
Rapid codesign of
a soft vector processor and its compiler

Matthew Naylor and Simon W. Moore
Computer Laboratory, University of Cambridge, UK
{matthew.naylor,simon.moore}@.cl.cam.ac.uk

Abstract—Despite a decade of activity in the development of
soft vector processors for FPGAs, high-level language support
remains thin. We attribute this problem to a design method in
which the high-level vector programming interface is only really
considered once the processor architecture has been perfected,
by which point the designer may be committed to the time-
consuming development of a complicated compiler. In this paper,
we present the codesign of a soft vector processor and a
lightweight compiler, which together lift the level of abstraction
for the programmer while allowing a rapid compiler implementa-
tion phase. We demonstrate the effectiveness of our approach on a
range of applications from digital signal processing, neuroscience,
and machine learning.

I. INTRODUCTION

Motivation. A soft vector processor is a highly-reusable
FPGA core allowing certain applications to be programmed
largely, or entirely, in software, avoiding slow hardware de-
velopment cycles [1]. Furthermore, it can provide excellent
performance. Even a small vector core, fitting in around
10% of a medium-sized FPGA, can saturate off-chip DDR2
bandwidth in serious parallel applications, thus matching the
run-time performance of full-custom hardware pipelines [3],
but implemented with a fraction of the effort. Compared to
the use of multiple scalar cores, a single vector core offers
superior performance per unit area, allowing more compute
capability to be packed into a single FPGA [3].

Our broad motivation is to provide support for the devel-
opment of massively parallel applications using large FPGA
clusters. A key attraction of using commodity FPGA boards
for this purpose is thay they are already equipped with the
advanced communication capabilities needed to obtain a high
degree of scalability. Another attraction is that FPGAs are
highly customisable, not limited to any particular model of
computation, but this is a double-edged sword: application
development is slow if a full-custom approach is taken. There-
fore it is vital to provide reusable cores, such as soft vector
processors, to enable rapid development with judicious use of
full-custom pipelines only where necessary.

Problem. Although the use of a soft vector processor can
greatly reduce development time, programming one can still
involve a plethora of low-level chores – off-putting to potential
users. To illustrate, suppose we wish to code the simple SAXPY
benchmark [4], shown below, using an existing vector core.

for (int i = 0; i < n; i++)
Y[i] = a*X[i] + Y[i];

Figure 1 shows an implementation of this benchmark using
Altera’s NIOS-II processor with BlueVec vector extensions
[3]. Vector instructions, such as Load, Commit, AddW, MulW, and
Store are all C macros that expand to inline assembly code.

void saxpy(int a, int* X, int* Y, int n) {
Load(v0, X); // Load 8 ints into vector
Load(v1, Y); // registers v0 and v1.
for (int i = 0; i < n/8; i++) {
Commit; // Commit prior loads.
Load(v0,X+8); // Pre-fetch data for
Load(v1,Y+8); // next iteration.
MulW(v0,a,v0); // Apply the
AddW(v1,v0,v1); // SAXPY equation.
Store(v0,Y); // Update array Y
X+=8; Y+=8; // Move to next 8 objects.
}
}

Fig. 1. The SAXPY benchmark using the BlueVec soft vector processor.
Note the assembly-level description with explicit chunking of input arrays
into vectors of size 8, software pipelining for parallel fetch and compute, and
manual register allocation.

The details will be explained shortly, but for now it suffices to
see that even this trivial benchmark involves a number of low-
level programming chores such as array chunking (or “strip
mining”), software pipelining, manual register allocation, and
assembly-level coding. This kind of low-level programming is
very typical of soft vector processors in general [1], [2], [5],
[6]. Although the goal to simplify programming is often left as
future work, this ignores the opportunity for the programming
interface to influence the processor architecture, and may lead
to overly-complicated implementation [4].

Contribution. Hardware/software codesign is a method that
aims to exploit the synergy between hardware and software in
order to optimise a system’s design goals [7]. In this paper,
we present the codesign of a soft vector processor – BlueVec-
II – and its compiler, where two of the main design goals
are: (1) to support a higher-level programming interface; and
(2) to do so within a short development period. As a quick
introduction, Figure 2 shows the BlueVec-II implementation of
the SAXPY benchmark, which is noticeably simpler than the
original BlueVec version in Figure 1. In the next section we
use these two examples, and others, to illustrate the important
design choices behind the architecture and compiler.

II. DESIGN

Decoupled vector processing. One of the most common
properties of existing soft vector processors is that they are
tightly-coupled to a host scalar processor. Essentially, this
means that scalar and vector instructions appear together in
a single instruction stream. Control-flow and data frequently
pass back and forth between the scalar host and the vector
co-processor. To illustrate, Figure 1 shows a performance-
critical loop in which some instructions execute on the scalar
unit, e.g. X+=8, some on the vector unit, e.g. Load(v0,X), and
some involve data transfer between the two, e.g. Load(v1,Y+8)

Kernel saxpy() {
Param<int> a;
Param<int*> X, Y;

Stream<int> sX = load(X);
Stream<int> sY = load(Y);
store(a*sX+sY, Y);

return kernel();
}

(a)

load

store

+

* load

a

X

Y

Y

(b)
Fig. 2. The SAXPY benchmark using BlueVec-II. When called, function (a)
constructs an abstract syntax tree (b) which is then compiled to vector code
and written to instruction memory on BlueVec-II. The vector code can then
be invoked when desired using the call function (see text body).

where the value of Y+8 is computed on the scalar unit and
passed as an argument to the vector unit.

One drawback of the tightly-coupled design is the chal-
lenge in developing a compiler which must understand both
scalar code and vector code, as well as the interaction between
the two. Given that the scalar compiler, in our case gcc, is
already highly sophisticated, even the addition of a simple
vector-code compilation pass could require a lot of work. This
is especially the case for a hardware developer (not necessarily
a compiler expert) who may wish to add support for a new
instruction they have added to the vector unit.

To avoid this problem, BlueVec-II adopts a decoupled
design in which the vector and scalar instruction streams are
completely separate. Now vector code can be analysed and
transformed in isolation, independently of the scalar com-
piler. BlueVec-II’s programming interface is implemented as a
lightweight C++ library that runs on the scalar host, generating
vector code and writing it to BlueVec-II’s instruction memory
at run-time. To dynamically compile the kernel defined in
Figure 2 into BlueVec-II instruction memory, we write

Kernel saxpyKernel = saxpy();

This kernel expects three parameters: a, X and Y. To invoke it
from the scalar host, we must pass arguments to be used as
values for these parameters:

call(n, saxpyKernel, a, X, Y);

where n is the length of all arrays processed by the kernel,
in this case the lengths of X and Y. The kernel can be called
as many times as required, and with different arguments each
time. It can also be called asynchronously, allowing the NIOS-
II and BlueVec-II cores to run in parallel, with the two threads
joinable by a call to bluevecSync().

Implicit chunking and double buffering. Figure 1 shows
that, in the tightly-coupled approach, quite a lot of scalar code
is used to keep the vector unit both busy and efficient. First,
the input arrays must be split into eight-element vectors and
processed in a loop since each BlueVec vector register is only
eight elements wide (a process known as strip mining). Second,
a software pipeline must be set up to allow latent memory
accesses to run in parallel with compute. This is achieved
by pre-fetching the first chunks of X and Y outside the loop
(priming the pipeline) and then, in each iteration, pre-fetching
the chunks that will be needed in the next iteration while
processing the latest available chunks. The Commit instruction

Kernel fir(int* filter, int ntaps) {
Param<int*> input, output;

Stream<int> x = load(input);
Stream<int> sum = streamOf(0);

for (int i = 0; i < ntaps; i++) {
sum = sum + x*filter[i];
x = shiftIn(0, x);

}

store(sum, output);
return kernel();

}

Fig. 3. BlueVec-II kernel to implement an N -tap FIR filter. The same task
requires around 40 lines of vector code (excluding code to implement double-
buffering) using the VEGAS vector core.

enables the target registers of the loads to be updated, and
stalls processing until all outstanding loads have completed.

In order to lift the level of abstraction for the programmer,
we generalise fixed-size vectors to arbitrary-sized streams. Our
C++ operations on streams such as

Stream<int> operator+(Stream<int> a,
Stream<int> b)

do not specify how many + operations should be done in
parallel, and how many in sequence. This, along with chunking
and double-buffering, is left to the vector unit hardware. This
is straightforward to implement, and also efficient. It means,
for example, that the explicit scalar instructions required to
implement branching, pointer arithmetic, and pre-fetching in
Figure 1 can be implemented as implicit background opera-
tions in the hardware. It is important, though, that BlueVec-II
operates by dataflow evaluation, i.e. does not attempt to fully
execute one stream instruction before considering the next –
that would be inefficient in terms of the memory needed to
store the intermediate results of a computation.

Vector code analysis and transformation. A soft vector
processor typically contains a set of vector registers which
must be explicitly managed by the programmer. As the number
of vector instructions in a block of code rises, efficient manual
register management becomes a real burden. This is where
the benefits of a decoupled design can be applied. In Figure
2, stream functions such as load, store, - and * actually
construct an abstract syntax tree on the NIOS-II. Only when
the kernel() function is called are the operations compiled to
vector code and transferred to BlueVec-II. Part of this process
includes an automatic liveness analysis and register allocation
phase. As a result, the programmer can simply declare as many
streams as desired – if there is insufficient register capacity, an
error will be reported. To achieve the same degree of automated
code transformation in a tightly-coupled design would require
a more heavyweight solution since vector instructions are
intermingled with a complex scalar instruction set.

Sliding window algorithms. Existing soft vector processors
are commonly applied to the implementation of sliding win-
dow algorithms [1], [2], [6]. For comparison, Figure 3 shows
the BlueVec-II implementation of the classic N -tap FIR filter.
Whereas the scalar implementation of an FIR filter involves
sliding a N -element window (filter) across an input signal,
computing a dot-product at each point, the vector version
involves creating N shifted versions of the input signal such

Kernel ivalueAccum() {
Param<int*> targets, weights;

Stream<int> t = load(targets);
Stream<int> w = load(weights);
storeLocal(loadLocal(t)+w, t);

return kernel();
}

Fig. 4. Updating I-values using lane local memories in BlueVec-II. The
same task requires over 30 lines of code using the BlueVec vector core [3].

that the concatenation of ith elements of each represents the
window at position i. In BlueVec-II this is achieved using the
construct shiftIn(x,s), which shifts stream s right by one
position, inserting x at the front. We also use the construct
streamOf(x) to obtain a stream with value x at every position.
Other sliding window algorithms, such as 2D convolution and
median filtering, are implemented similarly.

An interesting aspect of this example is that C++ is being
used as a meta-language to generate vector code on the scalar
host, e.g. the for statement is executed and unrolled before the
kernel is compiled and passed to BlueVec-II. The example also
illustrates the difference between compile-time and run-time
kernel parameters: whereas values for the parameters filter

and ntaps are supplied when the kernel is compiled, the values
of input and output are supplied on every invocation. The
filter could be moved to a run-time parameter too, with the
overhead of having to pass the N taps on each invocation.

Lane local memories. Just as an FPGA has finite resources,
BlueVec-II has a finite number of parallel execution units –
referred to as vector lanes. As well as an ALU, each vector
lane contains a low-latency on-chip lane local memory [1].
These memories can be accessed using the following stream-
indexed load and store operations.

Stream<int> loadLocal(Stream<int> addr);
void storeLocal(Stream<int> data, Stream<int> addr);

In these operations, the ith value in the address stream addr

is used to index the local memory in lane i mod numLanes. A
common use of lane local memories is to implement lookup
tables that approximate expensive functions. In this case,
although each memory contains the same data table, different
elements can be accessed in parallel by different lanes. The
next sections explore some other uses lane local memories.

Synaptic updates in neural simulation. I-value accumu-
lation is a key process in the simulation of spiking neural
networks [3]. In a typical biological network, each neuron
is connected to thousands of target neurons. When a neu-
ron spikes, some amount of current passes to each target,
depending on the weight of the connection. If these targets and
connection weights are stored in arrays targets and weights,
the input-current (I-value) of each target is updated as follows.

for (int i = 0; i < numTargets; i++)
ivalues[targets[i]] += weights[i]

Figure 4 shows a BlueVec-II kernel to perform this compu-
tation, with I-values. It assumes that the targets array has
been arranged so that the ith element refers to a neuron n
such that i mod numLanes is equal to n mod numLanes. This
means that I-values are distributed evenly over the lane local
memories, and can be updated in parallel.

Kernel resetSum() {
storeLocal(0, streamOf(0));
return kernel();

}

Kernel mulAccum() {
Param<int> factor;
Param<int*> row;

Stream<int> r = load(row);
Stream<int> sum = loadLocal(0);
sum = sum + factor*r;
storeLocal(0, sum);
return kernel();

}

Kernel storeSum() {
Param<int*> output;
store(loadLocal(0), output);
return kernel();

}

Fig. 5. Three BlueVec-II kernels for large matrix multiplication.

Matrix multiplication. Figure 5 shows three BlueVec-II
kernels to implement matrix multiplication, another common
application of soft vector processors from the literature [2],
[6]. These kernels use the following overloaded variants of
the loadLocal and storeLocal functions.
Stream<int> loadLocal(int addr);
void storeLocal(Stream<int> data, int addr);

Instead of taking a stream of addresses, these variants take
the first address of a contiguously aligned stream. The three
kernels use these instructions to reset, accumulate, and store
each row of the result matrix. Assuming the kernels have been
compiled and bound to identifiers resetKernel, accumKernel,
and storeKernel respectively, the following NIOS-II code
multiplies two N× N matrices A and B to produce matrix C.

for (int y = 0; y < N; y++) {
call(N, resetKernel);
for (int x = 0; x < N; x++)

call(N, accumKernel, A[y*N+x], &B[x*N]);
call(N, storeKernel, &C[y*N]);

}

Motion estimation. As a final example of an application often
used in the evaluation of soft vector processors, Figure 6 shows
a BlueVec-II kernel implementing motion estimation. The task
is to compute the sum-of-absolute-differences (SAD) between
a given 16× 16 block and every sub-block of a given search
region. Although just another sliding-window algorithm, it
is interesting because of the size of the window. For large
windows, such as a 16 × 16 block, parallel lanes operate on
highly-shared data and it becomes increasingly important to
cache blocks of data in on-chip memory. We achieve this by
using lane local memories to store the search region. The top-
left co-ordinate of every sub-block of this region is passed to
the kernel via the positions parameter, and the SAD at each
position is written to memory beginning at the address pointed
to by the results parameter. The function abs, to compute the
magnitude |x| of a given value x, is defined as follows.

Stream<int> abs(Stream<int> x)
{ setCond(x < 0); return cond(-x, x); }

The function setCond is used to set a condition register inside
BlueVec-II, and cond uses this register to determine whether
to return its first argument or its second.

Kernel motionEstimation(int width)
{
Param<int*> positions, results;
Param<int> block[16][16];

Stream<int> topLeft = load(positions);
Stream<int> sad = streamOf(0);

for (int y = 0; y < 16; y++)
for (int x = 0; x < 16; x++) {
Stream<int> addr = topLeft+y*width+x;
sad += abs(block[y][x] - loadLocal(addr));
}

store(sad, results);
return kernel();
}

Fig. 6. A BlueVec-II kernel for motion estimation. The task is to compute
the sum-of-absolute differences between a given 16 × 16 block and every
sub-block of a search region of a given width.

III. EVALUATION AND CONCLUSION

BlueVec-II’s high-level programming interface has been
achieved without compromising good performance. For the
DSP benchmarks presented in Section II, Table I shows that a
32-lane BlueVec-II core is competative with the existing 32-
lane VEGAS core [6] on run-time, though falls slightly behind
the recent 32-lane MXP core [10]. In terms of resources, a 32-
lane BlueVec-II consumes 18k ALM logic blocks (20% of a
Stratix IV 230) and 190 M9K BRAMs (15%) – fewer logic
blocks than both VEGAS (37k ALMs) and MXP (46k ALMs).

We now apply a 32-core, 32-lane BlueVec-II arrangement
(1024 lanes in total), running on a cluster of 16 DE4-230
FPGA boards, to the following applications.

1. Simulation of 64k Izhikevich neurons per core with 1k
connections per neuron (targets spread over 3 cores) for
1s of activity with a 1ms time-step and a 10Hz firing rate.

2. A back propagation training run applied to 277 faces, each
120x128 pixels, for 50 epochs, with a hidden layer of one
perceptron per core. Our implementation is based on [8].

Figure 7 shows the 16-FPGA system scales well. For reference,
results from a 32 hyper-thread Xeon server (E5-2680) are
also shown. The Xeon versions have not yet been adapted to
use AVX extensions, though it is unclear if this would affect
scalability. Having observed the DDR2 bandwidth utilisation at
51% and 46% for the BlueVec-II versions of these applications,
we are confident we are getting good performance from our
FPGAs. When data-sets are large and difficult to cache, a soft
vector core can be sufficient to saturate external memory.

Related work. Recently, support for targeting the VENICE
soft vector processor [9] has been added to the Microsoft
Accelerator compiler, which aims to map high-level data-
parallel algorithms onto a range of target platforms, including
GPGPUs and multi-cores. Although the idea is certainly very
attractive, the authors report that the independent developments
of processor and compiler have led to a mismatch in which
a number of key VENICE operations are not expressible in
Accelerator and, vice-versa, some Accelerator operations are
not supported by VENICE. This problem is compounded by
the fact that Accelerator is a licensed commercial product with
a closed-source compiler front-end, hence cannot be modified.

TABLE I. RUN-TIME PERFORMANCE ON SOME DSP BENCHMARKS.

Application Size of BlueVec-II VEGAS MXP
data set (µs) (µs) (µs)

fir (16 tap) 4096 43 47 26
matmul 1024 × 1024 976, 000 720, 000 284, 400
motest 48 × 48 240 247 79
filt3x3 320 × 240 793 753 627

2 4 8 16 32
Number of cores (constant work per core)

2
4
6
8

10
12
14
16

E
xe

cu
tio

n
tim

e
(s

) 16-FPGA system
Xeon server
Izhikevich
Back propagation

Fig. 7. BlueVec-II on a multi-FPGA versus a multi-core Xeon server.

Conclusion. The development of a high-level programming
interface for a soft vector processor can be aided by codesign-
ing that processor together with its compiler. We have seen that
some programming abstractions, such as the generalisation of
fixed-sized vectors to arbitrary-sized streams, can be supported
directly in hardware, with an efficient and straightforward
implemention. We have also seen that the effect of architectural
choices, such as decoupling the vector unit from its scalar
host, can have far-reaching consequences on the compiler.
By separating vector code from the scalar instruction stream,
we could easily implement vector code compilation passes,
such as register allocation, independently of the compiler for
the scalar host language. All this resulted in a custom vector
programming API and compiler, implemented as a lightweight
C++ library, that is easily adaptable by application developers.

The design presented in this paper allows for high-level
descriptions of a range of vector processing tasks with good
performance. Using it, we have demonstrated the potential
of FPGA clusters to implement scalable parallel applications,
and have observed that for some applications near-optimal
performance can be achieved using distributed vector cores
programmed in software. This leaves us with little doubt about
the potential of soft vector processors to support rapid FPGA
development. Techniques for developing high-level program-
ming interfaces are a key step towards realising this potential.
(This work is sponsored by EPSRC grant EP/G015783/1.)

REFERENCES

[1] J. Yu, C. Eagleston, C. H. Chou, M. Perreault and G. Lemieux, Vector
Processing As a Soft Processor Accelerator, ACM TRETS, 2009.

[2] A. Severance and G. Lemieux, Embedded Supercomputing in FPGAs
with the VectorBlox MXP Matrix Processor. CODES 2013.

[3] M. Naylor, P. J. Fox, A. T. Markettos, S. W. Moore, Managing the
FPGA memory wall: Custom computing or vector processing?, FPL’13.

[4] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth
Edition: A Quantitative Approach, Morgan Kaufmann.

[5] P. Yiannacouras, J. G. Steffan, and J. Rose, Vespa: Portable, scalable,
and flexible fpga-based vector processors, In CASES’08.

[6] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and G. Lemieux,
VEGAS: Soft vector processor with scratchpad memory. In FPGA’11.

[7] J. Teich, Hardware/Software Codesign: The Past, the Present, and
Predicting the Future, Proceedings of the IEEE, 2012.

[8] T. M. Mitchell, J. Shufelt, http://www.cs.cmu.edu/∼tom/faces.html.
[9] Z. Liu, A. Severance, G. Lemieux, S. Singh, Accelerator Compiler for

the VENICE Vector Processor, FPGA’12.
[10] G. Lemieux, [private communication].

