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Abstract

The structural sensitivity shows where an instability of a fluid flow is most sensitive to
changes in internal feedback mechanisms. It is formed from the overlap of the flow’s
direct and adjoint global modes. These global modes are usually calculated with 2D or
3D global stability analyses, which can be very computationally expensive. For weakly
non-parallel flows the direct global mode can also be calculated with a local stability
analysis, which is orders of magnitude cheaper. In this theoretical paper we show that, if
the direct global mode has been calculated with a local analysis, then the adjoint global
mode follows at little extra cost. We also show that the maximum of the structural
sensitivity is the location at which the local k+ and k− branches have the same imaginary
value. Finally, we use the local analysis to derive the structural sensitivity of two flows:
a confined co-flow wake at Re = 400, for which it works very well, and the flow behind
a cylinder at Re = 50, for which it works reasonably well. As expected, we find that the
local analysis becomes less accurate when the flow becomes less parallel.

1. Introduction

Many open flows have a steady solution to the Navier–Stokes equations that becomes
unstable above a critical Reynolds number. Usually this instability is driven by one region
of the flow, which is called the wavemaker region. The rest of the flow merely responds to
forcing from this region. The shape, linear growth rate, and frequency of the instability
can be calculated by considering the evolution of small perturbations about the steady
solution. This is known as the direct global mode. The direct global mode emanates
from the wavemaker region and grows spatially downstream, reaching a maximum at the
streamwise location where the spatial growth rate is zero. For example, in the case of
the flow behind a cylinder, this direct global mode is a sinuous flapping motion, whose
nonlinear development is the familiar Kármán vortex street [1].

The receptivity of the direct global mode to harmonic open loop forcing is given
by the last term in equation (9) of Ref. [2] and equation (7) of Ref. [3]. This term is
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proportional to the adjoint global mode, which is calculated in the same way as the direct
global mode, but from the adjoint (rather than direct) linearized Navier–Stokes equations.
If the perturbation magnitude is measured by the perturbation kinetic energy, which is
the conventional approach, then there are only two significant differences between the
direct and adjoint equations [2, 4]. The first is the sign of the convection term, Vj∂vi/∂xj ,
and is called convective non-normality. The second is the appearance of a transconjugate
operator, vj∂Vj/∂xi, and is called component-type non-normality, For the flows in this
paper, the non-normality is almost entirely convective [4]. In a manner analogous to
the direct global mode, the adjoint global mode emanates from the wavemaker region
but grows spatially upstream, reaching a maximum at the streamwise location where the
adjoint spatial growth rate is zero, or when it meets the upstream boundary. Physically,
this reflects the fact that an open loop forcing signal will have most influence on the flow
if it impinges on the wavemaker region, and if it is amplified by the flow before it does
so.

The sensitivity of the direct global mode to changes in the linearized Navier–Stokes
(LNS) equations is given by the penultimate term in equation (9) of Ref. [2]. This
term is proportional to the overlap between the direct and adjoint global modes and is
known as the structural sensitivity. It is equivalent to the sensitivity of the direct global
mode to closed-loop feedback between the perturbation and the governing equations
in the special case where the sensor and actuator are co-located. For example, in the
case of the flow behind a cylinder, it can quantify the sensitivity of the flow to the
presence of a small control cylinder that produces a small force on the flow in the opposite
direction to the velocity perturbation [5, 6]. Given that the direct global mode grows
downstream of the wavemaker region and that the adjoint global mode grows upstream,
the structural sensitivity is clearly maximal in the wavemaker region itself. Indeed, the
wavemaker region is often defined as the position of maximum structural sensitivity,
although alternative definitions exist [4, §4.2.1]. Physically, this reflects the fact that, for
a closed loop feedback mechanism to be effective, it requires firstly that the perturbation
has significant amplitude at that point, which is quantified by the direct global mode,
and secondly that the flow has significant receptivity at that point, which is quantified
by the adjoint global mode.

The above concepts were first introduced for the flow behind a cylinder at Re = 50
by Hill [5] and Giannetti & Luchini [6, 7] and have been extended to include the
sensitivity to steady forcing and modifications to the base flow [8, 9, 10]. They have
also been applied to recirculation bubbles [11] bluff bodies, both incompressible [12] and
compressible [13], backward-facing steps [14], forward-facing steps [15], confined wakes
[16, 17], and a recirculation bubble in a swirling flow [18].

The direct global mode is usually found with a global stability analysis. This typically
proceeds in three steps: (i) the Navier–Stokes (N–S) equations are linearized around a
steady laminar flow, which is called the base flow and which is usually unstable; (ii)
the equations are discretized and expressed as a 2D or 3D matrix eigenvalue problem;
(iii) the most unstable eigenmodes are calculated with an iterative technique, such as an
Arnoldi algorithm or power iteration. Each eigenmode consists of a complex eigenvalue,
which describes the frequency and growth rate, and an eigenfunction, which describes
the 2D or 3D shape that grows on top of the base flow until nonlinear effects become
significant. As more elaborate configurations are examined, the number of degrees of
freedom rapidly approaches millions, so global stability analyses can be extremely com-
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putationally expensive [4].
If the base flow varies slowly in the streamwise direction then the global stability

analysis can be replaced with a local stability analysis [19]. The WKBJ approximation
reduces the LNS equations over the entire domain into a series of local LNS or Orr-
Sommerfeld (O–S) equations at each streamwise location. Each local equation can be
discretized and expressed as a small matrix eigenvalue problem, which represents the
dispersion relation between the complex frequency, ω, and the complex wavenumber, k.
At each streamwise location, the value of ω is found for which the dispersion relation is
satisfied and for which dω/dk = 0. This is known as the absolute complex frequency, ω0

and its imaginary part, ω0i, is the absolute growth rate. The flow is absolutely unstable
in regions in which ω0i is positive. These regions exist in every flow that is globally
unstable due to hydrodynamic feedback. The frequency and growth rate of the linear
global mode can be derived from the streamwise distribution of ω0. This also gives a
specific spatial position for the region of the flow that, in the context of the local analysis,
is known as the wavemaker [20]. Local stability analyses are much quicker and require
much less computer memory than global stability analyses because they convert one large
matrix eigenvalue problem into several small independent matrix eigenvalue problems.
This is why they have been used so widely in the past and why they are still used for
flows that are beyond the range of global analyses [21, 22, 23].

In all existing papers, the adjoint global mode is calculated with a global stability
analysis. The purpose of this paper is to show that, if a local stability analysis is used to
calculate the direct global mode, then the adjoint global mode follows at almost no extra
cost. This means that, for weakly nonparallel flows, adjoint global modes and structural
sensitivities can be estimated quickly and cheaply, without deriving the adjoint equations.
After defining the form of the direct and adjoint equations in §2, we derive this result
rigorously in §3 for the Ginzburg–Landau equation (G–L), which is often used as a simple
model for slowly-developing flows. We then apply this to the linearized N–S equations
in §4 and demonstrate this on two flows in §5: a slowly-developing confined wake, and
the flow behind a cylinder at Re = 50.

2. General form of the direct and adjoint equations

Many different conventions are used to describe direct and adjoint global modes. The
convention used here is similar to that used for local stability analysis, so that it is easy
to compare the local and global approaches. It differs from that used in Hill [5, 24] and
Giannetti & Luchini [6] in three ways. The direct and adjoint governing equations (1)
and (2) have the same form so that their k+ and k− branches in the local analysis have
the same physical meaning. The adjoint variables are denoted with †, rather than + or
∗, so that they are not confused with the k+ branch or with the complex conjugate. The
inner product contains a complex conjugate so that the inner product of a complex state
variable with itself is a real number.

The linearized governing equations are expressed in terms of the direct state variable,
ψ(x, t), the adjoint state variable, ψ†(x, t), the direct linear spatial operator L, and the
adjoint linear spatial operator L†:

∂ψ

∂t
− Lψ = 0, (1)
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∂ψ†

∂t
− L†ψ† = 0. (2)

(The relationship between the direct and adjoint quantities will be specified in (8), after
the inner product (7) has been defined.) Solutions to the initial value problems defined
by (1) and (2) can be expressed for t ∈ [0,∞) as the sum of the direct and adjoint global
modes:

ψ(x, t) =
∑
m

ψ̂m(x) exp(−iωmt), (3)

ψ†(x, t) =
∑
n

ψ̂†n(x) exp(−iωnt). (4)

Substituting (3) into (1) and (4) into (2) gives, for each mode,

−iωmψ̂m − Lψ̂m = 0, (5)

−iωnψ̂
†
n − L†ψ̂†n = 0. (6)

An inner product between state variables f and g is defined as

〈f, g〉 ≡
∫ +∞

−∞
f∗g dx. (7)

If boundary terms are assumed to be zero, as in Giannetti & Luchini [6], Hill [5], then
the relationship between the direct operator, L, and its adjoint, L†, is given by

〈Lψ̂m, ψ̂†n〉 = 〈ψ̂m,L†ψ̂†n〉. (8)

These definitions determine the relationship between ωm and ωn:

〈Lψ̂m, ψ̂†n〉 = 〈ψ̂m,L†ψ̂†n〉, (9)

〈−iωmψ̂m, ψ̂
†
n〉 = 〈ψ̂m,−iωnψ̂

†
n〉, (10)

iω∗m〈ψ̂m, ψ̂†n〉 = −iωn〈ψ̂m, ψ̂†n〉, (11)

(ω∗m + ωn)〈ψ̂m, ψ̂†n〉 = 0. (12)

This is the bi-orthogonality condition: every adjoint mode is orthogonal to every direct
mode, except for the pairs that satisfy ωn = −ω∗m.

2.1. Structural Sensitivity

We would like to find the change in the direct eigenvalue, δωm, when there is a small
change, δL, in the direct linear operator, L:

δωm =
lim
ε→ 0

(
ωm(L + εδL)− ωm(L)

ε

)
. (13)

This perturbation causes perturbed eigenvalues, ωm+εδωm, perturbed direct eigenmodes,
ψ̂m + εδψ̂m, and perturbed adjoint eigenmodes, ψ̂†n + εδψ̂†n. We premultiply (5) by ψ̂†n
and substitute in the perturbed variables:

〈(ψ̂†n+εδψ̂†n), (iωm+iεδωm)(ψ̂m+εδψ̂m)〉+〈(ψ̂†n+εδψ̂†n), (L+εδL)(ψ̂m+εδψ̂m)〉 = 0. (14)
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Retaining terms at order ε and making use of (5), (6), and the bi-orthogonality condition
(12) leads to

δωm = i
〈ψ̂†m, δLψ̂m〉
〈ψ̂†m, ψ̂m〉

. (15)

This is the penultimate term in equation (9) of [2], but expressed in the notation of
this paper. The operator δL describes a generic perturbation to the operator, L. If one
considers a perturbation that is localized in space then the structural sensitivity [6, §8]
is defined as:

∇Lωm ≡ i
ψ̂∗mψ̂

†
m

〈ψ̂†m, ψ̂m〉
, (16)

where the numerator is a function of x and the eigenfunctions are usually normalized
such that the denominator is 1. This is shown graphically in Chomaz [2, Fig 5 a,b].

3. Local analysis of the direct and adjoint Ginzburg–Landau equations

For the Ginzburg–Landau (G–L) equation, the operator L acting on ψ(x, t) in (1) is:

∂ψ

∂t
= Lψ ≡ a0(x)ψ + a1(x)

∂ψ

∂x
+ a2(x)

∂2ψ

∂x2
, (17)

where a0, a1 and a2 are complex coefficients that depend on the spatial coordinate, x.
The aim of this section is to perform WKBJ analysis on the direct and adjoint G–L
equations in order to determine ω†n in terms of ωm and k†n in terms of km, and to confirm
that higher-order terms in the WKBJ analysis do not need to be considered. In this
section, the subscripts m and n will be dropped because the adjoint mode constructed
in §3.6 is always the bi-orthogonal counterpart of the direct mode constructed in §3.5.

3.1. Local dispersion relation of the direct G–L equation

In slowly-evolving flows, the coefficients a0, a1 and a2 in (17) depend only on a slow
spatial coordinate X = εx. The small parameter ε� 1 measures the ratio between typi-
cal instability and typical inhomogeneity length scales. Implementing a WKBJ analysis,
a global-mode solution of (17) is sought in the form

ψ ∼ A(X) exp

(
i

ε

∫ X

k(u)du− iωt

)
, (18)

where the local complex wavenumber k(X) is a solution of the local dispersion relation:

ω = Ω(k,X) ≡ ia0(X)− a1(X)k − ia2(X)k2. (19)

The dispersion relation can also be written in terms of the local absolute frequency,
ω0(X), the local absolute wavenumber, k0(X), and the local curvature, ωkk(X):

Ω(k,X) = ω0(X) +
1

2
ωkk(X)

(
k − k0(X)

)2
, (20)
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where ω0 = ia0 − ia21/4a2, k0 = ia1/2a2, and ωkk = −2ia2. (Equivalently, a0 = −iω0 −
iωkkk

2
0/2, a1 = ωkkk0, and a2 = iωkk/2.) This shows how the coefficients of the G–

L equation can be derived from the dispersion relation associated with a given weakly
developing shear flow by taking a Taylor expansion around the saddle point, which is at
(ω0, k0) and by definition has dω/dk = 0. Equation (20) can be rearranged to give k as
an explicit function of ω:

k±(X,ω) = k0(X)±

√
2
ω − ω0(X)

ωkk(X)
. (21)

Here, branch cuts of (21) are taken along positive real values of the argument of the
square root. This choice of branch cut ensures that, in stable or convectively unstable
regions of the complex X-plane, the above definition coincides with the usual labelling
of spatial branches based on causality considerations, for which a k+-branch corresponds
to a downstream response to localized harmonic forcing, and a k−-branch corresponds
to an upstream response.

3.2. Calculation of the adjoint of the G–L equation

For the G–L equation, the adjoint operator, L†, is found by expanding 〈ψ̂†,Lψ̂〉, using
(7), and then integrating by parts:

〈ψ̂†,Lψ̂〉 =

∫ +∞

−∞
ψ̂†∗

(
a0ψ̂ + a1

∂ψ̂

∂x
+ a2

∂2ψ̂

∂x2

)
dx (22)

=

∫ +∞

−∞

(
a0ψ̂

†∗ − ∂

∂x
(a1ψ̂

†∗) +
∂2

∂x2
(a2ψ̂

†∗)

)
ψ̂ dx, (23)

in which the boundary terms have been set to zero with appropriate boundary condi-
tions. The adjoint operator is found by noting that, from (8), 〈ψ̂†,Lψ̂〉 = 〈L†ψ̂†, ψ̂〉, and
therefore that

L†ψ̂† = a∗0ψ̂
† − ∂

∂x
(a∗1ψ̂

†) +
∂2

∂x2
(a∗2ψ̂

†) (24)

= a†0ψ̂
† + a†1

∂ψ̂†

∂x
+ a†2

∂2ψ̂†

∂x2
, (25)

where a†0 ≡ a∗0−∂a∗1/∂x+∂2a∗2/∂x
2, a†1 ≡ −a∗1+2∂a∗2/∂x, and a†2 ≡ a∗2. These expressions

are general and do not necessarily assume weak spatial inhomogeneities.

3.3. Local dispersion relation of the adjoint problem

Under the quasi-parallel-flow assumption, the coefficients of the direct G–L equations
depend only on the slow spatial coordinate X = εx. Equation (24) becomes:

L†ψ̂† = a∗0ψ̂
† − a∗1

∂ψ̂†

∂x
− ψ̂†ε∂a

∗
1

∂X
+ a∗2

∂2ψ̂†

∂x2
+ 2ε

∂a∗2
∂X

∂ψ̂†

∂x
+ ψ̂†ε2

∂2a∗2
∂X2

. (26)

When performing a WKBJ analysis of the adjoint G–L equation (2), the adjoint opera-
tor (24) must be expanded in powers of ε as

L†
(

∂

∂X
;X

)
= L†0

(
∂

∂X
;X

)
+ εL†1

(
∂

∂X
;X

)
+ ε2L†2

(
∂

∂X
;X

)
, (27)
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By inspection of (26), L†0, L†1, and L†2 are:

L†0

(
∂

∂X
;X

)
= a∗0(X)− a∗1(X)

∂

∂x
+ a∗2(X)

∂2

∂x2
, (28)

L†1

(
∂

∂X
;X

)
= −∂a

∗
1(X)

∂X
+ 2

∂a∗2(X)

∂X

∂

∂x
, (29)

L†2

(
∂

∂X
;X

)
=

∂2a∗2(X)

∂X2
, (30)

A solution of the adjoint problem is then sought in the form

ψ† ∼
(
A†0(X) + εA†1(X) + ε2A†2(X) + . . .

)
exp

(
i

ε

∫ X

k(u)du− iω†t

)
. (31)

Substituting (28–31) into the governing adjoint equation (2) gives, at leading-order,

−iω† = a∗0(X)− a∗1(X)ik(X)− a∗2(X)k2(X) = L†0(ik;X). (32)

In a manner similar to the direct problem, the adjoint dispersion relation can be rewritten
as

ω† = Ω†0(k,X) ≡ ia∗0(X) + a∗1(X)k(X)− ia∗2(X)k2(X) (33)

= ω†0(X) +
1

2
ω†kk(X)

(
k − k†0(X)

)2
, (34)

where

ω†0(X) = ia∗0(X)− i

4
a∗21 (X)/a∗2(X) = −ω∗0(X), (35)

k†0(X) = − i

2
a∗1(X)/a∗2(X) = k∗0(X), (36)

ω†kk(X) = −2ia∗2(X) = −ω∗kk(X). (37)

The higher-order terms L†1 and L†2 do not appear in this adjoint dispersion relation,

because it is obtained at leading order in the WKBJ analysis. The L†1 component enters
only when working out, at O(ε1), the solvability condition that governs the leading-order

amplitude term A†0(X) in (31). This amplitude equation is

Ω†0,k
(
k(X), X

)dA†0
dX

+
1

2
Ω†0,kk

(
k(X), X

) dk

dX
A†0(X) + iΩ†1

(
k(X), X

)
A†0(X) = 0, (38)

where Ω†1(k,X) ≡ iL†1(ik,X). Higher-order expansions will not be derived further, how-
ever, because the results of this paper require only the local dispersion relations. Turning
points, where ∂Ω†0/∂k = 0, are not affected by the higher-order expansions.

The key point of this section is that, at leading order, the dispersion relation of
the adjoint G–L equation is the same as that of the direct G–L equation but with the
substitutions (35) to (37).
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3.4. Adjoint of a generic polynomial PDE

The development in §3.1 to 3.3 is for a parabolic PDE but holds for any polynomial
PDE in one spatial dimension, as shown in this section. For a generic polynomial PDE,
the direct operator (17) can be written

∂ψ

∂t
= Lψ ≡

∑
j

aj(x)
∂jψ

∂xj
, (39)

and, after integration by parts, the adjoint operator can be written

∂ψ†

∂t
= L†ψ† ≡

∑
j

(−1)j
∂j

∂xj
(
a∗j (x)ψ†

)
. (40)

If the coefficients a∗j do not depend on x then L†ψ† =
∑
j(−1)ja∗j∂

j
xψ
† and (35) to (37)

follow immediately. If the coefficients a∗j depend on x, then the x-derivatives of a∗j (x)ψ†

produce extra terms:

L†ψ† =

(
a∗0(x)− ∂a∗1(x)

∂x
+
∂2a∗2(x)

∂x2
− ∂3a∗3(x)

∂x3
+ . . .

)
ψ† (41)

+

(
−a∗1(x) + 2

∂a∗2(x)

∂x
− 3

∂2a∗3(x)

∂x2
+ . . .

)
∂ψ†

∂x
(42)

+

(
a∗2(x)− 3

∂a∗3(x)

∂x
+ . . .

)
∂2ψ†

∂x2
(43)

+ (−a∗3(x) + . . .)
∂3ψ†

∂x3
+ . . . (44)

However, under the assumption of slow spatial development, the nth derivatives of the
coefficients aj are of order εn, so the local dispersion relation that is obtained at leading
order is the same as that obtained for constant coefficients. This proves that the relations
ω†0(X) = −ω?0(X), k†0(X) = k?0(X) and ω†kk(X) = −ω?kk(X) in (35) to (37) hold for
systems governed by any dispersion relation that is polynomial in k. We therefore expect
this result to remain generally valid in the case of dispersion relations that are analytic
in k over large parts of the complex k-plane. We assume that dispersion relations derived
from the linearized Navier–Stokes equations in slowly-varying flows fall into this category.

3.5. Global mode of the direct G–L equation with a local analysis

A linear global mode is a global solution of the governing equation (1) with the form
ψ(x, t) ∼ exp(−iωgt) for a complex global frequency ωg. Assuming that the slowly-
varying coefficients ω0(X), k0(X) and ωkk(X) are known along the real X-axis, a WKBJ
approximation of the global mode can be sought as in (18) with ω = ωg. This integral is
most easily evaluated in the complex X-plane, as shown in the top half of figure 1a. (The
bottom half is for the adjoint mode.) The point Xs is a saddle point of ω0(X) and the
diagonal lines have the same value of ω0i as the saddle point. Huerre and Monkewitz [19]
have shown that the frequency of the dominant global mode, ωg, is equal to ωs + O(ε),
where ωs = ω0(Xs).
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At a given ωg, there are two valid solutions to k, known as the k+ and k− spatial
branches, and there are therefore two independent WKBJ approximations

ψ+ ∼ A+(X) exp

(
i

ε

∫ X

Xs

k+(u, ωg)du− iωgt

)
(45)

and

ψ− ∼ A−(X) exp

(
i

ε

∫ X

Xs

k−(u, ωg)du− iωgt

)
. (46)

These two WKBJ approximations are singular at the saddle point Xs, which is a double
turning point of the dispersion relation. From this double turning point, four Stokes lines
emerge, defined by

Im

∫ X

Xs

[k+(u, ωs)− k−(u, ωs)]du = 0. (47)

Along these Stokes lines both WKBJ approximations remain of the same order of magni-
tude, while inside the sectors delimited by the Stokes lines one approximation is exponen-
tially larger than the other. Following classical WKBJ theory [25] the global mode must
be sought as a linear combination of the two independent solutions, ψ = C+ψ+ +C−ψ−,
within each sector delimited by these Stokes lines.

When X → +∞, the solution must be dominated by a k+ branch and is therefore
made up of the subdominant ψ+ approximation. The global mode is therefore of the
form ψ = C+ψ+ (with C− = 0) in the region starting from the Stokes lines issuing
from Xs and extending to X = +∞. (See Pier [26] for a detailed analysis of a similar
case.) For similar reasons, the global mode is of the form ψ = C−ψ− (with C+ = 0) in
the region starting from the Stokes lines issuing from Xs and extending to X = −∞.

Consequently, the global mode is approximated by the WKBJ approximation C−ψ−

along the semi-infinite path from Xs to −∞, and by C+ψ+ along the semi-infinite path
from Xs to +∞. Since the global mode must be continuous at Xs, the coefficient C+

on the path from Xs to +∞ must equal C− on the path from Xs to −∞ (this includes
higher-order terms; asymptotic matching of the two WKBJ-expansions prevailing on each
side of the saddle point can be rigorously carried out via an inner layer). After rescaling
the solution so that C+ = C− = 1, the direct global mode is approximated by ψ+ along
the semi-infinite path from Xs to X = +∞ and by ψ− along the semi-infinite path from
Xs to X = −∞.

Finally, the approximations of the direct global mode obtained along the path from
X = −∞ to X = +∞, passing through the saddle point Xs, must be continued onto
the real X-axis. When crossing a Stokes line, a subdominant WKBJ solution becomes
dominant but remains a valid asymptotic approximation. Therefore the global mode is
approximated by ψ− in the sectors adjacent to the sector extending to X = −∞, and
by ψ+ in the sectors adjacent to the sector extending to X = +∞. Since there are
four Stokes lines and two branch cuts emanating from the saddle point, Xs, one may
safely assume that one branch cut crosses the real axis at Xc and that no more than one
Stokes line crosses the real axis on either side of Xc. It follows that the global mode is
approximated by ψ− for X < Xc along the real axis and by ψ+ for X > Xc. At Xc there
is a smooth relabelling of the k-branches, but otherwise nothing special happens across
the branch cut. This division of the integration path becomes important in §3.7.
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3.6. Global mode of the adjoint G–L equation with a local analysis

Following the same development as §3.5, the adjoint global mode is sought as

ψ† ∼ A†(X) exp

[
i

ε

∫ X

k†(u;ω†g)du− iω†gt

]
. (48)

We again assume that the coefficients ω0(X), k0(X) and ωkk(X) can be continued ana-
lytically into the complex plane and use the relationships (35 – 37). This is represented in

the bottom half of Fig. 1a. We obtain the result that ω†g = ω†s+O(ε), where ω†s = ω†0(X†s )

with dω†0/dX|X†
s

= 0. The local wavenumber in (48) follows the k†
−

branch for X → −∞
and the k†

+
branch for X → +∞. Here, these branches are obtained from the local ad-

joint dispersion relation (36) as

k†
±

(X,ω†g) = k†0(X)±

√
2
ω†g − ω†0(X)

ω†kk(X)
. (49)

For real values of X, substituting (35 – 37) into (49) leads to the following relationship
between the local branches of the adjoint and the direct global modes:

k†
±

(X;ω†g) =
(
k∓(X;ωg)

)∗
. (50)

This relationship guarantees that a branch cut of the adjoint k†
±

crosses the real X-axis
at the same location, Xc, as a branch cut of the direct k±.

The two adjoint spatial branches k†
±

lead to two independent WKBJ approximations

ψ†
+ ∼ A†+(X) exp

(
i

ε

∫ X

X†
s

k†
+

(u, ω†g)du− iω†gt

)
(51)

and

ψ†
− ∼ A†−(X) exp

(
i

ε

∫ X

X†
s

k†
−

(u, ω†g)du− iω†gt

)
. (52)

Following similar arguments to those in the previous section, it can be shown that the

adjoint global mode is approximated along the real axis by ψ†
−

for X < Xc and by ψ†
+

for X > Xc. For X < Xc, the direct global mode follows k− and the adjoint global mode

follows k†
−

, which is (k+)∗. For X > Xc, the direct global mode follows k+ and the

adjoint global mode follows k†
+

, which is (k−)∗. At Xc, there is a smooth re-labelling of
the k-branches.

The final result, that the adjoint mode follows (k+)∗ upstream of the wavemaker and
(k−)∗ downstream, is simple and may seem trivial. However, we are not aware of this
result being stated or used before in stability analysis, despite its potential usefulness.

3.7. Calculating the structural sensitivity of the G–L equation with a local analysis

The structural sensitivity (16) is the product of the direct and adjoint global modes.
For X along the real axis, the direct global mode found from the local analysis takes the

10



Figure 1: (a) Left frame: integration paths in the complex X-plane for the direct (top) and adjoint
(bottom) cases. The diagonal lines represent the boundaries between valleys (left and right of the lines)
and hills (above and below the lines). The integration paths must pass through the valleys in order to
obey causality. (b) Right frame: Branch cuts (dashed lines) in the complex X-plane

form

ψ ∼

 A+(X) exp
[

i
ε

∫X
Xs
k+du

]
for X > Xc,

A−(X) exp
[

i
ε

∫X
Xs
k−du

]
for X < Xc.

(53)

After splitting the integrals from Xs to X into two integrals from Xs to Xc and from Xc

to X, and using the fact that the k+-branch on the right of the branch cut is identical
to the the k−-branch on the left of the branch cut, the linear global mode may be
renormalized as

ψ ∼

 A+(X) exp
[

i
ε

∫X
Xc
k+du

]
for X > Xc,

A−(X) exp
[

i
ε

∫X
Xc
k−du

]
for X < Xc.

(54)

Similarly, the adjoint global mode found from the local analysis takes the following form
along the real axis

ψ† ∼

 A†
+

(X) exp
[

i
ε

∫X
Xc
k†

+
du
]

for X > Xc,

A†
−

(X) exp
[

i
ε

∫X
Xc
k†
−

du
]

for X < Xc.
(55)

With the identity (50), it follows that

ψ† ∼

 A†
+

(X) exp
[

i
ε

∫X
Xc
k−
∗
du
]

for X > Xc,

A†
−

(X) exp
[

i
ε

∫X
Xc
k+
∗
du
]

for X < Xc.
(56)

The structural sensitivity ∇Lωm from (16) may now be obtained by computing the
product ψ∗ψ†. Noting that

(
exp(iz)

)∗
= exp(−iz∗) yields

∇Lωm ∝

 A†
+

(X) [A+(X)]
∗

exp
[

i
ε

∫X
Xc

(k− − k+)
∗

du
]

for X > Xc,

A†
−

(X) [A−(X)]
∗

exp
[

i
ε

∫X
Xc

(k+ − k−)
∗

du
]

for X < Xc.
(57)
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The magnitude of the structural sensitivity is therefore obtained as

|∇Lωm| ∝

 B(X) exp
[
1
ε

∫X
Xc

Im (k− − k+) du
]

for X > Xc,

B(X) exp
[
1
ε

∫X
Xc

Im (k+ − k−) du
]

for X < Xc,
(58)

where B(X) is a slowly varying coefficient.
The wavenumbers k+ and k− are given by (21) with ω = ωs. In a configuration

that, when X → ±∞, is stable or at most convectively unstable, Im(k+ − k−) > 0 for
sufficiently large |X| on the real axis. Therefore the structural sensitivity necessarily
decays for X → ±∞ and the maximum structural sensitivity corresponds to the location
where Im(k+ − k−) = 0. For the G–L equation, Im(k+ − k−) is always positive, due to
our definition of the branch cut, and vanishes only at Xc. This means that |∇Lωm| is a
maximum at Xc. In general, it is true that the maximum structural sensitivity is found
where Im(k+−k−) = 0. However, it is not necessarily located on the branch cut, because
the location where Im(k+ − k−) = 0 does not necessarily coincide with the (arbitrary)
choice of branch cut.

This result, which is for flows with infinite streamwise extent, should not be confused
with the Kulikovskii criterion [27, §65], which is for flows with finite streamwise extent.
In those flows, the downstream travelling waves, k+, reflect off the downstream boundary
and the upstream travelling waves, k−, reflect off the upstream boundary. The function
describing the wave must be singly-valued between the boundaries, which means that only
certain combinations of k+ and k− are permitted. For long (but streamwise-confined)
systems, this constraint reduces to Im(k+ − k−) = 0. In those flows, the permitted
global mode frequencies are then calculated by combining this constraint with the local
dispersion relation. For flows with finite extent, the relation Im(k+ − k−) = 0 therefore
serves as an additional constraint on the global complex frequency, ωg, of the flow. For
flows with infinite extent, on the other hand, there is no corresponding restriction on
ωg and the point where Im(k+ − k−) = 0 merely indicates the centre of the structural
sensitivity.

The wavemaker in a local analysis and the structural sensitivity in a global analysis
differ both in concept and in outcome. Nevertheless, the two regions lie close to each
other and there is a link between the two, which can be summarized as follows. The
complex frequency of the global mode, ωg, is the absolute frequency at the saddle point
Xs of ω0(Xs) in the complex X-plane. The region around the saddle point in the complex
X-plane is the wavemaker region in the local sense given by Huerre & Monkewitz [19].
It could be tempting to assume that the real component of Xs has physical significance.
However, this is only an approximation to the position of the maximum of the structural
sensitivity (i.e. the global concept) in cases where Im(Xs) is small. Instead, to work
out the position of maximum structural sensitivity from a local analysis, the spatial
branches, k+ and k−, must be calculated at the global mode frequency, ωg. Because
Im(ωg) < Im(ω0) along the real X axis, the point of maximum structural sensitivity, in
the global sense given by [6], is the point at which Im(k+ − k−) = 0.

4. Local analysis of the direct and adjoint Linearized Navier–Stokes equations

The planar linearized Navier–Stokes (LNS) equations for a perturbation q̃(x, z, t) ≡
[ṽ1(x, z, t), ṽ2(x, z, t), p̃(x, z, t)]T are expressed as three PDEs in the three primitive vari-
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ables, (ṽ1, ṽ2, p̃). The WKBJ analysis is performed, reducing these three PDEs to three
ODEs for the Fourier/Laplace modes q̂m(z) exp{i(kmx − ωmt)}. These ODEs are then
expressed as the generalized eigenvalue problem:

−iωmBq̂m −Aq̂m = 0. (59)

The problem is discretized by replacing the operators A(km) and B(km), which act on
the continuous field q̂m(z), with matrices A(km) and B(km), which act on a state vector
ϕm. This state vector holds the values of q̂m at N gridpoints at zj , j ∈ [1, N ]. The local
direct LNS equations (59) are thereby expressed as the generalized matrix eigenvalue
problem

−iωmBϕm −Aϕm = 0, (60)

which serves as the dispersion relation for the calculation of ω0(X), (ωs, Xs), ωg, k
+(X)

and k−(X). Computing the dispersion relation for the Navier–Stokes problem is tech-
nically more difficult than for the Ginzburg–Landau problem, for which it is explicit.
However, once the dispersion relation is expressed numerically, the subsequent calcula-
tions and derivations of quantities such as spatial branches and local absolute frequencies
are carried out in a similar manner.

The direct global mode is constructed with the technique described in §3.5 and [28].
In summary, the absolute complex frequency, ω0(X), is calculated by finding the valid
saddle point of ω(k) at each streamwise location, X. An 8th order Padé polynomial is
fitted to ω0(X) and then extrapolated into the complex X-plane, as will be described
in §5.1. The saddle point of ω0(X) is identified in the complex X-plane and its value
of ω0 gives the global mode complex frequency, ωg. Then, at the streamwise location
of the saddle point in the X-plane, two values of k(ωg) are found on either side of the
saddle point ω0 in the k-plane. These are labelled k+ and k− and they are followed
upstream and downstream from this point. The local values of k+(X) and k−(X) are
then are integrated according to (54) in order to obtain the amplitude and phase of the
global mode in the X-direction. The eigenfunctions of k+(X) and k−(X) are required in
order to obtain the z-dependence of the global mode. At this point there is an apparent
contradiction: the local eigenfunctions can be multiplied by any arbitrary constant, yet
the amplitude and phase of the global mode in the X-direction should be dictated by
(54). To avoid this contradiction, the eigenfunctions must be normalized consistently.
This is analogous to the normalization required when handling the Parabolized Stability
Equation [29, eq. (9a,b)]. In this paper, the eigenfunctions are normalized such that the
v2-eigenfunctions have the same amplitude and phase at z = 0. This is chosen because,
for the sinuous perturbations considered here, the v2-eigenfunction always has a large
absolute value at z = 0. In principle, any value of z could be chosen, and for flows that
are nearly parallel, such as that in §5.1, the choice of z has only a small effect on the
predicted shapes of the direct and adjoint global modes.

The adjoint global mode is calculated using the substitution derived in §3.3 for a
parabolic dispersion relation and in §3.4 for a generic polynomial PDE: ω†g = −ω∗g ,

k†
+

= (k−)∗ and k†
−

= (k+)∗. This substitution requires the base flow to vary slowly
in the streamwise direction. In this paper, this result has been shown for a generic PDE
with one spatial dimension and it can be generalized (after lengthy developments) to a
PDE with two spatial dimensions. For the z-dependence, however, the eigenfunctions of

k†
+

and k†
−

are not the same as those of k− and k+, and need to be calculated from
13



the discrete adjoint of the LNS equations. To do this, the generalized matrix eigenvalue
problem (60) is post-multiplied by the adjoint eigenfunction ϕ†n and re-arranged using
the discretized version of the inner product: 〈ϕm, ϕ†n〉 ≡ ϕHmMϕ†n, where H denotes the
Hermitian transpose and M is the mass matrix, whose diagonal elements are the volume
of space attributed to each gridpoint:

−iωmBϕm −Aϕm = 0,

〈−iωmBϕm, ϕ
†
n〉 − 〈Aϕm, ϕ†n〉 = 0,

〈ϕm,M−1(iω∗m)BHMϕ†n〉 − 〈ϕm,M−1AHMϕ†n〉 = 0,

iω∗m(M−1BHM)ϕ†n − (M−1AHM)ϕ†n = 0. (61)

The local adjoint LNS equations are written as

−iωnB
†ϕ†n −A†ϕ†n = 0, (62)

so, by comparing (61) and (62),

ωn = −ω∗m, (63)

A† = M−1AHM, (64)

B† = M−1BHM, (65)

and it can be shown that the bi-orthogonality condition becomes (ωn−ω∗m)ϕHmB
HMϕ†n =

0. The adjoint eigenvalue, ωn, is known from (63), so there is no need to solve (62) as a
generalized eigenvalue problem. The fastest method is to calculate the adjoint matrices
of the discretized problem with (64–65) and then to find the null space of −iωnB

† −A†
with a QR decomposition.

5. Demonstrations

5.1. Slowly-developing confined wake flow

We test the procedure described in §4 on a slowly-developing flow, using the planar
linearized Navier–Stokes equations. Figure 2(a) shows the streamlines and vorticity of a
confined co-flow wake at Re = 400, with perfect slip at the top and bottom boundaries.
The flow is identical to that in [28], except that it has a sharper inlet velocity profile,
which makes it slightly more unstable. It is similar to the flows studied by Tammisola
[17].

Figure 2(b) shows the absolute growth rate ω0i(X). This is calculated at each axial
station, X, by finding saddle points of ω(k) in the complex k-plane, using the dispersion
relation formed from the matrix eigenvalue problem (60). This flow has a recirculation
bubble between 2.26 < X < 22.42 and is absolutely unstable over the slightly wider
range of 0.05 < X < 28.70.

In order to find the complex frequency of the linear global mode, ωg, the saddle point
of ω0(X) must be found in the complex X-plane. Its position is labelled (ωs, Xs). For the
G–L equation (17), the coefficients were expressed in terms of this saddle point position
via (20), but for the LNS equation there is no such analytical solution. Instead, 8th

order Padé polynomials are fitted to ω0(X) using the procedure described in [28]. Saddle
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points of this polynomial are then found in the complex plane, as shown in figure 2(c).
There are several saddle points but the main one is easy to identify because it lies close
to the real X-axis and moves very little as the order of the polynomials increases. The
range of ω0(X) over which the points are fitted must encompass the peak of ω0(X) but
is otherwise arbitrary. We performed eight calculations, fitting between all points that
satisfied ω0i > 0.15, 0.10, 0.05, 0.00,−0.05,−0.10,−0.25,−0.20 and found that ωs varied
by less than 1% between all these calculations.

For this flow, the polynomial is fitted through all points that have ω0i > 0.00; i.e.
the absolutely unstable region. The saddle point is at ωs = 0.6570 + 0.1409i, Xs =
11.05 + 4.251i. As explained in §3.5, ωs equals ωg to within order ε, which is the degree
of non-parallelism in the flow. For this flow, a global analysis gives ωg = 0.6631+0.1239i.
The local analysis is seen to over-predict the growth rate of the linear global mode, which
is a common feature of local analyses of wake flows [6, 28]. In order to investigate the
influence of this discrepancy on the direct and adjoint global modes, we calculate the
k+ and k− branches at both values of ωg. These branches are shown in figure 2(d,e)
for forcing at ωg(loc) and ωg(glob). They can be compared with the local wavenumbers,
k and k†, extracted from the direct and adjoint global modes from the global analysis.
These were extracted from the v1-eigenfunction at z = 0.79, where the global mode has
the highest absolute value. There are four important points.

Firstly, we confirm that the wavenumber of the direct global mode, k (solid black
line), follows k− upstream of Xc and k+ downstream, as already known, and that the
wavenumber of the adjoint global mode, k† (dashed black line), follows k+ upstream of
Xc and k− downstream, as predicted in §3.6 .

Secondly, the match is closest where the flow is more parallel. For example, when the
flow is forced at ωg(glob), k+ and k− follow k and k† very closely for X > 22.4, where
the flow is nearly parallel, but follow k and k† less closely for X < 22.4, where the flow
is less parallel. Also, the local analysis predicts that the crossing point of the k+ and
k− branches is slightly further upstream than that given by the global analysis. This is
the case whether or not the flow is forced at ωg(loc) or ωg(glob) so is due to the flow’s
non-parallelism, or to the effect described next, and not due to the discrepancy in ωg.

Thirdly, k− and k+ diverge from k and k† around the upstream boundary. This is not
a defect in the local analysis. It is because the global analysis has a Dirichlet boundary
condition at X = 0, while the local analysis assumes that the flow is homogenous to
X = −∞.

Fourthly, the position of maximum structural sensitivity, where k+i − k
−
i = 0, is at

X = 10.50 when using ωg(loc) and X = 10.30 when using ωg(glob). These values differ
from 11.05, which is the streamwise position of the saddle point in the complex X-plane.
This small difference is to be expected, for the reasons given in §3.7.

The direct global modes obtained from the local analysis at ωg(loc) are compared
with those obtained from the global analysis in figure 3(a-c). Their structure is identical
but the local analysis predicts that the maximum amplitude is reached slightly further
upstream than it is in the global analysis. This is due to the over-prediction of the growth
rate, ωg, as noted by [28]. This can be seen in figure 2(d) by the fact that the k+ branch
from the local analysis at ωg(loc) crosses the ki axis before the k branch from the global
analysis, while that at ωg(glob) crosses at the same place.

The adjoint global modes obtained from the local analysis are compared with those
obtained from the global analysis in figure 3(d-f). They have a similar structure to each
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other but there are some clear differences around X = 0, which are due to the different
boundary condition there.

The structural sensitivity, as defined by [6] is shown in 3(g). From the global analysis,
the maximum of the structural sensitivity is at the position where Im(k−k†) = 0, which
is at X = 11.00. From the local analysis, the maximum of the structural sensitivity
is at the position where Im(k+ − k−) = 0, which is at X = 10.50. The local analysis
predicts the maximum of the structural sensitivity to be slightly further upstream than
is predicted by the global analysis. This is the case for both ωg(loc) and ωg(glob) and is
therefore due to the non-parallelism of the flow or the effect of the upstream boundary
condition, and not due to the discrepancy between ωg(loc) and ωg(glob). Apart from
this small difference, the structural sensitivities are almost indistinguishable. This shows
that, for this slowly-developing flow, the structural sensitivity can be estimated easily and
accurately with a local stability analysis. If the direct global mode has been calculated
with the local analysis, then, apart from a quick calculation to find the eigenfunction in
the cross-stream direction, the adjoint has already been calculated.

5.2. The flow behind a cylinder at Re = 50

Hill [5] and Giannetti & Luchini [6] calculated the direct and adjoint global modes of
the two-dimensional flow around a circular cylinder at Re = 50, based on the cylinder
diameter. This is another good test case for the local analysis because there are several
published results and it is less parallel than the previous test case.

Figure 4(a) shows the streamlines and vorticity of this flow and figure 4(b) shows
the absolute growth rate ω0i as a function of downstream distance. Figure 4(c) shows
the position of the saddle point ωs in the complex X-plane, which was calculated by
fitting Padé polynomials through all points downstream of the cylinder with ω0i > 0.03.
The saddle point is at ωs = 0.791 + 0.083i, Xs = 1.297 + 0.699i. The threshold of 0.03
was chosen because a threshold of 0.00 gave rise to too many nearby saddle points. For
comparison, the global analysis of [6] gives ωg = 0.750 + 0.013i and the local analysis of
[30] gives ωg = 0.785 + 0.091i. The k+ and k− branches are shown in figures 4(d-e) using
ωg(local) and ωg(global).

Figure 5a-b shows the vorticity of the direct global mode obtained from the local
analysis and can be compared directly with figure 2 of [5], which is obtained from the
global analysis. Figure 5c-d shows the vorticity of the adjoint global mode obtained from
the local analysis and can be compared directly with figure 3 of [5]. The local results are
close to the global results in the region behind the cylinder but differ in the region around
the cylinder. This is not surprising because the flow is strongly non-parallel there.

The structural sensitivity is shown in figure 6, and can be compared directly with
figure 17 of [6]. Both frames are calculated from the local analysis but the left frame
is calculated at ωg(local), while the right frame is calculated at ωg(global). The local
analysis predicts the same features as the global analysis but there are some noticeable
differences. Firstly, the centre of the structural sensitivity is too far upstream when
ωg(local) is used. This was also seen for the wake flow in §5.1 and is because the local
analysis over-predicts the growth rate. Secondly, the z-dependence of the global mode is
poorly predicted in regions where the flow is strongly non-parallel, such as at the end of
the recirculation zone. Nevertheless, this shows that the local analysis can estimate the
structural sensitivity in this type of flow, at very little computational cost.
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It is worth mentioning that we also attempted to use this method to compute the
global modes for the swirling vortex breakdown bubble in [31], which is very non-parallel
around the vortex breakdown bubble. It was impossible to identify the k+ and k−

branches in the non-parallel region and therefore impossible to generate direct and adjoint
global modes.

6. Conclusions

In an unstable open flow, it is useful to know which regions are most receptive to
forcing and which regions are most sensitive to changes in internal feedback. These
regions can be found easily if the direct and adjoint global modes have been calculated.
These modes are usually calculated with a global linear stability analysis, meaning that
small perturbations on top of a base flow are discretized on a 2D or 3D grid. This
creates a generalized matrix eigenvalue problem, which is then solved numerically. These
matrices can have millions of degrees of freedom, so this procedure is computationally
expensive and is impractical for many flows.

An alternative approach, which is applicable to weakly non-parallel open flows, is
to calculate the direct global mode with a local stability analysis. This is orders of
magnitude cheaper than a global analysis. The main result of this paper is to show that
the adjoint global mode then follows at almost no extra cost. We show this formally for
the Ginzburg–Landau equation and find that the direct global mode is formed from the
k−-branch upstream and the k+-branch downstream, while the adjoint global mode is
formed from the k+-branch upstream and the k−-branch downstream. We include higher
order terms of the WKBJ analysis in order to show that these analytical relationships
are valid up to order ε, which measures the non-parallelism of the flow. Furthermore, we
show that the maximum of the structural sensitivity, as defined by [6], is the point at
which the spatial branches, k+ and k−, have identical imaginary components.

We apply this to the linearized Navier–Stokes (LNS) equations and show that, if the
direct global mode has already been calculated, the only extra cost in calculating the
adjoint mode is in calculating the adjoint eigenfunction at each point in the flow. This
cost is small because the adjoint eigenvalue is already known.

We compare the local and global results for two flows: a confined wake flow at
Re = 400, and the flow behind a cylinder at Re = 50. The procedure works very
well for the confined wake flow: the local wavenumbers of the direct and adjoint global
modes closely follow the k+ and k− branches of the local analysis, as expected, and the
structural sensitivity calculated with the local analysis is almost indistinguishable from
that calculated with the global analysis. The procedure works less well for the cylinder:
although the local and global results are qualitatively similar, the local analysis over-
predicts the growth rate and therefore predicts that the wavemaker region lies too far
upstream. We conclude that the procedure works less well for the cylinder because the
wavemaker sits in a region that is less parallel.

Some flows, such as those in a gas turbine fuel injector [23], contain more than one
unstable global mode. Each of these global modes has, in a local analysis, an associated
saddle point of ω(k) in the k-plane and an associated saddle point of ω0(X) in the X-
plane. Therefore the technique in this paper can be applied to each of these saddle points
individually and can identify multiple global modes in a flow, if they exist.
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Figure 2: (Colour online) (a) Streamlines (black lines) and vorticity (colour) of a confined co-flow wake
at Re = 400 with perfect slip at the top and bottom boundaries. (b) Absolute growth rate, ω0i. (c)
Contours of ω0i in the complex X-plane, formed by fitting an 8th order Pade polynomial to the points
in (b) for which ω0i > 0.0. The saddle point (black dot) is at ωs = 0.6570+0.1409i, Xs = 11.05+4.251i.
(d) The imaginary component of the local wavenumber (i) calculated from the local analysis performed
with ωg equal to the saddle point position ωs, labelled k+i (loc) and k−i (loc); (ii) calculated from the

local analysis performed with ωg taken from the global analysis, labelled k+i (glob) and k−i (glob); (iii)

extracted from the direct global mode, labelled ki and from the adjoint global mode, labelled k†i . (e)
The real component of the local wavenumber with the same nomenclature as (d).
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Figure 3: (Colour online) Direct and adjoint global modes calculated from the global analysis (left)
and the local analysis (right). The top halves of frames (a–f) show the real component. The bottom
halves show the imaginary component. (a) Direct streamwise velocity component, v1. (b) Direct cross-

stream velocity component, v2. (c) Direct pressure, p. (d) Adjoint streamwise velocity component, v†1.

(e) Adjoint cross-stream velocity component, v†2. (f) Adjoint pressure, p†. (g) Structural Sensitivity

∇Lωm =
(

(v21 + v22)× (v†21 + v†22 )
)1/2

.
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Figure 4: As for figure 2 but for the flow around a cylinder at Re = 50.
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Figure 5: Direct (top) and adjoint (bottom) global modes calculated from the local analysis at ωg(local):
(a,c) real component, (b,d) imaginary component. These frames can be compared with figures 2 and 3
of [5].
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Figure 6: The structural sensitivity calculated from the local analysis at (a) ωg(local) and (b) ωg(global).
These frames can be compared with figure 17 of [6]
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In many real flows, the assumptions underlying the WKBJ approach are not met
very closely. Nevertheless, the techniques of local stability analysis have proved to be
remarkably robust, probably because the wavemaker region often lies in a region of nearly
parallel flow. In such cases, a local stability analysis will give reasonable estimates of the
direct and adjoint global modes at much less computational cost than a global analysis.
For example, the global modes of a 3D flow that evolves slowly in the streamwise direction
could be calculated by combining the results of several 2D calculations. This opens the
door to the application of sensitivity analysis to flows that are currently beyond the reach
of global analysis.
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