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ABSTRACT

Expressive richness in natural languages presents a significant chal-

lenge for statistical language models (LM). As multiple word se-

quences can represent the same underlying meaning, only modelling

the observed surface word sequence can lead to poor context cov-

erage. To handle this issue, paraphrastic LMs were previously pro-

posed to improve the generalization of back-off n-gram LMs. Para-

phrastic neural network LMs (NNLM) are investigated in this paper.

Using a paraphrastic multi-level feedforward NNLM modelling both

word and phrase sequences, significant error rate reductions of 1.3%

absolute (8% relative) and 0.9% absolute (5.5% relative) were ob-

tained over the baseline n-gram and NNLM systems respectively on

a state-of-the-art conversational telephone speech recognition sys-

tem trained on 2000 hours of audio and 545 million words of texts.

Index Terms: neural network language model, paraphrase, speech

recognition

1. INTRODUCTION

Natural languages are known for their expressive richness. Multi-

ple surface realizations that are mutually paraphrastic can be used

to represent the same meaning. The mapping from the underlying

meaning to the observed surface realization is often one-to-many.

To handle this problem, it is possible to directly model paraphrase

variants when constructing the LM. Since alternative expressions of

the same meaning are considered, the resulting LM’s context cov-

erage and generalization performance is expected to be improved.

Along this line, the use of word level synonym features derived from

WordNet-type expert resources [10, 12, 9, 5] have been investigated.

In order to model the rich paraphrastic relationship between

longer span syntactic structures, such as phrases, without manually

deriving the associated expert semantic labelling, a novel form of

language model, the paraphrastic LM, was previously proposed

in [18]. A phrase level generative model statistically learnt from

large amounts of standard text data is used to explicitly gener-

ate multiple paraphrase variants for each training data sentence.

Maximizing the marginal probability of these variants produces au-

tomatically smoothed n-gram statistics that are re-distributed over

multiple surface realizations. This intuitively and interpretable dis-

counting method can be exploited by many different forms of LMs

that do not explicitly model the expressive richness of natural lan-

guages. In previous research, this technique were used to improve

the performance of back-off n-gram LMs [18, 20, 19].

NNLMs are widely used in state-of-the-art speech recognition

systems due to their inherently strong generalization performance [2,

The research leading to these results was supported by EPSRC grant
EP/I031022/1 (Natural Speech Technology) and DARPA under the Broad
Operational Language Translation (BOLT) program.

27, 25, 13, 22, 28]. As these models do not explicitly model alter-

native paraphrase variants, paraphrastic modelling can be used to

improve their performance. Paraphrastic feedforward NNLMs are

investigated in this paper. The rest of the paper is organized as fol-

lows. Conventional NNLMs are reviewed in section 2. Paraphrastic

LMs are introduced in section 3. Paraphrastic feedforward NNLMs

are proposed in section 4. In section 5 paraphrastic NNLMs are

evaluated on a state-of-the-art conversational telephone speech tran-

scription task. Section 6 is the conclusion and future work.

2. NEURAL NETWORK LANGUAGE MODELS

In order to handle the data sparsity problem, language modelling

techniques based on a continuous vector representation of word se-

quences, such as neural network LMs (NNLM), can be used. De-

pending on the network architecture being used, they can be cate-

gorised into feedforward NNLMs [2, 27, 25, 13], where a vector rep-

resentation of fixed length history is used, and recurrent NNLMs [22,

28], which use a recurrent vector representation of longer history

contexts. In this paper, feedforward NNLMs are considered.

Feedforward NNLMs represent a fixed length history context

hi =<wi−1, . . ., wi−N+1> of the preceding N−1 words in a con-

tinuous vector space. They provide a smoother and full context span

probability distribution PNN(·|hi) for all words following the current

history without a back-off to lower order distributions as is required

by back-off n-gram LMs. Feedforward NNLMs can be trained using

a cross-entropy based error back-propagation method with a weight

decay regularisation in order to reduce over-fitting. To further speed-

up the training procedure, stochastic back-propagation with a bunch

mode weight update can also be used [27].

To reduce computational cost, shortlist based feedforward

NNLMs [27], where the output layer is limited to the most fre-

quent words, can be used. In order to reduce the bias to in-shortlist

words during training, alternative NNLM architectures that model a

full vocabulary at the output layer, for example, by explicitly mod-

elling the probability mass of out-of-shortlist (OOS) words [25, 13],

can be used. An example 4-gram feedforward NNLM using an

OOS node based architecture is shown in figure 1. It ensures that

all training data are used in NNLM training, and the probabilities of

in-shortlist words are smoothed by the OOS probability mass to ob-

tain a more robust parameter estimation. This form of feedforward

NNLMs is used in the rest of this paper. When NNLMs are linearly

interpolated with back-off n-gram LMs, the probability mass of

OOS words needs to be re-distributed among all OOS words [25].

3. PARAPHRASTIC LANGUAGE MODELS

Paraphrastic Language Models (PLM) [18] directly target expres-
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Fig. 1. A 4-gram feedforward NNLM with an OOS node.

sive richness related variability in natural languages. A statistically

trained phrase level generative model is used to produce multiple

paraphrase variants for each training data sentence. Paraphrastic LM

probabilities are then estimated by maximizing the marginal proba-

bility of these paraphrase sequences. For an L word long sentence

W =< w1, w2, ..., wi, ..., wL > in the training data, the marginal

probability over all paraphrase variant sequences is maximized,

F(W) = ln







∑

ψ,ψ′

,W′

P (W|ψ)P (ψ|ψ′)P (ψ′|W ′)PPLM(W ′)






(1)

where

• PPLM(W ′) is paraphrastic LM probability to be estimated.

• P (ψ′|W ′) is a word to phrase segmentation model assigning

the probability of a phrase level segmentation, ψ′, given a

paraphrase word sequence W ′;

• P (ψ|ψ′) =
∏

v,v′ P (v|v′) uses a phrase to phrase para-

phrase model to compute probability of a phrase sequence

ψ being paraphrastic to another ψ′;

• P (W|ψ) is a phrase to word segmentation model that con-

verts a phrase sequence ψ to a word sequence W , and by

definition is a deterministic, one-to-one mapping, thus con-

sidered non-informative.

3.1 Paraphrase model estimation: In order to generate multi-

ple paraphrase variants {W ′}, the phrase level paraphrase model

{P (v|v′)} in equation (1) needs to be estimated first. To obtain

sufficient phrase coverage, a large number of paraphrase phrase

pairs are required. As it is impractical to obtain expert semantic

labelling at the phrase level, a distributional similarity [8] based

statistical paraphrase extraction scheme that operates on standard

text data [14, 26, 1, 21] is employed. The n-gram paraphrase induc-

tion algorithm proposed in [18] is used. The co-occurrence counts

of two phrases of variable lengths, for example, from one word to

four words maximum, sharing the same left and right three word

contexts, are used to estimate the paraphrase model. Ambiguity can

occur during word to phrase segmentation. If there is no clear reason

to favor one phrase segmentation over another, P (ψ′|W ′) can be

treated as non-informative.

3.2 Paraphrase lattice generation: In order to train paraphrastic

LMs, multiple paraphrase variants are required. Weighted finite state

transducers (WFST) [24] can be can used to efficiently generate

paraphrases [18]. For each training data sentence, the paraphrase

word lattice TW′ is generated using a sequence of WFST composi-

tion operations, before being projected onto the word sequence level

and compressed via the determinization operation. This is given by

TW′ = det
(

πW′

(

TW:W ◦ T
W:ψ ◦ Tψ:ψ′ ◦ Tψ′

:W′

))

(2)

where TW:W is the transducer containing the original word se-

quence, T
W:ψ is the word to phrase segmentation transducer, Tψ:ψ′

the phrase to phrase paraphrase transducer and Tψ′

:W′
the phrase to

word transducer. ◦, det(·) and π(·) denote the WFST composition,

determinization and projection operations.

The phrase to word transducer can be derived by taking the

word to phrase transducer’s inverse (swapping input and out-

put symbols). It is also possible to construct conventional, non-

paraphrastic phrase level LMs using the phrase segmentation trans-

ducer. A non-paraphrastic phrase level lattice Tψ containing all

possible segmentations for the original sentence W is derived as

Tψ = det
(

πψ

(

TW:W ◦ T
W:ψ

))

, before taking the shortest path

associated with the longest available phrase segmentation to obtain a

maximum phrase level constraint. It is possible in general that some

phrases may have no suitable paraphrases available. In order to en-

sure the resulting paraphrase lattice is fully connected, self-reflexive

arcs that map the input phrases to the same output are also included

in the paraphrase transducer with zero cost.
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Fig. 2. A paraphrase lattice for sentence “And I generally prefer”.

In order to deweight the statistics accumulated from very un-

likely paraphrase sequences and improve efficiency, a standard bi-

gram LM trained on the surface word sequence can be applied to the

paraphrase lattices generated using equation (2). Using this WFST



based decoding approach and a paraphrase model trained on 545

million words of conversational data, for a sentence “And I gener-

ally prefer”, an example paraphrase lattice after pruning is shown

in figure 2. Inside the lattice, the following paraphrase variants are

among those generated: “And I just like”, “I mean I want ”, “I guess

I prefer ”, “You know I need”, “And I appreciate ”, “I would have ”,

“‘Cause I like ”, “Well I need ” and “So I like”. As the n-gram based

paraphrase extraction method can also produce phrase pairs that are

non-paraphrastic, antonym word sequences such as “And you know

I hate” were also found in paraphrase lattice before pruning.

3.3 Paraphrastic counts smoothing: The sufficient statistics,

C(hi, wi), used to estimate the probability of a particular n-gram

PPLM(wi|hi) that predicts word wi following history hi, are now

accumulated in the paraphrase lattices via a forward-backward pass,

for example,

C(hi, wi) =
∑

W′

P (W ′|W)CW′(hi, wi) (3)

where CW′(hi, wi) is the count of subsequence <hi, wi> occurring

in paraphrase variant W ′. By discounting and re-distributing statis-

tics to alternative paraphrases of the same word sequence, paraphras-

tic LMs estimated using the above statistics are expected to have a

richer context coverage and improved generalization performance.

This advantage can be exploited by many forms of LMs that do not

explicitly capture the paraphrastic variability in natural languages.

These models include, and are not restricted to, back-off n-gram

LMs as investigated in previous research [18, 19, 20].

4. PARAPHRASTIC FEEDFORWARD NNLMS

Feedforward NNLMs internally cluster different fixed length history

contexts via the similarity measure between their vector space repre-

sentations. The underlying n-gram level vector space smoothing is

different from the sequence level discounting derived from the form

of paraphrastic modelling presented in section 3. During the model

training process, feedforward NNLMs do not explicitly model ex-

pressive richness to improve generalization. An assumption is made

that history contexts that differ significantly in their surface form

or vector representations, despite being strongly related in meaning,

are considered unlikely to share a similar NNLM distribution. This

assumption thus limits the resulting NNLM’s ability to generalize

well to rich alternative expressions of the same meaning. To address

this issue, the general form of paraphrastic modelling presented in

section 3 can also be used to improve feedforward NNLMs’ perfor-

mance.

Feedforward NNLMs also share the same underlying Markov

assumption with back-off n-gram LMs over previous history con-

texts. This advantage alleviates the need to use an explicit N-best

representation of multiple paraphrase variants to obtain the para-

phrastic statistics given in equation (3). A more compact lattice

based paraphrase representation obtained using equation (2) can still

be used. In common with the training of paraphrase back-off n-

gram LMs, the first two generic stages described from section 3.1

to 3.2 to estimate the phrase level paraphrase model and paraphrase

lattice generation are performed first. Then the paraphrastic statis-

tics of the suitable n-gram order, but no other lower order counts

as required in back-off n-gram LMs, are accumulated over all train-

ing data paraphrase lattices using equation (3) via a lattice forward

backward pass.

After being split into single instances and randomized, these

statistics can be used to train paraphrastic feedforward NNLMs us-

ing cross-entropy based error back-propagation in bunch mode, in

the same fashion as the conventional feedforward NNLMs. The

overall model training process is summarized below.

1: phrase level paraphrase model estimation on LM data using the

n-gram paraphrase induction algorithm described in [18];

2: for every sentence in training data do

3: generate a paraphrase lattice using WFSTs as in section 3;

4: accumulate paraphrastic n-gram counts of equation (3) via a

forward-backward pass in the paraphrase lattice;

5: end for

6: integerise the resulting paraphrastic n-gram counts, split them

into single instances before applying randomization;

7: feedforward NNLM training using cross-entropy based error

back-propagation in bunch mode until convergence.

In common with standard feedforward NNLMs, the paraphrastic

NNLM distribution PPNN(·|hi) is interpolated with back-off LMs.

Let P (w̃i|hi) denote the interpolated LM probability for an in-

vocabulary word w̃i following some history hi, this is given by

P (w̃i|hi) = λPNG(w̃i|hi) + (1− λ)PPNN(w̃i|hi) (4)

λ is the weight assigned to the back-off n-gram LM distribution

PNG(·), and kept fixed as 0.5 in all experiments of this paper.

In order to increase the context span, phrase level paraphras-

tic feedforward NNLMs can also be trained. This can be obtained

by optimizing a simplified form of the criterion in equation (1), by

dropping the word to phrase segmentation model P (ψ′|W ′), thus

the sufficient paraphrastic n-gram statistics in equation (3) accumu-

lated on phrase level instead. In order to incorporate richer linguistic

constraints, NNLMs that model different units, for example, words

and phrases, can be used. These NNLMs are interpolated with the

comparable back-off n-gram LMs based on their respective mod-

elling unit, before the two interpolated LMs are finally log-linearly

combined. The resulting multi-level NNLM can be used to further

improve discrimination [15, 16, 17]. This requires word level lattices

to be first converted to phrase level lattices before the log-linear com-

bination is performed. The log-linear interpolation weights were set

equal for word and phrase level LMs, and kept fixed for all experi-

ments of this paper.

5. EXPERIMENTS AND RESULTS

In this section performance of various paraphrastic NNLMs are eval-

uated on the CU-HTK LVCSR system for conversational telephone

speech (CTS) used in the 2004 DARPA EARS evaluation. The

acoustic models were trained on approximately 2000 hours of Fisher

conversational speech released by the LDC. A 59k recognition word

list was used in decoding. The system uses a multi-pass recognition

framework. In the initial lattice generation stage, adapted gender

dependent cross-word triphone MPE acoustic models with HLDA

projected, conversational side level normalized PLP features, and

an interpolated 4-gram word level baseline LM were used. A de-

tailed description of the baseline system can be found in [6]. The

3 hour dev04 data, which includes 72 Fisher conversations, was

used as a test set. For all results presented in this paper, matched

pairs sentence-segment word error (MAPSSWE) based statistical

significance test was performed at a significance level α = 0.05.

The baseline 4-gram back-off LM was trained using a total of

545 million words from 2 text sources: the LDC Fisher acoustic

transcriptions, Fisher, of 20 million words (weight 0.75), and the



University Washington conversational web data [4], UWWeb, of

525 million words (weight 0.25). These LMs are then used for lat-

tice rescoring and word error rate (WER) performance evaluation.

A total of 3.0M phrase pairs were extracted from the Fisher and

UWWeb data. The expert semantic labelling by WordNet also gave

480k paraphrase phrase pairs to further improve coverage. These

were used to generate paraphrases for the Fisher data to train vari-

ous paraphrastic feedforward NNLMs.

5.1. Perplexity of Paraphrastic Feedforward NNLMs

Paraphrastic

LM ffNN dev04

w4g - 51.8

nnw4g × 60.6

nnw5g × 59.2

nn⋆
w4g × 58.0

nnw4g

√
55.9

w4g+nnw4g × 50.0

w4g+nnw5g × 49.4

w4g+nn⋆
w4g × 50.0

w4g+nnw4g

√
49.0

Table 1. Perplexity of word level LMs on dev04. “w4g” denotes a

4-gram back-off LM. “w4g+nnw4g” and “w4g+nnw5g” are interpo-

lated LMs combining “w4g” with a 4/5-gram feedforward NNLM

trained on Fisher data. “nn⋆
w4g” was trained also using resampled

UWWeb data subsets of 7M words at each training epoch.

The perplexity performance of various LMs are shown in table 1.

The 4-gram paraphrastic feedforward NNLM (5th line in table 1),

consistently outperformed the non-paraphrastic, 4-gram and 5-gram

baseline NNLMs (2nd and 3rd lines in table 1) trained on the Fisher

data. A perplexity reduction of 2 points was also obtained over an-

other comparable 4-gram baseline NNLM “nn⋆
w4g” (4th line in ta-

ble 1) that was trained on both the 20M word Fisher data and addi-

tional resampled UWWeb data using the method described in [27].

The size of the resampled UWWeb data subsets used at each training

epoch was approximately 7M words, according to the ratio between

the interpolation weights assigned to the Fisher (weight 0.75) data

and UWWeb data (weight 0.25). The same trend was also found

after these NNLMs were interpolated with the 4-gram LM (1st line

in table 1), as are shown the bottom section of table 1.

5.2. WER Performance of Paraphrastic Feedforward NNLMs

The WER performance of various paraphrastic feedforward NNLMs

are shown in table 2 for dev04. The first 6 baseline LMs are non-

paraphrastic. The word level 4-gram baseline LM “w4g” gave a

WER of 16.7%. The 2nd line table 2 is a multi-level baseline LM,

“w4g ◦ p4g”, which incorporates phrase level constraints by log-

linearly combining the surface word and phrase level 4-gram LMs.

The phrase level LM was trained on the phrase level text data ob-

tained using a longest available word to phrase segmentation as de-

scribed in section 3. This multi-level baseline LM gave a WER

of 16.5%. A small improvement of 0.2% absolute was obtained

over the word level 4-gram baseline LM. The WER performance

of the three baseline feedforward NNLMs previously shown from

line 2 to 4 in table 1 are shown from the 3rd to 5th line in ta-

ble 2. Using the additional web data source UWWeb as in LM

”w4g+nn⋆
w4g” reduced the WER by 0.2%. The same WER of 16.1%

was also obtained using a 5-gram NNLM “w4g+nnw5g”. A compa-

rable multi-level baseline NNLM, “(w4g+nnw4g) ◦ (p4g+nnp4g)” ,

which log-linearly combines surface word and phrase sequence (1.2

words per phrase on average) trained non-paraphrastic feedforward

4-gram NNLMs gave a WER of 15.7%.

Paraphrastic

LM boNG ffNN dev04

w4g × - 16.7

w4g ◦ p4g × - 16.5

w4g+nnw4g × × 16.3

w4g+nnw5g × × 16.1

w4g+nn⋆
w4g × × 16.1

(w4g+nnw4g) ◦ (p4g+nnp4g) × × 15.7

w4g+nnw4g

√ × 16.1

w4g+nnw4g × √
16.0

w4g
√

- 16.4

w4g ◦ p4g
√

- 16.2

w4g+nnw4g

√ √
15.9

(w4g+nnw4g) ◦ (p4g+nnp4g)
√ √

15.4

Table 2. WER Performance of LMs on dev04. “w4g ◦ p4g” denotes

a multi-level LM log-linearly combining word and phrase level 4-

gram back-off LMs, and “(w4g+nnw4g) ◦ (p4g+nnp4g)” a multi-

level LM log-linearly combining word and phrase level feedforward

NNLMs, Other naming conventions same as table 1.

The WER performance of 4 fully paraphrastic LMs (both back-

off LM and NNLM components) are shown from line 9 to 12 in

table 2. They gave consistent WER reductions of 0.3%-0.4% over

their comparable non-paraphrastic baselines from line 1 to 6 in ta-

ble 2, as well as consistent improvements over the two partially para-

phrastic LMs (back-off LM or NNLM component only) shown from

line 7 to 8 in table 2. The best performance was obtained using the

paraphrastic multi-level NNLM, “(w4g+nnw4g) ◦ (p4g+nnp4g)” , as

highlighted in the last line of table 2. It log-linearly combines word

and phrase level feedforward NNLMs, after a linear interpolation

between 4-gram back-off LMs and NNLMs at both word and phrase

level is performed. Using this paraphrastic multi-level NNLM, total

error rate reductions of 1.3% absolute (8% relative) and 0.9% ab-

solute (5.5% relative) were obtained over the baseline 4-gram word

level LM “w4g” and the non-paraphrastic NNLM “w4g+nnw4g” re-

spectively, both being statistically significant.

6. CONCLUSION AND RELATION TO PRIOR WORK

Paraphrastic feedforward NNLMs were investigated in this paper.

Word error rate reductions of 1.3% (8% relative) absolute were ob-

tained on a state-of-the-art large vocabulary speech recognition task.

Consistent with the performance improvements previously obtained

on back-off n-gram LMs [18, 20, 19], experimental results presented

in this paper suggest the proposed method is also effective in im-

proving the generalization performance of feedforward NNLMs. In

contrast, previous research on NNLMs used no explicit paraphrastic

modelling [2, 27, 25, 13, 22]. Future research will focus on improv-

ing paraphrase extraction and paraphrastic modelling for RNNLMs.
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