

corresponding MySQL table which maps ids to term values. When the facet terms are

numerical, as in the year facet, there is no need to create an additional MySQL table.

A.3 Playing with Facets

Creating a facet to be computed is easy:

# sql_table is optional and defaults to (facet_name)_terms

factor = Facet(’actor ’, sql_table=’actor_terms ’)

# the sphinx client is what will perform the computation

factor.AttachSphinxClient(cl , db)

# let’s set the number of facet values returned to 5

factor.SetMaxNumValues (5)

Here we have created a new facet of name “actor” with terms found in the MySQL

table named “actor terms”. We also need to attach a SphinxClient to perform the

computation and pass a handle to our database to fetch the results. Additionally we

have limited the number of facet values to 5.

We can proceed and compute this facet:

# computing the actor facet for the query "drama"

factor.Compute(’drama’)

At this point it’s important to step back and understand what happened. fSphinx

called Sphinx to process the query. The results are then found in factor.results. This

later holds some basic statistics such as the time it took to compute or the total number

of facet values found. The list of facet values is providing in factor.results[‘matches’].

Each facet value is a dictionary with the following key-values:

@groupby: id of the facet value indexed by Sphinx.

@term: term of the facet value fetched from MySQL.
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@count: number of times this facet term appears.

@groupfunc: value of a custom grouping function (see next section).

@selected: whether this facet has been selected (see section on multi -field

queries).

In fact we can print the facet and see for ourselves:

# let’s see how this looks like

print factor

actor: (5/3563 values group sorted by "@count desc" in 0.030 sec.)

1. Al Pacino , @count=7, @groupby =199, @groupfunc =7, @selected=False

2. John Qualen , @count=6, @groupby =702798 , @groupfunc =6, @selected=False

3. Morgan Freeman , @count=6, @groupby =151, @groupfunc =6, @selected=False

4. Robert De Niro , @count=9, @groupby =134, @groupfunc =9, @selected=False

5. Robert Duvall , @count=6, @groupby =380, @groupfunc =6, @selected=False

By default facets are grouped by their terms, sorted by how many times they appear

and ordered alphabetically. Let’s group sort our facet by a custom function which

models popularity.

# setting up a custom sorting function

factor.SetGroupFunc(’sum(user_rating_attr * nb_votes_attr)’)

You can pass to SetGroupSort any Sphinx expression wrapped by an aggregate

function such as avg(), min(), max() or sum(). Sphinx provides a rather long list of

functions and operators which can be used in this expression.

Let’s additionally order the final results by the value of this expression:

# @groupfunc holds the value of the custom grouping function

factor.SetOrderBy(’@groupfunc ’, order=’desc’)

Now we can compute the facet and print it:

# computing the actor facet for the query "drama"

factor.Compute(’drama’)

# let’s what we get

print factor

actor: (5/3563 values group sorted by "@groupfunc desc" in 0.012 sec.)

1. Morgan Freeman , @count=6, @groupby =151, @groupfunc =1218292.125 ,

@selected=False

http://sphinxsearch.com/docs/manual-2.0.1.html#expressions
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2. Robert De Niro , @count=9, @groupby =134, @groupfunc =933700.375 ,

@selected=False

3. Al Pacino , @count=7, @groupby =199, @groupfunc =868737.0 , @selected=

False

4. Robert Duvall , @count=6, @groupby =380, @groupfunc =800953.3125 ,

@selected=False

5. John Cazale , @count=5, @groupby =1030 , @groupfunc =676553.75 , @selected=

False

A.4 Performance, Caching and Multiple Facets

Most of the time we have many facets from which we may want to refine from. Calling

Sphinx each time would be rather ine�cient. Also we’d like to make good use of

some of the great optimization Sphinx provides with batched queries. Also since facet

computation is expensive, we’d like to make sure the computation is cached when

possible.

Let’s first create another facet to refine by year:

# sql_table is optional and defaults to (facet_name)_terms

fyear = Facet(’year’, sql_table=None)

Since year is a numerical facet, we didn’t need a MySQL table for the term values.

Instead we explicitely pass “None” to the sql table parameter.

Now we can create a group of facets which will carry the computation of the year

and actor facet all at once:

# let’s put the facets in a group for faster computation

facets = FacetGroup(fyear , factor)

# as always Sphinx is what carries the computation

facets.AttachSphinxClient(cl , db)

# finally compute these two facets at once

facets.Compute("drama", caching=False)

If we were to print this group of facets, we would have the same results as if the year

and actor facets had been computed independently. Note that we can setup each facet

di↵erently, say we’d like to group sort by count on the year facet but by popularity on

the actor facet.
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As we discussed above the facet computation can be expensive, so we better make

sure we don’t perform the same computation more than once. Let’s have a cache on

our facets.

# turning caching on

facets.AttachCache(cache)

The object cache is the RedisCache we have previsouly created. The cache has a

couple of options you can setup such as the amount of memory to use and the expiration

on the keys. Each facet computation within the group is cached independantly.

Now we can perform our computation as usual:

# computing facets twice with caching on

facets.Compute(’drama’)

facets.Compute(’drama’)

assert(facets.time == 0)

# this makes sure the facet computation is not fetched from the cache

facets.Compute(’drama’, caching=False)

assert(facets.time > 0)

We can also preload the facet cache computation within the cache. To preload your

facets starting from a query (usually the empty query) and recursively down to every

facet values, have a look at the tool preload facets.py (see section on tools).

A.5 Playing With Multi Field Queries

A crucial aspect of faceted search is to let the user refine by facet values. A user may

also want to toggle on or o↵ di↵erent facet values and see the results. To do so easily

fSphinx supports a multi-field query object.

# creating a multi -field query

query = MultiFieldQuery(user_sph_map ={’actor’:’actors ’, ’genre’:’genres ’})

This creates a query parser for a multi-field which maps the user search in “actor”

or “genre” to a Sphinx search in the fields “actors” or “genres” respectively.

Now let’s parse a query string:

# parsing a multi -field query
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query.Parse(’@year 1999 @genre drama @actor harrison ford’)

The multi-field query object has a couple of representations. The first one is the

query as represented by the user.

# the query the user will see: ’(@year 1999) (@genre drama) (@actor harrison ford

)’

print query.user

Then there is the query which will be passed to Sphinx. Since we mapped genre to

genres, here is what we get:

# the query that should be sent to sphinx: ’(@year 1999) (@genres drama) (@actors

harrison ford)’

print query.sphinx

We can toggle any terms on or o↵ and see how the user and the Sphinx query di↵er:

# let’s toggle the year field off

query[’@year 1999’]. ToggleOff ()

# the query the user will see: ’(@-year 1999) (@genre drama) (@actor harrison

ford)’

print query.user

# the query that should be passed to Sphinx: ’(@genres drama) (@actors harrison

ford)’

print query.sphinx

In order to know if a facet value has been selected, the “in” operator is overloaded:

# is the query term ’@year 1999’ in query

assert(’@year 1999’ in query)

There is a unique / canonical representation of the query which could be used for

caching:

# a canonical form of this query: (@actors harrison ford) (@genres drama)

print query.uniq

Another representation is in the form of a pretty url:

# a unique url path representing this query: /actor/harrison+ford/genre/drama/

year /*1999/? ot=210
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print query.ToPrettyUrl ()

Finally we can pass a query object to Compute as if it was a normal string. However

the SphinxClient match mode must be set to extended2:

# setting cl to extended matching mode

cl.SetMatchMode(sphinxapi.SPH_MATCH_EXTENDED2)

# and now passing a multi -field query object

factor.Compute(query)

# and looking at the results

print factor

actor: (5/25 values group sorted by "@groupfunc desc" in 0.020 sec.)

1. Frederic Forrest , @count=2, @groupby =2078 , @groupfunc =161016.6875 ,

@selected=False

2. Harrison Ford , @count=2, @groupby =148, @groupfunc =161016.6875 , @selected=

True

3. Jerry Ziesmer , @count=1, @groupby =956310 , @groupfunc =137119.265625 ,

@selected=False

4. G.D. Spradlin , @count=1, @groupby =819525 , @groupfunc =137119.265625 ,

@selected=False

5. Kerry Rossall , @count=1, @groupby =743953 , @groupfunc =137119.265625 ,

@selected=False

6. James Keane , @count=1, @groupby =443856 , @groupfunc =137119.265625 ,

@selected=False

We see that the facet value “Harrison Ford” has been properly marked as selected.

A.6 Retrieving Results

fSphinx internally uses an object called DBFetch which retrieves the terms from the

facets. This object may be used independently:

# let’s fetch the results from the DB

db_fetch = DBFetch(db , sql =

’’’select

imdb_id , filename , title , year , plot ,

(select group_concat(distinct director_name separator ’@#@ ’) from directors

as d

where d.imdb_id = t.imdb_id) as directors

from titles as t

where imdb_id in ($id)
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order by field(imdb_id , $id)

’’’)

The sql parameter is a SQL statement with the special variable $id which will be

replaced by the ids that Sphinx returns. Here we are asking to fetch the title, year, plot

and list of directors from the DB.

# let’s perform a simple query

results = cl.Query(’movie ’)

# and fetch the results form the DB

hits = db_fetch.Fetch(results)

The object “hits” behaves like a normal sphinx result set. However each match has

an additional field called “@hit” for each field value retrieved. Let’s see how this looks

like (only showing the first result and omitting some lengthy attributes):

# looking at the hits

print hits

matches: (7/7 documents in 0.000 sec.)

1. document =56687 , weight =1

year_attr =1962, user_rating_attr =0.800000011921 , runtime_attr =134

plot=In a decaying Hollywood mansion , Jane Hudson , a former child star ,

and her sister Blanche , a movie queen forced into retirement after a

crippling accident , live in virtual isolation.

directors=Robert Aldrich

imdb_id =56687

title=What Ever Happened to Baby Jane?

year =1962

filename=e9278ce4f803b6795a83174a86f3289d

...

words:

1. "movie": 7 documents , 7 hits

Additionnaly we may want to post-process the results returned by DBFetch. For

example we grouped the directors with a phony separator. Let’s have DBFetch return

these values as a list instead of as a concatenated string.

# make sure directors are returned as a list instead of as a concatenated string

db_fetch.post_processors = [SplitOnSep(’directors ’, sep=’@#@’)]
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There are post-processors to build excerpts and to highlight results or you can write

your own.

A.7 How about item based search?

To look up similar things and search for whole items, have a look at SimSearch.

# make sure you have SimSearch installed

import simsearch

# assuming we have created a similarity search index

index = simsearch.ComputedIndex(’./data/sim -index/’)

# and a query handler to query it

handler = simsearch.QueryHandler(index)

# and wrap cl to give it similarity search abilities

cl = simsearch.SimClient(cl , handler)

# order by similarity search scores

cl.SetSortMode(sphinxapi.SPH_SORT_EXPR , ’log_score_attr ’)

# looking for movies similar to Terminator (movie id = 88247)

cl.Query(’@similar 88247’)

A.8 Putting Everything Together

fSphinx can replace a normal SphinxClient entirely. Every feature discussed above can

be attached to the client.

Let’s create an FSphinxClient:

# creating a sphinx client

cl = FSphinxClient ()

# it behaves exactly like a normal SphinxClient

cl.SetServer(’localhost ’, 10001)

Now let’s attach a db fetch object to retrieve results from the db:

# get the results from the db

cl.AttachDBFetch(db_fetch)

https://github.com/alexksikes/SimSearch
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Let’s attach the facets we made above:

# attach the facets

cl.AttachFacets(fyear , fgenre)

And finally we can run the query:

# running the query

cl.Query(’movie ’)

# or pass a MultiFieldQuery

cl.Query(query)

The results can be found cl.query, cl.hits and cl.facets and are the same as if com-

puted independently.

A.9 Playing With Configuration Files

Lastly we can put all these parameters in a single configuration file. A configuration

file is a plain python file which creates a client called “cl” in its local name space. Have

a look at “./config/sphinx client.py”.

Let’s create a client using a configuration file:

# create a fSphinx client from a configuration file

cl = FSphinxClient.FromConfig(’./ config/sphinx_client.py’)

Now we can run our query as usual:

# querying for "movie"

cl.Query(’movie ’)

A.10 Additional Tools

A configuration file can be passed to “search.py” at the command line:

python ../ tools/search.py -c config/sphinx_client.py ’harrison ford’

This tool provides a command line interface to fSphinx which could be used for

testing and debugging.
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The cache can be pre-computed or pre-loaded using the tool “preload cache.py”.

python ../ tools/preload_cache.py -c config/sphinx_client.py ’’

This will compute the facets given in “sphinx client.py” for the empty query (full

scan) and perform this computation for every facet value under it. It is important to

note that by default every preloaded facet will always persist in the cache (the key will

not expire). It is assumed that your configuration file has either a cache attached to

the facets or to the entire client. In the later case the computation of the search is also

cached along with the computation of the facets.

A.11 Cool, Now I’d like an Interface

Now that you got yourself setup on the backend, you might still want an interface. You

may also be interested in choosing between di↵erent visualizations for your facets. If

this is the case, have a look at Cloud Mining. Cloud Mining uses the configuration file

(discussed above) to build a complete search interface.

python /path/to/cloudiminig/tools/serve_instance -c config/sphinx_client.py

A.12 I don’t even have data, how do I start?

If you’d like to scrape websites on a massive scale, feel free to give Mass Scrapping a

shoot. It’s a tool I made which makes it easy to retrieve, extract and populate data. It

was used to download all the content from the IMDb website in order to make this.

https://github.com/alexksikes/cloudmining
https://github.com/alexksikes/mass-scraping
http://imdb.cloudmining.net
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Appendix B

SimSearch Tutorial

In this tutorial, we will show how to use SimSearch to find similar movies. The

dataset is taken from a scrape of the top 400 movies found on IMDb. We assume the

current working directory to be the “tutorial” directory. All the code samples can be

found in the file “./test.py”.

B.1 Loading the Data

First thing we need is some data. We will be using the same dataset as the one in the

fSphinx tutorial. If you don’t already have the data, create a MySQL database called

“fsphinx” with user and password “fsphinx”.

In a MySQL shell type:

create database fsphinx character set utf8;

create user ’fsphinx ’@’localhost ’ identified by ’fsphinx ’;

grant ALL on fsphinx .* to ’fsphinx ’@’localhost ’;

Now let’s load the data into this database:

mysql -u fsphinx -D fsphinx -p < ./sql/imdb_top400.data.sql

B.2 Creating the Index

In this toy example we will consider two movies to be similar if they share “specific”

plot keywords. Let’s first have a quick look at our movies. In a mysql shell type:

https://github.com/alexksikes/SimSearch
https://github.com/alexksikes/fSphinx/blob/master/tutorial/
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use fsphinx;

select imdb_id , title from titles limit 5;

+---------+--------------------------+

| imdb_id | title |

+---------+--------------------------+

| 111161 | The Shawshank Redemption |

| 61811 | In the Heat of the Night |

| 369702 | Mar adentro |

| 56172 | Lawrence of Arabia |

| 107048 | Groundhog Day |

+---------+--------------------------+

Now let’s create an index and add some keywords of interest:

import simsearch

from pprint import pprint

# creating the index in ’./data/sim -index/’

index = simsearch.FileIndex(’./data/sim -index ’, mode=’write ’)

# adding some features for the item id 111161 and 107048

index.add (111161 , ’prison ’)

index.add (111161 , ’murder ’)

index.add (111161 , ’shawshank ’)

index.add (107048 , ’weatherman ’)

index.add (107048

index.add(’weather forecasting ’)

index.close ()

SimSearch has created 4 files called .xco, .yxo, .ids and .fts in ./data/sim-index/.

The files .xco and .yco are the x and y coordinates of the binary matrix. This matrix

represents the presence of a feature for a given item. The file .ids keeps track of all the

item ids with respect to their index in this matrix. Similarly the file .fts keeps track of

the feature values. The line number of the file is the actual matrix index.

If we’d like to build a larger index from a database, we would use the indexer. Let’s

build an index with features from all the plot keywords found on this sample IMDb

dataset.

# let’s create our index

index = simsearch.FileIndex(’./data/sim -index ’, mode=’write ’)

# our database parameters
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db_params = {’user’:’fsphinx ’, ’passwd ’:’fsphinx ’, ’db’:’fsphinx ’}

# an iterator to provide the indexer with (id , feature value)

bag_of_words_iter = simsearch.BagOfWordsIter(

db_params = db_params ,

sql_features = [’select imdb_id , plot_keyword from plot_keywords ’]

)

# create the index provisionned by our iterator

indexer = simsearch.Indexer(index , bag_of_words_iter)

# and finally index all the items in our database

indexer.index_data ()

2012 -10 -03 11:34:11 ,600 - INFO - SQL: select imdb_id , plot_keyword from

plot_keywords

2012 -10 -03 11:34:12 ,894 - INFO - Done processing the dataset.

2012 -10 -03 11:34:12 ,894 - INFO - Number of items: 424

2012 -10 -03 11:34:12 ,895 - INFO - Number of features: 13607

2012 -10 -03 11:34:12 ,895 - INFO - 1.29 sec.

It is important to note that the bag of words iterator is just an example. The indexer

can take any iterator which returns the couple (item id, feature value) for a given item.

The id must be an integer and the feature value must be a unique string representation

of the feature value. However please note that you can also directly create the matrix in

.xco and .yco format and then have SimSearch read it. In fact SimSearch does not care

as to how the features are extracted. All that SimSearch does is the actual matching of

items with respect to these features. For example the matrix could be representing user

preferences. In this case the coordinates (item id, user id) would indicate that user id

has liked item id. The items are then thought to be similar if they share a set of users

liking them (the “you may also like” Amazon feature . . . ).

B.3 Querying the Index

Now we are ready to query this index and understand why things match. At its core

SimSearch performs a sparse matrix multiplication. For speed e�ciency the matrix

must be converted into CSR and loaded in memory. This computed index is then

queried using QueryHandler object.

# let’s create a computed index from our file index

http://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_.28CSR_or_CRS.29
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index = simsearch.ComputedIndex(’./data/sim -index/’)

# and a query handler to query it

handler = simsearch.QueryHandler(index)

# now let’s see what is similar to "The Shawshank Redemption" (item id 111161)

results = handler.query (111161)

print results

You looked for item ids (after cleaning up): 111161

Found 100 in 0.00 sec. (showing top 10 here):

id = 111161 , log score = 18087.2975693

id = 455275 , log score = 17787.5833743

id = 107207 , log score = 17784.619186

id = 367279 , log score = 17782.0579555

id = 804503 , log score = 17780.7218639

id = 795176 , log score = 17779.8914104

id = 290978 , log score = 17777.6663835

id = 51808 , log score = 17777.0082114

id = 861739 , log score = 17776.2298019

id = 55031 , log score = 17776.1551032

SimSearch does not have a storage engine. Instead we have to query our database

to see what these movies are:

select imdb_id , title from titles where imdb_id in

(111161 ,36868 ,120586 ,455275 ,117666 ,40746 ,118421 ,405508 ,318997 ,107207) order

by field(imdb_id ,

111161 ,36868 ,120586 ,455275 ,117666 ,40746 ,118421 ,405508 ,318997 ,107207);

+---------+------------------------------+

| imdb_id | title |

+---------+------------------------------+

| 111161 | The Shawshank Redemption |

| 455275 | Prison Break |

| 107207 | In the Name of the Father |

| 367279 | Arrested Development |

| 804503 | Mad Men |

| 795176 | Planet Earth |

| 290978 | The Office |

| 51808 | Kakushi -toride no san -akunin |

| 861739 | Tropa de Elite |

| 55031 | Judgment at Nuremberg |

+---------+------------------------------+

OK obviously it matched itself, but why did “Prison Break” and “In the Name of

the Father” matched?



B.4. COMBINING FULL TEXT SEARCH 203

# let’s get detailed scores for the movie id 455275 and 107207

scores = handler.get_detailed_scores ([455275 , 107207] , max_terms =5)

pprint(scores)

[{’scores ’: [(u’Prison Break ’, 3.9889840465642745) ,

(u’Prison Escape ’, 3.4431615807611875) ,

(u’Prison Guard ’, 3.3141860046725258) ,

(u’Jail’, 1.906534983820483) ,

(u’Prison ’, 1.8838747581358608)],

’total_score ’: 7.2857111578648492} ,

{’scores ’: [(u’Wrongful Imprisonment ’, 3.5927355935610334) ,

(u’False Accusation ’, 2.6005086594980238) ,

(u’Courtroom ’, 2.2857779746776647) ,

(u’Prison ’, 1.8838747581358608) ,

(u’Political Conflict ’, -0.4062528198464137)],

’total_score ’: 4.3215228336074638}]

Of course things would be much more interesting if we could index all movies in

IMDb and consider other feature types such as directors, actors or, even more desirably,

preference data.

Note that the query handler is not thread safe. It is merely meant to be used once

and thrown away after each new query. However the computed index is and should

be loaded somewhere in memory so it can be reused for subsequent queries. Also note

that SimSearch is not limited to single item queries, you can just as quickly perform

multiple item queries.

Although this is a toy example, SimSearch has been shown to perform quite well

on millions of documents each having hundreds of thousands of possible feature values.

There are also plans to implement distributed search and real time indexing.

B.4 Combining Full Text Search

OK this is rather interesting, however sometimes we’d like to combine full text with

item based search. For example we’d like to search for specific keywords and order these

results based on how similar they are to a given set of items. This is accomplished by

using the simsphinx module. The full text search query is handled by Sphinx so a little

bit of setting up is necessary.

First you need to install Sphinx and fSphinx.

http://sphinxsearch.com
http://sphinxsearch.com
https://github.com/alexksikes/fSphinx
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After you have installed Sphinx, let it index data (assuming Sphinx indexer is in

/user/local/sphinx/):

/usr/local/sphinx/bin/indexer -c ./ config/sphinx_indexer.conf --all

And now let searchd serve the index:

/usr/local/sphinx/bin/searchd -c ./ config/sphinx_indexer.conf

Note that the “sphinx indexer.conf” must have an attribute called “log scores attr”

set to 0 and declared as a float.

# log_score_attr must be set to 0

sql_query = \

select *,\

0 as log_score_attr ,\

from table

# log_score_attr will hold the scores of the matching items

sql_attr_float = log_score_attr

We are now ready to combine full text search with item based search.

# creating a sphinx client to handle full text search

cl = simsearch.SimClient(fsphinx.FSphinxClient (), handler , max_terms =5)

A SimClient wraps a SphinxClient to provide it with similarity search ability.

# assuming searchd is running on 10001

cl.SetServer(’localhost ’, 10001)

# telling fsphinx how to fetch the results

db = fsphinx.utils.database(dbn=’mysql ’, ** db_params)

cl.AttachDBFetch(fsphinx.DBFetch(db , sql=’’’

select imdb_id as id, title

from titles

where imdb_id in ($id)

order by field(imdb_id , $id)’’’

))

# order the results solely by similarity using the log_score_attr

cl.SetSortMode(sphinxapi.SPH_SORT_EXPR , ’log_score_attr ’)

# enable us to search within fields
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cl.SetMatchMode(sphinxapi.SPH_MATCH_EXTENDED2)

# searching for all animation movies re -ranked by similarity to "The Shawshank

Redemption"

results = cl.Query(’@genres animation @similar 111161 ’)

On seeing the query term “@similar 111161”, the client performed a similarity search

and then set the log score attr accordingly. Let’s have a look at these results:

# looking at the results with similarity search

print results

matches: (25/25 documents in 0.000 sec.)

1. document =112691 , weight =1618

...

@sim_scores =[(u’Wrongful Imprisonment ’, 3.5927355935610334) , (u’Prison Escape

’, 3.4431615807611875) , (u’Prison ’, 1.8838747581358608) , (u’Window Washer

’, -0.4062528198464137) , (u’Sheep Rustling ’, -0.4062528198464137)],

release_date_attr =829119600 , genre_attr =[3, 5, 6, 9, 19], log_score_attr

=17772.2988281 , nb_votes_attr =16397

id =112691

title=Wallace and Gromit in A Close Shave

2. document =417299 , weight =1586

...

@sim_scores =[(u’Redemption ’, 1.8838747581358608) , (u’Friendship ’,

0.9769153536905899) , (u’Tribe’, -0.4062528198464137) , (u’Psychic Child’,

-0.4062528198464137) , (u’Flying Animal ’, -0.4062528198464137)],

release_date_attr =1108972800 , genre_attr =[2, 3, 9, 10], log_score_attr

=17771.71875 , nb_votes_attr =10432

id =417299

title=Avatar: The Last Airbender

3. document =198781 , weight =1618

...

@sim_scores =[(u’Redemption ’, 1.8838747581358608) , (u’Friend ’,

1.5656352897757075) , (u’Friendship ’, 0.9769153536905899) , (u’Pig Latin’,

-0.4062528198464137) , (u’Hazmat Suit’, -0.4062528198464137)],

release_date_attr =1016611200 , genre_attr =[2, 3, 5, 9, 10], log_score_attr

=17766.1152344 , nb_votes_attr =99627

id =198781

title=Monsters , Inc.

Again note that a SimClient is not thread safe. It is merely meant to be used once or

sequentially after each each request. In a web application you will need to create a new

client for each new request. You can use SimClient.Clone on each new request for this

purpose or you can create a new client from a config file with SimClient.FromConfig.
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That’s pretty much it. I hope you’ll enjoy using SimSearch and please don’t forget

to leave feedback.

https://mail.google.com/mail/?view=cm&fs=1&tf=1&to=alex.ksikes@gmail.com&su=SimSearch
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Appendix C

Cloud Mining Tutorial

Cloud Mining automatically builds exploratory faceted search systems. It leverages

Sphinx as a full text retrieval engine and fSphinx for faceted search. SimSearch is

used for item based search. The aim is to provide an interface which will encourage

nonlinear search and data exploration. The facets support di↵erent visualizations such

as tag clouds, histogram counts or a rose diagram and can be extended with pluggins.

Create a file called application.py with the following lines:

from cloudmining import CloudMiningApp

# create a new CloudMining web application

app = CloudMiningApp ()

# create a FSphinxClient from a configuration file

cl = FSphinxClient.FromConfig(’/path/to/config/sphinx_client.py’)

# set the fsphinx client of the app

app.set_fsphinx_client(cl)

Execute application.py and aim your browser at http://localhost:8080:

python application.py

On data from IMDb, the interface shown at the top of Figure 7.9 is obtained. After

customization, we obtain the interface shown at the bottom of this figure.

Feel free to try out some instances, here and there. Have a look at the api for

customization and look into some of the example instances provided.

Thank you to Andy Gott for the logo design, FAMFAMFAM and Fugue for the

https://github.com/alexksikes/CloudMining
http://sphinxsearch.com/
https://github.com/alexksikes/fSphinx/
https://github.com/alexksikes/SimSearch/
http://dblp.cloudmining.net
http://imdb.cloudmining.net
http://medline.cloudmining.net
https://github.com/alexksikes/CloudMining/blob/master/cloudmining/api.py
https://github.com/alexksikes/CloudMining/tree/master/examples
http://reallysimpleworks.com/
http://www.famfamfam.com/lab/icons/silk/
http://p.yusukekamiyamane.com/
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icons. Rose diagram thanks to RGraph.

http://www.rgraph.net/
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Rüger, S. (2010). Multimedia information retrieval. Morgan & Claypool Publishers

(p. 106).

Sahami, M., S. Dumais, D. Heckerman, and E. Horvitz (1998). “A Bayesian approach

to filtering junk e-mail.” In: Learning for Text Categorization: Papers from the 1998

workshop. Vol. 62. AAAI Technical Report, pp. 98–105 (p. 102).

Salton, G., A. Wong, and C. S. Yang (1975). “A Vector Space Model for Automatic

Indexing.” In: Communications of the ACM 18.11, pp. 613–620 (p. 11).

Sanfilippo, S. and P. Noordhuis (2011). Redis. http://redis.io/ (p. 140).

Sap (1972). https://www.sap.com (p. 74).

https://www.endeca.com
https://www.palantir.com
http://www.freebase.com/labs/parallax/
http://www.housingmaps.com/
http://www.crummy.com/software/BeautifulSoup/
http://lxml.de/
http://redis.io/
https://www.sap.com


218 BIBLIOGRAPHY

Saracevic, T. (2007). “Relevance: A review of the literature and a framework for thinking

on the notion in information science. Part III: Behavior and e↵ects of relevance.”

In: Journal of the American Society for Information Science and Technology 58.13,

pp. 2126–2144 (p. 8).

Schmidt, J. (2010). Chromotive. http://cargocollective.com/jrschmidt/Chromotive-

Data-Visualization (p. 76).

schraefel, m., M. L. Wilson, A. Russell, and D. A. Smith (2006). “mSpace: Improving

Information Access to Multimedia Domains with Multimodal Exploratory Search.”

In: Communications of the ACM 49.4, pp. 47–49 (p. 61, 64).

Science Daily (2009). Google Earth Aids Discovery Of Early African Mammal Fossils.

http://www.sciencedaily.com/releases/2009/04/090428171006.htm (p. 96).

Seeley, Y. (2004). Solr. http://lucene.apache.org/solr/ (p. 148).

Shneiderman, B., D. Byrd, and W. Croft (1997). “Clarifying search: A user-interface

framework for text searches.” In: D-lib magazine 3.1, pp. 18–20 (p. 17).

Shneiderman, B. and C. Plaisant (2005). Designing the user interface 4th edition. Pear-

son Addison Wesley, USA (p. 16, 17).

— (2006). “Strategies for evaluating information visualization tools: multi-dimensional

in-depth long-term case studies.” In: Proceedings of the AVI workshop on beyond

time and errors: novel evaluation methods for information visualization. ACM, pp. 1–

7 (p. 23).

Shneiderman, B. (1996). “The eyes have it: A task by data type taxonomy for infor-

mation visualizations.” In: Visual Languages, 1996. Proceedings., IEEE Symposium

on. IEEE, pp. 336–343 (p. 73).

Shneiderman, B. and M. Wattenberg (2001). “Ordered treemap layouts.” In: Proceed-

ings of the IEEE Symposium on Information Visualization 2001. Vol. 73078 (p. 86).

Silva, R., K. A. Heller, and Z. Ghahramani (2007). “Analogical Reasoning with Re-

lational Bayesian Sets.” In: Journal of Machine Learning Research 2, pp. 500–507

(p. 117).

Singhal, A. (2001). “Modern Information Retrieval: A Brief Overview.” In: IEEE Data

Eng. Bull. 24.4, pp. 35–43 (p. 8, 10).

http://cargocollective.com/jrschmidt/Chromotive-Data-Visualization
http://cargocollective.com/jrschmidt/Chromotive-Data-Visualization
http://www.sciencedaily.com/releases/2009/04/090428171006.htm
http://lucene.apache.org/solr/


BIBLIOGRAPHY 219

Sinha, R. (2005). “Google’s pragmatic, data-driven approach to user interface design.”

In: January. url: http://rashmisinha.com/2005/01/13/googles-pragmatic-

data-driven-approach-to-user-interface-design/ (p. 23).

Sinitsyn, A. (2006). “Duplicate song detection using audio fingerprinting for consumer

electronics devices.” In: Tenth International Symposium on Consumer Electronics.

IEEE, pp. 1–6 (p. 111).

Smith, D. A., A. Owens, P. Sinclair, P. André, M. L. Wilson, A. Russell, K. Martinez,
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