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Abstract—This paper studies the power margin reduction 

in linear passive UHF RFID tag arrays due to proximity effects. 

It is shown experimentally that a 40% reduction in tag power 

margin occurs when two tags are placed with a separation of 

less than 2cm. Major causes of tag sensitivity degradation due 

to proximity in arrays are analyzed by experiment and 

simulation, including tag detuning, shadowing and re-emission 

cancellation. It is shown that tag detuning has a significant 

effect when tags are separated by less than 7mm. At larger 

separations in excess of 1cm, the tag shadowing effect and 

interactions between the backscattered waves cause more 

significant degradation for large tag arrays. 

Keywords—read range; close proximity; passive ultra high 

frequency (UHF);  radio frequency identification (RFID); 

detuning; shadowing; re-emission cancellation 

 

I. INTRODUCTION  

In recent years, RFID technology has been used in a wide 

range of mainstream applications and passive UHF RFID 

tags are increasingly replacing current barcode systems due 

to their longer range, high data capacity, faster read speed 

and ability to be reprogrammed for repetitive use [1]. 

Passive UHF systems operate on the principle of backscatter 

communication with the tag antenna gathering energy from 

the electromagnetic wave transmitted by reader, and then 

using the energy to power a microchip. This then changes 

the load on the antenna to achieve backscatter modulation 

and communication back to the reader. RFID tags are 

usually attached to the surface of an object for identification 

purposes. If the object has significant dielectric properties or 

is conductive, the operation of the tag antenna is likely to be 

affected. For example, if an ordinary tag is placed next to a 

piece of metal, current induced in the metal generates fields 

which will interact with the antenna field often causing the 

tag’s read range to drop significantly. As the tag antenna is 

made of metal, a similar situation can occur when tags are 

placed close to each other causing the tags to interact and 

the reader to fail to read one or both tags. Previously, it has 

been suggested that RFID tags need to be separated by 

around 10cm between each other in order to be reliably 

detected successfully without significantly increasing the RF 

power [2]. This is clearly not practical for many applications 

such as item level tagging of small tightly packed objects. 

 

Some experimental evaluations of the decrease in tag 

power margin due to interference between tags have been 

performed [3-4] and solutions have been proposed to 

improve tag operation in close proximity [5-7]. Yu Tanaka 

et al. [5] have found that tag detuning is the dominant effect 

when there are only two tags with a separation of less than 

3cm. Detuning is caused by the power loss due to a 

mismatch between the tag antenna and IC, which originates 

from the impedance change of the tag antenna when one tag 

approaches another. Tanaka et al. proposed a solution to 

extend the tag read range by changing the RFID integrated 

circuit chip impedance to compensate for the impedance 

mismatch caused by the other tag antenna. Dobkin et al. [7] 

suggested that the effect of tag scattering plays an important 

role when multiple tags are placed in the close proximity. 

They have found that in a geometry in which the tags are 

more or less in the direction of the RF propagation, a tag 

shadowing behavior is observed and a more complicated 

situation arises when paths of scattered waves are not in the 

same direction as the incident waves. However, to the 

authors’ knowledge, this is the first paper to analyze 

experimentally the ability to read tags in close proximity in 

tag arrays and to determine the dominant effects of tag 

power margin degradation. Three main factors namely, 

detuning, shadowing and re-emission cancellation, are 

analyzed, the first being analyzed using 2 tags, and the 

others being studied for tag arrays. We find that degradation 

due to re-emission from tags acting as coupled reflector 

arrays has a more significant effect when tags are placed 

with separations of more than 1cm. 

  

II. TWO TAGS IN CLOSE PROXIMITY 

To investigate the coupling effect when passive UHF 
RFID tags are placed in close proximity, an initial 
experiment is carried out with two tags placed in front of a 
single pair of antennas. The degradation in power margin 
caused by moving one tag with respect to the other is studied. 
The experimental arrangement is shown in Fig. 1. A bi-static 
antenna configuration with a separation of 1m between the 
transmitting and receiving antennas (Tx and Rx) is used so 
that sufficient isolation is afforded for the experiments. The 
antennas are circularly polarised antennas with 6dBi gain and 
70 degree beam width operating in the ETSI (European 
Telecommunications Standards Institute) frequency band of 
865-867MHz. The experiment is repeated twice with two 
different kinds of passive UHF RFID tags which have 
different antenna and IC designs but similar architecture. The 
first pair is UMP DogBone™ inlays using Impinj Monza 4 
ICs and the second pair is Avery Dennison AD-232iL tags 
which use NXP uCode G2iL ICs. Both tags are effectively a 
short wide loaded dipole with a T-match as shown in Fig. 2. 
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Fig. 1 Experiment arrangement 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 Impinj Monza 4 tag and AD-232iL tag 

 

The red tag shown in Fig. 1 is the measurement tag and 

is kept in the same position throughout the experiment. The 

green tag is moved to vary its interference with the 

measurement tag, and its position is varied to allow 

separations from 50cm to 0cm (i.e. touching the red tag). 

The transmitting and receiving antennas are located at a 

distance of 2m from the measurement tag.  

 
The reader is programmed to vary the transmission power 

from 36dBm to 22dBm EIRP at a fixed transmission 
frequency of 865.1MHz. In order to reduce the impact of 
multi-path effects from the environment, the measurement 
tag is measured separately in isolation without the presence 
of the other tag before measuring with both of the tags 
present. The minimum transmission power needed for the 
reader to detect the tag successfully is recorded. The read 
power margin for each tag is defined as the ratio in dB of the 
maximum allowed transmission power and the minimum 
power needed for successful detection. The read power 
margin measured when both tags are present is subtracted 
from the power margin measured with only the measurement 
tag present. In this way, we exclude most of multipath effects, 
even though the interference tag could cause a double 
resonance effect, and only look at the change in read power 
margin at our target tag due to the interference from the other 
tag placed in close proximity. The same experimental 
procedure is repeated for the two different pairs of RFID tags. 
Fig. 3 presents a plot of the normalised power margin 
compared with that of isolated tags against the separation 
distance between tags.  Fig. 4 shows the normalised power 

margin compared with that of isolated tags at close 
separation distances less than 35mm. 

The reverse link margin also is measured by adding an 
attenuator after the receiver antenna and increasing the 
attenuation until the tag fails to read. Here the transmitting 
antenna is set at its maximum power allowable, 36dBm EIRP 
[8]. The measured received signal strength (RSSI) against 
attenuation is shown in Fig. 5. It is found that the reverse link 
margin for Impinj Monza 4 tag is 28dB and for AD-232iL 
tag is 26dB, both of which are much larger than the 
maximum change in transmission power of 14dB in the 
experiment ensuring that the system is forward link limited.  

 

 

 

 

 

 

 

 

 

 
Fig. 3 Normalised power margin compared with that of isolated tags plotted 

as a function of separation reduced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Normalised power margin compared with that of isolated tags at 

close separation distances 
 

 

separation distances. 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 5 Reverse link measurement 
 

It is observed that in Fig. 3 both Impinj Monza 4 tags 

and AD-232iL tags have a similar performance when two 

tags are placed in close proximity. Several trends can be 

 

 

 

 

 
(a) Impinj Monza 4 tag  

 

 
(b) AD-232iL tag  

 



observed in terms of read power margin versus tag 

separation. Firstly, the read power margin does not change 

significantly when the separation is greater than 10cm. 

Secondly as the interference tag approaches the 

measurement tag with a separation less than 10cm, the 

power margin reduces as the tag interference becomes 

stronger. When two tags are placed very close to each other, 

at 5-7mm separation for example, approximately 7dB more 

transmission power is needed to detect the tag than when the 

two tags are separated at distances greater than 10cm. It is 

thirdly observed that at a separation less than 5mm, the 

power margin for the measurement tag fluctuates. This is 

studied in more detail later in the paper. Finally, it should be 

noted that when the two tags are almost touching with a 

separation of less than 3mm, the measurement tag cannot be 

detected by the reader even when using the maximum 

transmission power. In the following sections, the key 

causes of these trends are considered. 
 

III. TAG DETUNING 

Impedance matching between the antenna and the tag IC 

is particularly critical to achieve sufficient power into the 

tag to activate the IC. Often a conjugate match is chosen to 

maximise power transfer. This is further complicated by the 

non-linear tag load characteristic and wide bandwidth 

required to enable global operation. Passive UHF RFID tag 

antennas are often short dipoles with a matching loop based 

on a T-matching technique to couple power into the 

integrated circuit [9]. At its resonant frequency, the induced 

voltage across the tuned tag is significantly enhanced 

compared with that for frequencies outside the resonant 

range. This resonance causes an increased tag read power 

margin at the design frequency.  

 

Tag detuning can be caused by the changes in the antenna 

impedance when the tag is placed on an object or when 

other objects are present in the vicinity of the tag due to 

their mutual inductances [10]. The voltage induced in the 

antenna of the tag by the magnetic field from the 

neighbouring tags can cause a shift in the resonant 

frequency (detuning). Once the tag antenna is detuned, the 

energy from the reader interrogation field cannot be 

efficiently coupled into the RFID tag and hence a decrease 

in its maximum read distance results [10].  

 

To examine the significance of tag detuning to the 

problem of detecting tags in close proximity, the change in 

the antenna impedance is directly measured as one tag 

approaches another tag. Xianming Qing et al. [11] have 

illustrated a method of extracting the balanced RFID 

antenna impedance directly from measured single ended S-

parameters. This method is used here to measure the change 

in impedance on one tag as another tag is placed in close 

proximity. The schematic configuration of the experiment is 

given in Fig. 6. The measurement is carried out by using a 

two port VNA and a test fixture. The test fixture is built by 

soldering the outer conductor of two 10cm semi-ridged 

coaxial cables together. One end of the fixture with SMA 

connectors is used to connect to the VNA. The other end of 

the fixture is open with a small extension from the inner 

coaxial conductor to connect the test tag antenna [11]. The 

test antenna is obtained by carefully removing the microchip 

from the tag. The impedance of the tag antenna is calculated 

by measuring the S-parameter from the VNA. Conventional 

calibration is carried out initially on the electrical plane 

before the SMA connectors on the test fixture, and then a 

port extension is added with the test fixture shorted until an 

ideal short is observed on a smith chart display on the VNA. 

The short is then replaced with the antenna under test. 

Another identical tag (complete with IC) is used as an 

interference tag. Offline processing of the recorded complex 

S11 and S21 allows extraction of the antenna impedance. 

The measurement is taken at different separation distances 

as the interference tag is moved closer to the test antenna in 

the x direction as indicated in Fig. 6. The measurement tag 

is kept at the same position throughout the experiment. The 

AD-232iL tags are used for this measurement. The 

interference tag is fixed to a foam stand and micro 

manipulator used to accurately change its position and 

distance from the measurement tag. 

 

 
 

 

 

 

 

 

Fig. 6 Schematic configurations for measuring antenna impedance 

 

Fig. 7 shows the calculated impedance for the test 

antenna based on measured S-parameters as the separation 

distance between the tags is varied. The dotted line indicates 

the impedance of the test antenna when it is measured in 

isolation. Fig. 8 illustrates the calculated change in power 

delivered to test tag’s IC and power back scattered based on 

the methodology found in [5]. 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 7 Impedance measured for testing antenna against separation distances 
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Fig. 8 Change in power received at tag/back scattered against separation 

distances 

 

It can be seen that, at a separation distance around 5mm, 

the experimental measurement in Fig. 8 shows a peak power 

margin reduction which correlates well with measurement 

results for AD-232iL tag in Fig. 4 in Section II. This 

indicates that at very close tag separation, the impedance 

mismatch is significant in causing the reduction in tag read 

power margin. However, it is also noticed that the peak 

reduction in Fig. 8 is around 5dB, whereas in Fig. 4, a larger 

reduction of around 7dB is observed. This indicates that 

other effects must also be causing degradation, which must 

become more significant to cause even greater margin 

reduction at very small separation. In addition, with a 

separation distance greater than 1cm, the change in power 

received at the tag and the back scattered power varies by 

only 1 to 2dB. This is much smaller than the change in tag 

power margin observed in the experimental results in 

Section II where large changes of more than 3 dB are 

observed when the separation distance are much larger (1-3 

cm). This implies the impedance mismatch becomes less 

significant when tags have a separation greater than 7mm 

and the reduction of read power margin of passive UHF tags 

observed in Section II is not only due to the impedance 

mismatch of the tag caused by detuning at separations 

greater than 7mm. 

 

IV. PROXIMITY EFFECTS FOR TAG ARRAYS 

A. Tag shadowing 

It is observed from the experiment results in Section II 

that even when tags are separated by relatively large 

distances from each other (2cm), the interaction between 

neighbouring tags is still substantial. One other possible 

reason for this is the shadowing effect: when tags are 

linearly aligned, the tags nearest to the interrogating antenna 

capture energy from a reader resulting in less available 

energy for tags further away [7]. The assessment of this is 

difficult using only two tags and so here an array experiment 

is carried out. 

 
 This experiment tests an array of 57 RFID tags which are 
spaced at 1cm intervals. The same antennas in Section II are 
used. The tags are Impinj Monza 4 tags. Fig. 9 shows the 
plan view of the experiment arrangement. The red and green 
antennas indicate the transmitting and receiving antennas 
respectively. As in previous experiments, the transmission 
power is reduced from 36 dBm EIRP to 22 dBm EIRP. The 
minimum transmission power needed to detect each tag 

within the array is recorded and plotted against tag position 
in the array shown as Fig. 10.  The tag array is placed at a 
distance of 2.5m from the antennas. The measurements are 
taken with two different tag array orientations: firstly the tag 
array is positioned such that the long axis of the array is 
orthogonal to the interrogator wave fronts with tag ID 57 
closest to the antennas (shown as 90 degree orientation in Fig. 
9) and then the array is rotated 90 degree so that its long axis 
is parallel to the interrogator wave fronts (shown as 0 degree 
orientation in Fig. 9). 

. 

 

 

 

 

 

 
Fig. 9 Experiment arrangement for tag array orientation test 

 
 

The blue points in Fig. 10 show the results when tag array 

is placed at an orientation with the long array axis 

orthogonal to the interrogator wave fronts. In the results, a 

minimum detection power of 36dBm is used to indicate that 

the tag cannot be detected by the reader even at maximum 

output power. This is because the maximum transmission 

power from the reader is limited by regulations, usually set 

to be 36dBm EIRP [8]. It is observed that in general, the 

tags close to the transmitting antenna perform better than the 

tags further away. This is indicated in Fig. 10 that the first 

half of the array (tag ID from 57 to 30) in general requires 

less transmission power for successful detection than the 

second half of the array (tag ID 29 to 1). However, if the tag 

shadowing is the only significant effect in the proximity 

problem, it would be expected that a simple increasing trend  

from tag ID 57 (the tag closest to the reader antenna) to tag 

ID 1 (the tag at the furthest distance from the reader antenna) 

in the minimum transmission power needed for sucessful 

detection would be seen. However, it is seen that the points 

do not follow a simple increasing trend, especially in the 

second half of the array (tag ID 29 to 1) which features an 

unexpected decreasing trend.  The tag at the furthest end of 

the array does not require the greatest transmission power 

from the reader. 

 

Comparing the results for the other orientation of the 

array where the long axis is parallel to the interrogator wave 

fronts (shown as 0 degree orientation in Fig. 9) , if tag 

shadowing were the only significant effect, one would 

expect that all tags in the array would have the same read 

power margin in this configuration and that the margin 

would be increased compared to the orthogonal orientation 

since there would be effectively no shadowing. Clearly this 

is not the case, and in fact the reverse is seen, especially at 

the first half of the array (tag ID 57 to 30) where test results 

from 90 degree orientation clearly outperforms that of 0 

degree orientation. Therefore, tag shadowing is not the only 

dominant effect in close proximity in an tag array. 
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Fig. 10 Experiment result for tag array directionality 

 

B. Tag re-emission cancellation 

Tag re-emission cancellation is another important factor 

to consider in detecting tags in an array. The problem is 

caused by the re-emitted waves from the tags and the 

excitation wave from the reader combining in a manner 

which leads to an interference pattern. In certain locations 

the interference will be destructive and prevent tag reading. 

It is difficult to test this directly through experiment as other 

multipath effects play a significant role in real environments 

which have unwanted reflections and distortions. However 

the measurement of directionality as shown in Fig. 10 is a 

strong indicator that tags are acting in a similar manner to 

the passive elements of a Yagi-Uda antenna.  

 

FEKO Lite, an electromagnetic simulation software 

based on the method of moments (MoM) technique is used 

to simulate a tag array to study the effect in more detail. As 

shown in Fig. 11, a simple wire model of a passive UHF 

RFID tag is created approximating the tag to a folded dipole 

antenna with a T-match. The microchip of the tag is 

modelled as a complex load impedance, which is set to be 

the conjugate match of the tag antenna. The tag is optimised 

to work at operating frequency of 865.1MHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11 Model of a single tag 

 

An array of 57 tags is created in the model with a 

separation distance of 1cm between neighbouring tags as 

shown in Fig. 12. The excitation wave is circularly polarised 

at a frequency of 865.1 MHz and has a field strength of 

1V/m. Tests are carried out for two directions of the 

excitation wave: from one end of the array and from the side 

of the array respectively as shown in Fig. 12 below. For 

each case, the power received by the load (which represents 

the IC) for each tag is recorded and plotted against its 

position in the array as shown in Fig. 13. 

 

 

 

 

 

 

 

 
 

Fig. 12 Model of the tag array 

 

The simulation result agrees in general terms with the 

experiment showing the directionality of the tag array in Fig. 

10 in Section IV. It is noticed that for the red curve in Fig. 

13 when the tag array is placed at the orientation parallel to 

the excitation wave fronts, almost every tag in the array 

receives less energy compared with the blue curve when the 

tag array has its long axis orthogonal to the excitation wave 

fronts in the first half of the tag array (tag ID 57 to 30). In 

many cases, the decrease in power into the IC is significant. 

 

It is seen in Fig. 13 that, as indicated by the blue line, the 

power captured by the IC does not simply follow a 

decreasing trend (as it would if shadowing was dominant). 

The tag closest to the radiation source (tag ID 57) indeed 

has the highest captured energy compared with other tags in 

the array and the curve initially follows a decreasing tend 

until about half way through the array. The second half of 

the array however, shows a cyclical behaviour and a slowly 

increasing trend in the end of the array There is a 16dB 

increase in the power received by the IC in the furthest tag 

(tag ID 1) compared with the tag which captures the least 

amount of energy in the array (tag ID 24). Indeed this 

simulation result agrees qualitatively with the features in the 

experimental result in Fig. 10.  Close agreement is not 

expected due to multipath effects not taken into account in 

the simple model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 13 Power into chip (in dBm) against tag ID 

 

It is observed that the general shape of the blue curve in 

Fig. 13 is very similar to the pattern of field penetration in a 

distributed Bragg reflector used in optical devices [12]. The 

structure of the distributed Bragg reflector consists of an 

alternating sequence of two materials of different optical 

impedances which can be treated as being similar to a tag 

array with air gaps between neighbouring tags. 

 
 

 

 

 



V. CONCLUSION  

In this paper, we have experimentally demonstrated a 40% 

read power margin reduction when two tags are placed at 

close separations of less than 2cm. We have also analysed 

the dominant effects causing read power margin reduction in 

conventional passive UHF RFID tags placed in large linear 

arrays taking into account tag detuning, tag shadowing and 

re-emission cancellation. It is found that different effects 

operate over different length scales of separation. Tag 

detuning has a significant effect when tags are placed very 

close to one another (at 7mm separation) and has less 

influence when tags are placed with separation distance 

greater than 1cm. For long arrays of tags, tag shadowing is 

found to be not the only significant effect when tags are 

placed in an array in close proximity. Interaction between 

the backscattered waves causes an interference pattern 

which also has a significant effect in tag array with 

separations as low as 1cm which leads to a significant 

reduction in the read range of some RFID tags in the array. 

The effect causes a strong directionality in the tag array. The 

resulting interference pattern is similar to those observed in 

other systems of multiple reflectors such as Bragg gratings. 
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