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1 Correlation index is confounded by firing rate

In this section we derive Equation 2 from the paper which is used to show that the

correlation index is confounded by firing rate. To make this document self-contained we

reproduce the formula for the correlation index iA,B between spike trains A and B. Here,

the vectors a and b represent the spike times of neurons A and B; ai is the ith spike in

train A and bj is the jth spike in train B.

iA,B =
NA,BT

NANB2∆t
(1)

where

NA = |a| (total number of spikes of A in recording),

NB = |b|,

T = length of recording,

∆t = synchronicity window,

and NA,B is the number of spike pairs where a spike from train A falls within ±∆t of a

spike from train B:

NA,B =

NA∑
i=1

NB∑
j=1

1∆t(|ai − bj |)
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where

1∆t(x) =


1 if x ≤ ∆t

0 otherwise

No one statistical model is able to recreate the full range of observed spiking patterns,

so a general proof that the correlation index is dependent on firing rate is not possible.

Instead we assume a simple model for firing times and use this as a counter example to

the statement “the correlation index is in general independent of firing rate”.

The model is as follows: the spikes of neurons A and B form a Poisson process with

rates λA, λB respectively. A set proportion of these spikes occur in both trains (i.e. each

train fires a spike synchronously with the other), these occur with rate λS ≤ λA, λB .

We derive an expression for the correlation index under this model and show that it is

dependent on firing rate.

The recording time T and synchronicity window ∆t are independent parameters (i.e.

they cannot be evaluated in terms of firing rates). The expected values of NA and NB

are as follows:

NA =λAT

NB =λBT

The calculation of the remaining term, NA,B , is non-trivial. We use the following results

for Poisson processes (Kingman, 1992):

• Superposition: If X and Y are two independent Poisson processes with respective

rates λX and λY then X+Y is a Poisson process with rate λX + λY .

• Decomposition: To decompose this composite process into two processes with

identical statistics to X and Y (i.e. two Poisson processes with rates λX and λY ),

it suffices to generate a series of Poisson events with rate λX +λY and assign each

event as type X with probability λx

λx+λy
and as type Y with probability

λy

λx+λy
.

It follows from the above that the synchronous spikes in our model form a Poisson pro-

cess with rate λS . The expected number of synchronous spikes is therefore λST . This
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contributes to NA,B since each of these is one spike pair where a spike from A falls within

±∆t of a spike from B. There is also a second contribution to NA,B from cases where

spikes from different processes (i.e. any combination except A and A, and B and B) fall

within ±∆t of each other. We denote the expected number of such spike pairs C and

then:

NA,B = λST + C (2)

To evaluate C we consider the system as a decomposition of a master Poisson process

with rate λ = λA + λB − λS . Events are assigned as A only (A) with probability λA−λS

λ ,

B only (B) and synchronous (S) with probabilities given similarly. By considering the

master process we can work out the probability of spikes from each combination of trains

falling within ±∆t of each other by calculating the probability that any spikes fall within

±∆t of each other and then multiplying this by the probability of them being from the

correct combinations.

We note that multiple spikes can occur within ±∆t of each other, not just pairs and

so our calculations need to be recursive, that is we have to consider the case when n

successive inter-spike-intervals (ISIs) sum to less than ∆t and sum the contributions from

all n. We also have to be careful not to double-count events: if we consider all the spike

pairs formed when n inter-spike-intervals sum to less than ∆t then most of those spike

pairs will have been covered in the previous cases n = 1 . . . n − 1. The only pair not

already counted is the pair formed by the first and last spikes. Therefore, for arbitrary n,

the expected number of new spike pairs (Cn) is:

Cn = In(∆t)PnSn (3)

where

In(∆t) =probability that n successive ISIs sum to ≤ ∆t,

Pn =probability that outer two spikes are not both A or both B (can be synchronous),

Sn =number of n successive ISIs in the recording.
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and

C =

∞∑
n=1

Cn

We find each quantity in turn:

In(∆t): Let the ith ISI in the master train be Zi. Since the master train is a Poisson

process with rate λ:

Zi ∼ Exponential(λ) (4)

and

k∑
i=1

Zi ∼ Erlang(k, λ) (5)

(Kingman, 1992) where the cumulative distribution function of the Erlang distribution is:

ErlangC(z; k, λ) = 1−
k−1∑
n=0

1

n!
e−λz(λz)n (6)

The probability of n ISIs summing to less than ∆t is then given by:

In(∆t) = ErlangC(∆t;n, λ) (7)

Pn: The combinations of spikes which will contribute a spike pair to NA,B are as follows:

AB(BA),AS(SA),BS(SB). Combinations in brackets occur with the same probability as

their counterpart outside the brackets. The combination SS will contribute two spike

pairs to NA,B so to account for this we multiply its probability by two (meaning that Pn

is not strictly a probability). To simplify the notation we introduce the following:

λA′ =λA − λS

λB′ =λB − λS

and Pn is then given by:

Pn =
2λ2

S + 2λSλA′ + 2λSλB′ + 2λA′λB′

λ2
(8)
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This is independent of n so we drop the subscript, Pn = P . This simplifies to

P =
2λAλB

(λA + λB − λC)2
(9)

Sn: The number of n successive ISIs in the recording is λT −n (λT is the total number

of spikes in the recording).

We substitute these three terms into Equation 3 to find Cn and sum over all n to find

C:

C =

λT∑
n=1

(λT − n)ErlangC(∆t;n, λ)P (10)

for simplicity, we leave this in terms of P . Then,

NA,B = λST +

λT∑
n=1

(λT − n)ErlangC(∆t;n, λ)P (11)

Having found NA,B , the correlation index is:

ia,b =

(
λST +

λT∑
n=1

(λT − n)ErlangC (∆t;n, λ)P

)
T

(λAT ) (λBT ) 2∆t
(12)

This expression is clearly dependent on rate which is what we set out to show. We

now simplify it to gain an understanding about the strength of the dependency and how

it varies with rate.

We first simplify C:

C =

λT∑
n=1

(λT − n)ErlangC(∆t;nλ) =

λT∑
n=1

(λT − n)(1−
n−1∑
i=0

1

i!
e−λ∆t(λ∆t)i) (13)

After rearrangement involving rewriting the double sums into single sums:

C =
λT (λT − 1)

2
(1−e−λ∆t

λT∑
n=0

1

n!
(λ∆t)n)+(λ2T∆t−λ∆t+

λ2∆t2

2
)e−λ∆t

λT∑
n=0

1

n!
(λ∆t)n

(14)
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writing

e−λ∆t
λT∑
n=0

1

n!
(λ∆t)n = e−λ∆t(eλ∆t −

∞∑
n=λT+1

1

n!
(λ∆t)n) (15)

= 1− e−λ∆t
∞∑

n=λT+1

1

n!
(λ∆t)n (16)

we assume that

1− e−λ∆t
∞∑

n=λT+1

1

n!
(λ∆t)n ≈ 1 (17)

which is true if the following hold:

• λ∆t ≤ 1. This holds within experimentally observed ranges since λ is O(1) Hz and

typically ∆t = 0.05− 0.1 s.

• λT is sufficiently large. This also holds within experimentally observed ranges,

for instance if λ = 1 Hz, ∆t = 0.1 s and T = 4 s then Equation 16 is equal to

0.9999999 (7 d.p). Since T is typically O(1000) s, in practice this approximation

will be even more accurate.

If the above holds, then

C ≈ λ2T∆t− λ∆t− λ2∆t2

2
(18)

Using this approximation:

iAB ≈ (λST + (λ2T∆t− λ∆t− λ2∆t2

2
)P )

1

λAλBT2∆t
(19)

substituting in our expression for P and simplifying gives us the form of Equation 2 in the

paper:

iA,B =
λS

2∆tλAλB
+ 1− 1

(λA + λB − λS)T
− ∆t

2T
(20)

In the paper we use the sub-case of auto-correlation λ = λA = λB = λS to illustrate

the dependence on firing rate. In this case:

iA,B =
1

λ

(
1

2∆t
− 1

T

)
+

(
1− ∆t

2T

)
(21)
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Both the term in 1
λ and the second term are positive since ∆t ≤ 1 (within exper-

imentally observed ranges) and T = O(1000) s. Therefore increasing λ decreases the

correlation index.
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2 Normalisation of the Spike Time Tiling Coefficient

In this section we justify the form of the normalisation of the Spike Time Tiling Coefficient.

To make this self contained, we reproduce the formula for the Spike Time Tiling Coefficient

C from Figure 1 of the paper:

C =
1

2

(
PA − TB
1− PATB

)
+

1

2

(
PB − TA
1− PBTA

)
where

PA =The proportion of spikes in train A which fall within ±∆t of any spike in train B,

PB =the proportion of spikes in train B which fall within ±∆t of any spike in train A,

TA =the proportion of the recording time which falls within ±∆t of any spike in train A,

TB =the proportion of the recording time which falls within ±∆t of any spike in train B.

The rationale behind this is that we would expect the proportion of spikes in A which

fall within ±∆t of any spike in B by chance to be equal to the proportion of the recording

time which falls within ±∆t of any spike from B. The quantity PA−TB will therefore be

positive/negative if this happens more/less than expected by chance which is indicative

of positive/negative correlation. It does not, however, possess the following necessary

qualities:

• N1: The measure should be symmetric i.e. C(A,B) = C(B,A).

• N4: The measure should be bounded taking a value of +1 when the spike trains are

identical, with a value of zero corresponding to no correlation and -1 corresponding

to anti-correlation.

We normalise this quantity to ensure it has property N4 and then take the mean of the

two directed variants to ensure it satisfies property N1 (hence the factor 1
2 ).

For simplicity, we consider one of the directed variants and define:
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f(PA, TB) =
PA − TB
1− PATB

In order to fulfil N4, the following is needed (where 0 ≤ PA ≤ 1, 0 ≤ TB ≤ 1):

1. f(1, TB) = 1.This ensures that auto-correlations always take the value +1.

2. f(0, 1) = −1. Ensures that the most anti-correlated patterns take value -1.

3. f(PA, TB) = 0, if PA = TB (PA 6= 1, TB 6= 1). Ensures that uncorrelated spikes

take value zero.

4. f(PA, TB) > 0 if PA > TB and f(PA, TB) < 0 if PA < TB . Ensures that the

measure is positive/negative for positive/negative correlation.

The following two properties must also hold since they are implicitly implied by the

notion of a correlation measure:

5. f(PA, TB) must be monotonically increasing in PA for PA 6= 1, TB 6= 1.

6. f(PA, TB) must be monotonically decreasing in TB for PA 6= 1, TB 6= 1.

i.e. if the correlation increases, so does f , if it decreases, so does f .

Properties One,Two and Three are trivially satisfied. We note that for PA 6= 1, TB 6= 1,

1− PATB > 0 so property Four is also satisfied. Note also:

∂f

∂PA
=

1− T 2
B

(1− PATB)2

which is positive within the ranges of PA and TB , so f increases monotonically with PA

(property Five) and

∂f

∂TB
=

P 2
A − 1

(1− PATB)2

which is negative within the ranges of PA and TB , so f decreases monotonically with TB

(property Six).

Therefore f satisfies all required properties and the normalisation is appropriate.
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Alternative normalisations

We note that this is not the only possible normalisation of the Spike Time Tiling Coeffi-

cient. Other normalisations exist which have all the properties listed above, for instance

2− PA − TB . Using another normalisation factor which has these properties will not

change whether the Spike Time Tiling Coefficient possess all the necessary and desired

properties. However, the sensitivity of the measure to changes in values of PA and TB

does change for different normalisations. This is important as it will affect how big a

change in firing patterns is needed to affect a noticeable change in the Spike Time Tiling

Coefficient which should be as sensitive as possible to changes within the experimentally

observed ranges of PA and TB . The version in the paper was chosen as we found it to

be sensitive to small changes in these values.

To illustrate this, we briefly compare the sensitivity of f with that of the following

differently normalised Spike Time Tiling Coefficient, g:

g(PA, TB) =
PA − TB

2− PA − TB

It is important that the measure is sensitive to changes within the experimentally

observed ranges of values. The values of PA typically take all values in the range 0− 1,

but the distribution is highly skewed towards small values and values of TB are usually

small (Figure 1). We therefore want our coefficient to be as sensitive as possible to

changes within this range and since within it f(PA, TB) is more sensitive than g(PA, TB)

(Figure 2), f is preferred.
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Figure 1: Experimentally observed distributions of PA and PB are skewed towards
low values and values of TA and TB are low. A: Histogram of the values of PA (or
equivalently PB) from a recording of spontaneous retinal activity in P5 wild type mouse
from Kirkby and Feller (2013). Note the local maximum at PA or PB = 1, which are the
values of the auto-correlations. B: Histogram of the values of TA (or equivalently TB)
from the same recording. This recording has duration 998.1 s, 44 electrodes and mean
firing rate 0.28 Hz. In both panels ∆t = 0.1 s as in the original publication.
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Figure 2: The form of normalisation affects the sensitivity of the Spike Time Tiling
Coefficient to changes in PA and TB. A: Heatmap of f (one half of the Spike Time
Tiling Coefficient with denominator 1−PATB) for 0 ≤ PA ≤ 1, 0 ≤ TB ≤ 1. Changes in
colour show changes in contours of f . The sensitivity of f (and therefore the sensitivity
of the Spike Time Tiling Coefficient) to changes in the values of PA and TB can be seen
by the widths of the contours- narrower contours show higher sensitivity. Since typically
TB is small and the distribution of PA is skewed towards small values, the sensitivity
of the Spike Time Tiling Coefficient in this region (marked with a black dotted-line) is
most crucial. B: Same as A but with f replaced by g (one half of the Spike Time Tiling
Coefficient with denominator 2− PA − TB).
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